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Abstract

We have developed a new, and analytically novel, single sample gene set testing method

called Reconstruction Set Test (RESET). RESET quantifies gene set importance based on

the ability of set genes to reconstruct values for all measured genes. RESET is realized

using a computationally efficient randomized reduced rank reconstruction algorithm (avail-

able via the RESET R package on CRAN) that can effectively detect patterns of differential

abundance and differential correlation for self-contained and competitive scenarios. As

demonstrated using real and simulated scRNA-seq data, RESET provides superior perfor-

mance at a lower computational cost relative to other single sample approaches.

Author summary

Gene set testing methods are widely used to analyze transcriptomic data with techniques

that provide sample level scores increasingly popular given their significant analytical flexi-

bility. For the analysis of single cell data, however, current cell-level methods have several

important limitations: poor computational performance, low sensitivity to patterns of differ-

ential correlation, and limited support for competitive scenarios that compare set and non-

set genes. To address these challenges, we have developed the RESET (Reconstruction Set

Test) method that generates overall and cell-level gene set scores using randomized reduced

rank reconstruction error. Relative to existing single sample techniques, RESET can more

effectively detect patterns of differential abundance and differential correlation under both

self-contained and competitive scenarios at a substantially lower computational cost.

Introduction

Gene set testing

High-dimensional genomic profiling technologies, such as RNA-sequencing, give researchers

a powerful, molecular-level picture of tissue and cellular biology, however, the improvement
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in fidelity obtained by measuring thousands of genomic variables comes at the price of

impaired interpretation, loss of power due to multiple hypothesis correction and poor repro-

ducibility [1, 2]. To address these challenges for bulk tissue data, researchers developed gene

set testing, or pathway analysis, methods [3–6]. Gene set testing is a widely used and effective

hypothesis aggregation technique that analyzes biologically meaningful groups of genes, e.g.,

the genes involved in specific signaling pathway defined in a resource like Reactome [7],

instead of individual genomic variables. Focusing on a collection of gene sets can significantly

improve power, interpretation and replication relative to an analysis focused on individual

genes [3, 8]. The benefits of gene set testing are even more pronounced for single cell tran-

scriptomic data given increased technical variance and sparsity [9, 10]. Gene set testing meth-

ods can be grouped according to four main features:

1. Supervised vs unsupervised: Does the method test for the association between gene set mem-

bers and a specific outcome or does it generate gene set scores using only the measured

genomic data?

2. Population vs single sample: Does the method generate gene set scores for each sample or

just a single score for the entire population?

3. Self-contained vs competitive: Does the method test the H0 that none of the genes in the set

has an association with the outcome or the H0 that the genes in the set are not more associ-

ated with the outcome than genes not in the set? In other words, self-contained methods

only leverage the data associated with genes in the set whereas competitive techniques use

all of the measured expression data.

4. Uniset vs multiset: Does the method test each gene set separately (uniset) or jointly evaluate

all sets in a collection (multiset)?

The most popular type of gene set test is uniset, population-based, competitive and super-

vised (e.g., GSEA [2] and CAMERA [11]), which is driven by several factors: 1) uniset tests are

easier to implement and execute than multiset tests, 2) biological hypotheses of interest typi-

cally correspond to supervised tests (e.g., differential expression relative to a specific clinical

variable), and 3) a competitive H0 often generates more meaningful results than a self-con-

tained H0 [8]. Although gene set analysis can be performed on a variety of omics data types, it

is most commonly applied to transcriptomics data and, without loss of generality, we will

assume this data type in the remainder of the manuscript.

Single sample gene set testing

Although supervised and population-level methods are the most commonly used gene set test-

ing techniques, unsupervised and single sample methods have become increasingly popular

given their significant analytical flexibility. Single sample methods, which are inherently unsu-

pervised, operate like a variable transformation to convert an input n × p matrix X that cap-

tures expression of p genes in n samples into an n × m matrix S that captures the sample-level

enrichment of m gene sets. It is important to note that X can hold either bulk tissue data (e.g.,

bulk RNA-sequencing) or single sample data (e.g., single cell RNA-sequencing) so the term

sample can represent either a bulk tissue sample or individual cell depending on the context.

This matrix of sample-level gene set scores can then be used in a wide range of subsequent

computational tasks including unsupervised analyses like data visualization and supervised

analyses like testing the association of each column of S with a given outcome variable, which

generates results similar to those created by a population-level and supervised technique.
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simulated results is available at the paper website

at https://hrfrost.host.dartmouth.edu/RESET/

RESET_simulation_logic.zip. -The gene sets used

in the analysis are publicly available from the

Molecular Signatures Database (MSigDB) (https://

www.gsea-msigdb.org/gsea/msigdb/index.jsp)

-The PBMC scRNA-seq data used to generate the

results is also used in the Seurat Guided Clustering

Tutorial (https://satijalab.org/seurat/articles/

pbmc3k_tutorial.html) and freely accessible from

10x Genomics via a Creative Commons Attribution

license. A copy of the compressed data file is

accessible at https://hrfrost.host.dartmouth.edu/

RESET/pbmc3k_filtered_gene_bc_matrices.tar.gz

or via the 10x site at https://cf.10xgenomics.com/

samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_

matrices.tar.gz. This dataset is also available via the

SeuratData R package as the pbmc3k dataset. Note

that data access via the 10x website requires

specification of contact information for marketing

purposes. -The mouse brain scRNA-seq data used

to generate the results is also freely accessible

from 10x Genomics via a Creative Commons

Attribution license. A copy of the compressed data

file is accessible at https://hrfrost.host.dartmouth.

edu/RESET/neuron_10k_v3_filtered_feature_bc_

matrix.tar.gz or via the 10x site at https://cf.

10xgenomics.com/samples/cell-exp/3.0.0/neuron_

10k_v3/neuron_10k_v3_filtered_feature_bc_

matrix.tar.gz. Note that data access via the 10x

website requires specification of contact

information for marketing purposes. -The human

cord blood scRNA-seq data used to generate the

results is available via the SeuratData R package as

the cbmc dataset (https://github.com/satijalab/

seurat-data).
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A number of uniset, unsupervised single sample gene set testing methods are currently

available, which can be generally grouped into self-contained and competitive categories.

Competitive single sample techniques like GSVA [12] and ssGSEA [13]) generate sample-level

scores using a Kolmogorov-Smirnov (KS) like random walk statistic computed on the gene

ranks within each sample, often following some form of gene standardization across the sam-

ples. AUCell [14], which is focused single cell transcriptomic data, also generates gene set

scores based on gene ranks within each sample/cell using a simple “area under the curve”

(AUC) metric to quickly quantify the enrichment of highly expressed genes within each evalu-

ated set. In contrast to GSVA and ssGSEA, AUCell does not take into account gene set size or

the distribution of gene expression values across all cells in the data set. Self-contained meth-

ods like PLAGE [15], PAGODA [16], the z-scoring method of Lee et al. [17], scSVA [18],

Vision [19], and our VAM method [9] generate scores using only the data for genes in the set.

Our development of the VAM technique was motivated by the poor performance of other sin-

gle sample techniques on single cell transcriptomic data. Specifically, we found that existing

techniques have poor classification performance (i.e., the ability to assign high gene set scores

to cells with inflated expression of set genes) in the presence of sparsity and technical noise,

and a high computational cost. The VAM method is a novel modification of the standard

Mahalanobis multivariate distance measure [20] that generates cell-specific gene set scores

which account for the inflated noise and sparsity of single cell RNA-sequencing (scRNA-seq)

data. Because the distribution of the VAM-generated scores has an accurate gamma approxi-

mation under the null of uncorrelated technical noise, these scores can also be used for infer-

ence regarding pathway activity.

