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Abstract

Tracking body parts in behaving animals, extracting fluorescence signals from cells embed-

ded in deforming tissue, and analyzing cell migration patterns during development all require

tracking objects with partially correlated motion. As dataset sizes increase, manual tracking

of objects becomes prohibitively inefficient and slow, necessitating automated and semi-

automated computational tools. Unfortunately, existing methods for multiple object tracking

(MOT) are either developed for specific datasets and hence do not generalize well to other

datasets, or require large amounts of training data that are not readily available. This is fur-

ther exacerbated when tracking fluorescent sources in moving and deforming tissues,

where the lack of unique features and sparsely populated images create a challenging envi-

ronment, especially for modern deep learning techniques. By leveraging technology recently

developed for spatial transformer networks, we propose ZephIR, an image registration

framework for semi-supervised MOT in 2D and 3D videos. ZephIR can generalize to a wide

range of biological systems by incorporating adjustable parameters that encode spatial

(sparsity, texture, rigidity) and temporal priors of a given data class. We demonstrate the

accuracy and versatility of our approach in a variety of applications, including tracking the

body parts of a behaving mouse and neurons in the brain of a freely moving C. elegans. We

provide an open-source package along with a web-based graphical user interface that

allows users to provide small numbers of annotations to interactively improve tracking

results.

Author summary

While deep learning with convolutional neural networks has been successfully applied to

many multiple object tracking problems, these advances do not immediately generalize to

videos of fluorescence reported dynamics in living tissue, where the combination of sparse

global distributions and locally dense, homogeneous peaks present a challenging instance

of a multiple object tracking problem. Imaging such sparse fluorescent signals is a stan-

dard tool for observing neuronal activity in genetically engineered animals, and
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performing imaging in naturally behaving animals to place that activity in the context of

behavior only increases the difficulty of the problem. Thus, this step is typically a signifi-

cant bottleneck in efforts to understand the relationship between neuronal activity and

naturalistic behavior.

We build upon recent advances in spatial transformers and differentiable grid sam-

pling to develop a new registration-based approach: ZephIR, a semi-supervised multiple

object tracking algorithm with a novel cost function that can incorporate a diverse set of

spatio-temporal constraints that can change dynamically during optimization. Local regis-

tration of image features enables tracking of keypoints even in sparse imaging conditions,

such as fluorescent cellular data, while a spring network incorporates a flexible motion

model of the neighboring keypoints without the need for a highly specialized skeletal

model. Feature detection can help fine-tune tracking results to match a nearby detected

feature in the image or even recover good tracking accuracy in cases where registration

clearly fails to produce good gradients. In addition, any amount of new manual labor,

whether simply verifying correct results or fixing incorrect ones, can dramatically improve

ZephIR’s accuracy. Through this workflow, ZephIR achieves state-of-the-art accuracy

with minimal manual labor, even on a freely behaving C. elegans, where large deforma-

tions present a particularly challenging tracking problem.

This is a PLOS Computational Biology Software paper.

Introduction

Imaging sparse fluorescent signals has become a standard tool for observing neuronal activity.

To place that activity in the context of behavior, it becomes increasingly important to perform

that imaging in naturally behaving animals [1]. Tracking the fluorescent sources through the

moving and deforming tissue of these behaving animals is a challenging instance of a multiple

object tracking (MOT) problem, and this step is typically a bottleneck for extracting clean

measures of activity [2].

Recently, deep learning with convolutional neural networks has been leveraged for many

MOT problems with video data including controlling self-driving cars, inferring postural

dynamics in humans and animals (DeeperCut [3], DeepLabCut [4], etc. [5]), and computa-

tional video editing (non-tracking CGI problems). These advances don’t immediately general-

ize to videos of fluorescence reported dynamics in living tissue for several reasons.

(1) In contrast to applications like human or vehicle tracking where each object has unique

identifiers that can be exploited, two fluorescence signals in the same video are often generated

by nearly identical sources and therefore lack distinguishable features [4–7]. (2) While transfer

learning has been successfully implemented in scientific applications involving natural videos

(a horse galloping) [4, 8], the low-level spatial and temporal features detected by these net-

works rarely reflect structures found in fluorescence microscopy data [9, 10]. Thus, this

approach rarely reduces the quantity of additional training data required for such applications

[4, 11]. Approaches that successfully reduce training data must make hard assumptions about

the underlying structure via direct parameter reduction, regularization, or data augmentation

[12–15]. (3) Typical applications of convolutional neural networks analyze images composed

of many discriminable textures that fill the image space [16]. Fluorescence microscopy data,
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however, often has regions of interest with similar fluorescent cells surrounded by voids of

black pixels. The combination of sparse global distributions and locally dense homogeneous

peaks are less well-suited to convolutional networks, as it becomes harder for convolutional

networks to extract useful features for downstream tasks [17, 18]. Some methods are proposed

to improve the performance of convolutional networks on sparse data but their utility is not

shown in the context of MOT [17, 19].

Some of the issues mentioned above may be alleviated by exploiting existing temporal struc-

tures in most biological systems. With sufficiently immobilized animals or high recording

frame rates, temporal information can be used to search the vicinity of a cell’s previous loca-

tion and match identities by minimizing displacement over time. However, motion often pro-

vides critical context for the problem being investigated (e.g. imaging neuronal dynamics to

understand behavior [20]). On the other hand, capturing such motion can often preclude

achieving a high frame rate, especially when serially imaging slices of a volume or attempting

to recover a signal from a dim fluorescent source. In these cases, it becomes beneficial to

restrict a motion model with relevant biological constraints, such as maintaining relative posi-

tions of cells.

Relevant work

Cell tracking methods can be categorized into the following two groups: (1) detect and link,

and (2) registration-based. Detect and link algorithms have two distinct steps [6, 11, 12, 14,

21, 22]: (a) Detection, where identity-blind candidate locations for objects are proposed by a

segmentation or keypoint detection algorithm at each time frame independently. (b) Link-

ing, where temporal associations between detected objects are determined to establish a sin-

gle continuous worldline across all frames for each individual object. A major drawback of

this two-step approach is the propagation of errors from the detection step. Errors that

occur in the detection step are difficult to recover from, and they can have detrimental

effects on linking and overall tracking quality. Several linking methods have been proposed

that are robust to detection outliers, but they either require training with large amounts of

manually or synthetically produced ground-truth data, or are not scalable to lengthy videos

[11, 21].

