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Abstract

Brain activity during the resting state is widely used to examine brain organization, cognition

and alterations in disease states. While it is known that neuromodulation and the state of

alertness impact resting-state activity, neural mechanisms behind such modulation of rest-

ing-state activity are unknown. In this work, we used a computational model to demonstrate

that change in excitability and recurrent connections, due to cholinergic modulation, impacts

resting-state activity. The results of such modulation in the model match closely with experi-

mental work on direct cholinergic modulation of Default Mode Network (DMN) in rodents.

We further extended our study to the human connectome derived from diffusion-weighted

MRI. In human resting-state simulations, an increase in cholinergic input resulted in a brain-

wide reduction of functional connectivity. Furthermore, selective cholinergic modulation of

DMN closely captured experimentally observed transitions between the baseline resting

state and states with suppressed DMN fluctuations associated with attention to external

tasks. Our study thus provides insight into potential neural mechanisms for the effects of

cholinergic neuromodulation on resting-state activity and its dynamics.

Author summary

Brain activity during the resting period, commonly referred to as resting-state activity, is

known to display coherent spontaneous fluctuations, which form various functional net-

works. Yet, the origin of these low-frequency (less than 0.05 Hz) fluctuations is poorly

understood. In this work, we ask why is, in specific brain regions, such slow activity higher

during rest periods compared to active periods. We use computational modeling and

experimental data to demonstrate that the reduction of cholinergic release results in an
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increase in resting-state activity and its functional connectivity in a prominent resting

state network—the DMN (Default-mode network). Our work supports the hypothesis

that cellular intrinsic and synaptic changes mediated by (chemical) neuromodulatory

mechanisms contribute to the increases of low-frequency fluctuations during the resting

state.

Introduction

Resting-state fluctuations have been established as one of the fundamental properties of spon-

taneous brain dynamics observed across different species in neuroimaging studies [1–3]. How-

ever the neural mechanism underlying the origin of the fluctuations remains poorly

understood. High amplitude fluctuations are the main contributor to emergent patterns of

functional connectivity patterns which are used to define the underlying architecture of func-

tional networks [4, 5]. Analysis of these networks received a great deal of attention [6] and con-

nectivity changes in disease states are considered to reflect underlying pathologies [7].

One of the most intriguing observations is the increased spontaneous activity in specific

brain areas during rest periods. Early observations identified the Default mode network

(DMN) as a sub-network that has higher activation and functional connectivity during rest

periods compared to task periods [8, 9]. The DMN is now regarded as a fundamental func-

tional network activated during internal processing modes and deactivated when attention

shifts to external tasks [10].

What governs the transitions between DMN-dominated rest states and DMN-suppressed

attentive states is widely speculated but not yet clear [11–14]. One hypothesis states that chemi-

cal neuromodulation plays a critical role in dynamic transitions between functional networks

[15–17]. Specifically, cholinergic activity has been suggested to influence the balance between

rest and task-related brain activity [18–20]. The basal forebrain (BF) is a major source of ace-

tylcholine (ACh) in the neocortex with broad yet specific projections [21–23]. Activity in BF

closely matches the activity of the default mode-like network (DMLN, animal homologue of

DMN, [24]) in animal models, and changes in co-activation of BF and DMLN was reported in

early-stage rodent models of Alzheimer’s Disease [25]. In fact, BF itself was suggested to be an

inherent part of DMN [26, 27]. In a recent work from our group, we measured changes in rest-

ing-state fMRI following exclusive activation of BF cholinergic neurons in transgenic ChAT-

cre rats using chemogenetics. In particular, the injection of a synthetic drug (clozapine-N-

oxide, CNO) designed to activate DREADD receptors expressed on BF cholinergic neurons

resulted in decreased spectral amplitude and functional connectivity in DMLN, a hallmark of

DMN suppression [28]. While these studies provide evidence for cholinergic modulation of

resting-state activity, the underlying neural mechanism has not yet been identified.

In this study, we identify a possible mechanistic explanation for the cholinergic modulation

of resting-state activity. We used a large-scale biophysical in-silico network model of rat and

human connectome. The advantage of cellular-level biophysical modeling is that we could

model the influence of ACh neuromodulation as changes to ionic and synaptic currents. Cho-

linergic modulation is not fully understood and vary by cell type and region [29]. Here, we

identified that excitability and recurrent connection as potential critical components of cholin-

ergic modulation that impacts resting-state activity. We used experimental results of direct

cholinergic neuron manipulation to constrain our model of the DMLN network. We first

demonstrate that the computational model can capture the same changes in DMLN as

observed during cholinergic modulation in rodents. We then extend these findings using a
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computational model of human connectivity derived from diffusion-weighted MRI

(DW-MRI). Finally, we demonstrate that a selective increase in cholinergic activation only in

DMN results in the suppression of DMN activity and functional connectivity without modify-

ing sensory networks.

Results

We used a biophysical model of infra-slow resting-state fluctuations based on our previous

work [30]. This model includes a network consisting of conductance-based excitatory and

inhibitory neurons with realistic synaptic AMPA, NMDA, and GABA synaptic connections.

In addition, dynamic variables corresponding to intra and extracellular ion concentrations,

including K+, Na+, Cl-, and Ca2+ ions, were included. In this model, the slow variation of ion

concentration in time, specifically extracellular K+ ion concentration, allows for slow change

in the neuron’s excitability and firing rate, leading to fluctuations in the 0.02 Hz range similar

to slow resting-state activity (Fig 1D–1F). In this current work, we extend our previous model

to incorporate cholinergic modulation through direct manipulation of intrinsic and synaptic

currents (see the next section).

For the network simulations, the connectivity between different brain regions was identi-

fied through structural imaging methods: DW-MRI (humans) and axonal tracing (rodents).

On the global scale, the brain regions were connected with diffuse long-range connections

(Fig 1B). The strength of the connections was proportional to the weight between regions of

the global structural connectome (Fig 1A). On a finer scale, each modeled brain region was

represented by a locally connected group of 50 excitatory neurons and 10 inhibitory interneu-

rons (Fig 1C). In the case of rodent brain simulations, the connectome representing the struc-

tural connectivity of the rat’s DMLN was derived from the NeuroVIISAS database of axonal

tracing studies [31].

Cholinergic modulation of DMN resting state in rodents

To constrain and validate the effects of ACh modulations in our model, we used data from our

previous chemogenetic experiments in transgenic ChAT-cre rats [28]. This transgenic rat

model allowed the selective targeting of cholinergic neurons in the BF (the primary source of

ACh release to the neocortex) using designer receptors exclusively activated by designer drugs

(DREADDs) [32]. In these experiments, Blood Oxygenation Level Dependent (BOLD) activity

was measured in the resting state before and after injection of CNO, a synthetic chemogenetic

activator of DREADD receptors that were expressed exclusively in BF cholinergic neurons,

resulting in widespread ACh release in the projections areas of these cells. To control for any

off-target effects, CNO was also injected in animals which did not express DREADDs (sham

animals). A second control, which we use as a baseline, was performed by injecting vehicle

(saline) in the DREADD expressing animals with both control conditions resulting in no sig-

nificant effects in the BOLD and functional connectivity. On the other hand, injections of

CNO in the DREADD animals (ACh release) resulted in decreases in BOLD amplitude and

spectral profile as well as reductions of functional connectivity and the fractional amplitude of

low-frequency fluctuations (fALFF, [33]) in DMLN (Fig 2A).

The computational simulations modeling the experiments were setup in the following way.

The connectivity of rat DMLN was used and synaptic activity from each anatomical area was

used to derive BOLD signals, see Fig 2B. We compared the simulation during baseline resting

state and during high ACh levels that correspond to the experimental post-saline baseline and

CNO conditions, respectively (Fig 2B). We monitored several dynamic variables of the model

—including firing rate, the activity of Na+/K+ pump, extracellular K+ levels, neuronal
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membrane voltage (spiking) and synaptic input. The total synaptic input was transformed into

a BOLD signal representing the dynamics of each brain area (see Methods).