Single sample gene set testing challenges

While the VAM technique offers a significant improvement in terms of computational and

classification performance over other single sample methods, it has four important limitations:

1. Sensitivity to differential correlation: Most existing single sample gene set testing meth-

ods are designed to detect differences in mean value (i.e., set genes have higher expression

than non-set genes in a competitive scenario) and struggle to identify biologically relevant

patterns of differential correlation (i.e., the inter-gene correlation among set genes is higher

than the correlation among non-set genes in a competitive scenario).

2. Support for competitive H0: The VAM method, and other computationally efficient tech-

niques like PLAGE [15] and the z-scoring method of Lee et al. [17], are self-contained

methods that generate scores for a given gene set without considering the values of genes

not in the set. These self-contained methods cannot directly detect competitive scenarios

where the measured values of set genes differ from non-set genes in the same sample.

3. Comparison of scores for different sets: The scores generated by existing single sample

methods can only be accurately compared across samples for a single set and not between

sets. This limitation complicates many types of multivariate downstream analyses that

attempt to jointly evaluate the scores for multiple sets. For example, it becomes challenging

to determine which of several gene sets are more active/enriched in a given sample since

the scores for different sets are not necessarily on the same scale.

4. Computational cost: The computational performance of VAM, while better than most

existing methods, can still be significant on very large datasets. For VAM, and other com-

putationally efficient self-contained methods, computational cost scales with the number of

samples. As the price of single cell experimental methods continues to fall, the number of
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cells in a typical dataset has grown substantially with tens-to-hundreds-of-thousands of

cells now common. Projects that generate single cell data on samples from hundreds of sep-

arate patients will result in even larger total sample sizes. These very large single cell datasets

motivate performance improvements beyond what can be obtained using techniques like

VAM.

Gene set testing based on reconstruction error

To address these challenges, we developed a new, and analytically novel, single sample gene set

testing method called Reconstruction Set Test (RESET). RESET quantifies gene set importance

based on the ability of genes in the set to reconstruct values for all measured genes. This recon-

struction approach is effective at identifying scenarios where the mean expression and correla-

tion of set genes is elevated in a group of cells relative to other measured genes. In particular,

gene sets with elevated expression and/or correlation capture more of the overall signal in the

dataset so are more effective in generating a reconstrution of the entire expression matrix than

gene sets whose members have a similar distribution as other measured genes. RESET is real-

ized using a computationally efficient randomized reduced rank reconstruction algorithm and

can effectively detect patterns of differential abundance and differential correlation for both

self-contained and competitive scenarios. The use of reconstruction error by RESET is distinct

from standard approaches to gene set testing and has the potential to capture biological pat-

terns not detectable using methods based on differences in mean expression. Unique among

single sample methods, RESET generates both overall and sample-level scores for evaluated

gene sets. Mathematical details of the RESET method and the evaluation design are outlined in

the Methods section with some technical content in S1 Text. The Results section contains the

simulation study and real data analysis results, which demonstrate that RESET provides supe-

rior classification accuracy at a lower computation cost relative to VAM and other popular sin-

gle sample gene set testing approaches. An R implementation, which supports integration with

the Seurat framework [21], is available in the RESET package on CRAN.

Materials and methods

Reconstruction Set Test (RESET)

The RESET method computes sample-specific and overall gene set scores from gene expres-

sion data using the error from a randomized reduced rank reconstruction. At a high-level,

RESET takes as input two matrices:

• X: n × p matrix that holds the abundance measurements for p genes in n samples (or n
cells for single cell data). As outlined in the Methods section of S1 Text, RESET provides

direct support for scRNA-seq data processed using the Seurat [22] framework using

either log-normalization (i.e., log of 1 plus the unnormalized count divided by an appro-

priate scale factor for the cell) or the SCTransform method [23]. It should be noted that

the RESET method itself (as defined by Algorithm 3 below) does not directly address the

issues of data quality control (QC) or normalization/batch correction; it is assumed that

appropriate QC and normalization is performed prior to execution of the RESET

method.

• A: m × p matrix that represents the annotation of the p genes in X to m gene sets as

defined by a collection from a repository such as the Molecular Signatures Database

(MSigDB) [24] (ai,j = 1 if gene j belongs to gene set i). Note that some columns of A can

sum to 0, i.e., certain genes in X may not belong to any of the evaluated gene sets.
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RESET generates as output:

• S: n × m matrix that holds sample-specific gene set scores for each of the n samples in X

and m gene sets defined in A.

• v: length m vector that holds the overall scores for each of the m gene sets defined in A.

The version of the RESET method implemented in the RESET R package and used to gen-

erate the results contained in this paper is defined in Algorithm 3 and visualized in Fig 1. This

fully optimized version of RESET incorporates randomized numerical linear algebra (RNLA)

[25] techniques and accepts a number of additional parameters (center, scale, num.pcs, pca.

buff, pca.q, random.threshold, k, k.buff, q, test.dist, norm.type, per.var) whose function, moti-

vation and interdependencies are fairly complex. To make this full method easier to under-

stand, we start by defining a simplistic, and computationally inefficient, version of RESET,

refine the simple version to use a more efficient reduced rank reconstruction, and then finally

introduce the randomized RESET algorithm. The simplistic version of the RESET method, as

detailed in Algorithm 1, uses all of the genes in each set to reconstruct the full matrix X, gener-

ates overall scores using the Frobenius norm (i.e., the square root of the sum of the squared

matrix elements; see Martinsson and Tropp [25] for an overview of matrix norms) of the

reconstruction error matrix, and generates sample-level scores using the Eucledian norm of

the reconstruction error for the associated row (use of the L1 norm is also supported by the

RESET R package).

Algorithm 1 Simplistic RESET
Inputs:

• X: n × p matrix that holds the abundance measurements for p genes
in n samples.

• A: m × p matrix that holds the annotation of the p genes in X to m
gene sets, ai,j = 1 if gene j belongs to gene set i.

Outputs:

• S: n × m matrix that holds sample-specific gene set scores for the
n samples in X and m gene sets defined in A.

• v: length m vector that holds the overall scores for each of the m
gene sets defined in A.

Notation:

• Let X[] represent a subsetting of the matrix X with X[i, j] the
element in the ith row and jth column, X[i, ] the ith row, X[, j] the
jth column, and X[r, c] the submatrix containing rows with indices
in r and columns with indices in c.

1: v 2 Rm; S 2 Rn�m ▷ Initialize outputs v and S
2: for i 2 {1, . . ., m} do
3: c = which(A[i, ] = 1) ▷ Create a length li = ∑ A[i, ] vector

that holds the indices of the genes in set i
4: Xs = X[, c] ▷ Create a n × li subset of X for set i
5: Qs = qr(Xs) ▷ Create an orthonormal basis for the column

space of Xs via a QR decomposition
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6: Xr ¼ QsQ
T
sX ▷ Create a rank li reconstruction of X via pro-

jection onto Qs
7: E = X − Xr ▷ Create a reconstruction error matrix
8: vi = log2(||X||F/||E||F) ▷ Set the overall score for set i

to the log2 ratio of the Frobenius norms of X and E
9: for j 2 {1, . . ., n} do
10: S[j, i] = log2(||X[j, ]||2/||E[j, ]||2) ▷ Set the score

for set i and sample j to the log2 ratio of the Euclidean norms of
row j of X and row j of E
return S, v

Algorithm 2 Reduced rank RESET
Outputs and notation are the same as for Algorithm 1. Inputs also
include:

• b: Rank used for dimensionality reduction of X

• k: Rank used for dimensionality reduction of each Xs

1: v 2 Rm; S 2 Rn�m ▷ Initialize outputs v and S
2: Xc = scale(X) ▷ Mean center, and optionally scale, columns

of X
3: Xc ¼ USVT ▷ Compute SVD of Xc
4: P = XcV[, 1: b] ▷ Project Xc onto top b PCs
5: for i 2 {1, . . ., m} do
6: c = which(A[i, ] = 1) ▷ Create a length li = ∑ A[i, ] vector

that holds the indices of the genes in set i
7: Xs = X[, c] ▷ Create a n × li subset of X for set i
8: Qs = qr(Xs)[, 1: k] ▷ Create a rank k orthonormal basis for

the column space of Xs via a column-pivoted QR decomposition
9: Pr ¼ QsQ

T
sP ▷ Create a rank k reconstruction of P via projec-

tion onto Qs
10: E = P − Pr ▷ Create a reconstruction error matrix
11: vi = log2(||P||F/||E||F) ▷ Set the overall score for set i

to the log2 ratio of the Frobenius norms of P and E
12: for j 2 {1, . . ., n} do
13: S[j, i] = log2(||P[j, ]||2/||E[j, ]||2) ▷ Set the score

for set i and sample j to the log2 ratio of the Euclidean norms of
row j of P and row j of E

return S, v
Although the simplistic version of RESET defined in Algorithm 1 captures the general

structure of the method, it has several critical limitations:

• Computational cost can be significant if either X or the gene sets defined in A are large.

