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Abstract

Animals can learn in real-life scenarios where rewards are often only available when a goal

is achieved. This ‘distal’ or ‘sparse’ reward problem remains a challenge for conventional

reinforcement learning algorithms. Here we investigate an algorithm for learning in such

scenarios, inspired by the possibility that axo-axonal gap junction connections, observed in

neural circuits with parallel fibres such as the insect mushroom body, could form a resistive

network. In such a network, an active node represents the task state, connections between

nodes represent state transitions and their connection to actions, and current flow to a target

state can guide decision making. Building on evidence that gap junction weights are adap-

tive, we propose that experience of a task can modulate the connections to form a graph

encoding the task structure. We demonstrate that the approach can be used for efficient

reinforcement learning under sparse rewards, and discuss whether it is plausible as an

account of the insect mushroom body.

Author summary

Learning in situations where reward is only rarely encountered is difficult. It is hard to

discover the right sequence of actions when most actions, most of the time, provide no

apparent progress towards a goal. Inspired by a neural circuit in the insect brain, and

using direct electrical connections between neurons as well as synaptic connections, we

present a new algorithm for learning. The model represents the states of the world with

nodes and an electrical connection between two nodes is strengthened when the two cor-

responding states occur consecutively. The connections between nodes can also become

associated to output actions that correlate with (hence are assumed to cause) transitions

between states. When a particular goal is chosen or associated with a reward, for example,

the target location in a navigation task, a flow of electrical current through the nodes will

find the shortest path from the present state to the goal state and trigger the appropriate

actions.
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Introduction

It is widely accepted that gap junction connections between neurons could play a role in the

communication and computations performed in biological nervous systems [1]. A gap junc-

tion, in contrast to a chemical synapse, allows direct ion flow from one neuron to another,

which has multiple potential consequences. For example, it has been proposed that parallel

fibres forming the output from pyramidal cells create an ‘axonal plexus’ [2] through gap junc-

tion connections, such that action potentials in one neuron create spikelets (or even trigger

action potentials) in neighbouring axons [3] and thus affect downstream chemical signalling

by the neighbours [4]. To date, suggested functional roles of such interactions include synchro-

nization, regulation of oscillations [2, 5], linear interpolation [6] and faster communication [7]

between neurons. Here we consider whether gap junctions in an axonal plexus could support

more complex computational functions, suitable for encoding experience in a way that would

support reinforcement learning. We present an abstracted model to explore this possibility

that treats the axonal plexus as a resistor network. A key inspiration for the architecture of this

model is the insect mushroom body.

The mushroom body (MB) is an increasingly well-studied circuit in the insect brain [8–10]

which plays an important role in learning and cognition [11–13]. The connectome of the MB

in larval and adult MB is now well described [8, 10, 14, 15]. Sensory inputs, such as the activity

of olfactory receptor neurons (ORN), are mapped via projection neurons (PNs) to a large

number of Kenyon cells (KCs). Each KC only attaches to and reads from about one to seven

PNs, such that the sensory inputs are mapped to a sparse code in a high-dimensional space

[16]. The KCs extend their axons in parallel (in tightly packed bundles) through the lobes of

the MB, which are innervated by mushroom body output neurons (MBONs). Each MBON

reads out from a large proportion of the KCs and connects to other regions in the insect brain,

with different MBON activities linked to the production of different motivated actions such as

approach or avoidance [17]. The main substrate for learning appears to be plasticity in the

KC-MBON connections, modulated by dopaminergic inputs to the lobes.

Recent research on the mushroom body has identified abundant connections between KCs

[10, 14, 15, 18]. For the most part, these KC-KC connections occur between KC axons where

they converge onto a single MBON post-synaptic density, sometimes forming ‘rosettes’ with a

set of KC synapses surrounding the MBON [14, 19]. While the connectome provides evidence

for chemical synapses between KC axons, dye-coupling experiments have also revealed gap

junction connectivity between KCs in the MB lobes [20], both within and between different

KC-types. Memory deficits in a visual learning paradigm were observed in this study when gap

junctions were blocked. Knock-out of gap junctions in the dorsal paired medial (DPM) and

anterior paired lateral (APL) neurons, which both receive multiple KC inputs, impairs anes-

thesia-sensitive memory in odour-shock learning [21, 22]. More recently, knock-out of the

gap-junction gene Inenxin5 or application of gap junction blocker in KCs was shown to affect

retrieval of anesthesia-resistant memory [23]. We thus suggest that the KCs in the lobes of the

MB, along with the DPM and APL, might form an axonal plexus, such that their interconnec-

tivity plays a crucial role in the downstream activation of the MBONs.

Although the KC-KC connections described so far are both chemical and gap-junction syn-

apses, we focus here on a possible interpretation of the gap junction connectivity. In fact, the

model we present is intended to be quite general, but depends on the assumption (which holds

for the KCs, but also for many other circuits) that the neural population provides a sparse

representation of sensory states. We suggest the axonal plexus of such a neural population can

be interpreted as a resistive net, in which the present state is ‘pulled high’ by the activation of

corresponding nodes (e.g. an action potential initiated in one axon), while a target state is ‘set
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low’ by having the corresponding nodes leak current (e.g. an axon with increased ratio of

potassium channels or chloride channels). The key consequence of such an interpretation is

that the current flow through the whole axonal plexus (from high to low) will be shaped by the

relative resistances (strength of the gap junctions) between each pair of axons. As previously

established [24] such a resistive net can be used to efficiently generate a shortest route from the

current state to the target state if the resistances encode a graph of possible state transitions.

This provides an interesting link to a challenging learning problem from the field of

computational reinforcement learning (RL): how an agent can learn to produce a sequence of

appropriate actions when only achieving the final goal state results in reinforcement. This

‘sparse reward’ (or ‘distal reward’) problem is one that biological systems, including insects,

seem capable of solving with relatively little experience, but remains a challenge for RL [25–

27]. One class of solution to this problem is to provide a mechanism for latent learning [28],

during behavioural exploration (in the absence of direct reinforcement), of the causal structure

of the experienced environment. For example, the agent might, in so-called ‘model-based RL’

[29] explicitly learn a state-action-state transition model that in principle allows it later to plan

a route between the current state and a state in which it received the reward. However, a prob-

lem with such solutions is that the search process becomes inefficient as the number of states

increases.

Our model brings these ideas together, additionally inspired by the demonstration that gap

junctions can be heterotypic (i.e., with asymmetric ion flow) and that there can be significant

plasticity in these connections [30]. Indeed, a number of factors can dynamically regulate the

number of gap junctions that are open or closed, or that are present on the membrane, and

activity-dependent depression and potentiation have been demonstrated in invertebrate gap

junctions [31–33]. We propose that such adaptation could allow latent learning in a resistive

net to encode experience of state transitions, and that the downstream consequences of the

resulting current flow (equivalent to the KC axonal plexus effect on MBON activity) could

control actions. To complete the analogy to RL learning, we further introduce adaptivity in the

mapping from current flow to actions, according to how actions influence the state transitions.