An alternative approach is registration, which directly operates in the image space and opti-

mize some transformation parameters that align a frame to some other frame [4, 15, 23–27].

This is done by mapping the underlying image grid from the source to the reference space

using the transformation parameters and interpolated pixel values. The transformation param-

eters must be optimized for each new image over a number of iterations.

Fortunately, recent advances in spatial transformers and differentiable grid sampling have

dramatically decreased computational burden and increased performance via GPU accelera-

tion for registration-based approaches [24, 27–30]. Similarly, modern optimization packages

such as PyTorch allow the construction of dynamic computational graphs that support more

complex nonlinear transformation families and novel cost functions with various regularizers.

Here, we build upon these recent advances to develop a new registration-based approach:

ZephIR, a semi-supervised multiple object tracking algorithm with a novel cost function that

can incorporate a diverse set of spatio-temporal constraints that can change dynamically dur-

ing optimization. Our proposed method is capable of efficiently and accurately tracking key-

points in a wide range of 2D or 3D videos. It allows the user to tune a number of parameters

controlling the relative strengths of the registration loss and other constraints, and hence gen-

eralizes well to a wide range of biological assumptions. To showcase the efficacy and versatility
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of our method, we demonstrate its performance on a number of biological applications,

including cell tracking and posture tracking.

Design and implementation

Frame sorting

ZephIR tracks a fixed set of keypoints within a volume over time by matching keypoints

between an annotated reference frame and an unlabeled child frame. To fully analyze a movie,

we need to register every frame to a reference frame.

For many datasets, it is best to register every child frame directly to a coarsely similar refer-

ence frame, and let annotations for that reference frame provide initial guesses for keypoints

in the child frame (Fig 1A). For this, we must identify a set of representative reference frames

that capture the range of deformation patterns present in the movie, and we must assign each

remaining frame to one of those reference frames. A pairwise distance between all pairs of

frames is determined by a similarity metric (e.g. correlation coefficient) applied to low-resolu-

tion thumbnails. A k-medoids clustering algorithm is applied in the chosen “similarity” space

to identify a small number of median frames to best serve as reference frames for all other

frames in the corresponding cluster (Fig 1A and S2 Fig) [4, 25].

In other datasets, the tracking results from one frame may provide useful insight into the

solution for another frame. For example, a frame that is close (in similarity space) to the refer-

ence may be easy to track. The tracked results from that frame, in turn, may provide a better

Fig 1. Overview of frame sorting strategies. Orange indicates fully annotated reference frames, blue indicates parent

frames with at least one child frame, and green indicates child frames. A: In the simplest strategy, all frames are

initialized by the closest reference frame. B: Frames are sorted into ordered queues based on similarity. Each of these

branches start with a reference frame, and new child frames are added such that the parent-child similarity distance is

minimized, naturally clustering similar frames around each reference frame. C: Frames are sorted chronologically,

branching both forward and backwards from each reference frame.

https://doi.org/10.1371/journal.pcbi.1012075.g001
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initial guess for keypoints in a frame that is further away from the reference. This can reduce

the distance between the initial guess and correct positions as well as the difficulty of the opti-

mization problem (S2 Fig). Thus, every child frame being registered is associated not only with

a reference frame (a registration target), but also a previously registered parent frame, which

provides the initialization prior to optimization (Fig 1B).

Additionally, the learning rate offers a way to improve the optimization trajectory by con-

trolling the rate at which the optimized parameters, y
ðcÞ
i , are updated after each registration

iteration. The learning rate for the child frame is partly determined by the distance between

the parent and child frames. We expect that when a parent-child pair are close in the similarity

space, the keypoints do not undergo significant displacements. Hence, given a set number of

registration iterations, we may apply a lower learning rate for a similar parent-child pair to

limit displacements between the two frames, and scale up to a higher learning rate in the case

of a dissimilar pair to allow tracking of features much further away from the initial coordi-

nates. The combination of these effects produces a flexible limit on the range of possible opti-

mization results for the child frame based on coarse similarity to its parent frame [31–33].

To take full advantage of this parent-child interaction, we sort all frames into distinct

sequences of parent-child frames based on similarity. Each of the resulting branches begin

from a previously selected median reference frame. The subsequent child frames are selected

to minimize the distance from a parent frame until every frame is assigned to a branch. Doing

so produces unique sets of frames that stem from each reference frame, naturally forming clus-

ters that separate similar frames from dissimilar ones. This is particularly useful for datasets

that repeatedly sample from a limited set of postures or global spatial structures (e.g.

locomotion).

However, not all datasets have temporal patterns that can reliably make use of the similar-

ity-based initialization method. For such datasets, a chronologically sorted queue may be more

reasonable and provide better accuracy overall, where a branch simply stems from each refer-

ence frame both forwards and backwards in time until it encounters the first frame, the last

frame, or another branch (Fig 1C). Note that the parent-child interactions during tracking are

still the same regardless of the sorting method. For a chronologically sorted queue, the con-

trolled variation of learning rates effectively allows us to adapt to different capture frame rates.

A high frame rate video often captures smooth motion that benefits from low learning rates

but a low frame rate video does not.

ZephIR tracks all keypoints in an image or volume (Fig 1A) simultaneously before moving

onto a subsequent frame in the sorted queue (Fig 1B). This matching is done by minimizing a

loss function L with four contributions:

L ¼ lRLR þ lNLN þ lDLD þ lTLT ¼ λ �L

We measure overlap of local image features around the keypoint via LR. We measure rela-

tive elastic motion between keypoints via LN . We measure the distance of each keypoint to the

nearest candidate location from a precomputed set via LD. We measure smoothness of key-

point-determined dynamical features (e.g. fluorescence or motion) via LT . Each is described

in more detail below.

The relative weights of each term, λ, can be freely adjusted by the user to better fit a particu-

lar dataset. The user can also set the relative weights to change while tracking a single frame to

allow the algorithm to shift focus to different loss components over a number of optimization

iterations.
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Image registration, LR

The first term of our algorithm measures overlap of local image descriptors.