Past experimental work has shown that acetylcholine modulates several ionic currents and

synaptic currents through nicotinic and muscarinic receptors. Based on these findings, we

implemented a detailed model of cholinergic modulation as a reduction of somatic and den-

dritic potassium leak currents IleakK , somatic delayed-rectifier potassium current IKv, slowly acti-

vating potassium M-channel current IKm, high-threshold Ca2+ current IHVA, Ca2+–sensitive K

+ current IKCa in excitatory neurons based on past experimental work [34–37]. In inhibitory

neurons, the somatic and dendritic IleakK current and somatic IKv current were reduced. Further,

the influence of ACh on synaptic transmission was implemented as a decrease in excitatory

AMPA connections and increase in NMDA connectivity based on experimental work [38–40].

By examining the impact of change in each of the ionic and synaptic currents on resting-state

Fig 1. Computational model. A. Structural connectome of a rat’s DMLN (imported from neuroVIISAS project). B.

Model connectivity between two distinct DMN areas. Each source neuron has a p = 15% probability of connection to

each neuron in the target area. The connectivity strength of AMPA connection between excitatory neurons was

derived from the structural connectome in A. C: Model connectivity of excitatory and inhibitory neurons within a

single module (area). D: Example traces of Na+and K+ extracellular levels, the activity of Na+/K+pump, average

dendritic excitatory synaptic input (average across 50 excitatory neurons in a single area and 100 ms time window) and

resulting BOLD trace (in arbitrary units). E. Spectral amplitude of the same variables as in E (single trial, average across

all areas).

https://doi.org/10.1371/journal.pcbi.1012099.g001
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activity, we identified that K+ leak and AMPA current had the largest impact on resting-state

activity, see Fig 3 (detailed treatment of K+ currents is in Fig A in S1 Text).

Adding cholinergic modulation to inhibitory neurons did not have large impact in our

model (effects of modulating inhibitory population is shown in Fig B in S1 Text). This may be

partly due to use of a canonical type of inhibitory neuron and future studies are required to

Fig 2. Experimental and modeling methods. A. Experimental framework. Chemogenetic tools (DREADDs) were used to selectively increase

cholinergic activity in rat’s basal forebrain (BF). Resting-state fMRI scans were performed during the resting state/after injection of saline and after the

injection of CNO, resulting in upregulated cholinergic release in BF. Functional connectivity and other signal features were collected to compare both

conditions. B. Simulation framework. The structural connectome of DMLN is the backbone of simulation dynamics. The total synaptic input of all

neurons within each area is measured and used for conversion to a BOLD signal. The correlation of BOLD between areas was used to define functional

connectivity of DMLN in two conditions—resting saline baseline and increased cholinergic release.

https://doi.org/10.1371/journal.pcbi.1012099.g002

Fig 3. Comparison of detailed model of cholinergic modulation and its simplified version. A1: Average functional connectivity comparing baseline and ACh

condition for detailed and simplified model (16 trials in each condition), Fisher z-transformed correlation ±SEM. B2: Average power-spectra from all DMLN areas

(±SEM, 16 trials). The blue curve is the baseline condition, red/orange ACh modulation in detailed/simplified model. B3: fALFF values calculated from all DMLN

areas. The bar graphs present mean fALFF values ±SEM.

https://doi.org/10.1371/journal.pcbi.1012099.g003
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implement different subtypes of inhibitory neurons (e.g. [41, 42]). All these findings allowed

us to use a simplified model with changes to only K+ leak and AMPA currents in excitatory

neurons and made possible the analysis of cellular mechanisms (detailed in the last section of

the results). We use this simplified model in all subsequent sections.

After performing systematic variations of K+ leak and AMPA conductance we identified

that a reduction of 8% in K+ leak currents and a 20% reduction in AMPA currents (local and

long-range connections) qualitatively matched the results observed in DREADD experiments

(i.e. changes in functional connectivity and spectral amplitude). The amplitude of the BOLD

signal was reduced during elevated ACh condition in the model and experimental recordings

(compare the top and bottom panels of Fig 4). The power spectrum in the low-frequency

range (0–0.1 Hz) and fALFF measured across multiple trials were reduced with an increase in

ACh. The experiment’s spectral profile tended to have a wider frequency range (0–0.15 Hz)

compared to the model (0–0.1 Hz). This difference is partly due to lower variability in the peak

of resting-state activity in the model compared to the experiment. The average Z-score, which

measures functional connectivity between all the regions, was also reduced following an

increase in ACh. Similar reductions were also observed in Na+/K+ pump currents and fluctua-

tions of extracellular K+ concentrations. Overall, the change in excitability and recurrent con-

nections due to ACh release in the DMLN model were sufficient to reproduce the changes in

the BOLD signal of rat’s DMLN following selective cholinergic neuron activation in BF.

We examined the correlation between the FC pairs of regions during saline condition in

experiment (or rest in model) compared to CNO condition (ACh condition in model) (panels

A,B in Fig F in S1 Text). In both cases, we observed a strong positive correlation between the

two conditions. This suggests that there is a large influence of the baseline FC in both experi-

ment and the model. The regions which are strongly coupled in saline (or rest) remained

Fig 4. BOLD properties. Top row: Properties of BOLD signal in rats. A1: Example traces of BOLD in the cingulate and retrosplenial cortex. Left: post-saline condition

(“baseline”), right post-CNO condition (“ACh activation”). A2: Average functional connectivity comparing resting control and condition 15–20 min after DREADD

saline/CNO injection (16 animals in each condition), Fisher z-transformed correlation ±SEM. A3: Group-averaged power spectra of the seed-based maps of the cingulate

in the right hemisphere (similar results can be obtained for the retrosplenial cortex). Blue curves are the power spectra after injection of saline; orange curves are the

power spectra after injection of CNO. A4: fALFF values calculated from the seed-based FC maps of the right cingulate cortex (similar results can be obtained for

retrosplenial cortex, see [28]). fALFF values were extracted from voxels of the right hemisphere after saline injection and CNO injection. The bar graphs present mean

fALFF values ±SEM. Bottom row: Properties of BOLD in simulations. B1: Example traces of BOLD signal in the cingulate and retrosplenial cortex. Left: Spontaneous

activity of the model (“baseline”), right: activity in the condition of ACh release. B2: Average functional connectivity comparing baseline and ACh condition (16 trials in

each condition), Fisher z-transformed correlation ±SEM. B3: Average power-spectra from all DMLN areas (±SEM, 16 trials). The blue curve is the baseline condition,

orange ACh condition. B4: fALFF values calculated from all DMLN areas. The bar graphs present mean fALFF values ±SEM.

https://doi.org/10.1371/journal.pcbi.1012099.g004

PLOS COMPUTATIONAL BIOLOGY Cholinergic modulation of resting state networks through DMN suppression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012099 June 6, 2024 6 / 26

https://doi.org/10.1371/journal.pcbi.1012099.g004
https://doi.org/10.1371/journal.pcbi.1012099


strongly coupled following CNO (or ACh), but with lower strength. This correspondence

demonstrate the same internal consistency in the qualitative nature of the change in FC follow-

ing cholinergic modulation in model and experiment. However, due to low correlation

between structural connection used in the model and FC during saline condition (panel C in

Fig F in S1 Text), we did not observe significant correlation between model and experiment

for the pairwise FC measure. This suggest that the SC we used in the model may lack addi-

tional details of the DMLN network—notably there is no full rat’s connectome publicly avail-

able and thus interaction with the rest of the network is missing.