We hence propose in this paper a neural graph architecture that can be used to solve sparse

reward RL problems. This model goes well beyond existing any evidence for MB function, or

indeed for any known gap junction network, so we have renamed it the ‘dynamic routing

model’ and present it in the following as an abstracted concept, rather than referring to specific

MB neuron types. In the discussion we will return to the issue of the biological plausibility of

its components. For the present, we focus on testing this model on navigation RL tasks. We

show it can learn quickly without any reward, and solve discrete tasks successfully under sparse

reward. The current flow through the network can find routes between states from the current

state towards a goal, during which sub-goals are found, improving efficiency in solving a task.

Results

In the dynamic routing model (DRM) (Fig 1) the state of the environment and agent (trian-

gles) is mapped to a set of state nodes (circles) which are interconnected forming a network of

resistances that encode possible state transitions. We refer to this part of the DRM as the state

network. Target states can be marked in the state network by lowering the potential of state

nodes, while the potential of the present state node is pulled up, creating currents in the circuit

that indicate possible routes from the present state to the target state. We calculate the flow of

current using nodal analysis (see Methods and S1 Text for details). Action nodes, connecting

to edges in the state network, receive activation from the current flow between state nodes,

and determine the behaviour of the agent. Both the connections between state nodes and the
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connection to action nodes are learned from the exploration of the environment. As described

in detail in Methods, the weight of the directed connection between two state nodes is

increased if they are experienced on successive time steps, so that the connectivity comes to

resemble the environment’s state transition structure. Similarly, if such a transition between

states occurs after an action was taken, the strength of the connection to that action from the

edge connecting these states is increased. Finally, the experience of reinforcement in a particu-

lar state leads to an increase in the conductance between that state and ground, setting it as a

target for future behaviour.

Three experiments are conducted, two for RL and one for associative learning. The RL

tasks are a simple discrete task (Taxi-v3 from OpenAI Gym) and a more complex navigation

task in a Voronoi world. We note these two tasks are much more complex than the typical

reinforcement learning tasks used in evaluating models of the MB [34–36]. Hence the associa-

tive learning task is a discrete state version of a simple associative learning task for direct com-

parison to insect behaviour. Because several recent models are based on the proposal that MB

learning is based on prediction error, we used Q-learning as a baseline for comparison in the

RL tasks.

The taxi domain

The dynamic routing model is first tested in a benchmark RL task, the Taxi-v3 task (Fig 2A)

from OpenAI gym. The environment is a 5 × 5 grid world with a taxi navigating the grid. The

taxi can move on the grid by moving south, moving north, moving east and moving west, and

can pick up or drop off a passenger. There are only four locations where a passenger can

appear and wait for picking up by the taxi. The destination of the passenger is in one of these

four locations. In practice, the information returned from the simulation is not these details

but just an integer from 0 to 499 corresponding to a unique combination of the given circum-

stances. There are three factors that determine the dimensions of the state space, 1) the loca-

tion of the car (with 5x5 = 25 dimensions), 2) the location of the destination (with 4

dimensions), 3) the location of the passenger (either at a pickup location or in the taxi,

Fig 1. Overview of the dynamic routing network concept. (A) Gap junctions allow ions to flow from one neuron to

another neuron, which can be represented as asymmetric resistors that connect states (B). (C) State nodes (numbered

circles) are connected to each other and ground via gap junctions. A state node is pulled high when the corresponding

world state (upper triangle stars) occurs. The yellow highlight marks a current flow from the present state 1 to a target

state 3 (connected to the ground) via state 2 and 4. This current flow activates action nodes (rectangles). The

connections between state nodes and from state node connections to action nodes are plastic.

https://doi.org/10.1371/journal.pcbi.1012086.g001
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contributing 4+1 = 5 dimensions). Hence, in total, there are 25 × 4 × 5 = 500 states. The transi-

tions between states are constrained, 1) the car can only move to adjacent locations and cannot

move through walls, 2) for an episode, there is only one destination, so there is no connection

between the states with different destinations, and 3) the passenger can be picked up or

dropped down on the four possible destination-locations, so in an episode, there is only one

state connecting the states when the passenger is in the car and the states when the passenger

is at a specific destination-location.

Note there are only 400 states reachable during the task, because once the car drops the pas-

senger at the correct destination, the episode terminates, and the taxi cannot reach any other

location.

The default training configuration for this task is typical for RL tasks in that it sets a limited

number of steps for each episode, and provides (small negative) reinforcement for each step in

addition to the large positive reinforcement on achieving the goal state. If the maximum step is

reached before the goal state, the episode will be forced to end, and restarted with the agent in

a new random initial state. This helps the agent to escape local minima and have a more global

sampling. The step reward is necessary for most RL algorithms, including Q-learning, to

enable efficient routes to the goal to be discovered.

Our experiment used a different training configuration. In a real-life scenario, a task cannot

be restarted easily as a simulated environment, and reinforcement is usually provided only

when a goal is achieved. Thus, we configure Taxi-v3 without any limit of step number, and

without any intermediate reward. An episode ends only when the target is achieved and the

only reinforcement in the episode is at this final step. This makes the problem significantly

more challenging and (as we show) it cannot be solved by standard methods such as Q-

learning.

Learning a state network. To illustrate how a state transition network can be formed

from the learning rules in Eq 10. we first train the model to reach a target location using only

the information of the taxi location, which is an integer from 0 to 24, as it explores the environ-

ment. Fig 2A shows the integers associated with the locations on the grid map, Fig 2B shows

the topology of the grid map, and Fig 2C shows the learned state network after exploration of

Fig 2. The state of taxi locations. (A) There are 25 locations in the environment, here we number them from 0 to 24. (B) Because the car can only

move to adjacent locations without obstacles on its way, the possible transitions between the locations are constrained. (C) Our model learns the

possible transitions between locations after training. The conductance strength and direction between nodes are shown by arrow width and

direction. The state nodes with high potential (e.g. the current state in the example, 16) are in yellow and the state nodes with low potential (e.g. the

goal state, 20) are in purple. The resulting current strength is shown by the brightness of the arrow, in this case creating flow from 16 to 20, guiding

the car to take this route.

https://doi.org/10.1371/journal.pcbi.1012086.g002
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the environment which has generated a sequence of integer inputs (state changes) which has

altered the connection weights in the model. Ignoring the very weak default connections, it

has the same topology as the topology of the grid map. That is, the model learns strong gap

junction weights between nodes that correspond to possible state transitions in the simulated

environment, and weak gap junction weights elsewhere.

We next trained the model in the full state space, i.e. including taxi and passenger locations.