For each keypoint i in a child frame, I(c), we generate a sampling grid centered around that

keypoint’s coordinates in 3D space, r
ðcÞ
i (origin at frame center, with fixed z = 0 for 2D images).

A sampling grid defines a map for a pixel (or an interpolated subpixel) from the original image

to each pixel of an output image of the same spatial shape as the sampling grid, therefore pro-

ducing arbitrary transformations of the image, such as simple crops or complex nonlinear

deformations. We define a set of transformation parameters, y
ðcÞ
i , that is closely related to r

ðcÞ
i

but may include additional transformation models, such as rotation, to characterize and con-

struct a sampling grid centered at the keypoint coordinate. We use the grid to sample from the

child frame accordingly and produce a representation of the local image information, i.e. an

image descriptor, around each keypoint (Fig 2C, top left, blue): DðIðcÞ; yðcÞi Þ.
The sampled descriptors are foveated to prioritize more local information relative to the

neighboring features. In lieu of image pyramids [34], we apply a Gaussian blur to reduce the

effective resolution of the descriptors at the start of optimization. The resolution is dynamically

increased every few registration iterations as the magnitude of the blur is decreased. We empir-

ically observed that doing so avoids gradient values that are too small or large, both of which

can occur in regions with sharp, well-defined edges surrounded by a uniform background. On

the other hand, restoring the original resolution of the image still provides the best available

information for fine-tuning tracking results towards the end of the optimization loop.

Similarly, a set of reference descriptors that serve as registration targets are sampled from a

reference frame, I(r). The user-defined annotations for that reference frame are used to calcu-

late fixed set of transformation parameters, y
ðrÞ
i , and thus a fixed set of sampling grids that gen-

erate a reference descriptor centered around each annotation (Fig 2C, top left, orange):

DðIðrÞ; yðrÞi Þ.

Using the two sets of image descriptors, our registration loop optimizes the transformation

parameters for the child frame, y
ðcÞ
i , to minimize the following loss term:

LRðy
ðcÞ
Þ ¼

X

i

h
1 � CorrCoef

�
DðIðrÞ; yðrÞi Þ;DðI

ðcÞ; y
ðcÞ
i Þ
�i

The optimized parameters y
ðcÞ
i are then used to calculate the desired results, the keypoint

coordinates for the child frame, r
ðcÞ
i . Note that these coordinates are also used for different loss

components below, but as r
ðcÞ
i is calculated from y

ðcÞ
i , gradients are always accumulated at y

ðcÞ
i .

Spatial regularization, LN

Cellular motion within a tissue tends to be highly correlated, but these correlations can be hid-

den in sparse fluorescent movies that only highlight a small number of cells (or subcellular fea-

tures) [35]. Even in less sparse movies, correlations between nearby keypoints may not be

well-captured by descriptors, especially when deformations, noise, or lighting conditions pre-

vent descriptor alignment. In order to maintain a similar spatial structure during motion with-

out relying on highly specialized skeletal models, such as those used in animal posture trackers

[36–38], we add an elastic spring network between neighboring keypoints [35, 39, 40]. The

resulting penalty to relative displacement of neighboring keypoints prevents unreasonable

deformations, providing a simple and flexible spatial heuristic of the global structure and

motion present in the data (Fig 2C, top right).
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Fig 2. Overview of ZephIR algorithm. A: Examples of input datasets, created with BioRender.com. ZephIR can track keypoints

in various biological systems, including fluorescent cellular nuclei in a tissue and body parts that summarize a posture. Input

dimensions can range from 3D (time, XY) to 5D (time, channel, XYZ). Colored dots indicate example keypoints to be tracked.

B: Frame sorting schemes. A branch defines an ordered queue of frames to be tracked. Each branch begins at a manually

annotated reference frame (orange), but subsequent parent (blue) and child (green) frames in a single branch can be sorted
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Despite ZephIR tracking a fixed number of keypoints across the video, the spring network

makes it robust to fluctuations in the number of keypoints visible in a frame. In frames where

a keypoint may not be visible or present, it fails to produce useful image descriptors for regis-

tration, but the spring connections to its neighboring keypoints allow us to keep track of its

approximate location.

Each of the i keypoints being tracked is connected to j nearest neighbors to define the fol-

lowing loss term:

LN ¼
X

i;j

kij

jdðcÞij � dðrÞij j

dðrÞij

where

dðtÞij ¼ kr
ðtÞ
i � r

ðtÞ
j k

describes the distance between keypoints i and j in the frame t.
The stiffness of each spring connection, kij, is initially set to a constant 1.0 for all connec-

tions. However, when multiple reference frames are available, kij is further adjusted to better

model the spatial patterns in the data by accounting for the covariance of connected keypoints

across all available n reference frames, r1:n:

kij ¼ covðrðr1:nÞ
i ; r

ðr1:nÞ
j Þ

This ensures that connections between highly covariant keypoints are made stronger while

connections between keypoints with more weakly correlated motion are weakened or cut

accordingly.

Feature detection, LD

For this component of the algorithm, we solve an easier problem of identity-blind feature

detection, as such detection algorithms have been shown to be fruitful in the context of track-

ing [6]. Namely, we identify key features (such as the center of a cell) present in a volume with-
out matching them to a specific feature in some other volume. Adding this information allows

us to dynamically combine both registration and detect-and-link strategies into a single loss

function.

This object or feature detection problem has been well-studied, and a wide variety solutions

have been proposed. Solutions can range from more parameter-free algorithms (e.g. Richard-

son-Lucy deconvolution [41, 42]), to algorithms requiring more fine-tuning (e.g. Viola-Jones

[43]). More recently, deep convolutional neural networks have shown to be powerful, effective

solutions as well (e.g. StarDist [10]). Importantly, each of these approaches may work better or

either by chronology (top) or by minimizing the similarity distance between each parent-child pair (bottom). C: Overview of

tracking loss. Tracking loss is comprised of four terms: 1) LR (top left), overlap of local image features around each keypoint,

sampled from the current frame and its nearest reference frame, 2) LN (top right), elastic connections between neighboring

keypoints with varying stiffnesses based on covariance of the connected keypoints, 3) LD (bottom left), proximity to features

detected by a shallow model selector network that takes in a number of existing feature detection software as input channels, 4)

LT (bottom right), smoothness of temporal dynamics at each keypoint position. D: Overview of steps for manual verification

and additional supervision. Users can verify tracking results as correct or identify incorrect results. After fixing a few key

incorrect results, ZephIR can use those new annotations as well as the verified correct tracking results to improve tracking results

for all other keypoints in that frame (and all its child frames).

https://doi.org/10.1371/journal.pcbi.1012075.g002
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worse on different classes of images. Generalization to new datasets can be hard to predict,

especially for neural networks that are trained on data generated from a single source.