Resting-state activity in a large-scale model of the human brain

In order to examine the cholinergic changes in humans, we first establish a baseline computa-

tional model with realistic structural connectivity based on human DW-MRI. The structural

connections for the whole brain model were derived from the dataset of 90 healthy subjects

(see Methods for details), describing the structural connectivity (SC) among brain regions

defined by the AAL atlas [43]. While the extraction of structural connectivity matrix from

DWI data generally faces a range of challenges [44] and may depend substantially on the par-

ticular method used, the current structural connectivity data have been thoroughly quality

controlled and validated against an independent dataset (see [45] for details). The resulting

average structural connectivity matrix for a single hemisphere is shown in Fig 5A1 (connectiv-

ity for both hemispheres and histogram of relative coupling strength between the brain areas is

shown in Fig C in S1 Text). We observe typical properties of structural connectivity matrices

extracted from DWI data. Namely, there is a skewed distribution of links with a small propor-

tion of very strong links and a clustered structure with high density within functionally related

brain areas. Further, the connectivity within the right and left hemispheres were very similar,

giving rise to an almost symmetrical structure for the whole brain matrix. Because of this,

together with the fact that inter-hemispheric connections are still imperfectly captured by cur-

rent tractography methods, and higher computational demands, we used only a single hemi-

sphere in our model and analysis (but see panel E in Fig C in S1 Text for an overview

including both hemispheres). We also measured 15 mins of fMRI measurements in resting

conditions from the same human subjects we used to estimate the structural connectivity; that

allowed us to estimate functional connectivity. Fig 5A2 shows the average functional connec-

tivity across subjects, with characteristic blocks of correlated regions. The relation between the

mean SC and FC matrices is shown in Fig 5A3 (average correlation 0.50, for extended analysis

see Table A in S1 Text) and is similar to other studies [46]. Of course, the observed SC-FC rela-

tion may differ depending on the specific pipelines used to estimate the SC and FC. For exam-

ple, with more conservative preprocessing that aims to suppress potential artifact sources, the

individual FC matrices resemble more the typical FC matrix [47] and, in our case, leads to

globally decreasing strength of the functional connectivity (for the effects of commonly used

preprocessing components see [48]); at the same time different fiber tracking methods would

also lead to varying estimates of SC [49]. SC-FC correlations separately for weakly and strongly

connected pairs is in Table A in S1 Text.

The BOLD activity from the computational model of the human connectome largely repro-

duced the functional blocks of FC (Fig 5A2 and 5B2) and the SC/FC relationship (Fig 5A3 and

5B3). We then examined how the model’s FC compared with the experimental FC in strong

and weak structural connections. Fig 5B1 shows the relationship between fMRI and the mod-

el’s FC pairs—divided into two sets with strong (blue) and weak (red) structural connectivity.

The separation in red versus blue points in this plot suggests that the model is able to capture

the FC of strongly connected nodes better than weakly connected nodes (the visualization of
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poorly performing ones on the FC matrix is shown in Fig D in S1 Text). The SC-FC correlation

in our model is similar to other simulation studies [50]. Overall, our resting-state model using

human connectome had the essential features often observed in human experiments and pre-

vious models.

Cholinergic modulation influences global network properties

We next simulated the cholinergic modulation for the human connectome. Similar to rodent

DMLN simulation cholinergic modulation was implemented by modifying K+ leak currents

and excitatory AMPA currents. Cholinergic modulation was first applied to all areas equally to

simulate a broad ACh release across the brain (for more realistic case when ACh is not released

uniformly across all regions see later sections). In this brain-wide high ACh condition, the

amplitude of the resting-state activity measured by fALFF and the functional connectivity

between regions decreased on average (Fig 6A and 6B). The reduction in fALFF, as well as in

overall FC strength is consistent with rodent DMLN simulations in the previous section. In

contrast, the SC-FC correlation increased with ACh (Fig 6C, panel D shows all SC-FC pairs).

This increase was largely driven by a large reduction of FC in low SC ROI-pairs compared to

Fig 5. Human model. Top. Experimental human dataset. A1. Structural connectivity (SC), an average of 90 control subjects. The strength has an arbitrary scale. The

mapping between numbers and their localization is in Table B in S1 Text. A2. Average functional connectivity (FC, 90 subjects). A3. SC-FC relationship avg.

correlation was 0.50. Bottom. Model of resting state on the human connectome. B1. Relationship between experimental fMRI FC and FC of the modeled human

connectome. The stronger connections (strength> 0.01, see SC above) have blue color. Avg. correlation 0.41 (stronger subset corr. 0.45, weaker subset corr 0.1). B2.

BOLD FC of the model. The essential biophysical variables underlying the BOLD signal and their FC are visible in Fig E in S1 Text. B3. SC-FC relationship in the

model, avg. correlation 0.63.

https://doi.org/10.1371/journal.pcbi.1012099.g005
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high SC ROI-pairs and is in line with expectations based on a linear approximation of the

brain dynamics (see Discussion where we corroborate on this point).

A natural question arises concerning which brain regions should be most affected by the

ACh modulation. For any given region there are two contributing factors that determine its

response to cholinergic modulation. First, there is the reduction of resting-state activity fluctu-

ations due to changes to excitability and recurrent connections. Second, the input to the region

also changes from similar changes in other regions which are projecting to this region. In a

network, these two factors interact leading to a cascading effect, with the strongest conse-

quences for the highly connected regions receiving connections from other (highly connected)

regions. This notion of overall network-propagated connectivity is conveniently captured in

Fig 6. Effect of generic cholinergic release on the connectivity (each condition 20 simulated trials). A. Average

functional connectivity of all pairs of nodes for baseline and cholinergic modulation (Z-scored, 20 trials). B. Average

fALFF of all nodes for baseline and cholinergic modulation (20 trials). C. Average SC-FC correlation for baseline and

cholinergic modulation, 20 trials ±SEM. D. SC-FC relation for each pair of nodes in the two conditions. E. Decrease of

correlation with respect to node centrality. Each point represents one node, the x-axis corresponds to its eigenvector

centrality of the node derived from the graph of structural connectivity. y-axis shows decrease of avg. correlation to all

other nodes (for a given node). F. Decrease in amplitude (represented by fALFF) for each node of the network. x-axis

as in E.

https://doi.org/10.1371/journal.pcbi.1012099.g006
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the graph theoretical measure of eigenvector centrality [51] well studied in terms of resting-

state activity [52].

We indeed observed that while the cholinergic modulation was applied uniformly, the

nodes with higher eigenvector centrality had a larger reduction in resting-state amplitude (Fig

6F). As a consequence, these nodes also had lower FC for its connections. This suggests that

the impact of cholinergic modulation depends on the connectivity, with central nodes being

more impacted (and some of them residing in DMN). This selectivity further explains the

impact of cholinergic modulation of SC-FC relationship.

Differential impact of cholinergic modulation on DMN

We wanted to examine how cholinergic modulation impacts DMN sub-network which has

been previously identified in resting-state studies. Previous work from our group [28] and oth-

ers [19] suggests a larger influence of cholinergic modulation in DMN compared to task-posi-

tive network. One possibility is that DMN is more sensitive to cholinergic modulation, since

regions of DMN are the major targets of cholinergic and non-cholinergeric projections of BF

[53, 54]. In order to examine the selectivity of DMN, we examined the change in resting-state

activity and FC under two different conditions: first, whole brain homogeneous ACh release,

and second, ACh released only in the DMN areas of the brain (“DMN-only condition”).

Fig 7A1 shows the average effect on FC in both conditions compared to the baseline. In

both brain-wide and DMN-only conditions, there was a significant reduction of FC on aver-

age. The steepest decline is visible for the DMN nodes in the DMN-only condition. ACh

increase in the entire brain resulted in a larger reduction of FC in DMN compared to DMN

only condition and suggests that FC within DMN nodes is sensitive to changes in the rest of

the brain.