Note that there is no separate exploration phase, the model is simultaneously updating the the

strength of the state connections and using them to solve the task. The training results in a

more complex topology (Fig 3). Because a destination does not change during an episode, the

states with different destinations are not connected, forming four graphs, as shown in Fig 3

(right). For states with the same destination, the passenger has four possible locations: three on

the map and one in the taxi. The states with a passenger at the correct destination cause the ter-

mination of the task, so they are never depicted. Thus, there are four subgraphs in each of the

graphs, and each of the subgraphs reproduces the same topology of the grid world map (Fig 3

(left)). The subgraph of the states with a passenger in the taxi connects to the other three sub-

graphs by the action of picking up or dropping off the passenger (Fig 3 (middle)).

Task performance. Our model is trained using only a final step reward of 20 when the

taxi drops off the passenger at the correct destination. However, to compare the performance

with previous approaches, we calculate an accumulated reward which includes a -10 reward if

the taxi tries to pick up or drop off the passenger at locations other than the four destinations,

and otherwise -1 reward per step.

Our model converged quickly and achieved optimal results within a few hundred episodes

and 20000 total steps, obtaining an average reward of around -5 at the end of the training (Fig

4).

This performance is comparable with the original results for this task presented in the work

by Dietterich [37]. In their experiments, the step-wise reward scheme described above was

used, and frequent resets were permitted, which is the typical configuration in reinforcement

learning tasks and makes learning easier. The convergence time for our algorithm is similar to

Fig 3. The learned state network of the full taxi domain task. This creates four disconnected graphs (one for each destination, which is unique to an episode)

each consisting of four subgraphs, for four possible locations of the passenger (the fifth location of the passenger, at their destination, ends the episode, so is not

included). Each subgraph represents the topology of locations in the environment.

https://doi.org/10.1371/journal.pcbi.1012086.g003
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that achieved using hierarchical RL, in which the task and value function need to be decom-

posed into sub-problems in advance.

Testing Q-learning under the same configuration as our model (maximum 100000 steps for

each episode, and only reward at the final step) we observe that it does not converge (Fig 5)

and results in oscillating episode reward with a mean around -40000, and the number of steps

in an episode frequently reaches the limit. As a comparison, our model quickly converges to

around 20 steps per episode to obtain the goal, as shown in Fig 6.

Navigation in a Voronoi world

The Taxi-V3 task is a highly simplified version of a real scenario where a taxi picks up a cus-

tomer and takes them to a destination. In reality, 1) the world is not a perfect grid, even in a city,

e.g. there are irregular blocks where the roads intersect in more complex ways; 2) the passengers

Fig 4. Total reward during each episode in Taxi-v3 task for the dynamic routing model, using an infinite step limit per episode.

The reward here is calculated with the inclusion of negative reward per step, although only the positive reward at the final step is

used in training the model. Blue line: Episode reward. Yellow line: 100 episode average reward. (A) Episode reward per episode. (B)

Episode reward (same data as A) but plotted against the steps making up each episode (which differ in duration) to show how reward

changes with time. Inset plots are zoomed in regions (changed y-axis) of outer plots, showing how the reward level stabilises around

-5.

https://doi.org/10.1371/journal.pcbi.1012086.g004

Fig 5. Result of using Q-learning with a similar training configuration to that used for our model, i.e., maximum 100000 steps

for each episode and sparse reward. Blue line: Episode reward. Yellow line: 100 episode average reward. The Left shows the reward

per episode and the right reward per step. Please note the y-axis is not in the same scale with Fig 4. The average episode reward

suggests that the Q-learning’s performance decreased in the early episodes of training and failed to converge.

https://doi.org/10.1371/journal.pcbi.1012086.g005
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could appear at arbitrary locations and have arbitrary destinations, unlike the limited four loca-

tions in the Taxi tasks; 3) the types and number of actions available for different states vary.

To capture these complexities, we proposed a task with a more realistic topology for naviga-

tion generated from the Voronoi diagram, and named it the Voronoi world. In this environ-

ment, the agent starts at arbitrary location in a 2D space, and an arbitrary destination is

provided in each episode. There are a different number of actions available in different loca-

tions depending on the number of neighbouring locations, which varies. The locations (yellow

dots in Fig 7) in the Voronoi world could be created to correspond to a real world task, e.g., to

represent landmarks such as furniture in an indoor space, buildings or city blocks in an out-

door space. For our simulation, they are generated with Poisson disk sampling [38] which

ensures that the generated locations are not too close to each other. A model that performs

well on this task should also work in real-world scenarios with similarly complex topology.

Given the set of locations, a Voronoi diagram (Fig 7A, blue) provides a division of the plane

based on the locations. The division associates each location with a region in which points are

closer to this location than any other location. The Voronoi diagram is commonly used in

tasks such as finding a region nearest to a metro station or path planning to maximise the dis-

tance from robot to multiple obstacles. In the plane, edges connecting neighbouring locations

form the Delaunay triangulation (Fig 7A, yellow). Every edge in the Delaunay triangulation is

perpendicular to a corresponding wall in the Voronoi diagram. To create the Voronoi world

for the navigation task, a random selection of walls are removed. Correspondingly, every edge

that crosses a remaining wall is removed, leaving only those edges on which the an agent can

move between locations (Fig 7B). These passable paths form the graph in the Voronoi task.

The state observation provided to the agent by the environment in this task is the current

location of the agent and the target location for each episode. Both of the locations are pro-

vided as indices as shown in Fig 8A. The actions are discrete and the number of actions the

agent can take depends on the number of paths from its location to its neighbours. For exam-

ple, if there are three paths, then the agent has actions 1, 2 and 3. If there are six paths, then the

agent has actions 1, 2, 3, 4, 5, and 6. The correspondence between paths and actions depends

on the order of the paths saved in a list associated with a location. When the agent reaches the

target location, the episode finishes. When a new episode starts, the current location is given

by the end of the previous episode, and the target location is reset randomly. In this way, we

Fig 6. Number of steps per episode in Taxi-v3 task (A) is the number of steps with the dynamic routing model. The inset figure

is a zoomed-in version of the outer plot showing convergence to around 20 steps. (B) is the number of steps taken per episode by Q-

learning in the same training configuration same as Fig 5. Q-learning does not converge.

https://doi.org/10.1371/journal.pcbi.1012086.g006
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Fig 8. (A) The rendered image of the task. The region coloured in red is the goal location. (B) The learned state network for the Voronoi world task.

The darker the edge colour, the stronger the connections. Connections with weights below a threshold are not shown.

https://doi.org/10.1371/journal.pcbi.1012086.g008

Fig 7. The Voronoi world task. (A) Locations are marked using yellow dots and numbered. The corresponding Voronoi diagram is in blue, and corresponding the

Delaunay triangulation is in yellow. (B) A maze generated by removing randomly selected walls from the Voronoi diagram.

https://doi.org/10.1371/journal.pcbi.1012086.g007
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can simulate a taxi continuously navigating to different destinations, or a robot continuously

navigating from one state to another state across the episodes.