Our approach is to automatically evaluate simple combinations of these established algo-

rithms by using a simple model-selecting network. After identifying a set of candidate models,

we provide the outputs of these models as input channels to a small convolutional neural net-

work (CNN), capable of producing optimized combinations of some or all of the selected mod-

els. If a particular model is best suited for a dataset, network weights for the corresponding

input channel are increased during training while suppressing other channels, thus it is not

critical for the user to select an “optimal” set of models since even one well-suited model can

sufficiently increase performance. The model selector network can be trained using any fully

annotated frame, and the low number of learnable parameters in the network also allows fast

training for each new type of data or imaging condition, which in turn allows rapid experi-

mentation with new selections of models to test as inputs.

The ultimate output of this selector network, C(I(c)), is formulated as a probability map,

where each pixel of the original image is assigned some probability of being a desired feature

(Fig 2C, bottom left). By indexing the map to obtain the assigned probability at the keypoint

coordinates, r
ðcÞ
i , we use this information to push tracking results towards detected features:

LD ¼
X

i

ð1 � CðIðcÞÞ½rðcÞi �Þ

Temporal smoothing, LT

Given a sufficiently fast imaging rate, we expect pixel intensity values to be smooth across a

small local patch of frames, even for cellular datasets where pixel intensities represent

smoothly-varying dynamical signals [44, 45]. Thus, we attempt to maintain smoothly-varying

local pixel intensities as a form of temporal regularization. For datasets where expected

dynamics are appreciably slower than the imaging rate, the strongest version of this regulariza-

tion is to penalize any deviation from a local zeroth-order fit. We apply this across a small (��

2 frames) patch of frames from c − � to c + � that are registered simultaneously, and add this to

the loss for the center frame, c (Fig 2C, bottom right):

LT ¼
X

i

Xcþ�

t¼c� �

jIðtÞ½rðtÞi � � IðcÞ½rðcÞi �j

Note that since the loss term is applied for the center frame only, it does not affect the

results for the other frames despite registering all frames in the patch together. Additionally,

this component of the algorithm requires registration (or approximate registration) of nearby

frames, making it more appropriate in low-motion conditions or after initial coarse registra-

tion is complete.

User intervention

Our pipeline allows a user to dramatically improve tracking quality in various ways by provid-

ing further supervision. Providing additional fully annotated frames will improve registration

targets to better match descriptors from similar frames. Strategically selecting a new reference

frame can have dramatic impacts on frame sorting as well, creating opportunities to form tigh-

ter clusters of parent-child branches.

Furthermore, when multiple reference frames are present, covariance of keypoints in those

frames helps better define an implicit global spatial structure by modulating stiffnesses of the
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spring connections between neighboring keypoints, kij. Any additional reference frames can

provide more accurate covariances, and thus a spatial model that is more accurately tailored

for that particular dataset.

Partially annotated frames are not used to seed sorted frame branches nor used to sample

reference descriptors. Still, all user annotations present in the frame are utilized to improve the

tracking quality of the remaining keypoints in that frame (Fig 2D).

Firstly, prior to gradient descent, displacements between any annotations in the child frame

and their corresponding coordinates in the parent frame are used to interpolate a flow field,F,

which serves as a rough model of the global motion between the two frames [15, 26, 40]. The flow

field provides an estimated displacement between the two frames for the remaining unannotated

keypoints which can be applied to their coordinates in the parent frame to initialize those key-

points closer to their new positions in the child frame. This is particularly helpful for pairs of par-

ent-child frames with large motion between them. While randomly annotating a small number of

keypoints distributed across the frame is effective, the flow field can always be improved in both

precision and accuracy by adding more annotations for the child frame (S3 Fig).

Secondly, the spatial regularization during the optimization process, LN , also makes good

use of any partial annotations. The annotations are fixed in place, but the spring connections

to their neighbors remain a crucial component of the backwards gradient calculations and

helps to “pull” the connected keypoints into place.

To streamline the process of providing user supervision, we offer a browser-based graphical

user interface that provides an intuitive, simple environment to produce and save further

annotations. Since our approach lacks a slow “training” phase, any new annotations can be

applied to tracking a frame directly from the GUI. A macro available in the GUI executes a

temporary state of the algorithm quickly and efficiently, allowing users to see the precipitated

improvements immediately.

Additionally, the GUI provides an opportunity for users to provide supervision without cre-

ating new annotations. The user may upgrade individual results into annotations or entire

frames into new reference frames by marking them as correctly tracked. These user-confirmed

frames will be treated as a regular reference frame next time the algorithm is executed, benefit-

ing from all the improvements to tracking quality discussed previously. These improvements

to the rest of the results can be observed immediately by executing the algorithm from the

GUI. A high-level summary of this procedure is provided as Algorithm 1 below.