We observed several intriguing findings when ACh was increased only in DMN. First, the

largest change in FC was observed in the salience network (both within-FC and amplitude

were reduced, Fig 7A2 and 7A3). This is expected as the saliency network shares 50% of nodes

with DMN in AAL parcellation (see Table C in S1 Text and also compare SAL region of

Fig 7B3 bottom vs. panel A2 bottom in Fig H in S1 Text). When DMN nodes were excluded

from the salience network, changes in the rest of the saliency network became less prominent

(see Fig G in S1 Text). More importantly, the sensory regions in auditory and visual networks

were not impacted in the DMN-only condition. These findings demonstrate that selective cho-

linergic modulation of DMN has brain-wide changes in resting-state activity, with the notable

exception of the sensory networks. If DMN activity is a marker of internal mentation and

selective ACh release suppresses only DMN, it is favorable that the release does not suppress

the sensory networks at the same time, so that antagonistic networks dealing with external-

sensory environment can be decoupled/active. Thus, we hypothesize that selective cholinergic

modulation could be one of the neural processes that facilitates the transition from internal to

external oriented states (see Discussion for related experimental results).

We then examined the differences in the fine structure of FC across different conditions.

Fig 7B show the p-value for each pair of nodes when comparing different conditions. We can

see that in the case of whole brain ACh release (top triangle of the matrix), the change of FC

generally follows block patterns of hubs seen in FC itself (compare Figs 7B1 top and 5B2),

while DMN-only release modulates restricted part of the network (Fig 7B1 bottom triangle).

Reordering the nodes in the matrix so that DMN nodes start first (thus DMN connectivity

pairs form left top square matrix, Fig 7B2), we see that the DMN-only condition causes less

global changes but was not limited to DMN regions. DMN itself can be roughly divided into

two subsets of nodes—high and low responders to ACh change. We then used the eigenvector

PLOS COMPUTATIONAL BIOLOGY Cholinergic modulation of resting state networks through DMN suppression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012099 June 6, 2024 10 / 26

https://doi.org/10.1371/journal.pcbi.1012099


centrality as defined in the previous section and found that the nodes with high eigenvector-

centrality index (“high influencers” indicated by violet color) had the largest change. The same

can be stated as a general rule—high influencers show more ACh-related FC changes in the

whole connectome when ACh targets all brain areas, see panel A1/B1, upper triangle in Fig H

in S1 Text, where we sorted the nodes by their eigenvector-centrality rank.

To offer a comparable analysis to that shown for the rat experiments, we plot the effects of

targeting only DMN by ACh in human connectome in a similar vein as in Fig 4. Again, we

observed results matching the experimentally reported pattern [28], namely that DMN nodes

under the ACh influence decreased the amplitude in the BOLD signal (Fig 8A and 8D), spec-

trum (Fig 8C) and functional connectivity (Fig 8B).

Combined modulation of excitability and excitatory connections explain

the state dependent change in resting-state activity

In order to better isolate the neural mechanism of cholinergic modulation of the resting state,

we systematically varied the maximal conductance of K+ leak current in excitatory neurons

Fig 7. Cholinergic modulation of the human connectome. Three conditions (20 trials for each) are considered: baseline, ACh release only in DMN areas (“ACh

DMN”), and ACh release in all brain areas (“ACh all”). A1: Average FC (Fisher z-transformed) computed separately within DMN (blue) and within the remainder

of the areas (orange). A2: Changes in FC compared to baseline, projected to major functional networks (CEN = central executive, SAL = salience, AN = auditory,

SMN = sensimotor, VN = visual network, for delineations, see Table C in S1 Text). A3: Changes in fALFFs compared to baseline, projected to major functional

networks. B: FC changes after ACh release in all (top triangle) / DMN areas (bottom triangle). The color shows log10(p-value) of a two-sided Wilcoxon rank sum

test, testing the null hypothesis that FC values in baseline and ACh condition are sampled from continuous distributions with equal medians (intuitively, the “blue

regions” designate functional connectivities which are not substantially affected by the ACh modulation). Black color is used just as a separator. B1: Areas sorted as

in AAL. B2: Areas regrouped to contain DMN and the rest of the areas separately. Violet color indicates DMN regions with higher (in upper 50% regions)

eigenvector-centrality index. B3: Areas regrouped by their affiliation to different functional networks. Some nodes are shared across different networks (thus, some

self-reference black dots out of the diagonal). For the B3 version without DMN nodes shared in other networks see panel A2/B2 in Fig H in S1 Text.

https://doi.org/10.1371/journal.pcbi.1012099.g007
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and excitatory AMPA connections in a rat DMLN connectome (similar results were observed

with human DMN). The baseline (or 100%) condition corresponds to the baseline (resting

state) used in rat DMLN simulations. When the K+ leak current conductance was reduced

(from 110% to 85%), the mean firing rate across neurons increased from silence to 16 Hz (Fig

9A left and Fig 9B left). In contrast, AMPA conductance had a smaller impact on the firing

rate, with the firing rate increasing moderately (3–4 Hz variation for lowest K+ leak conduc-

tance). The higher sensitivity of K+ leak conductance on firing rate is partly due to the impact

of K+ leak current on both direct excitability and the indirect effect through its influence on

extracellular K+ concentration. An increase in excitability due to the reduction of K+ leak con-

ductance also increases extracellular K+ concentration (due to the accumulation of K+ ions

from spikes), which further increases the excitability. This feedback interaction, as reported in

our previous models [55–57], may lead to a large non-linear change in firing rate with a change

in K+ leak conductance.

In contrast to the firing rate, the fluctuations in extracellular K+ concentration and BOLD

in resting-state frequencies were impacted by both K+ leak and AMPA conductances. Its value

increased with AMPA conductance only for the intermediate values (around 100%) of K+ leak

conductance. Specifically, the extracellular K+ concentration doubled its value with AMPA

conductance changed from 70% to 100% only for the intermediate values of K+ leak conduc-

tance. The extracellular K+ concentration fluctuation is lower at high K+ leak conductance

(above 102%) due to the significant drop in the excitability and the overall quiescence in the

network activity. Interestingly, at low K+ leak conductance values, when the firing rate is high,

there is also the reduction in K+ fluctuations due to smaller contribution of K+ ions from K+

leak currents and lower synchronization between regions (as shown by lower functional con-

nectivity Fig 9A).

The BOLD, average functional connectivity (Fig 9A), and Na+/ K+ pump activity (Fig 9C)

closely matched the trend in the extracellular K+ concentration. Both BOLD and Na+/ K+

pump had the highest values for the intermediate values of K+ leak and AMPA conductance.

Further, the synchronization in BOLD (Fig 9A right) and Na+/ K+ pump (Fig 9C) increased

Fig 8. The effect of ACh release in DMN on DMN and non-DMN areas of human connectome. A. Example traces of BOLD signal. Top. Example of two areas in DMN

—dorsolateral superior frontal gyrus and median cingulate/paracingulate gyri. Bottom: Example of two areas out of DMN—lingual gyrus and superior parietal gyrus.

Left: Spontaneous resting activity of the model (“baseline”), right: the same trial when modulated by ACh release. B. Average functional connectivity comparing baseline

and ACh condition (20 trials in each condition), Fisher z-transformed correlation ±SEM. Top: FC between DMN areas. Bottom: FC between non-DMN areas. C.