To apply our model Voronoi world task, it sets the observed agent location as the activated

state neuron and pulls down the state neuron corresponding to the target location to set the

target. Then the current from the present state to the target state guides the exploration and

learning. We also observed that it is not necessary to recalculate the current flow after every

state change (i.e. to update it as the agent moves towards the target) to obtain good results. The

field of current set up in the network from the original state to the target can still provide valid

guidance for choosing actions even if the state node with the highest potential does not repre-

sent the present state. This allows more efficient execution, although it may sometimes pro-

duce a less optimal solution.

Using this method, the topology of the Voronoi world is learned, and Fig 8B shows how the

topology is represented in the state network. After learning, the topology of the state network

reproduces the topology of the Delaunay triangulation of the Voronoi world. The performance

in solving the task is shown in Fig 9. To show the improvement over episodes, we calculate the

reward per episode by assuming when the agent moves a step, there is a -1 reward for the cost

of energy (but this is not used in training) and when the agent reaches the target, there is a +20

reward. The model converges quickly in about 250 episodes or 25000 steps.

Again, we applied Q-learning to the task with a similar configuration, that is, each episode

has a large step limit (10000), and rewards are only provided to Q-learning when the target is

achieved. Under this configuration, Q-learning cannot converge, as shown in Fig 10A and

10B, the episode reward oscillates strongly, and because the lowest bound on episode reward is

fixed, the average episode reward oscillates around -2000, and the number of episode steps fre-

quently reaches the limit.

We also tested our model in the same Voronoi world but changing the number of goals

from one to two, to examine whether the model can learn and perform appropriately with

more than one reward source. In the task, the two reward sources were reset in every episode,

and once the agent reached one of the reward sources, the episode ended. The maximum

allowed number of steps in an episode is 10000. Our model is also able to learn this task

quickly, reaching -10 in 214 episodes and converging around 0.

Fig 9. Cumulative episode reward in the Voronoi world task by the dynamic routing model. 10000 step limit. Only the reward at

the final step is fed to the model. Blue line: Episode reward. Yellow line: 100 episode average reward. (A) is reward per episode, (B) is

reward per step. The y-axes are in linear-scale between -10 to 10, but log-scale out of this range.

https://doi.org/10.1371/journal.pcbi.1012086.g009
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Simple associative learning

Although above we have tested our model in conventional RL tasks, it is also relevant, given

our inspiration from the MB, to test whether the model can replicate associate learning behav-

iour in the type of tasks used to assess larval and adult Drosophila learning. Hence, we imple-

mented a reinforcement learning environment following a standard olfactory associative

learning paradigm [39]. In the experiment, naive maggots are trained by experiencing an

odour paired with reward, and a second odour without reward, then they are presented with

two odours on different sides of a Petri dish. Their odour preference is assessed by the number

of maggots on each side after a short test interval.

To represent this experiment protocol in a simplified discrete state space, we implement

virtual linear Petri dishes (Table 1) with five locations (Fig 11). At each time step the maggot is

in one location. In training conditions, all locations contain the same odour (either amylace-

tate (AM) or 1-octanol (OCT)). In the test condition, AM is always in the two leftmost loca-

tions and OCT is always in the two rightmost locations and the middle location has a mixture

of odours. In the two odour case only, there are assumed to be odour gradients, i.e. AM

decreases in strength (and OCT increases) from left to right, across the whole dish. The petri

dish is also assumed to have a substrate which contains (uniformly in all locations) either fruc-

tose (F, a reward), or nothing (N).

At each time step the agent takes one of five possible actions: not moving, making an appe-

titive action towards AM (or OCT), i.e. moving up the gradient, or aversive action away from

Fig 10. Result of using Q-learning with a similar training configuration to solve Voronoi World. That is, maximum 10000 steps

for each episode and sparse reward. Q-learning did not converge in such a training configuration. (A) is reward per episode, (B) is

reward per step.

https://doi.org/10.1371/journal.pcbi.1012086.g010

Table 1. The odours and reinforcers in Petri dishes.

Petri dish name Odour Reinforcer

AAN AM None

AAF AM fructose

OON OCT None

OOF OCT fructose

AON AM, OCT None

AOF AM, OCT fructose

https://doi.org/10.1371/journal.pcbi.1012086.t001
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AM (or OCT), i.e. moving down the gradient (Table 2). If there is no odour gradient (only one

odour in the dish) the direction of appetitive and aversive actions is random. If there is rein-

forcer present (F), and the agent makes an appetitive action towards an odour that brings it

into a location with that odour (either through moving up-gradient or randomly), it is

assumed to have consumed some of the substrate in that location on that time-step and thus

experienced the reinforcer.

The agent has five nodes representing the perceptual state (Table 3) of which only one is

active at any time step. If the agent has just taken an appetitive action and experienced a rein-

forcer, the corresponding state node (4) will be active. Otherwise, if both odours are present in

the current location state node 3 is activated, or if only one odour the corresponding state

node is activated (2 or 1). A location with no odour would activate the default node (0), but

note in the currently described paradigms this situation does not occur.

When our maggot model is in a Petri dish, for example, Petri dish AAF, it perceives AM

and state node 1 is activated, then if it makes an appetitive action to AM, it perceives fructose

and state 4 activates, causing the edge from 1 to 4 to be learned and associated with action 1,

and state node 4 to become associated with reward (connected to ground). For any other

action, the maggot continues to perceive AM only. If our maggot model is in Petri dish OON,

it only perceives OCT and state 2 will be active.

There are two types of training (Table 4), and each can be followed by testing either with or

without the reinforcer, making 4 experimental protocols (Table 5). We used 30 naive maggot

models for each of the protocols, and the maggots stayed in each Petri dish for 40 steps.

We counted how many maggots were on each side of the test Petri dishes at every step in

the testing showing the preference and learning indexes. At each step, the preference index is:

PREF ¼
#AM � #OCT

#TOTAL
ð1Þ

Fig 11. An example Petri dish (“AON”). A represents amylacetate, O represents 1-octanol, M represents a mix of

odours, N specifies no reinforcer.

https://doi.org/10.1371/journal.pcbi.1012086.g011

Table 2. Action nodes.

Action node No. Action

0 None

1 Appetitive AM

2 Aversive AM

3 Appetitive OCT

4 Aversive OCT

https://doi.org/10.1371/journal.pcbi.1012086.t002
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where #AM is the number of maggots on the AM side, #OCT is the number of maggots at the

OCT side, #TOTAL is total number of maggots in the protocol. The learning index combines

preference scores from training with one odour vs. the other paired with the reinforcer, to con-

trol for innate bias (in real maggots):

LI ¼
PREFAMþ=OCT � PREFAM=OCTþ

2
ð2Þ

Positive LI indicates appetitive memory and negative LI indicates aversive memory.