• Reconstruction of the full X matrix using all genes in a given set can produce scores in v

and S that are dominated by noise when the biological signal in X has an effective rank

that is much lower than the observed rank of X, which is common for genomic data.

• If gene sets defined by A have distinct sizes, the generated scores under a null scenario of

completely random data in X will not be equivalent. In particular, scores will be elevated

for larger sets as compared to smaller sets.

The limitations of the simplistic version of RESET can be effectively addressed by recon-

structing a dimensionally reduced version of X using a dimensionally reduced version of Xs

(the subset of X corresponding to each gene set). This approach can be efficiently realized by
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projecting X onto the top b principal components (PCs) where b is close to the rank of the bio-

logical component of the data and then assessing how well this PC projection can be recon-

structed using a rank k basis for the column space of each Xs. In this case, PCA is used to

reduce the dimensionality of X given the optimal properties of PCA (i.e., it generates the rank

b reconstruction with the minimal error as measurd by the Frobenius norm) and because PCA

is often performed as a standard part of scRNA-seq processing pipelines. The optional scaling

in step 2 has the same motivation as scaling in the context of PCA, i.e., it prevents genes with

large variance from dominating the solution. Algorithm 2 defines this reduced rank version of

Fig 1. Workflow representation of the randomized version of RESET as defined by Algorithm 3.

https://doi.org/10.1371/journal.pcbi.1012084.g001
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RESET. The Usage considerations section includes more details on how to select b and k and

the impact of these parameters on method performance.

While the reduced rank RESET variant successfully addresses the key deficiencies of the

simplistic version, it has two important limitations: 1) computational cost can still be signifi-

cant, and 2) scores for gene sets of different sizes under a non-null scenario may not match

user expectations. In terms of computational cost, the PCA and QR steps can be very expen-

sive, even if truncated algorithms are used that halt after computing the top PCs/columns (e.g.,

the truncated PCA algorithm implemented in the irlba R package [26] or a truncated column-

pivoted QR decomposition). Fortunately, the computational performance of these matrix

decompositions can be dramatically improved by leveraging randomized numerical linear

algebra (RNLA) [25, 27] techniques with only minimal loss of accuracy. Such RNLA methods

have been successfully leveraged for the analysis of large genomic data matrices, e.g., scRNA-

seq data, with data imputation via reduced rank reconstruction a key use case [28, 29]. The

randomized version of RESET defined in Algorithm 3 (and visualized in Fig 1) relies on two

underlying RNLA functions: a randomized technique for computing an orthonormal basis for

the column space of a matrix and, building on that method, a randomized SVD algorithm.

Note that the reconstruction of P via QsQ
T
s P is equivalent to creating a rank k reconstruction

via randomized SVD. The two RNLA techniques, which are defined in Algorithms A and B in

S1 Text, follow the general structure of the randomized rangefinder and randomized SVD

algorithms in Martinsson et al. [25]. At a high-level, these RNLA methods use random linear

combinations of the columns of the original matrix to create a set of independent composite

columns that can be used to approxiate a reduced rank basis for the columns space. When the

target reduced rank is much smaller than the overall rank of the matrix, these RNLA tech-

niques provide a substantial performance improvement at the cost of a very minor error rela-

tive to a non-randomized decomposition. For clarity, Algorithm 3 omits parameters that allow

for power iterations or delayed mean centering of X (see discussion below and the RESET R

package documentation for details). Readers unfamiliar with RNLA should review Algorithms

A and B in S1 Text. For more information on the theoretical and computation properties of

these methods or the broader foundations/applications of RNLA, readers are encouraged to

read the excellent survey by Martinsson and Tropp [25]. The paper by Erichson et al [30] asso-

ciated with the rsvd R package provides a shorter introduction to these methods with a specific

focus on their programmatic implementation and performance benefits relative to truncated

algorithms.

Although the version of RESET defined by Algorithm 2 will yield equivalent scores under a

null scenario for gene sets of different sizes, the scores produced under a non-null scenario

may fail to match user expectations. For example, if two sets both include the same group of

informative genes but one of the sets also includes an additional group of noise genes, the over-

all RESET scores for both sets will be equivalent when the reconstruction rank is less than the

number of informative genes. However, given the behavior of standard gene set testing meth-

ods, users will likely expect that the overall score for the smaller set that only includes informa-

tive genes should be larger than the score for the set that also includes noise genes. To help

address this issue, Algorithm 3 includes an option to compute per-variable reconstruction

scores, i.e., scores that are divided by the scaled gene set size. Scaling in this case is performed

by dividing the size of each set by the mean size across the entire collection. This is done to

keep the per-variable scores on a similar scale as the unadjusted scores (scores for sets of aver-

age size will be unchanged). It is important to note that while the per-variable scores may bet-

ter match user expectations in a non-null scenario, they will no longer be equivalent under the

null.
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Algorithm 3 Randomized RESET
Outputs and notation are the same as for Algorithm 2. Inputs also
include:

• d: Additional dimensions to compute using randomized methods.

• random.threshold: If the size of a given gene set is equal to or
below this value, then the column space basis is computed using a
deterministic method instead of the randomized technique defined
in Algorithm A in S1 Text. When the deterministic method is used,
the per.var flag is false and a non-random SVD is used for the ini-
tial matrix decomposition, this algorithm becomes equivalent to
Algorithm 2.

• per.var: If true, scores are divided by the scaled gene set size.

1: v 2 Rm
; S 2 Rn�m ▷ Initialize outputs v and S

2: Xc = scale(X) ▷ Mean center, and optionally scale, columns
of X

3: ðU;S;VÞ ¼ randomSVDðXc;b;dÞ ▷ Compute randomized rank b SVD of
Xc using randomSVD function defined in Algorithm B in S1 Text

4: P = XcV[, 1: b] ▷ Project Xc onto top b PCs of Xc
5: for i 2 {1, . . ., m} do
6: c = which(A[i, ] = 1) ▷ Create a length li = ∑ A[i, ] vector

that holds the indices of the genes in set i
7: Xs = X[, c] ▷ Create a n × li subset of X for set i
8: if li > random.threshold then
9: Qs = randomColumnSpace(Xs, k, d) ▷ Compute an approximate

rank k orthonormal basis for the column space of Xs using the ran-
domColumnSpace function defined in Algorithm A in S1 Text

10: else
11: Qs = qr(Xs)[, 1: k] ▷ Create a rank k orthonormal basis

for the column space of Xs via a column-pivoted QR decomposition
12: Pr ¼ QsQ

T
sP ▷ Create a rank k reconstruction of P via pro-

jection onto Qs
13: E = P − Pr ▷ Create a reconstruction error matrix
14: vi = log2(||P||F/||E||F) ▷ Set the overall score for set i

to the log2 ratio of the Frobenius norms of P and E
15: for j 2 {1, . . ., n} do
16: S[j, i] = log2(||P[j, ]||2/||E[j, ]||2) ▷ Set the score

for set i and sample j to the log2 ratio of the Euclidean norms of
row j of P and row j of E

17: if per.var then
18: vi ¼ vi=ðli=�lÞ ▷ Divide overall score by the gene set

length li scaled by the average of all set lengths �l
19: S½;i� ¼ S½;i�=ðli=�lÞ ▷ Divide sample scores by the scaled

gene set length li=�l
return S, v

Usage considerations

The randomized RESET method defined in Algorithm 3 and implemented in the RESET R

package supports a number of parameters that enable customization of the method for differ-

ent analysis scenarios. Three important use cases are the application of RESET to large sparse

data sets, evaluation of gene set collections that contain sets whose size is close to the target
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rank k, and evaluation of collections with a wide range of gene set sizes. Considerations for

these scenarios, the selection of appropriate values for k and b, deciding how to leverage the

generated S and v scores, and the joint use of both RESET and VAM, are discussed below.