Average spectral amplitude (±SEM, 20 trials) of all areas in DMN (top) and non-DMN areas (bottom) in resting condition (blue) and DMN-modulated-by-ACh

condition (red). D. Average fALFF (±SEM, 20 trials) of all areas in DMN (top) and non-DMN areas (bottom).

https://doi.org/10.1371/journal.pcbi.1012099.g008

PLOS COMPUTATIONAL BIOLOGY Cholinergic modulation of resting state networks through DMN suppression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012099 June 6, 2024 12 / 26

https://doi.org/10.1371/journal.pcbi.1012099.g008
https://doi.org/10.1371/journal.pcbi.1012099


with AMPA conductance only in the intermediate range of K+ leak conductance. The reduc-

tion in recurrent excitation led to lower BOLD, functional connectivity mediated by the

changes to extracellular K+ fluctuations (Fig 9C, panel 3). Thus, these findings suggest that the

interaction between the excitability of neurons and the strength of recurrent excitation criti-

cally determines the fluctuations of K+ in resting-state activity, Na+/ K+ pump, and the BOLD.

Further, our findings suggest that cholinergic modulation could also result in any of the inter-

mediate values of K+ leak and AMPA conductance, allowing for gradual and selective changes

in resting-state activity.

Thus, cholinergic modulation which influences both excitability and recurrent excitation is

ideally suited for modulating resting-state activity and its functional connectivity.

Discussion

The widely used “resting-state” activity is thought to reflect intrinsic spontaneous activity

when the brain is in rest periods [58]. While the general spatiotemporal patterns of rest and

Fig 9. Cellular mechanisms of cholinergic modulation of resting-state activity. A. Different measures of resting-state activity and ion concentration

dynamics when K+ leak and AMPA conductances are varied. The average firing rate is measured by averaging the mean firing rate across neurons and

regions. Extracellular K+ concentration fluctuation is measured by taking the FFT of the average extracellular K+ time series. BOLD fALFF, measured from

the synaptic activity with fALFF similar to the method described in previous figures. Average functional connectivity is measured as the mean of functional

connectivity across all pairs of regions. B. Time series of firing rate and extracellular K+ for different values of K+ leak conductance in 100% AMPA

condition. The legend shows the correspondence between the color and value of the K+ leak conductance value for both plots. Inset on the right of the

extracellular K+ plot is the boxplot with whiskers corresponding to the 1 and 99 percentile of the data to indicate the range of the extracellular K+

fluctuations. C. Na+/ K+ pump and BOLD time series for different regions for selected conditions. The number in the title corresponds to the number in

the 2D sweep image in the right panel in A.

https://doi.org/10.1371/journal.pcbi.1012099.g009
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task-related activity are surprisingly similar [59], some sub-networks, in particular the default

mode network, have increased activity during rest periods as compared to a range of cognitive

tasks [9, 60]. Moreover, during sustained demanding cognitive tasks, DMN activity fluctua-

tion, while still apparent, is substantially reduced compared to the DMN activity fluctuation

during an unconstrained resting state [61, 62]. In this study, we first tested the hypothesis that

cholinergic activation promotes the inhibition of resting-state activity in DMN. To develop

our model we used changes in rsfMRI following direct cholinergic neuron stimulation in

rodents. We then extend the model to human connectome derived from DW-MRI measure-

ments obtained from healthy human subjects. Results from our study support the hypothesis

that a change in neuromodulation supports the switching between different functional

networks.

Neuromodulation plays a critical role in the switch between different states of vigilance

[63]. In addition, neuromodulation is also proposed to play an essential role in shaping the

dynamics of the task- and resting-state networks [16, 17, 64]. Acetylcholine is a major neuro-

modulator released through broad projections from the basal forebrain [65]. We used data

from a previous experiment [28], which involved selective activation of the cholinergic neu-

rons in the basal forebrain using excitatory DREADDs. Simultaneously measuring resting-

state fMRI with DREADDs showed suppression of rsfMRI during cholinergic neuron

activation.

The results from the experiments were then used to constrain the computational model of

DMLN with the connectivity based on NeuroVIISAS atlas for rodent brain [31]. We used a

computational model of resting-state activity that included realistic ionic and synaptic currents

based on the Hodgkin-Huxley formulation and ion dynamics. In this model, the interaction

between cellular currents and ion dynamics leads to slow resting-state activity [30]. Using a

biophysical model allowed us to implement cholinergic activation as a reduction of conduc-

tance of K+ leak current and excitatory connections. The cellular action of acetylcholine is not

fully understood and could be variable across neurons [29]. Thus, in this work we examined

the most prominent action of cholinergic modulation involving K+ leak and excitatory con-

nections. We also examined a more elaborate model of cholinergic modulation involving all

K+, AMPA and NMDA currents, which resulted qualitatively similar to model involving only

changes to K+ leak and AMPA currents. The model was able to replicate the reduction in rest-

ing-state activity and its functional coupling following cholinergic activation.

An increase in DMN activity is a hallmark of internally oriented states and the transition

between those states and states with externally oriented attention is poorly understood [10].

Several—not necessarily exclusive—candidates for the control of the transition are the activity

of other functional networks [11, 66, 67], thalamocortical circuits, and ACh-dependent path-

way mediated by basal forebrain (BF) [10, 24], which can be (together with the thalamus)

thought of as a subcortical part of DMN [26]. Our results suggests that selective cholinergic

modulation of DMN could facilitate this switch.

While it is known that BF projects broadly over the neocortex and the projections can be

very specific in mammals [22, 23, 54, 68, 69], it is notoriously difficult to get exact human con-

nectivity due to the small volume of the critical areas [70, 71]. We opt for the hypothesis that

important DMN regions are more affected by cholinergic release (due to either higher proba-

bility in direct projections [72], or by the graded density of AChR receptors, or by a partial

activity of specific regions of nucleus basalis of Meynert translating into partial neocortical

activations). This is, of course, not the only possibility and there are more complicated

accounts of how ACh acts globally [73] and within BF circuits [74–77]. As human experiments

are limited to broad nicotine-related manipulations we initially show an animal model where

we could directly influence major cholinergic center (BF), which in turn affects core hubs of
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DMN—or more precisely, their animal DMLN analogues which were shown to be present

across many species [78–83].

In this study, we only examined the cholinergic modulation arising from the basal fore-

brain. However, major projections of BF includes glutamatergic and GABAergic projections,

which were not examined here. It has been proposed that glutamatergic and GABAergic pro-

jections mediate the BF influence on cortex [84] and in particular DMN [24, 27]. Specifically,

there is an increase in glutamatergic input and a reduction of GABAergic input to cortex when

the cholinergic neuron is not active [85]. Such an increase in glutamatergic input would further

increase resting-state activity during rest periods in our model, and the overall results will be

qualitatively consistent with the results reported in the current study. A more detailed compu-

tational model of BF subtypes could, in the future, isolate the cell type specific mechanisms.

Our model of resting state with human connectome captured several features of rsfMRI in

humans, including the SC-FC relationship [86, 87]. The relation between SC and FC is far

from straightforward, and while they are correlated, there is no simple match. Instead, there is

a significant correlation variability reported across the studies [46]. However, our aim here

was not to optimize SC-FC correspondence. First, this was already attempted in multiple simu-

lation studies [50]; moreover, optimizing solely for the best match can even be detrimental to

the models’ dynamical properties [14]. Our model, however, shows a quantitative correspon-

dence similar to the reported results. The functional connections directly supported by existing

structural/anatomical connections were captured well, while weak structural connections ren-

dered the prediction of functional coupling weak. The SC-FC match between the model and

data could be improved if specific measures supporting cytoarchitectonic, transcriptomic, and

higher order interactions were added to the model [88]. However, despite these additions,

there remains a fundamental problem: human brain tractography is inherently limited and

does not capture gray matter tracts and fibers going through thick bundles of axons, e.g. cor-

pus callosum [89, 90]. Hence SC typically misses interhemispheric connections known to

affect FC [91, 92]. Another problem stems from the fact that experimental FC values depend

on specific parameters for preprocessing pipeline of the BOLD signal. Thus the predictive

power of our model might not be directly comparable to other studies using different experi-

mental SC/FC datasets.