Algorithm 1 ZephIR optimization loop
for c 2 sorted_frame_list do
if fkjk 2 i; yðcÞk 2 annotationsg 6¼ ; then

⊳ Partial annotations
F InterpðyðcÞk � y

ðpÞ
k Þ ⊳ Interpolate flow field

y
ðcÞ
i  y

ðpÞ
i þ F½y

ðcÞ
i � ⊳ Initialize at prediction

else
y
ðcÞ
i  y

ðpÞ
i ⊳ Initialize at parent results

end if
for n  1, n_epoch do

LðyðcÞi Þ  lRLR þ lNLN þ lDLD þ lTLT

Backwards L ⊳ Backpropagate gradients
Update y

ðcÞ
i ⊳ Gradient descent

end for
r
ðcÞ
i  rðy

ðcÞ
i Þ ⊳ Get keypoint coordinates

Write r
ðcÞ
i ⊳ Save coordinates

end for
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Results

Neurons in crawling worms (C. elegans)
Optical methods based on fluorescence activity of calcium binding indicators has become a

standard tool for observing neuronal activity in C. elegans. To do so, it is necessary to track

fluorescent signals from individual neurons across every frame in a recording. This poses a sig-

nificant challenge, particularly when the animal is allowed to freely crawl. The worm’s brain

undergoes fast, dramatic, nonaffine deformations, exhibiting a large variety (forward and

backward motion, omega turns, coils, pharyngeal pumping, etc.) and magnitude (up to ten

microns relative to an internal reference frame) of movements as the animal behaves [20, 47–

49].

Many solutions have been proposed to track fluorescent neurons in C. elegans. Two step

(detect and link) approaches often suffer from the lack of reliable detection algorithms and

require relatively low frame-to-frame motion in order to accurately link the detected neurons

[6, 14, 23]. Similarly, deep learning approaches are limited by insufficient training data, often

failing to generalize across different animals, even those within the same strain [11, 25]. While

these approaches have provided important insight and progress, there remains substantial

need for improvement in accuracy and efficiency when tracking many neurons in freely

behaving worms.

Fig 3 describes ZephIR’s general analysis workflow and performance on tracking a set of

178 fluorescent neurons in the head of a freely behaving worm across a 3D recording of

approximately 4.4 minutes (1060 frames @ 4Hz). We collected this data for the purpose of test-

ing this algorithm using a microscope and technique similar to that described in [47]. The

video has been centered and rigidly rotated to maintain a consistent orientation of the worm,

but no further straightening has been done. With only a few manually annotated reference

frames (78 mins/frame on average with the provided GUI), ZephIR already achieves state-of-

the-art accuracy as reported in recently published works on neuron tracking [11, 14, 23, 46]

(Fig 3B, Table 1), where accuracy is measured as the average percentage of neurons correctly

tracked, and a neuron is considered correctly tracked if the tracked coordinate is within the

volume of the neuron as identified via a manual annotator. First three median frames deter-

mined via k-medoids clustering and recommended for annotation as reference frames clearly

represent the principal postures that are repeatedly sampled during locomotion (Fig 3A). Fully

annotating those three frames (534 total annotations) is sufficient to produce tracking accuracy

of 89.27%, comparable to previously published works on neuron tracking (Fig 3B, Table 1).

Annotating additional median frames can increase this accuracy up to 91.49% for a total of 10

reference frames.

We further improve on the accuracy of the initial results by providing additional supervi-

sion. We randomly selected ten neurons uniformly distributed throughout the brain to verify

and use as partial annotations across all frames (Fig 3C). Because the initial results already

achieved high accuracy, they only required correction for a subset of frames (� 15%), taking

an average of 51 mins/neuron of human time to complete across the entire movie. After this

correction and validation, annotations for these ten neurons were re-classified as manual

annotations in all frames. The partial annotations produce a dramatic improvement in accu-

racy (red data point in Fig 3B) without the need to verify entire frames.

Through this workflow, we are able to achieve a sufficiently high accuracy to extract neuro-

nal activity traces across the entire recording (Fig 3D) [44, 45]. Neuronal activity is calculated

as the average ratio of GCaMP and RFP fluorescence intensities of the 9 brightest pixels in a

3x7x7 volume (roughly the size of the cell nucleus in the image) centered around the tracked

neuron coordinates after masking out pixels that overlap with the volumes around 5 nearest
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Fig 3. ZephIR analysis workflow and results for tracking GCaMP fluorescence from neuronal nuclei in 3D volumes of

freely behaving C. elegans. A: Plot of mean distance (in similarity space) to the nearest reference frame vs the number of

reference frames (left), and the first three median frames (maximum intensity projections of shape 200 x 512) recommended

by ZephIR’s k-medoids clustering algorithm (right). The first three median frames clearly represent the three main postures

that the worm cycles through as it crawls. B: Accuracy (higher is better) and precision (lower is better) vs the number of
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neighbors. Traces are adjusted for photobleaching (double exponential fit) and are shown rela-

tive to the ratio of intensities seen in the first frame. Many neurons show clear correlation with

observed behaviors, and the activity patterns are comparable to previously published works

[14, 49–51].

In order to verify and benchmark the accuracy of our method, we apply the same workflow

to a similar dataset of a freely moving worm provided by Nguyen, et al. [14], a publicly avail-

able dataset with ground-truth results provided that has already been used as a benchmark for

other recently published algorithms. [11, 14, 23, 46] Since this dataset is similar in behavior,

motion, and imaging conditions, we may reuse the same parameters and follow the same

workflow as the previously discussed C. elegans dataset. Doing so, we are again able to achieve

state-of-the-art accuracy (84.0%) with only a few reference frames, and adding additional par-

tial annotations increases our top accuracy further (94.48%) (Fig 3E). The top accuracy, the

required annotations or training frames, and tracking inference speed (not including any

training or detection) from other algorithms recently developed for tracking neurons in the

same C. elegans dataset are summarized in Table 1.

Comparison of loss terms and their combinations

By tracking the same set of keypoints in a single dataset with varying combinations for the

tracking loss, we may examine how each component affects the accuracy and precision. We

analyze the same dataset as discussed in the preceding section and Fig 3A–3D, and limit track-

ing to three reference frames with fixed weights and parameters (λR, λN, λD). Fig 4 summarizes

the resulting tracking accuracy and precision as the loss components are changed. We can con-

firm the positive contributions of both LN and LD as adding either or both to image registra-

tion, LR, increases accuracy and precision (Fig 4B). We also note that LD have similar local

information as the image descriptors when represented as a probability map with peaks at the

neuron centers (Fig 4C). When combined with the spring network, LD þ LN , it reaches similar

reference frames. Accuracy is measured as the average percentage of neurons correctly tracked, where a neuron is

considered correctly tracked if the tracked coordinate is within the volume of the neuron as identified via a manual

annotator. Precision is presented as the average RMS error between the predicted position and the manually annotated

position of each neuron in pixels. Note that once the majority of the postures present in the data is well-represented by the

first three reference frames, subsequent additions returns diminished improvements. Last data point shows ZephIR’s

accuracy using 10 reference frames with 10 partial annotations across all frames (panel C). C: 10 neurons were randomly

selected to be verified or corrected to serve as partial annotations. Traces of 5 of these neurons extracted using the initial