Sparse X: When X is large and sparse, which is typical of single cell data, it is usually repre-

sented by an optimized sparse matrix format (e.g., the sparse matrix support in the R Matrix
package). In this case, mean centering of the columns of X will force conversion into a dense

matrix format, which can have a significant impact on both memory usage and computational

complexity for subsequent matrix operations. To avoid this performance penalty, it is desirable

to only mean center a subset of X containing the data needed for gene set testing. How this sce-

nario can be handled for RESET depends on whether the method is being executed via the

Seurat framework interface (i.e., the resetForSeurat() function) or directly via either the reset-
ViaPCA() or reset() functions. In both cases, RESET can be executed such that mean centering

is only applied to a subset of X containing the genes that belong to the evaluated gene sets, i.e.,

it does not force the entire X matrix into a dense format. This mean centering is performed

one gene set at a time within the inner loop of Algorithm 3. When RESET is executed via the

Seurat framework interface, it is assumed that PCA has already been performed on a scaled

and mean centered version of the normalized scRNA-seq data. Because Seurat by default only

applies mean centering to a subset of the scRNA-seq data corresponding to the genes with the

largest biological variance, the memory and performance impact is less severe. The Seurat

wrapper passes in the unscaled normalized scRNA-seq matrix to the reset() function with

parameters set so that mean centering of X is only performed on the columns for each gene

set. If RESET is executed via the resetViaPCA() function, this delayed mean centering can be

enabled by setting the center parameter to false, which will result in X being projected onto the

uncentered PCs and centering performed on just the PC projections and subsets of X corre-

sponding to each gene set. If RESET is executed via the reset() function, then users have full

control over mean centering behavior (see the R package documentation and vignettes for

more details).

Gene set size is close to target k: The computational benefit of the randomized column

space basis generator detailed in Algorithm 3 is only meaningful if the number of columns in

the input matrix is at least 3 times larger than the target rank k [30]. This means that use of ran-

domization for gene sets whose size is less than *3k will incur an accuracy penalty without

any improvement in execution time. In this case, it is desirable to instead use the column-piv-

oted QR decomposition approach. The randomized RESET method detailed in Algorithm 3

supports this flexibility via the random.threshold argument. Randomization can be required

for all evaluated sets by setting random.threshold to a value that is less than the minimal gene

set size. Similarly, use of the deterministic column-pivoted QR decomposition for all gene sets

can be achieved by setting random.threshold to the maximum gene set size.

Large variability in gene set sizes: Although the standard RESET algorithm will generate

scores under the null that are similar for gene sets of different sizes, this equivalence may not

hold under the alternative. In that case, users may want to set the per.var parameter to true to

scale the generated scores by set size. It is important to note that the per-variable adjustment

will result in non-equivalent scores under the null. It is also important to note that this issue is

typically relevant only for the overall scores; most uses of the sample-level scores, e.g., differen-

tial expression testing, are insensitive to whether or not the per-variable adjustment is

performed.

Selecting appropriate values for b and k: How to select the target rank for reduced rank

matrix decompositions is a long standing problem in applied mathematics. Although the

RESET method does not directly address the rank selection problem and leaves specification

of these parameters to users, there are a number of established approaches that can be followed
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when determining appropriate values for b and k. Most of these techniques select the target

rank based on the distribution of singular values using either a heuristic criteria, e.g., the elbow

method, a model-based threshold, e.g., use of the random matrix theory-based eigenvalue null

distribution [31], or a resampling technique, e.g., the JackStraw procedure used in the Seurat

framework [32]. The simulation and real data results presented in the Results section use

approximate, and likely non-optimal, values for b and k; performance of RESET in these cases

could probably be improved through use of a more sophisticated rank selection method. It is

also useful to keep in mind the impact that large or small values of parameters may have on

method performance:

• b: Large values of b risk overestimating the rank of the biological component of X and

thereby including the reconstruction of noise in the generated scores. In contrast, small

values of b risk underestimating the biological rank of X with the consequence that recon-

struction is measured on just a portion of the biological signal present in the data. In both

cases, the RESET scores will be a less accurate reflection of how well each set captures the

biological signal in the data with large b adding noise to the scores and small b adding

bias.

• k: Large values of k risk including noise components of the evaluated gene sets when per-

forming the reconstruction calculation. Because RESET uses a fixed value of k for all sets,

this may pose a particular problem when comparing the scores of small and large gene

sets, i.e., the reconstruction score is more likely to incorporate noise for the small sets

than for the large sets. Small values of k risk ignoring some of the biological component

of the evaluated gene sets. Similar to the impact of large k values, this will specifically

impact the comparison of scores for different sized sets with large sets more likely to suf-

fer score deflation because only a portion of the biological signal was considered. Sup-

porting the use of set-specific k values (e.g., base k on gene set size), would help mitigate

these issues and is something we may explore in future versions of RESET.

Using the S and v scores: Unique among single sample gene set testing methods, RESET

generates both sample-level scores in the S matrix and overall scores in the v vector. The sam-

ple-level scores provide the most flexibility and can be used in place of gene abundance data in

a wide range of subsequent statistical analysis, e.g., differential expression analyses, regression

modeling, clustering, visualization, etc. Although the overall gene set scores offer less general

utility, they still provide distinct information regarding the overall biological signal in the data

and can be leveraged for filtering or weighting of pathway-based models.

Joint analysis using RESET and VAM: Although RESET provides superior performance

relative to other single sample methods for data structures involving differential correlation,

techniques like VAM are optimal for detecting patterns of differential abundance in the

absence of differential correlation. The PBMC results shown below are a good example of the

distinct output that can be generated by RESET and VAM on real scRNA-seq data. Given

these factors, the use of both RESET and a differential abundance test like VAM may be moti-

vated for many analysis scenarios.

Comparison methods

The relative performance of the RESET method was assessed on simulated and real scRNA-

seq data (see the Methods section in S1 Text for details on the evaluation framework). For the

simulation study, three different versions of RESET (RESET.det, RESET.ran and RESET.per-

var) were evaluated based on the setting of the random.threshold and per.var parameters. For

RESET.det, which stands for deterministic RESET, random.threshold was set to 90, which
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forces the use of the column-pivoted QR decomposition, and per.var was set to false. RESET.

pervar used the same random.threshold value but set per.var to true to adjust the scores accord-

ing to gene set size. For RESET.ran, which stands for randomized RESET, random.threshold
was set to 9, which forces the use of the randomized column space basis generator (Algorithm

A in S1 Text), and per.var was set to false. All three RESET variants were compared against the

output from our previous developed VAM method [9] and three other single sample tech-

niques: GSVA [12], ssGSEA [13], and PLAGE [15]. GSVA and ssGSEA were selected because

of their widespread use in the field and because they incorporate both competitive and self-

contained features (as opposed to VAM, which is purely self-contained). PLAGE was selected

as example of a self-contained PCA-based technique that is sensitive to patterns of differential

correlation. PLAGE generates gene set scores using the projection of each sample onto the first

PC of the sub-matrix corresponding to the evaluated gene set (PAGODA [16] generates cell-

level gene set scores uses a similar approach but the overall process is more complex, requires

a specific normalization and first assesses overall PC significance using a Tracey-Widom test

on the associated eigenvalue). For VAM, we used the implementation in version 1.0.0 of the

VAM R package from CRAN. For GSVA, ssGSEA and PLAGE, we used the implementations

available in version 1.46.0 of the GSVA R package from Bioconductor. Unless otherwise

noted, all the comparison methods were executed using default parameter values.