We also observed that the SC-FC match increased with an increase in ACh (which generally

reduces coupling between the nodes). This is in line with the expectations based on a simple

linear approximation of the brain dynamics. In a linear process with weak coupling, the corre-

lation matrix of the time series basically copies the structure of the coupling matrix, as only the

first order interactions give rise to correlations of sufficient strength to be above the noise level.

However, for a system with stronger coupling, the correlations due to indirect links (such as

due to common source(s), or multiple steps of a causal chain) become strong enough to cause

correlations (functional connectivity) above the noise level [93]. Thus, for strongly coupled sys-

tems, the functional connectivity can deviate further from the structural connectivity.

Few cases of indirect evidence suggest that SC-FC could be influenced by cholinergic mod-

ulation. It is known that FC change during task compared to resting-state [94] and that task-

related activity is often accompanied by change in cholinergic modulation [95]. Assuming

structural connections remains the same, it is likely the SC-FC also changes from resting-state

to task. Further, some of the variability of SC-FC observed across subjects and studies [46]

may be due to the state of subject and provide support to our observation. Finally, the reduc-

tion of SC-FC in Alzheimer’s disease [96], where there is a reduction of cholinergic activation

[97, 98] provide additional support to our findings. Relating SC-FC changes as a function of

eigen-vector centrality is not common place in the literature but it might be worth to test our

predictions on possibly related datasets (e.g. [99]).
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In human connectome simulations, we concentrated on a particular role of ACh in switching

the balance in the neocortical state from default mode network activation to activation of net-

works involved in external sensory processing [19, 100] or executive control [20]. DMN, a net-

work active mainly in the resting condition [101], was associated with a variety of internally

oriented mental states [102, 103] while inhibited with external goal-oriented tasks [8, 102, 104].

A recent experimental study [105] observed DMN suppression when participants transitioned

from the rest to externally focused task and DMN activation during internal, self focused, task.

At the same time there was a correlation between DMN and BF activity (source of ACh), suggest-

ing a potential role of cholinergic modulation. In our simulations we considered global choliner-

gic modulation of the entire brain and selective cholinergic modulation only in DMN.

Cholinergic modulation only in DMN regions translated to a picture consistent with the experi-

mental results in rodents [28]; moreover, it showed DMN-specific inhibition which did not

appear when ACh was uniformly affecting all cortical regions. Within the DMN, the modulation

mainly affected the areas with higher eigenvector-centrality rank (i.e., highly connected nodes

preferring connections to other highly connected nodes). As DMN richly connects (and even

shares some nodes) with other functional networks, ACh-triggered changes in DMN propagate

to other parts of the brain, however to a lesser degree than it is the case of uniform cholinergic

release across all the areas; notably, the change did not impact internal coupling within visual/

auditory networks. This observation makes cholinergic-related suppression of DMN compatible

with independent activity in sensory regions connected with attention to external stimuli.

In conclusion our findings suggest cholinergic modulation on a cellular level leads to

changes in large scale dynamics powerful enough to be a vital part of the intrinsic switching

mechanism between different brain networks.

Materials and methods

Ethics statement

Human data. The study was conducted in accordance with the Declaration of Helsinki. The

local Ethics Committee of the Prague Psychiatric Center approved the protocol on 29 June

2011 (protocol code 69/11). All participants provided written informed consent prior to their

participation.

Animal data. All procedures were in accordance with the guidelines approved by the Euro-

pean Ethics Committee (decree 2010/63/EU) and were approved by the Committee on Animal

Care and Use at the University of Antwerp, Belgium (approval number: 2015- 50).

Biophysical model

The microcircuit connectivity and dynamics is identical to our previous work [30]. To briefly

summarize, each network area (ROI) consists of 50 excitatory and 5 inhibitory neurons. Both

excitatory and inhibitory neurons were modeled via axosomatic and dendritic conductance-

based compartments following the equations

Cm
dVd

dt
¼ � gcDðVD � VSÞ � IleakD � Ipump

D � IIntD ð1Þ

gcSðVD � VSÞ ¼ � I
leak
S � Ipump

S � IIntS

IIntD ¼ IKm þ IKCa þ Ih þ ICa þ INa þ INaP

IIntS ¼ INa þ IKv þ INap þ IKNa;
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where Cm is membrane capacitance, VD,S are dendritic/axosomatic compartment voltages, gcD;S
are leakage conductances, IleakD;S are sums of the ionic leak currents, Ipump

D;S are sums of Na+ and K+

currents through Na+/K+ pump, IIntD;S are intrinsic currents. The dendritic compartment

includes fast sodium current (INa), persistent sodium current (INaP), slowly activating potas-

sium current (IKm), calcium-activated potassium current (IKCa), hyperpolarization-activated

depolarizing mix cationic currents (Ih), high threshold Ca2+ current (ICa) and leak currents

[57, 106, 107]. The axosomatic compartment includes fast sodium current (INa), persistent

sodium current (INaP), delayed-rectifier potassium current (IKv) and sodium-activated potas-

sium current (IKNa). Ion concentrations were modeled for intracellular K+, Na+, Cl−, Ca2+ and

extracellular K+, Na+. K+/Na+ pump for K+/Na+ regulation and KCC2 cotransporter for extru-

sion of Cl− were used for both neuron types [57, 106, 108, 109].

Extracellular space was modeled for each neuron with local ion diffusion between nearest

neighbors. It was tightly bounded between the glia and neurons, and there was an instanta-

neous and direct impact of ion concentration changes in the extracellular space on the neuro-

nal and glial activity. Glial regulation of extracellular K+ was modeled as a free buffer [57, 106,

107].

Local connectivity within single cluster was mediated via AMPA/NMDA conductances for

PY->PY/IN and GABAA for IN->PY, local connectivity radiuses were r(Py! Py)� 5, r(In
! In)� 2, r(In! Py)� 5, r(Py! In)� 1. Long range connections between clusters i! j
was mediated via AMPA conductances with 15% probability of Py 2 i connecting to Py 2 j,
and GABAA conductances with restricted convergence of 5 Py 2 i to 1 In 2 j and probability

of connection 25% for each possible connection.

Structural connectivity of human connectome was used (90 ROIs from AAL template, 45

for a single hemisphere, acquisition is described below), for modulation of DMN the subset of

areas participating in default mode was defined by [110] (see Table C in S1 Text for explicit list

of the nodes). Structural connectivity of rat DMLN (see Fig 1A) was extracted from the Neuro-

VIISAS database of axonal tracing studies [31].

We use the synaptic currents as the primary source of BOLD [111, 112]. In particular,

BOLD signal was created for each cluster first by averaging total synaptic input for all excit-

atory neurons in 100 ms windows and then it was convolved with a hemodynamic response

function imported from Statistical Parametric Mapping (SPM) package [113]. In addition, we

also observed correlation between the extracellular K+, Na+/K+ pump and the estimated

BOLD activity (Fig E in S1 Text). The Na+/K+ pump activity reflect the metabolic activity of a

given region (oxygen consumption) and this correlation further provide evidence that the

BOLD activity measured in the model could capture the hemodynamics which is responsible

for the BOLD activity in fMRI.