ZephIR results with 10 reference frames (left), and those using verified true positions (right) are shown, along with 5 other

randomly selected neurons. Traces are calculated as fold change of the ratio between GCaMP and RFP fluorescence of each

neuronal nuclei over the baseline, where the baseline is defined as the ratio in the first frame. Tracking quality for these 10

neurons can also be seen in individual crops around the neurons averaged across all frames (sharper image of the cell at the

center reflects better accuracy and precision in tracking). Note how the five unannotated neurons show improvements in

tracking quality after the addition of partial annotations, exemplifying the effects of partial annotations on the unannotated

neurons in the same frame. D: Neuronal activity traces from 178 neurons, extracted using results from ZephIR with 10

reference frames and 10 partial annotations in all frames. Traces are calculated as fold change of the ratio between GCaMP

and RFP fluorescence of each neuronal nuclei over the baseline, where the baseline is defined as the ratio in the first frame.

Behavior is shown in the ethogram below the heatmap. Trajectory of the worm (t = 0 at bottom right) is also colored with

the behavior state at the time. Trajectory of the worm matches changes in behavior over time as expected, and many of the

neuronal activity traces show strong correlation with behavior. E: Accuracy vs the number of reference frames for tracking

79 neurons in a publicly available dataset of freely moving C. elegans [14]. Since the spatiotemporal patterns in the data are

similar to the previously tracked data, we can reuse the same parameters and follow the same procedure to track the 79

neurons in the head of the worm. Each volume has been centered and rotated but no further straightening has been done.

Since this particular dataset has also been used to benchmark a number of recently developed algorithms, we may also

compare ZephIR’s accuracy with Neuron Registration Vector Encoding (NeRVE) [14], fast Deep Neural Correspondence

(fDNC) [11], 3DeeCellTracker [23], and CeNDeR [46].

https://doi.org/10.1371/journal.pcbi.1012075.g003
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Table 1. Summary of results and performance of ZephIR and other recently developed algorithms for tracking neurons in freely moving C. elegans. When bench-

marking on a common dataset (provided by [14]), ZephIR achieves top 2 accuracy with significantly less annotations and faster performance. Note that tracking inference

speed does not include time spent for any potential training or detection.

Algorithm Dataset source Neurons labeled Annotations used Inference speed Accuracy

ZephIR This paper 178 3 reference frames 1.24 s/vol 89.27%

ZephIR This paper 178 10 reference frames +10 partial 1.24 s/vol 98.02%

ZephIR NeRVE [14] 79 10 reference frames +10 partial 1.08 s/vol 94.43%

CeNDeR [46] CeNDeR C1 [46] 158 130 training frames 0.02 s/vol 95.48%

CeNDeR [46] NeRVE [14] 69 130 training frames 0.01 s/vol 86.51%

NeRVE [14] NeRVE [14] 69 100 frames > 40 s/vol 82.9%

fDNC [11] NeRVE [14] 69 2.304x105 semi-synthetic training frames 0.01 s/vol 79.1%

3DeeCellTracker (single) [23] NeRVE [14] 90 1 + 5x1011 synthetic training frames 73 s/vol 73%

3DeeCellTracker (ensemble) [23] NeRVE [14] 90 1 + 5x1011 synthetic training frames 86 s/vol 99.8%

https://doi.org/10.1371/journal.pcbi.1012075.t001

Fig 4. Results for tracking GCamP fluorescent neuron nuclei in 3D volumes of freely behaving C. elegans (same dataset as shown in Fig 3A–3D) with

varying combinations for the tracking loss. Three reference frames and fixed weights (λR, λN, λD) were used for all results shown. A. One of the three

reference frames. B. Network of connections between neighboring neurons in the frame shown in panel A. The edge weights represent their relative

stiffness for calculating the spring loss, LN . The connections and their stiffness are modulated by the distance between the neurons and the covariance of

the connected pair in reference frames. C. Results from feature detection, LD, on the frame shown in panel A. Feature detection achieves an average

precision and recall of 0.948 ± 0.024 and 0.931 ± 0.016, respectively. D. Tracking accuracy (top) and precision (bottom) as the loss components are

changed. We can confirm the positive contributions of both LN and LD as adding either or both to image registration, LR, increases accuracy and precision.

We also note that LD have similar local information as the image descriptors when represented as a probability map with peaks at the neuron centers.

When combined with the spring network, LD þ LN , it reaches similar accuracy as image registration, and the sum of the three terms, LR þ LN þ LD, result

in only a small increase in accuracy compared to either combinations, LR þ LN or LD þ LN .

https://doi.org/10.1371/journal.pcbi.1012075.g004
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accuracy as image registration, and the sum of the three terms, LR þ LN þ LD, result in only a

small increase in accuracy compared to either combinations, LR þ LN or LD þ LN (Fig 4D).

Posture of a behaving mouse

Here, we demonstrate how ZephIR can be used for behavioral tracking in natural movies by

analyzing the pose of a head-fixed mouse performing a motor task. The richness of local image

features present in natural images lend themselves to registration. In addition, by connecting

key points along the mouse’s body, our spring network loss (LN) can implicitly capture the

scaffold underlying the mouse’s posture.

There exist many solutions for similar problems in posture tracking. In particular, convolu-

tional neural networks have been successfully implemented for posture analysis in both labora-

tory and natural settings [3–5]. Notably, DeepLabCut adapts a ResNet CNN architecture to

track postures of various animals without any physical markers. DeepLabCut utilizes transfer

learning, where a “base” model is trained on a publicly available dataset of various “natural”

images prior to specializing the weights to a particular dataset. Their method reduces the

amount of training data required to achieve state-of-the-art results by orders of magnitude

(from hundreds of thousands to just a couple hundred labeled images), and thus reduces the

amount of manual labor required by the experimentalist.