Results and discussion

Sample-level classification performance

To compare the performance of RESET against our previously developed VAM technique and

the GSVA, ssGSEA and PLAGE methods, we measured the classification performance (i.e., the

ability of each method to generate high scores for cells that have higher mean expression and/

or non-zero correlation between genes in a specific set) on simulated scRNA-seq data. Specifi-

cally, scRNA-seq data was simulated as independent negative binomial counts with a fixed dis-

persion and random means generated from a shifted exponential distribution. The genes

included in the first evaluated gene set are considered informative with counts generated using

a higher expected negative binomial mean. Finally, the counts corresponding to a subset of the

cells for the informative genes are given a flexible correlation structure and inflated mean val-

ues to produce a block of counts with both differential correlation and differential expression

relative to the rest of the simulated matrix. Six different simulation parameters were varied to

generate a wide range of data structures:

• Mean inflation: The factor by which the mean of the negative binomial distribution used

to simulate scRNA-seq counts is inflated for the block of informative cells and genes.

• Correlation: The pairwise correlation between the simulated counts for the informative

genes in the informative cells.

• Set size: The number of genes in the evaluted gene set(s). The genes in the first set are

considered informative and are simulated with correlation and elevated mean values in

the informative cells.

• Number of informative cells: The number of cells for which counts of the informative

genes are simulated with correlation and inflated means.

• Mean: The baseline mean of the negative binomial distribution used to simulate counts

for the informative genes in all cells.
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• Rate: The rate of exponential distribution that is used to generate random variation in the

mean of the negative binomial distribution used to simulate counts for the informative

genes in all cells.

For full details on these parameters and the associated simulation framework, please see

Section 1.3 in S1 Text, which includes a link to the associated R logic. Fig 2 illustrates the rela-

tive classification performance (as measured by the area under the receiver operating charac-

teristic curve (AUC)) of RESET.det, RESET.ran, VAM, GSVA, ssGSEA, and PLAGE for the

block design and a single gene set across a range of mean inflation, inter-gene correlation,

gene set size and number of informative cells (i.e., number of cells for which gene set values

are inflated and/or correlated). Fig 3 shows the results for a block model with a more complex

correlation structure, and Figs 4 and 5 provide results for the pure self-contained and pure

competitive scenarios using a single gene set or a collection of five disjoint and equally sized

gene sets, respectively. All of these figures display the average AUC (and standard error of the

mean via error bars) for 50 simulated data sets generated for each distinct combination of

parameter values. Importantly, both the deterministic and randomized versions of the RESET

method provide superior classification performance relative to VAM, GSVA, ssGSEA, and

PLAGE across nearly the full range of evaluated parameter values for all three simulation

designs with significant relative performance benefits for the pure self-contained and pure

competitive cases. Two general trends are important to note:

• Performance relative to mean inflation of informative genes in informative cells: As

expected, classification performance of nearly all of the evaluted methods improves as the

mean of informative genes is increased when there is just a single block of informative

genes and informative cells. This is visualized in the first panel of Figs 2 and 3. By con-

trast, classification performance is insensitive to mean inflation when either all cells are

informative for a single gene set (the pure competitive model whose results are shown in

Fig 5) or all genes are informative for a subset of cells (the pure self-contained model

whose results are shown in Fig 4). For the pure self-contained model, this is due to the

fact that the log-normalization process will largely eliminate the differential expression

signature. For the pure competitive model, this is due to the fact that self-contained meth-

ods will see no differential expression signature (i.e., the mean of informative genes is

inflated in all cells) and, for competitive methods, the fact that the employed normaliza-

tion processes eliminate mean differences between genes.

• Performance relative to the level of correlation between informative genes in informa-

tive cells: In contrast to the other evaluated methods, RESET performance improves

noticably as the correlation between informative genes increases. This can be seen in the

second panel of Figs 2–5. For RESET, this performance trend is due to the fact that as a

subset of variables becomes more correlated relative to all variables in a given matrix,

those variables will become increasingly associated with a reduced rank representation of

the matrix. In the extreme case where there is just a single informative principal compo-

nent for a matrix (i.e., the non-random signal in the matrix is due to a single correlated

block in the population covariance matrix), the set of variables in the correlated block can

effectively reconstruct the entire matrix. The reason the other evaluated methods do not

see a similar trend is due to both the self-contained nature VAM and PLAGE and, for all

evaluated techniques except for PLAGE, a focus on differential abundance vs. differential

correlation.

These two trends are discussed in more detail below in the context of Figs 2–5.
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The results for the block simulation design using a single gene set are visualized in Fig 2

and indicate that the two versions of RESET have very similar performance with the determin-

istic variant generating slightly better AUC values than the randomized variant, as expected.

RESET provides measurably better classification performance than the other methods across

all parameter settings except for the low correlation case, low number of informative cells case,

and low rate case (i.e., the rate for the shifted exponential distribution of the random negative

binomial mean for each gene), for which VAM and GSVA have the best performance with

GSVA slightly higher than VAM. Notably, ssGSEA generates nearly null AUC values of just

slightly above 0.5 for this simulation design. Also noticable is the fact that AUC values for

PLAGE are either close to null or below 0.5, which is due to the fact that the sign of PC load-

ings is arbitrary. As expected, performance of RESET improves with higher mean inflation,

higher inter-gene correlation, larger gene set size, and increased number of informative cells.

Consistent with limitation 1 (sensitivity to differential correlation), RESET provides a particu-

larly large performance benefit in the high correlation scenario. Interestingly, VAM and

GSVA performance decreases as inter-gene correlation is increased, which follows from both

the impact of correlation on sparse count values (i.e., this will generate many cells with 0 values

for most genes in the set) and the use by VAM of a correlation-breaking permutation to deter-

mine a null score distribution. Block design results using a collection of five overlapping and

Fig 2. Classification performance of RESET.det, RESET.ran, VAM, GSVA, ssGSEA, and PLAGE on scRNA-seq data simulated according to the

block design for a single gene set as detailed in the Methods section in S1 Text. Each panel illustrates the relationship between the area under the

receiver operating characteristic curve (AUC) and one of the simulation parameters. The vertical dotted lines mark the default parameter value used in

the other panels. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1012084.g002
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unequally sized gene sets (shown in Fig A in S1 Text) are generally consistent with the single

set case with two exceptions: 1) ssGSEA has AUC values significantly below 0.5 (see comments

on the competitive scenario illustrated in Fig 5 below), and 2) VAM AUC values are slightly

higher than GSVA AUC values.

The results for the complex design, i.e., a model where the first gene set is split into two

groups of genes that have distinct patterns of mean inflation and correlation, are shown in Fig

3. This model captures the case where the expression data for a gene set has two non-random

PCs rather than just a single identifiable PC. The statistical model used to simulate data for this

design is detailed Section 1.3 in S1 Text. For this simulation model, the RESET method perfor-

mance is very similar to VAM and GSVA across most of the tested parameter values with a

clear benefit only present at high correlation and low mean inflation values. This follows from

the fact that only a subset of the gene set members are associated with the informative cells.

One important consequence of this model is that the signal that separates informative from

non-informative cells is represented by PC 2 of the gene set sub-matrix, i.e., the PC associated

with the second largest eigenvalue. Since RESET was set to use a rank 10 representation of the

gene set for this analysis, it can capture this signal, which is not the case for techniques like

PLAGE and PAGODA only use the first PC to generate scores. This is reflected in the near

null performance of PLAGE for this scenario.