We performed various (1-D or 2-D) sweeps which revealed the qualitative nature and range

of parameter values that best matched the results from experiments. The simple sweeps (see

Fig A in S1 Text) showed that modulation of all K+ currents modulation resulted in an

inverted U-shape dependency for both functional connectivity and amplitude. A similar explo-

ration was performed with inhibitory connections (see Fig B in S1 Text). Combining modula-

tion of all K+ current and AMPA conductance resulted in similar qualitative pattern, with the

inverted U-curve slightly shifted (the same was later observed with simplified model in 2-D

sweep of Fig 9). The parameters corresponding to firing rate around 5 Hz matched the peak of

the inverted U-curve in the resting-state activity amplitude, which were taken as the 100% or

rest condition. As the cholinergic modulation is known to reduce K+/AMPA channel conduc-

tance, the parameters that were left of the peak and close to experimental FC/amplitude were

taken as cholinergic condition. Admittedly this procedure does not examine the whole space
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of parameter values, but the qualitative patterns observed were robust across variations of

other parameters, consistent with cellular electrophysiological studies on cholinergic modula-

tion and provide a hypothesis that can be tested in future experiments.

Human data—Structural connectivity

Acquisition of MRI data and construction of structural connectivity was identical to the meth-

ods described in [45]. To summarize, the data provided here are based on MRI scans of 90

healthy control individuals participating in the Early-Stage Schizophrenia Outcome study

[114]. The construction of structural connectivity matrices was based on a connectome gener-

ated by probabilistic tractography on diffusion MRI data. We used ROIs from the widely used

AAL atlas (Automated Anatomical Labeling atlas, [43]). The connectivity between two ROIs is

based on the number of streamlines in the tractogram beginning in one ROI and terminating

in the other ROI. Accurate mapping of the AAL atlas ROIs to the diffusion data space was real-

ized as a two-stage process: affine mapping of structural T1 images to MNI space and a rigid-

body mapping between the T1 structural data and the DWI data, both for each subject.

We performed the MRI scanning at the Institute for Clinical and Experimental Medicine in

Prague, on a 3 T Trio Siemens scanner (Erlangen, Germany). A 12-channel head coil was

used, software version syngo MR B17. DWI data were acquired by a Spin-Echo EPI sequence

with TR/TE = 8300/84 ms, matrix 112 × 128, voxel size 2 × 2 × 2 mm3, b-value 0 and 900 s/

mm2 in 30 diffusion gradient directions, 2 averages, bandwidth 1502 Hz/pixel, GRAPPA

acceleration factor 2 in phase-encoding direction, reference lines 24, prescan normalize off,

elliptical filter off, raw filter on—intensity: weak, acquisition time 9:01. T1 3D structural image

was acquired by using the magnetization prepared rapid acquisition gradient echo (MPRAGE)

sequence with (TI—inversion time) TI/TR/TE = 900/2300/4.63 ms, flip angle 10˚, 1 average,

matrix 256 × 256 × 224, voxel size 1 × 1 × 1 mm3, bandwidth 130 Hz/pixel, GRAPPA accelera-

tion factor 2 in phase-encoding direction, reference lines 32, prescan normalize on, elliptical

filter on, raw filter off, acquisition time 5:30.

Human data—Functional connectivity

fMRI data acquisition. Scanning was performed with a 3T MRI scanner (Siemens Mag-

netom Trio) located at the Institute for Institute of Clinical and Experimental Medicine in

Prague, Czech Republic. Functional images were obtained using T2-weighted echo-planar

imaging (EPI) with blood oxygenation level-dependent (BOLD) contrast using SENSE imag-

ing. GE-EPIs (TR/TE = 2000/30 ms, flip angle = 70˚) comprised of 35 axial slices acquired con-

tinuously in sequential decreasing order covering the entire cerebrum (voxel size = 3×3×3

mm, slice dimensions 48x64 voxels). 400 functional volumes were used for the analysis. A

three-dimensional high-resolution MPRAGE T1-weighted image (TR/TE = 2300/4.63 ms, flip

angle 10˚, voxel size = 1×1×1 mm) covering the entire brain was acquired at the beginning of

the scanning session and used for anatomical reference.

Data preprocessing, brain parcellation, and FC analysis. The rsfMRI data were cor-

rected for head movement (realignment and regression) and registered to MNI standard ste-

reotactic space (Montreal Neurological Institute, MNI) with a voxel size of 2×2×2 mm by a 12

parameter affine transform maximizing normalized correlation with a customized EPI tem-

plate image. This was followed by segmentation of the anatomical images in order to create

subject-specific white-matter and CSF masks. Resulting anatomical images and masks were

spatially normalized to a standard stereotaxic MNI space with a voxel size of 2×2×2 mm.

The denoising steps included regression of six head-motion parameters (acquired while

performing the correction of head-motion) and the mean signal from the white-matter and
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cerebrospinal fluid region. Time series from defined regions of interest were additionally fil-

tered by a band-pass filter with cutoff frequencies 0.004--0.1 Hz. The regional mean time

series were estimated by averaging voxel time series within each of the 90 brain regions

(excluding the cerebellar regions) comprising the Automated Anatomical Labeling (AAL)

template image [43]. To quantify the whole-brain pattern of functional connectivity, we per-

formed a ROI-to-ROI connectivity analysis and computed for each subject the Pearson’s cor-

relation matrix among the regional mean time series, as (linear) Pearson’s correlation

coefficient has been shown to be suitable for fMRI ROI functional connectivity estimation

[115].

Animal data

Experimental framework and acquisition of MRI data is identical to [28]. To summarize, 28

adult ChAT-Cre Long Evans rats were used, of which 14 males and 14 females. Animals were

group housed with a 12h light/dark cycle and with controlled temperature (20–24˚C) and

humidity (40%) conditions. Standard food and water were provided ad libitum.

All rats received stereotactic surgery targeting the right nucleus basalis of Meynert, horizon-

tal diagonal band of broca and substantia innominata to transfect cholinergic neurons using

either a Cre-dependent DREADD virus (AAV8-hSyn-DIO-hM3Dq(Gq)-mCherry) (N = 16)

or sham virus (AAV8-hSyn-DIO-mCherry) (N = 12). Resting-state functional MRI was per-

formed at least two months after surgery, to allow stable expression of the virus. Animals were

anesthetized using a combination of isoflurane (0.4%) and medetomidine (0.05 mg/kg bolus

followed by a 0.1mg/kg/hr continuous infusion). An intravenous catheter was placed in the

tail vein which was used to administer 1 mg/kg CNO or saline. A gradient-echo EPI sequence

was used (TE: 18 ms, TR: 2000ms, FOV: (30 x 30) mm2, matrix [128 x 96], 16 slices of 0.8 mm)

on a 9.4T Bruker Biospec preclinical MRI scanner. A 5 minute baseline scan was followed by

the injection of either CNO or saline during a 20 minute scan, followed by another 5 minute

rsfMRI scan. DREADD expressing animals received two scan sessions, one with an injection

of CNO and second session with an injection of saline, while Sham animals only received one

scan session with CNO.

Preprocessing of the rsfMRI data included realignment, spatial normalization to a study

specific template, masking, smoothing and filtering (0.01–0.2 Hz) using Matlab 2014a and

SPM12 software [113]. Region-of interest based analysis was performed using predefined

regions belonging to the default mode network. Amplitude of low frequency fluctuations were

extracted from seed regions (cingulate cortex and retrosplenial cortex) within the right hemi-

sphere. FC and fALFF values were compared before and after injection of CNO/saline using

paired two-sample t-tests or unpaired two-sample t-tests.
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56. Fröhlich F, Sejnowski TJ, Bazhenov M. Network bistability mediates spontaneous transitions between

normal and pathological brain states. Journal of Neuroscience. 2010; 30(32):10734–10743. https://

doi.org/10.1523/JNEUROSCI.1239-10.2010 PMID: 20702704

57. Krishnan GP, Bazhenov M. Ionic dynamics mediate spontaneous termination of seizures and postictal

depression state. Journal of Neuroscience. 2011; 31(24):8870–8882. https://doi.org/10.1523/

JNEUROSCI.6200-10.2011 PMID: 21677171

58. Raichle ME. The brain’s default mode network. Annual Review of Neuroscience. 2015; 38:433–447.

https://doi.org/10.1146/annurev-neuro-071013-014030 PMID: 25938726

59. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s

functional architecture during activation and rest. Proceedings of the National Academy of Sciences.