The experiment shows our model can qualitatively replicate associative learning behaviour

with positive reward. When the maggots trained with fructose are presented with an odour

and tested in a Petri dish without reinforcer, they have the highest learning index. If maggots

experience the same training but are tested with fructose, their learning index is lower. As

show in Fig 12 this qualitatively matches the data in [39].

Here we compare protocols 1 (train AM+/OCT, test AON) and 3 (train AM+/OCT, test

AOF) to explain what happens (see also S1 and S2 Figs). When the maggot model was tested in

Petri dish AON, it was put into the middle location, and perceived the mixture of AM and

OCT, and state node 3 was activated, and a random action was chosen. If it chose action 1, i.e.,

appetitive to AM, it moved toward AM and perceived AM only, and state 1 was activated. In

this case, the connection that had been formed in training between state 1 and state 4 (fruc-

tose) meant there was a strong current guiding the maggot to choose action 1 again to get fruc-

tose. However, because the fructose was not in the Petri dish, the maggot kept choosing action

1 more than any other actions, and stayed on AM side. The failure of the action to lead to state

4 would start to weaken the connection to this action, but it would remain stronger than any

other actions from state 1. If the maggot was tested in Petri dish AOF, taking an approach

action to either odour results in perceived fructose, and state node 4 is activated with a high

potential. Because state node 4 is also the target state, there was no strong current flow through

the state network to guide the next choice of action. Furthermore, the maggot continued

Table 3. The activated state node given a perception.

Perception Fructose OCT and AM OCT AM Default

State node 4 3 2 1 0

https://doi.org/10.1371/journal.pcbi.1012086.t003

Table 4. The sequence of Petri dishes used during training. Note each protocol pairs one odour with either reward

or punishment, and the other with no reinforcer, alternating 3 times between these conditions.

Training name Petri dish sequence

AM+/OCT AAF, OON, AAF, OON, AAF, OON

AM/OCT+ OOF, AAN, OOF, AAN, OOF, AAN

https://doi.org/10.1371/journal.pcbi.1012086.t004

Table 5. Protocol for training and testing.

Protocol No. Training Testing

1 AM+/OCT AON

2 AM/OCT+ AON

3 AM+/OCT AOF

4 AM/OCT+ AOF

https://doi.org/10.1371/journal.pcbi.1012086.t005
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learning during the testing, so in Petri dish AOF, it would learn the state transition from OCT

to fructose, and this action (appetitive towards OCT) would start to compete with the appeti-

tive action to AM. Hence overall the time spent in AM would be reduced.

This simple example provides an interesting insight into the question of what is actually

learned in associative learning [40]. From a reinforcement learning perspective, it is assumed

the agent comes to associate the value of the outcome (fructose or quinine) with the action

(approach or avoid) taken in a particular state (in which odour is present). In most MB mod-

els, it is instead assumed that the agent associates the value of the outcome (fructose or qui-

nine) with the state (which odour is present) leading it to express an appropriate innate action

(approach or avoid) to that odour. In our model, the agent learns which actions lead from one

state to another, but value (setting a low or high potential) is associated only with the state in

which reward occurs, and dynamically propagates through the network to control action. We

note this means the model could potentially account for devaluation phenomena [41].

Discussion

The model proposed in this paper was inspired by the newly discovered gap junction network

between parallel Kenyon cell axons in the insect mushroom body. We suggest this can be inter-

preted as a graph that encodes, through experience, the causality between actions and states.

By treating the gap junctions as rectified resistors, current flow from the previous or current

state can automatically find the shortest path through the graph to a goal. We have imple-

mented this concept in a computational model and show that it can perform better than stan-

dard RL methods in several benchmark tasks, most notably, under realistic conditions of truly

sparse reward (when most states have no reward) and unlimited episode duration.

Learning under sparse reward

There are a number of existing approaches to improve reinforcement learning (RL) under

sparse rewards. One broad category is curiosity-driven learning [25, 26, 42, 43], which assumes

there exist internal rewards related to seeking information in addition to the external reward.

Internal rewards can be determined by the count of visited states or the variation/error to pre-

dict the next state given an action, for example. In latent space exploration [27] the intrinsic

reward of curiosity is not computed according to explicit prediction, but using a latent space

Fig 12. Boxplots of maggot learning index at every step in the testing. (A) The learning index with our model in the

task. (B) The results in [39]. FN: Trained with fructose and tested without reinforcer. FF: Trained and tested with

fructose.

https://doi.org/10.1371/journal.pcbi.1012086.g012
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that codes the features of inputs, which is more robust than the raw observations. Both

approaches can generate internal rewards, and with these rewards, agents can use existing RL

models for learning. However, these approaches need to introduce additional models for

exploration or computing rewards, which introduces extra computation and training costs.

They might be considered special cases of introducing an auxiliary task, that is, an additional

cost-function related to the main task that provides a more continuous learning signal, e.g.

learning depth prediction in a navigation task as additional auxiliary tasks [44]. In contrast,

our model uses the currents to guide the agent to the target, and also uses the same currents to

find the bottleneck and guide the agent’s exploration of actions to approach and pass through

the bottleneck.

Another broad class of methods involve using data collected during exploration to learn

with respect to virtual goals that differ from the task goal. For example, in hindsight experience

replay (HER) [45], exploratory trajectories that do not lead to the reward state are ‘replayed’

with the final state actually achieved set as the goal, using an off-policy RL algorithm, to gain

information about the observed state transitions.

Alternatively, within model-based RL, experience can be explicitly used to learn a model of

the task dynamics that allows planning to be integrated into the learning and acting loop. Such

models can be exact (explicitly representing all experienced or all possible state transitions) or

approximate, with a wide variety of function approximation methods having been explored to

date [29]. Separating learning of the task dynamics and the reward structure is also a key con-

cept for the successor representation approach to RL [46, 47].

The approach described here resembles an exact tabular model [48] in that it learns the con-

nections (transitions) between discrete states according to the number of times this transition

is experienced. However, note that our current model learns state-state transitions and then

associates actions to these, rather than learning (state, action)-state transitions. This reduces

the size of the transition matrix but also enables generalisation to learning in conditions where

the actions of the agent are not the sole determinant of state changes, e.g., learning from obser-

vation (not tested here). It separates, conceptually, learning about the rewarded states in the

environment from the cost of actions. Also, it does not learn or store value as a global solution,

but only associates it explicitly with rewarded states. Then, during the action loop, it effectively

interpolates that value via the current flow in the network, finding the shortest path and acti-

vating the relevant sequence of actions.

Using a resistive network for planning

A potential advantage of our method is that it is easily parallelised and could be implemented

in analog hardware so that the current flow is computed physically. This aspect of our model

relates to previous work on resistive networks [24] for analog parallel computing. An early use

of this concept was as acceleration for Laplacian Operator to find edges in an image [49].