Fig 3. Classification performance of RESET.det, RESET.ran, VAM, GSVA, ssGSEA, and PLAGE on scRNA-seq data simulated according to the

complex design for a single gene set as detailed in the Methods section of S1 Text. Each panel illustrates the relationship between the area under the

receiver operating characteristic curve (AUC) and one of the simulation parameters. The vertical dotted lines mark the default parameter value used in

the other panels. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1012084.g003
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The results for the pure self-contained design, i.e., a model where all genes are included in

the enriched set, are shown in Fig 4. It should be noted that the log-normalization process will

largely eliminate the differential expression signature in this case, which explains the overall

poor performance of VAM, GSVA, ssGSEA and PLAGE and the fact that method performance

is relatively insensitive to mean inflation. For this simulation model, the RESET method is

dominant across a wider range of parameter values than for the block design. GSVA has nearly

null performance for this model, which is expected given the competitive aspect of this tech-

nique, i.e., it compares values for genes in the set to genes not in the set for a single cell. Similar

to the block design, the performance benefit of RESET is especially large for the high correla-

tion case, which provides additional confirmation of limitation 1 (sensitivity to differential cor-
relation). Interestingly, the performance of ssGSEA, while still close to null for most parameter

values, is better than for the block design with noticably improved performance for at higher

inter-gene correlation values. Although this type of data structure does not reflect a realistic

biological scenario, it helps highlight the self-contained vs. competitive attributes of the various

methods.

The results for the pure competitive design, i.e., a model where genes in the set have

inflated/correlated counts for all cells, are shown in Fig 5. While the block and self-contained

models could be assessed using only the scores for a single gene set, the pure competitive case

Fig 4. Classification performance of RESET.det, RESET.ran, VAM, GSVA, ssGSEA, and PLAGE on scRNA-seq data simulated according to the

pure self-contained design for a single gene set as detailed in the Methods section in S1 Text. Each panel illustrates the relationship between the area

under the receiver operating characteristic curve (AUC) and one of the simulation parameters. The vertical dotted lines mark the default parameter

value used in the other panels. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1012084.g004
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requires comparison between the scores for the enriched set and the scores for non-enriched

sets (four disjoint and equally sized non-enriched sets were used for this simulation). The

results for this model are quite dramatic, with RESET providing good classification perfor-

mance across all parameter values, VAM, GSVA and PLAGE yielding close to null values and

ssGSEA generating AUC values significantly below 0.5. For VAM and PLAGE, the null perfor-

mance is expected given the self-contained nature of these tests, i.e., since all cells are enriched

for the gene set, there is no self-contained signature to detect; these results are consistent with

limitation 2 (support for competitive H0). For GSVA, the approximately null results are consis-

tent with the fact that the method converts the values for each gene into quantiles using an

empirical density estimate for the gene, which erases the differential expression signature in

this case. For ssGSEA, the very low AUC values are surprising. If a classifier consistently gener-

ated low AUC values, it would be feasible to turn it into a high AUC classifier simply by invert-

ing the score ordering. In this case, however, ssGSEA is generating both high and low AUC

values for different simulation scenarios so attempting to improve performance for the pure

competitive design would break performance for other designs. As outlined in limitation 3

(comparison of scores for different sets), the scores generated by GSVA and ssGSEA on different

sets are not intended to be directly comparable, i.e., they can be on very different scales for sets

Fig 5. Classification performance of RESET.det, RESET.ran, RESET.pervar, VAM, GSVA, ssGSEA, and PLAGE on scRNA-seq data simulated

according to the pure competitive design for disjoint and equally sized genes as detailed in the Methods section in S1 Text. Note that RESET.det

and RESET.pervar have identical performance in this case since the gene sets all have the same size. Each panel illustrates the relationship between the

area under the receiver operating characteristic curve (AUC) and one of the simulation parameters. The vertical dotted lines mark the default parameter

value used in the other panels. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1012084.g005
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with largely the same pattern of expression. While standardization of the scores for each set

can address this feature, such standardization would prevent detection of a pure competitive

pattern. Competitive design results using a collection of five overlapping and unequally sized

gene sets (shown in Fig C in S1 Text) have a similar pattern as the disjoint collection case with

two main differences: 1) the relative performance benefit of RESET is smaller, and 2) the AUC

values for ssGSEA are not a significantly below 0.5.

Overall classification performance

We also evaluated RESET according to overall classification performance, i.e., can the method

generate high overall scores for sets that have differential expression/correlation in a subset of

the samples? The results for this evaluation are visualized in Fig 6 for the block design using a

collection of five disjoint and equally sized gene sets. Because only RESET provides both over-

all and sample-level scores, just the RESET.det, RESET.ran and RESET.pervar variants are

shown. Although it is challenging to intepret these results given the lack of comparative meth-

ods, they demonstrate very accurate performance for this simulation design across almost all

parameter values. Since all gene sets are the same size, both RESET.det and RESET.pervar have

equivalent performance with both slightly better than RESET.ran. Overall results using a col-

lection of five overlapping and unequally sized gene sets (shown in Fig B in S1 Text) are very

Fig 6. Overall classification performance of RESET.det, RESET.ran and RESET.pervar on scRNA-seq data simulated according to the block

design with disjoint and equal sized gene sets as detailed in the Methods section in S1 Text. Each panel illustrates the relationship between the area

under the receiver operating characteristic curve (AUC) and one of the simulation parameters. The vertical dotted lines mark the default parameter

value used in the other panels. Error bars represent the standard error of the mean.

https://doi.org/10.1371/journal.pcbi.1012084.g006
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similar to the disjoint collection case. Although we had expected RESET.pervar to have better

performance in this scenario, the AUC values for RESET.det and RESET.pervar variants show

only minor differences.

Computational efficiency

Table 1 displays the relative execution time of GSVA, ssGSEA, VAM and PLAGE as compared

to the fully randomized version of RESET (i.e., “RESET.ran”). Relative times are shown for the

analysis of the simulated data sets (2,000 cells and 500 genes) used to generate the classification

results shown in Fig 2 (see Fig D in S1 Text for performance on this simulated data as a func-

tion of gene set size), for the analysis of the 3k cell PBMC scRNA-seq data set using the the Bio-

Carta (C2.CP.BIOCARTA) collection from the Molecular Signatures Database (MSigDB) [24]

(see the Human PBMC analysis section for detailed results), for the analysis of the 8.6k cell

human cord blood scRNA-seq data set for the BioCarta collection (see Section 2.5 in S1 Text

for detailed results), for the analysis of the 11.8k cell mouse brain scRNA-seq data set using the

MSigDB Gene Ontology biological process (C5.BP) pathway collection (see the Mouse brain

cell analysis section for detailed results), and for the analysis of the very large 242k cell Mouse

Cell Atlas (MCA) [33] scRNA-seq data set using a single gene set containing the first 50 genes.

Since the R implementation of GSVA and ssGSEA force the conversion of the gene expression

matrix into a dense format, memory limitations prevented execution of these methods on the

MCA data (PLAGE also forces conversion into a dense matrix but is self-contained so this is

just performed for the 50 genes in the analyzed set). For more details on the PBMC, cord

blood, mouse brain and MCA data sets and processing pipeline, see the Methods section in S1

Text. Although absolute execution times will vary significantly between different computing

platforms, on a standard laptop RESET takes around 5.2 seconds to analyze the PBMC data for

the MSigDB BioCarta collection, around 11 seconds to analyze the cord blood data for

MSigDB BioCarta collection, and around 13 minutes to analyze the mouse brain data for

MSigDB C5.BP collection.