2009; 106(31):13040–13045. https://doi.org/10.1073/pnas.0905267106 PMID: 19620724

60. Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, et al. Common blood flow

changes across visual tasks: II. Decreases in Cerebral Cortex. Journal of Cognitive Neuroscience.

1997; 9(5):648–663. https://doi.org/10.1162/jocn.1997.9.5.648 PMID: 23965122

61. Fransson P. How default is the default mode of brain function?: Further evidence from intrinsic BOLD

signal fluctuations. Neuropsychologia. 2006; 44(14):2836–2845. https://doi.org/10.1016/j.

neuropsychologia.2006.06.017 PMID: 16879844

62. Northoff G, Qin P, Nakao T. Rest-stimulus interaction in the brain: a review. Trends in Neurosciences.

2010; 33(6):277–284. https://doi.org/10.1016/j.tins.2010.02.006 PMID: 20226543

63. Lee SH, Dan Y. Neuromodulation of brain states. Neuron. 2012; 76(1):209–222. https://doi.org/10.

1016/j.neuron.2012.09.012 PMID: 23040816

64. Thiele A, Bellgrove MA. Neuromodulation of attention. Neuron. 2018; 97(4):769–785. https://doi.org/

10.1016/j.neuron.2018.01.008 PMID: 29470969

65. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes

nervous system function and behavior. Neuron. 2012; 76(1):116–129. https://doi.org/10.1016/j.

neuron.2012.08.036 PMID: 23040810

66. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function.

Brain Structure and Function. 2010; 214(5):655–667. https://doi.org/10.1007/s00429-010-0262-0

PMID: 20512370

67. Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL. Intrinsic architecture underlying the

relations among the default, dorsal attention, and frontoparietal control networks of the human brain.

Journal of Cognitive Neuroscience. 2013; 25(1):74–86. https://doi.org/10.1162/jocn_a_00281 PMID:

22905821

68. Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, et al. The nucleus basalis of Meynert:

a new target for deep brain stimulation in dementia? Neuroscience & Biobehavioral Reviews. 2013; 37

(10):2676–2688. https://doi.org/10.1016/j.neubiorev.2013.09.003

69. Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR, Vadasz C, et al. Neurons in the basal forebrain

project to the cortex in a complex topographic organization that reflects corticocortical connectivity pat-

terns: an experimental study based on retrograde tracing and 3D reconstruction. Cerebral Cortex.

2015; 25(1):118–137. https://doi.org/10.1093/cercor/bht210 PMID: 23964066

70. Zaborszky L, Hoemke L, Mohlberg H, Schleicher A, Amunts K, Zilles K. Stereotaxic probabilistic maps

of the magnocellular cell groups in human basal forebrain. NeuroImage. 2008; 42(3):1127–1141.

https://doi.org/10.1016/j.neuroimage.2008.05.055 PMID: 18585468

PLOS COMPUTATIONAL BIOLOGY Cholinergic modulation of resting state networks through DMN suppression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012099 June 6, 2024 23 / 26

https://doi.org/10.1080/0022250X.1972.9989806
https://doi.org/10.1371/journal.pone.0010232
http://www.ncbi.nlm.nih.gov/pubmed/20436911
https://doi.org/10.1016/j.brainres.2013.04.057
http://www.ncbi.nlm.nih.gov/pubmed/23665053
https://doi.org/10.1523/JNEUROSCI.3011-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25471564
https://doi.org/10.1523/JNEUROSCI.5509-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16763023
https://doi.org/10.1523/JNEUROSCI.1239-10.2010
https://doi.org/10.1523/JNEUROSCI.1239-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20702704
https://doi.org/10.1523/JNEUROSCI.6200-10.2011
https://doi.org/10.1523/JNEUROSCI.6200-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21677171
https://doi.org/10.1146/annurev-neuro-071013-014030
http://www.ncbi.nlm.nih.gov/pubmed/25938726
https://doi.org/10.1073/pnas.0905267106
http://www.ncbi.nlm.nih.gov/pubmed/19620724
https://doi.org/10.1162/jocn.1997.9.5.648
http://www.ncbi.nlm.nih.gov/pubmed/23965122
https://doi.org/10.1016/j.neuropsychologia.2006.06.017
https://doi.org/10.1016/j.neuropsychologia.2006.06.017
http://www.ncbi.nlm.nih.gov/pubmed/16879844
https://doi.org/10.1016/j.tins.2010.02.006
http://www.ncbi.nlm.nih.gov/pubmed/20226543
https://doi.org/10.1016/j.neuron.2012.09.012
https://doi.org/10.1016/j.neuron.2012.09.012
http://www.ncbi.nlm.nih.gov/pubmed/23040816
https://doi.org/10.1016/j.neuron.2018.01.008
https://doi.org/10.1016/j.neuron.2018.01.008
http://www.ncbi.nlm.nih.gov/pubmed/29470969
https://doi.org/10.1016/j.neuron.2012.08.036
https://doi.org/10.1016/j.neuron.2012.08.036
http://www.ncbi.nlm.nih.gov/pubmed/23040810
https://doi.org/10.1007/s00429-010-0262-0
http://www.ncbi.nlm.nih.gov/pubmed/20512370
https://doi.org/10.1162/jocn_a_00281
http://www.ncbi.nlm.nih.gov/pubmed/22905821
https://doi.org/10.1016/j.neubiorev.2013.09.003
https://doi.org/10.1093/cercor/bht210
http://www.ncbi.nlm.nih.gov/pubmed/23964066
https://doi.org/10.1016/j.neuroimage.2008.05.055
http://www.ncbi.nlm.nih.gov/pubmed/18585468
https://doi.org/10.1371/journal.pcbi.1012099


71. Chiang-shan RL, Ide JS, Zhang S, Hu S, Chao HH, Zaborszky L. Resting state functional connectivity

of the basal nucleus of Meynert in humans: in comparison to the ventral striatum and the effects of

age. NeuroImage. 2014; 97:321–332. https://doi.org/10.1016/j.neuroimage.2014.04.019

72. Nazari M, Abadchi JK, Naghizadeh M, Contreras EB, Tatsuno M, McNaughton BL, et al. Regional vari-

ation in cholinergic terminal activity determines the non-uniform occurrence of cortical slow-wave activ-

ity during REM sleep. bioRxiv. 2022.

73. Turchi J, Chang C, Frank QY, Russ BE, David KY, Cortes CR, et al. The basal forebrain regulates

global resting-state fMRI fluctuations. Neuron. 2018; 97(4):940–952. https://doi.org/10.1016/j.neuron.

2018.01.032 PMID: 29398365

74. Yang C, McKenna JT, Brown RE. Intrinsic membrane properties and cholinergic modulation of mouse

basal forebrain glutamatergic neurons in vitro. Neuroscience. 2017; 352:249–261. https://doi.org/10.

1016/j.neuroscience.2017.04.002 PMID: 28411158

75. Gielow MR, Zaborszky L. The input-output relationship of the cholinergic basal forebrain. Cell Reports.

2017; 18(7):1817–1830. https://doi.org/10.1016/j.celrep.2017.01.060 PMID: 28199851

76. Espinosa N, Alonso A, Lara-Vasquez A, Fuentealba P. Basal forebrain somatostatin cells differentially

regulate local gamma oscillations and functionally segregate motor and cognitive circuits. Scientific

Reports. 2019; 9(1):1–12. https://doi.org/10.1038/s41598-019-39203-4 PMID: 30796293

77. Espinosa N, Alonso A, Morales C, Espinosa P, Chávez AE, Fuentealba P. Basal forebrain gating by
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