Fig 5 compares the performance of our algorithm and that of DeepLabCut on the same

dataset. This dataset of a mouse performing a motor task was produced by the Churchland

Lab and published in [52]. We track ten points that summarize the mouse’s posture as it per-

forms the task in a 2D movie with a total of 5400 frames. We show that for low numbers of ref-

erence frames, i.e. low numbers of training data, ZephIR can produce much better quality

tracking than DeepLabCut, achieving good results with less than 20 reference frames (Fig 5B

and 5C). ZephIR is also able to produce this result with significantly less total computation

time as it does not require a slow training phase (table of Fig 5, middle row).

It is important to note that DeepLabCut can ultimately produce more accurate results when

provided with more training data as seen when using 200 manually labeled frames (right-most

data points in Fig 5A). While we do not expect ZephIR to replace DeepLabCut in such applica-

tions where a higher accuracy than what ZephIR is able to provide on its own is required,

ZephIR can easily fit into a DeepLabCut workflow to augment the amount of training data

available. Instead of manually labeling the full list of 200 frames to produce the last data point

in Fig 5A, we only annotated the first 10 of the recommended frames. We then run ZephIR

using those frames as references, verify the tracking results for the remaining 190 frames, and

correct any errors to produce the full set of 200 training images to use for DeepLabCut. Includ-

ing this step cuts the total human time required for a DeepLabCut workflow, from an extrapo-

lated 160 minutes to label 200 frames by hand to 53 minutes.

More recently developed variants of DeepLabCut, such as DeepGraphPose, can also reduce

training data size by incorporating spatio-temporal priors and enabling semi-supervised train-

ing that uses both annotated and unannotated data [5]. However, these variants still require a

significant amount of training data (� 1

3
of DeepLabCut’s requirements, compared to ZephIR’s

� 5 − 10%) and often fail when analyzing sparse or volumetric datasets, making it difficult to

employ for biological datasets.

Performance

We are able to compute the loss terms and optimize the tracking parameters efficiently by uti-

lizing modern deep learning tools with, in particular, differentiable grid sampling and GPU

acceleration offered by PyTorch [53]. Since our approach does not require a training phase,
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which is often the most significant bottleneck in both time and resources, it is fast without

being computationally costly. We also sacrifice a small amount of performance to reduce the

amount of memory required for both CPU and GPU to levels that are reasonable for commer-

cial laptops. This balance can be manually adjusted by the user depending on their computing

environment.

We run the following tests on a PC with a 16-core AMD Ryzen Threadripper 1950X proces-

sor @ 3.40GHz, 64GB RAM, and an Nvidia GTX 1080Ti GPU, 11GB VRAM. The tests were

carried out on the freely behaving worm dataset (Fig 3).

Fig 5. Results for tracking posture of a behaving mouse in 2D. We compare performances of ZephIR and

DeepLabCut on tracking 10 body parts that characterize the mouse’s posture over time. A: Accuracy (average

percentage of keypoints correctly tracked in unannotated frames) and precision (average distance between predicted

position and ground truth position of keypoints) vs the number of manually labeled or ground truth frames. These

labeled frames are used as reference frames for ZephIR and as training data for DeepLabCut. The frames are selected

based on automated recommendations from each algorithm, meaning the two sets of frames used may not be identical.

The last data point (results with 200 training frames) for DeepLabCut are produced with training data generated by

verifying and correcting ZephIR results with 10 reference frames. Note that ZephIR achieves better accuracy when only

a few labeled frames are provided, but DeepLabCut ultimately reaches a higher accuracy when its training data was

augmented with ZephIR. B, C: DeepLabCut and ZephIR results with 20 labeled frames (vertical line in panel A) for

tracking mouse body parts as it raises its paws. Note that ZephIR is more stable during motion while DeepLabCut

tends to jump between the different body parts. Table: Annotation and computation speed comparison. Annotation

time is calculated for the same person, using the respective GUI’s provided with each software package. Training and

inference times are tested on the same CPU and single GPU environment and with 20 reference frames (vertical line in

panel A). While DeepLabCut is faster for inference, it requires a slow training phase, dramatically increasing the total

computation time. This data was produced and provided by the Churchland Lab (UCLA). Raw data is available at:

https://ibl.flatironinstitute.org/public/churchlandlab/Subjects/CSHL047/2020-01-20/001/raw_video_data/.

https://doi.org/10.1371/journal.pcbi.1012075.g005
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In the default configuration, ZephIR registers 178x1x5x25x25 (NxCxDxHxW) descriptors

(LR) with spatial regularization (LN) over 40 optimization epochs for an average of 1.24s total

computation time spent per volume. In comparison, similar algorithms such as NeRVE takes

an approximate 50 s/vol on over 200 computing cores [14] and 3DeeCellTracker approxi-

mately 1 min/vol on a desktop PC with an NVIDIA GeForce GTX 1080 GPU (inference only)

[23].

During the test, the process utilized a maximum of 1.84GB RAM and 0.89GB VRAM. The

number of descriptors does not significantly affect performance as descriptors are registered in

parallel, but the number of epochs will impact speed linearly. The size of descriptors may

slightly affect performance as well as memory consumption. The number of volumes in the

dataset also affect the speed of frame sorting (Fig 1). When sorting frames by similarity (i.e.

minimizing distance between parent and child frames), performance can be affected as O(N2),

adding approximately 2.85 minutes to sort 1060 frames of shape 23 x 512 x 512.

Availability and future directions

ZephIR is available at: https://github.com/venkatachalamlab/ZephIR.

The data acquired for Figs 3 and 4 that support the findings of this study are available at:

(TBD prior to publication on zenodo.com).

ZephIR is a semi-supervised multiple object tracking algorithm. It tracks a fixed number of

user-defined keypoints by minimizing a novel cost function that dynamically combines image

registration, feature detection, and spatio-temporal constraints. Local registration of image

features enables tracking of keypoints even in sparse imaging conditions, such as fluorescent

cellular data, while a spring network incorporates a flexible motion model of the neighboring

keypoints without the need for a highly specialized skeletal model. Feature detection can help

fine-tune tracking results to match a nearby detected feature in the image or even recover

good tracking accuracy in cases where registration clearly fails to produce good gradients. The

model utilizes modern deep learning libraries, recent innovations in spatial transformers, and

optimization tools to calculate loss and backpropagate gradients efficiently in a GPU

environment.