Consistent with limitation 4 (computational cost), the RESET technique is two to four times

as fast as VAM and nearly two to three orders-of-magnitude faster than GSVA and ssGSEA

across both the simulated and real scRNA-seq data. Although RESET is consistently faster

than PLAGE, the performance benefit is very modest for the real scRNA-seq datasets, which is

consistent with the limited performance benefits of RNLA for the number of variables con-

tained in the gene set sub-matrices as well as the fact that reconstruction of the entire scRNA-

seq matrix and computation of reconstruction error is only performed by RESET. One inter-

esting result is the substantially worse relative performance of GSVA and ssGSEA on the cord

blood data as compared to the similarly sized mouse brain data. This result can be understood

from the fact that execution time for GSVA and ssGSEA is primarily driven by the size of the

Table 1. Ratio of execution time for the GSVA, ssGSEA, VAM, and PLAGE methods to the execution time for RESET on simulated scRNA-seq data, the PBMC

scRNA-seq data set for the MSigDB C2.CP.BIOCARTA collection, the cord blood scRNA-seq data set for the MSigDB C2.CP.BIOCARTA collection, the mouse

brain scRNA-seq data set for the MSigDB C5.BP collection, and the Mouse Cell Atlas for a single synthetic gene set. For the real scRNA-seq data, RESET was executed

using the parameters specified in the Methods section in S1 Text. For the simulated data, execution times are relative to the fully randomized version (i.e., “RESET.ran”) as

detailed in the Methods section in S1 Text.

Simulated PBMC Cord blood Mouse brain MCA

GSVA 416.87 97.83 407.45 11.34 -

ssGSEA 81.28 71.17 194.59 83.82 -

VAM 4.36 2.45 4.18 11.16 26.57

PLAGE 11.47 1.64 1.84 1.23 1.36

https://doi.org/10.1371/journal.pcbi.1012084.t001
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input scRNA-seq matrix whereas for RESET it is primarily a function of number of gene sets.

In this example, the count matrices have similar sizes but BioCarta contains many fewer gene

sets than MSigDB C5.BP. As shown in Fig D in S1 Text, the randomized version of RESET

only provides a noticable performance benefit relative to the deterministic version of RESET

when the gene set size is roughly four to five times larger than the target rank k, which is con-

sistent with findings by Erichson et al [30].

In addition to computational time, differences in memory requirements are an important

practical consideration. For all of the methods, memory consumption is primarily a function

of the target dataset with differences between the evaluated methods largely due to whether or

not the techniques leverage a sparse matrix framework. VAM and RESET both maintain the

sparse matrix representation used by frameworks like Seurat, so have very similar memory

requirements as a standard Seurat pipeline. GSVA, ssGSEA, and PLAGE on the other hand,

convert the sparse matrix into a dense format so can have dramatically larger memory require-

ments depending on the size and inherent sparsity of the analyzed data. It is also worth noting

that certain operations like mean centering will eliminate sparsity so can have a very large

memory cost irrespective of the gene set testing method (see the discussion for the “Sparse X”

topic in the Usage considerations section).

Human PBMC analysis

As detailed in the Methods section of S1 Text, we applied the RESET method and the compari-

son techniques to the 10x 2.7k human PBMC scRNA-seq data set. Fig E in S1 Text is a reduced

dimensional visualization of the 2,638 cells remaining after quality control filtering. Cluster

cell type labels match the assignments in the Seurat Guided Clustering Tutorial. For this analy-

sis, we looked at both the overall and cell-specific pathway scores generated by RESET. Table 2

lists the top 20 BioCarta pathways according to the overall RESET score without the per-vari-

able adjustment and Table A in S1 Text contains the top 20 with the per-variable adjustment.

Although the per-variable adjustment has a noticible impact on pathway ranking (e.g., only 5

of the pathways listed in Table 1 are also present in Table A in S1 Text), both the unadjusted

and per-variable RESET scores accurately reflect the immune cell source of this scRNA-seq

data set with nearly all of the top 20 pathways according to either score type having an associa-

tion with a specific immune cell type or immune signaling pathway, e.g., CSK (activation of

Csk by cAMP-dependent protein kinase inhibits signaling through the T cell receptor), FCER1

(fc epsilon receptor I signaling in mast cells), MHC (antigen processing and presentation), and

CTL (cytotoxic lymphocyte mediated immune response against target cells).

Table 2. Top 20 BioCarta pathways according to overall RESET score for the PBMC data set.

Rank Pathway RESET score Rank Pathway RESET score

1 BIOCARTA-CSK-PATHWAY 0.138 11 BIOCARTA-TCRA-PATHWAY 0.061

2 BIOCARTA-FCER1-PATHWAY 0.108 12 BIOCARTA-IL10-PATHWAY 0.059

3 BIOCARTA-MHC-PATHWAY 0.107 13 BIOCARTA-SPPA-PATHWAY 0.057

4 BIOCARTA-CTL-PATHWAY 0.101 14 BIOCARTA-BLYMPHOCYTE-PATHWAY 0.050

5 BIOCARTA-UCALPAIN-PATHWAY 0.095 15 BIOCARTA-INFLAM-PATHWAY 0.045

6 BIOCARTA-TCR-PATHWAY 0.092 16 BBIOCARTA-GPCR-PATHWAY 0.045

7 BIOCARTA-THELPER-PATHWAY 0.086 17 BIOCARTA-BCR-PATHWAY 0.043

8 BIOCARTA-TCYTOTOXIC-PATHWAY 0.067 18 BIOCARTA-EICOSANOID-PATHWAY 0.042

9 BIOCARTA-IL17-PATHWAY 0.066 19 BIOCARTA-CARM1-PATHWAY 0.041

10 BIOCARTA-CHEMICAL-PATHWAY 0.062 20 BIOCARTA-FMLP-PATHWAY 0.040

https://doi.org/10.1371/journal.pcbi.1012084.t002
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To visualize how well the RESET scores for the BioCarta pathways capture the overall tran-

scriptomic signal in the original scRNA-seq data, one can compute a UMAP projection on the

RESET scores. Fig F in S1 Text displays the projection of the cells onto the top two RESET

UMAP dimensions. Specificially, UMAP was executed on the top 30 PCs of the BioCarta

RESET score matrix. As shown by this projection, the clean clustering by cell type seen in the

scRNA-seq UMAP projection is lost though there is still a visible segregation by cell type with

some types, e.g., NK cells, retaining a clear separation from the other cells. The blurring of cell

type identity is not surprising given the more limited set of genes included in the BioCarta path-

ways and the fact that RESET scores capture reconstruction error rather than mean abundance.

A important application of the cell-level scores computed by RESET involves the identifica-

tion and visualization of differential pathway activity. Fig G in S1 Text illustrates such a visuali-

zation for the five BioCarta pathways most enriched in each cell type cluster according to the

log2 fold-change in the mean RESET score of cells in the cluster relative to cells not in the clus-

ter. Note that differential activity results are insensitive to the per-variable adjustment. These

results provide important information regarding the range of pathway activity across all pro-

filed cells. While many of the pathways shown in Fig G in S1 Text align with the expected biol-

ogy for the associated cell type, e.g., the B cell antigen receptor signaling pathway (as

represented by the BCR (B cell receptor) pathway) has elevated scores in B cells and the CTL

(cytotoxic lymphocytes) pathway has elevated scores in NK cells, some of the results are unex-

pected, e.g, CD14+ monocytes have the highest scores for the TCR (T cell receptor) pathway.

To correctly interpret the cell-level RESET scores, it is important to remember how the scores

are computed mathematically and what that mathematical definition indicates about the struc-

ture of the analyzed scRNA-seq data. In particular, RESET scores capture how well a reduced

rank representation of a given gene set can reconstruct a reduced rank representation of the

entire data set. High cell-level RESET scores indicate that the value of set genes for a given cell

can effectively reconstruct the values of all genes for that cell. As illustrated by the simulation

studies, this can capture patterns of differential expression, however, it can also identify corre-

lation patterns independent of any mean difference.