Later, it was developed for hardware-accelerated path planning, particularly as an improve-

ment over potential field methods, and applied to scenarios such as mazes [24, 50–53], grid

worlds with obstacles [54, 55], city roads [56], and robot arms [57, 58]. The platforms for the

computation include Field Programmable Analog Arrays [52], Very Large-scale Integration

[24, 51, 59], and circuit simulators such as PSPICE [55]. A range of equivalent physical imple-

mentations of the principle have been suggested [60], such as using a thermal camera to image

the current flow in a graph instantiated as a printed circuit board [61].

The application of resistive grids for planning in the examples above typically assumes the

states correspond to regularly distributed locations in 2D or 3D space, with connections only

possible between adjacent states. The network is predefined or computed according to a
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description of the space, with symmetric connections. Here we use asymmetric connections,

extending the approach to capture scenarios with asymmetric (irreversible) state transitions,

such as navigation on one-way roads or consumption of power. And our model is also novel

in that in principle it allows the connection of any two states, not only predefined neighbours,

with the connections generated by learning, to represent causation between abstract states

rather than locations.

The concept of current flow in this method might seem to resemble methods that are equiv-

alent to particles or ‘activity’ diffusing through a graph. However, it differs in that: (1) the cur-

rents are hard to compress, whereas flows formed by particles can change their concentration,

which alters the dynamics; using current the solution can be found without simulating the

flow by nodal analysis. (2) the grounded state node attracts currents, whereas flow formed by

particles is only pushed by the source that releases the particles; (3) this method takes the cur-

rent strength as an important factor in choosing actions, whereas the methods with particle

flow pay more attention to the concentration of particles. Hence, for example, if there is a

weak bridge connecting two sub-graphs which contain the present state and target state,

respectively, the power of the current in our method can concentrate on the bridge, whereas

particle diffusing methods might not distinguish the node connecting the bridge from other

nodes.

Biological plausibility

Learning of state, or more explicitly, place, connections to form a topological graph has been

investigated in a range of hippocampus-inspired models, often linked with activity propagation

methods for planning, e.g. [62–65]. A similar model that uses ‘virtual odours’ in a learned

graph [66] to move towards goals draws a comparison to the mushroom body architecture, and

similarly suggests that recurrent KC connectivity could form the substrate for the connection

between graph nodes. The mechanism presented here is shown to be effective when applied to

a challenging RL problem, learning under sparse reward. But is it biologically plausible? We

believe it illustrates how an axonal plexus—combined with directional, adaptive gap junctions

—could support more complex computational functions than has been generally assumed to

date, such as learning and planning across sequences of sparsely encoded sensory states.

On the other hand, there is no direct evidence to date that KC-KC gap junction connections

can be modified in the way we propose, although several authors have speculated that gap

junction modulation could play a role in associative learning in the MB [23, 67]. Indeed, the

functional relevance and properties of KC-KC connections is an open question, as the extent

of these connections has only recently been recognised, and there is still some debate as to the

extent of gap junction vs. chemical synapse connectivity [68]. Axo-axonic chemical synapses

are an alternative option for learning of spatiotemporal patterns [19] or sequences of sensory

states [69]. Either way, we consider it plausible that connectivity between KCs could play a role

in modulating the activity of MBONs, such that MBONs (and the actions they control) can

effectively become associated with transitions between states. Specifically, we suggest that if an

MBON requires simultaneous or consecutive input from two (or more) KC synapses to fire,

then this could be enhanced if axo-axonic connections from the first KC can act to generate

transmitter release from the second. Such a mechanism would remain consistent with the

well-evidenced adaptive changes in connectivity within the insect mushroom body by which

KC to MBON synaptic strength is altered under the guidance of reinforcement signals from

the DANs [10], such that specific patterns of KC input become connected to specific actions.

With regard to directed current flow across an axonal plexus that could resemble a resistive

net, an action potential in one KC could correspond to ‘pulling up’ this node, but less clear (for
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KCs or axons in general) what would constitute ‘pulling down’ to create a target for current

flow. In this regard an intriguing possibility is suggested by the observation that inhibition of

KCs by the (non-spiking) APL can be highly localised and axon-specific, with KCs causing

stronger inhibition on themselves if more strongly connected to the APL [70]. More generally,

any mechanism by which the target axon becomes leaky to current could potentially play this

role. Perhaps the least plausible assumption of our model is that each node can (potentially)

form or strengthen a connection to any other node, whereas the connectivity of KCs, although

extensive, is not all to all. Relaxing this assumption would set some “innate” constraints on

what state transitions can or cannot be learned, which might be considered biologically plausi-

ble. Further, this assumption may become less critical if we also relax the assumption that each

state in the world maps to only one node, as discussed next.

Multi-node activation

Currently, the model uses only one state node to represent the state of a task at a given time,

which is different from the coding of sensory input in the MB. In the MB, a small proportion

of KCs will be activated together forming a sparse code, which is more efficient than our one-

hot style coding. In principle, our model could be extended to deal with sparse coding:

1. Edges would be strengthened according to the negative correlation of state node activities.

2. Targets could be set by grounding multiple state nodes.

3. Action nodes could be activated according to multiple edges from the presently active state

nodes.

In Fig 13 we show an example of simulating current flow when a group of state nodes are

active and another group represent the target, given a predefined set of connections between

the nodes, showing that the resistive net architecture will still find a suitable path. The groups

representing each state need not be independent but can overlap to represent how different

dimensions of task states can change asynchronously. In future work, we will explore learning

and task execution with sparse activation to determine if there are critical constraints on pro-

portion active and overlap to enable learning of the task. It is interesting in this context to note

that there are several algorithms that interpret the input circuits of the MB as locality-sensitive

hashing [71] by which high-dimensional input can be mapped into the state represented as a

sparse number of active KCs.

Other extensions and future work

Although the current model is applied to discrete tasks in the experiments in this paper, it is

intrinsically continuous and can be applied to continuous tasks with a few modifications. For

example, the retrieval of action and subgoals does not rely on any discrete process or algorithm

but uses a simulation of currents, and the learning rules are based on the integration of vari-

ables over time. To move towards such continuous version, an initial straightforward step

would be to enable blended and smooth transitions between actions according to their activa-

tion. Or more sophisticated methods such as proximal policy optimisation (PPO) [72] for low-

level motion control can be applied to the action outputs for continuous control tasks. A more

significant alteration would be to move from discrete sensory states to a continuous (sparse)

activation.

A potential application of this model is to provide milestones in a complex task for training

a learning model. Directly training a model on a complex task is likely to be unstable in its

early stages, because the reward is either not provided or has little correlation to actions. A
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complex task can be decomposed into several easier tasks with their own goals, and rewards

computed for these goals can have a better correlation to actions. These goals are subgoals of

the original task, and they can be milestones guiding learning. Our model can be part of a

framework in which the states are coded, causation is recorded, and subgoals are identified

and ordered. Then the reward can be computed according to the currents and potentials. For

example, a larger potential drop can indicate effective progress toward the final goal. In such a

way, our model can be used as a critic in an actor-critic model.