Existing single sample gene set scoring methods like VAM, on the other hand, capture dif-

ferences in mean expression. For such methods, high gene set scores will correspond to cells

where mean expression of the genes in the set is elevated relative other cells in the data set. In

general, RESET will produce distinct results from mean difference techniques and, for many

use cases, performing both types of single sample gene set testing will provide the most com-

prehensive characterization of the data. Fig 7 illustrates the distinct results generated by

RESET and VAM for four of the cells types in the PBMC data (note that the “BIOCARTA-”

prefix has been removed to save space). While some pathways appear enriched using either

RESET or VAM scores, e.g., BCR (B cell receptor) for B cells, TCYTOTOXIC for CD8 T cells,

and CTL (Cytotoxic T Lymphocytes) for NK cells, others are enriched according to just one of

the techniques. Biologically relevant pathways that are only enriched according to RESET

scores include the ARENRF2 (Oxidative Stress Induced Gene Expression Via Nrf2) [34],

AT1R (Angiotensin II mediated activation of JNK Pathway via Pyk2 dependent signaling)

[35], and TH1TH2 (Th1/Th2 Differentiation) [36] pathways for Naive CD4 T cells, the NFAT

(NFAT and Hypertrophy of the heart) [37] and TALL1 (TACI and BCMA stimulation of B

cell immune responses) pathways for B cells, the INFLAM (Cytokines and Inflammatory

Response) and GRANULOCYTES (Adhesion and Diapedesis of Granulocytes) pathways for

CD8 T cells, and the INFLAM and ASBCELL (Antigen Dependent B Cell Activation) [38]

pathways for NK cells. Importantly, these pathways all have a clear biological association with

the respective immune cell type (see references in previous sentence) but are not detected by

methods like VAM given the very small positive (or negative) differential expression signature.
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To explore this behavior, we computed the log2 fold-change (log2fc) in mean normalized gene

counts for pathway genes between cells of the target type and all cells. As expected, the path-

ways detected only by RESET had very small positive DE signatures (or negative DE signa-

tures, which VAM is unable to detect) relative to those found only by VAM. For Naive CD4 T

cells, the log2fc in expression for the ARENRF2 and AT1R pathways was 0.17 and 0.12 whereas

TCYTOTOXIC and THELPER pathways detected only by VAM had log2fc values of 0.53 and

0.56. Similarly for B cells, the log2fc for the NFAT and TALL1 pathways was -0.22 and -0.09

whereas the BLYMPHOCYTE and TH1TH2 pathways detected only by VAM had log2fc val-

ues of 0.98 and 1.15. For CD8 T cells, the INFLAM and GRANULOCYTES pathways had

log2fc values of -0.82 and 0.04 whereas the CTL and SET pathways detected only by VAM had

log2fc values of 0.46 and 0.96. Lastly for NK cells, the INFLAM and ASBCELL pathways had

log2fc values of -1.26 and -1.55 whereas the VAM-only SET and D4DGI pathways had log2fc

values of 1.97 and 1.08.

Human cord blood analysis

To complement the PBMC analysis, we analyzed the 8.6k human cord blood scRNA-seq data

set included in the SeuratData R package (see Methods section in S1 Text for details). To

Fig 7. Visualization of cell type BioCarta pathway enrichment as computed using either VAM or RESET scores on

the PBMC scRNA-seq data.

https://doi.org/10.1371/journal.pcbi.1012084.g007
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explore the impact of different normalization methods on RESET, we generated results using

both Seurat log-normalization and SCTransform. Tables B-E in S1 Text list the top 20 Bio-

Carta pathways according to the unadjusted or per-variable adjusted RESET scores for both

normalization types. Although the pathway rankings are sensitive to both the per-variable

adjustment and the normalization type, in all four cases the overall scores correctly capture the

immune cell nature of this data set with a number of pathways appearing in all of the top 20

lists for both the PBMC and cord blood datasets (e.g., MHC, TCRA, CTL, THELPER). Figs J

and K in S1 Text illustrate the pathways most significantly enriched in four cell type popula-

tions according to either RESET or VAM scores for log-normalization (Fig J in S1 Text) and

SCTransform normalization (Fig K in S1 Text). Similar to the PBMC results shown in Fig 7,

the enrichment results for the cord blood analysis are consistent with expected biology but

with a clear difference in enrichment effect sizes between the two normalization techniques.

Although the VAM and RESET results are more similar on the cord blood data than on the

PBMC data, there are again a number of pathways detected by only one of the methods. Simi-

lar to the PBMC results, these distinct enrichment findings can be explained by the differential

abundance signature. For example, the IGF1 (insulin like growth factor 1 signaling) pathway

[39] was only found to be enriched in CD4 T cells by RESET for the log-normalized data and

had a log2 fold-change in mean expression between CD4 T cells and all other cells of -0.26

whereas the TCYTOTOXIC pathway was only enriched according to VAM scores and had a

log2 fold-change of 0.54. For NK cells, the CTLA4 (the co-stimulatory signal during T cell acti-

vation) pathway was only enriched according to RESET scores and had a log2 fold-change of

0.2 whereas the CAPASE (caspase cascade in apoptosis) pathway [40] was only enriched

according to VAM scores and had a log2 fold-change of 0.98. Results for the other explored

cell types had a similar pattern.

Mouse brain cell analysis

To explore method performance on non-human data measured on a solid tissue, we analyzed

the 10x 11.8k mouse brain scRNA-seq data set. For the mouse brain data, we used the

SCTransform normalization technique instead of log-normalization and explored a much

larger pathway collection (the MSigDB Gene Ontology (GO) biological process (C5.BP) collec-

tion). Fig H in S1 Text is a projection of the 9,320 cells remaining after quality control onto the

first two UMAP dimensions with labels based on unsupervised clustering results and Fig I in

S1 Text is a visualization of pathway enrichment in the six distinct clusters (2, 7, 9, 10, 11, and

12) according to both RESET and VAM scores. In contrast to the PBMC analysis, RESET and

VAM scores generated more similar pathway enrichment results for the mouse brain data.

Importantly, prioritizing GO terms that appear enriched according to both methods can help

identify the likely neuronal cell populations represented by the clusters: gabaeric interneurons

for cluster 2, oligodentrocytes for cluster 7, granule cells for cluster 10, vascular cells for cluster

11 and microglial cells for cluster 12.

Conclusions

Gene set testing is a widely used hypothesis aggregation technique that can improve the

power, interpretation and replication of genomic data analyses by focusing on biological path-

ways instead of individual genes. These benefits are amplified for genomic data generated on

individual cells, which has significantly elevated levels of noise and sparsity relative to the out-

put from bulk tissue assays. To address the lack of gene set testing methods optimized for sin-

gle cell data, we recently developed a new technique for cell-level gene set scoring of single cell

transcriptomic data called Variance-adjusted Mahalanobis (VAM). While the VAM technique
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offers a significant improvement in terms of computational and classification performance

over other single sample methods, it has a number of important limitations. To address these

challenges, we developed a new, and analytically novel, single sample method called Recon-

struction Set Test (RESET). RESET quantifies gene set importance at both the sample-level

and for the entire data based on the ability of genes in each set to reconstruct values for all

measured genes. RESET is realized using a computationally efficient randomized reduced

rank reconstruction algorithm and can effectively detect patterns of differential abundance

and differential correlation for both self-contained and competitive scenarios. An R imple-

mentation, which supports integration with the Seurat framework, is available in the RESET

package on CRAN. As shown using simulated and real single cell RNA-sequencing data, the

RESET method provides superior classification performance at a lower computational cost rel-

ative to VAM and other popular single sample gene set testing approaches. Potential future

applications/enhancements of the RESET method include gene set optimization (i.e., edit the

membership of existing gene sets to maximize the per-variable overall RESET score on a target

scRNA-seq dataset), de novo gene set creation (i.e., generate seed gene sets via gene clustering

and then optimize the set membership to maximize the per-variable overall RESET score), and

exploration of ensemble gene set testing approaches similar to what was shown on the PBMC

and mouse brain data using VAM and RESET.
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