Methods

State network and current flow

As shown in Fig 14A, a minimal state network consists of two state nodes i and j. Each has two

dimensions of activity: the injected current, which represents the state of the environment or

agent by sparsely coding the sensory inputs; and the potential, which represents the target (the

lower the potential, the stronger the target). There are directed connections between the state

nodes which have associated weights wi,j acting as the conductance from state node i to state

node j. When there is a potential difference Vi,j, the current on the connection i, j is:

Ii;j ¼
wi;jVi;j if Vi;j > 0

0 if Vi;j � 0

8
<

:
ð4Þ

When there are multiple state nodes, every node is (potentially) connected to all other

nodes forming a network of resistors. For convenience to calculate the potential and currents

in the circuit at any time step, we can use circuit analysis approaches. Here, we use Nodal

Fig 13. The state network with a group of state nodes (0, 1, 2) activated and another group of state nodes (8, 9) set

as a target.

https://doi.org/10.1371/journal.pcbi.1012086.g013
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analysis, adapted to account for the use of unidirectional rather than bidirectional connections

between nodes.

In this model, target states are set by pulling down the potential of the corresponding state

node, by connecting the state node to the ground with some resistance. Lower resistance corre-

sponds to a stronger goal; the exact value varies for different tasks or during learning, as specified

in Table 6. The present state of the environment and agent activates a corresponding state node,

whose potential is pulled up. Through nodal analysis we can then establish the resulting flow of

current (see S1 Text). Note that, although we use the concepts of potential and current, the system

could be interpreted in different terms, such as hard-to-compress fluid flows through the network

to a sink, to serve a similar function. We note here that although this superficially resembles

spreading activation (or breadth-first search) through a graph, the current flow between the pres-

ent state and goal is more directed in a resistive net, as addressed in the discussion.

Latent learning in the state network

We assume an initial very weak connection between all nodes in the network, which is modi-

fied by the experience of state transitions for an agent exploring an environment. In this imple-

mentation, we use one-hot coding, so only one state node actives at a given time step. The aim

is to build a graph to represent the possible routes between states, in which the activated state

node represents the present state, edges connecting the state nodes represent possible

Fig 14. (A) A minimal state network: state node i and state node j have different potentials (note ‘potential’ here refers

to potential in a resistive network, not the membrane potential of a neuron). The potential difference Vi,j can cause

current Ii,j from i to j if there is a connection from i to j and i has a higher potential than j. The weight of the

connection wi,j is the conductance and the current Ii,j follows Ohm’s law. (B) A minimal circuit including an action

node: an action node k can be influenced by the state node connection it is attached to. The influence can be described

as a function of a potential difference Vi,j, current Ii,j, and weight from the connection to the action node wi,j,k. See text

for details.

https://doi.org/10.1371/journal.pcbi.1012086.g014

Table 6. Parameters used for each task.

Symbol Variable Taxi Voronoi Simple associative learning

max episode steps 100000 10000 40

number of states 500 150 6

N number of action nodes 6 5 5

dt time-step 0.02 0.02 0.02

α learning rate 0.05 0.05 0.001

β learning rate ratio for second-order connections 2 2 2

c learning rate factor for second order synapse weight decrease 400 400 400

wij0 initial connection strength 0 0 0

w1max max connection strength 1 1 10

wijk0 initial second order synapse weight 0.01 0.01 1−10

w2max max ground conductance 1 1 1

https://doi.org/10.1371/journal.pcbi.1012086.t006
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transitions between states, and the weight of an edge represents how often the transition hap-

pened previously.

Assuming weights have a maximum limit, if the model experienced state î and ĵ, the edge

weight from node î to ĵ is be updated by the following equation:

dwî ;̂j

dt
¼ a w1max � wî ;̂j

� �
ð5Þ

where α is learning rate, and w1max is the maximum weight.

The outcome of this learning rule is that sequences of states that occur in the world will be

encoded in stronger connections between the relevant state nodes. Thus the network connec-

tivity will come to implement a model of the environment’s state transitions.

In this model, there is no mechanism for reducing connection strength, but a simple

approach would be to introduce some slow constant decay of all weights. This would provide

some ability to adapt to changing environments, as state transitions that are no longer experi-

enced would be gradually forgotten.

Note Eq 10 could potentially be generalised if we allowed a sparse encoding (rather than a

one-hot encoding) of the state. If there are multiple state nodes active at the same time, the

equation can be extended to alter the connections between the two sequentially active groups

of state nodes. And although the simulated worlds we explore here are discrete, in a continu-

ous world in which the activity of state nodes continuously changes, the connections could be

built by finding negative correlations between state node activity changes, that is, the connec-

tions are built from state nodes with decreasing activity to those with increasing activity, as

this is indicative of the transition from one state to another.

Action decision

The action decision of the model depends on the currents and local potential difference

between nodes. There are currents flowing through the edges and nodes in a graph if a target is

set by grounding a state node, and the present activating state is set to a high potential. A key

function of the circuit is to map a large range of state transitions into a small selection of

actions. As shown in Fig 14B, for each connection between state node i and state node j, there

can be a ‘second-order’ connection to an action node k.

Assuming only one state node is active at each step we define the input to action node k to

depend only on the edge from this node that has the strongest power consumption:

Ik ¼ Iî;j0 ;k
¼ wî ;j0 ;kIî ;j0Vî ;j0

ð6Þ

where î is the index of the present state node, and j0 ¼ arg maxj Iî ;jVî ;j, thus the edge between

state node î and j0 is the edge with the maximum power consumption among the edges from

node î. This effectively sets a subgoal of the agent, i.e. the next state, j0, that it wants to reach to

get nearer to the target state. It is possible for more than one action to be connected to this

edge, in which case the probability of choosing an action depends on the currents of the action

nodes:

P að Þ ¼
I

PN
k¼1

Ik
ð7Þ

where a represents actions, I is a vector containing the postsynaptic currents of each action

node, N is the number of action nodes. This could be interpreted as a lateral inhibition
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function between the action nodes. We also explored the action probability after applying the

softmax function, which is an approximation of lateral inhibition. Because of the normalisa-

tion, the largest input to softmax is 1 and the smallest input can be 0, softmax enlarges the

probability of small inputs, resulting in more exploration. However in the following experi-

ments we did not use softmax.

Note that as described, with only one edge contributing input, and only one action chosen,

we can achieve the same probability for choosing the action using a simplified input calcula-

tion (because the power consumption terms cancel out in Eq 7), changing Eq 6 to:

Ik ¼ Iî ;j0 ;k
¼ wî ;j0 ;k

ð8Þ

That is, the choice between actions depends only on their relative weights. However, the

requirement to consider only the edge with the strongest power consumption could be relaxed,

allowing multiple edges from an active node to act as subgoals that contribute input to action

nodes, which would have the form:

Ik ¼
XN

j¼0

Iî ;j;k

¼
XN

j¼0

wî;j;kIî ;jVî;j

ð9Þ

where N is the number of state nodes. Then the power consumption Iî;jVî ;j would represent the

importance of state node j as a subgoal, while wî ;j;k represents how likely action node k is to

cause the transition from the present state to state node j. This could be further extended to

the case where we use a sparse rather than one-hot encoding of the state, which would then

additionally require summing over î for all active nodes.

Note that an MBON in a typical MB model outputs actions or behaviours, and its postsyn-

aptic current depends on the activity of the KCs and synaptic weights between KCs and the

MBON, but not the connections between KCs. A possible biological interpretation of Eq 6 is

that the efficacy of the chemical synapse transmission from a KC axon to an MBON is modu-

lated by the gap junction connections, and consequent current flow, from that KC axon to

other KC axons. For example, an action potential in one KC could result in the creation of an

action potential in the axon of the KC to which it is most strongly connected by a gap junction

[3] resulting in neurotransmitter release from both synapses with the effects summed by the

MBON.

Setting a target in the state network

The state network builds a graph for the causality of actions and states by learning, while the

motivation to execute the series of actions comes from reaching a target. In this model, the tar-

get state is set by pulling down the value of a state node in the state network, specifically, by

increasing the conductance between the state node and the ground. In the sparse reinforce-

ment tasks we explore, a reward indicates the accomplishment of the task. In the model, when

reward is obtained, the conductance between the current state and ground is set to a fixed

value (see Table 6 for parameters), marking a target state for future episodes.

wî ;gnd ¼ w2max ð10Þ

PLOS COMPUTATIONAL BIOLOGY Learning with sparse reward in a gap junction network inspired by the insect mushroom body

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012086 May 23, 2024 21 / 27

https://doi.org/10.1371/journal.pcbi.1012086


With one target or reward state, the absolute values of current or potential are not

important, given that the action-state route from the present state to the target state is

found by the relative magnitude of the current and the local potential difference (Eq 6).

However, it is also possible for the system to function when more than one target is set, as

we explore in some examples, in which case the conductance value could influence the

choice of target.

Note that in some of the tasks considered here, the target is explicitly provided by the envi-

ronment, and changes from episode to episode. When a new target is provided to the model,

the corresponding state is connected to the ground with a large conductance, and the previous

target is released by setting the corresponding conductance to 0. In this type of task, the envi-

ronment does not provide a reward value for training, and the model need not discover the

target according to rewards.

Exploration and exploitation

To learn the relationship between actions and state transitions requires the agent to explore

the environment. Two factors influence exploration: action choice and subgoal selection.

Given a subgoal, which means an edge from the present state to the next state is selected,

the choice of action is stochastic. The weights from the edge to action nodes are effectively

parameters for the probability (Eqs 7 and 8). The chosen action might lead to the subgoal or a

different state. No matter what happens, the learning rule will update the connections between

the present state and the next actual state, as well as the weight between this edge and the actual

action, as detailed below.

The subgoal selection is guided by currents and deterministic. In the edges from the present

state, once there is an edge that has power consumption stronger than other edges, the edge is

selected and the corresponding next state is the next subgoal. Hence, the currents make the

agent concentrate exploration on the route most likely to be passable, effectively resulting in

the exploitation of the information acquired so far by the network.

If all edges have equal power consumption (e.g., in the first episode) the subgoal selection is

random. Stochastic selection (instead of deterministic) can optionally be introduced through-

out the task by making the subgoal selection treat the power consumption on all edges from

the present state as the likelihood to select the next state (instead of choosing the max edge). In

this case, the agent will have a stronger tendency to explore, rather than exploit, the state space.

Another (deterministic) way to introduce more exploration would be to connect unvisited

states to ground, so that the current flow will tend to set up trajectories towards unvisited

states. However, we found in practice this did not generalise well across different tasks, ending

up with more limited exploration.

Learning actions

With discrete actions, when a transition from state î to state ĵ follows action k̂, then second-

order connection î; ĵ; k̂ is strengthened by:

dwî ;̂j ;k̂

dt
¼ ab ð11Þ

where wî ;̂j ;k̂ is the weight from the connection î; ĵ to action node k̂, and β is a factor to control

the learning rate ratio.
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If an action is performed following a current between states î and j0, but does not result in

the state j0, the corresponding second-order connection weight decreases:

dwî ;̂j 0 ;k̂

dt
¼ � acwî ;̂j 0 ;k̂ ð12Þ

where c is a factor with a typical value of 400, which is used in our experiments. This weakens

the association between the action and the edge that was chosen when taking the action does

not result in transition to the expected state.

Considering this rule in terms of MB function, the equivalent would be to assume that the

relevant pair of KC inputs have their weights to the MBON strengthened, such that (as above)

near simultaneous action potentials in their axons (caused by gap junction connections) are

more likely to activate the MBON in future. The learning rule itself depends on activity in the

MBON caused by one active state being followed by the second active state. An intriguing pos-

sibility is that recently observed back-propagating spikes in MBONs [73]could be involved in

such a learning mechanism.

Parameters

Applying a continuous model to a discrete task. Our model is described mathematically

as a continuous model, which provides generality when it is applied to or extended for contin-

uous tasks. For initial evaluations, we adopted discrete tasks in our experiments. By assigning

each discrete step a time step, we can use numeral ordinary differential equation solvers

(ODEs) to match continuous variables to discrete steps. In our implementation, we simply

adopted the Euler method. The typical time scale in our experiment is 0.02s for each step.

Supporting information

S1 Fig. The final synaptic strengths between state nodes and changes during learning of

four maggots in four different training protocols. (A) trained with ‘AM+/OCT’, tested with

‘AON’, (B) trained with ‘AM/OCT+’, tested with ‘AON’, (C) trained with ‘AM+/OCT’, tested

with ‘AOF’, (D) trained with ‘AM/OCT+’, tested with ‘AOF’. Left column: the final synaptic

strengths. Right column: the change of synaptic strengths. Each line is one connection between

two states, colour coded as in the legend. The red vertical lines marks the change of Petri dish.

(PDF)

S2 Fig. The change of synapse from edges to action nodes during learning of four maggots

in four different training protocols. (A) trained with ‘AM+/OCT’, tested with ‘AON’, (B)

Trained with ‘AM/OCT+’, tested with ‘AON’, (C) Trained with ‘AM+/OCT’, tested with

‘AOF’, (D) Trained with ‘AM/OCT+’, tested with ‘AOF’. Each line is one connection from

edge to action node, colour coded as in the legend. The red vertical lines marks the change of

Petri dish. Weights that did not change are omitted.

(PDF)
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