We demonstrate that our approach is able to reach state-of-the-art accuracy on a diverse set

of applications, including extracting neuronal activity traces in a freely moving C. elegans and

tracking body parts of a behaving mouse. Notably, ZephIR is able to do so with a small amount

of ground-truth data and low computational resource requirements. Recent deep learning-

based methods often require large amounts of labeled frames for each new dataset. In contrast,

ZephIR is able to generalize to radically different datasets with just a few labeled frames and

adjustments to some hyperparameters.

Any amount of new manual labor, whether simply verifying correct results or fixing incor-

rect ones, can dramatically improve ZephIR’s accuracy. Verifying or correcting entire frames

produces new reference frames to provide better reference descriptors for registration and

improve flexibility of the spring network. Verifying only a subset of keypoints can initialize

better tracking guesses for all other points in the same frame by interpolating a global motion

model between parent and child frames. Additionally, any improvements in tracking a frame

can cascade down to all its child frames, further reducing the amount of supervision required.

Through this workflow, ZephIR achieves state-of-the-art accuracy with minimal manual

labor, even on a freely behaving C. elegans, where large deformations present a challenging

tracking problem. We also expect to achieve similarly strong performance on sparse fluores-

cent videos of deforming neurons in other models organisms including Hydra (S6 Fig), zebra-

fish, and Drosophila [1, 54–56]. While its versatile design makes it useful for a diverse set of
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applications, given the emphasis on local image descriptors with a flexible spring network con-

necting neighboring keypoints to incorporate both global and local spatial information,

ZephIR particularly excels when tracking high-contrast keypoints in sparse datasets with cor-

related and often repeating motion, such as fluorescent cells during locomotion. In addition,

its semi-supervised workflow and ability to incorporate both partially and fully annotated

frames allow the user to raise the tracking accuracy efficiently without the need for a slow

training phase, making it a practical approach to tackle problems without a large corpus of

data readily available.

With its versatile design and low computational requirements, ZephIR is designed to be

highly accessible without requiring a dedicated workstation. On the other hand, we hope to

also support full utilization of more powerful computational environments, especially when

multiple GPUs are available. In particular, since distinct frame branches do not interact with

one another when tracking, we may split them across multiple machines or GPUs to analyze

in parallel, resulting in roughly linear gains in speed. These performance gains could be avail-

able to all users by hosting an updated version of our annotator GUI on a dedicated GPU

server.

A notable limitation of our approach is that at least one annotated frame is required. We

hope to mitigate this issue through future key upgrades. For example, an object detection algo-

rithm may be able to automatically annotate the first reference frame, where linking or iden-

tity-classification is not necessary [7, 10, 13, 30, 57]. Many experiments with immobilized

animals or low-motion data often only need one reference frame, meaning such datasets could

be tracked entirely unsupervised. Advancements in spatial transformers and novel motion

models may also eliminate or reduce the need for partial annotations to initialize keypoint

coordinates closer to their true positions than the parent coordinates alone [2, 15, 24].

Similarly, improvements in feature detection may allow better automated determination of

hyperparameters. Currently, the user will often need to adjust a number of parameters from

the provided default values to improve tracking in a particular dataset, including the relative

weights of the individual loss components whose typical values and range of values vary across

datasets depending on the density of features, size of descriptors, etc. A feature detection and

analysis model could instead supply the correct parameters prior to tracking, reducing the

need for additional trial and error of determining the optimal set of parameters.

For some datasets, other approaches may be more accurate than ZephIR. As the field of

deep learning continues to develop, we can expect more powerful, generalizable models to

emerge. Still, ZephIR can be a powerful data augmentation tool upstream of any of these algo-

rithms, as was demonstrated with behavioral mouse data in this work. Since it can reach rea-

sonable accuracy with a low number of annotations, ZephIR can reduce the amount of labor

required to produce the necessary training data. It may be a key component in generating a

critical amount of ground-truth data to build new models to perform multi-object tracking in

particularly challenging datasets.

Supporting information

S1 Fig. Visualization of the loss map around certain neurons in freely moving C. elegans
with all other neurons fixed at the ground truth position. Columns, from left to right: visual-

ization of the volume around the neuron, the image descriptor of the neuron used for registra-

tion, map of the registration loss, map of the spring network loss, map of the feature detection

loss, and map of the sum of the three previous losses. First column is centered at the initial

coordinates, all others at the final optimized coordinates. Each row analyzes a different neuron

and its optimization trajectory: initialized at red, optimized along orange, final results at green.
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Purple marks the ground truth position for the neuron. Comparing different loss maps along

with the overall optimization trajectory can help diagnose certain tracking issues and give valu-

able insight on how to optimize the loss weights, λ, for a particular problem. A: For this neu-

ron, all three loss components provide good minima at the ground truth position. ZephIR

easily finds the correct result through gradient descent. B: For this neuron, ZephIR fails to

escape a local minima present in both registration loss (LR) and feature detection loss (LD) at a

neighboring neuron. However, we can see that spring network loss (LN) creates good gradients

that could push the neuron out of initial basin, thus increasing λN may improve this result. C:

For this neuron, ZephIR fails to escape a local minima at a neighboring neuron. In contrast to

row B, the spring network loss (LN) contributes to this local minimum, but the registration

loss (LR) provides gradients towards a basin at the correct position. Thus, decreasing λN may

improve this result. D:. For this neuron, all three loss components fails to present global min-

ima at the ground truth position, and only the registration loss (LR) presents a local minimum

there. Since the neuron position is initialized such that it must cross a deeper minimum to

reach the correct position in all loss maps, adjusting λ alone may not be able to improve this

result.

(EPS)

S2 Fig. Verifying reference frame recommendation. ZephIR recommends frames to anno-

tate as reference frames via k-medoids clustering of low-resolution thumbnails. We test ten

candidate frames and all pairwise combinations. During clustering, each child frame is

assigned to a cluster around a reference frame based on minimum distance (i.e., assigned to

nearest reference frame). With each update, the clustering minimizes a score based on the

mean distance between child frames and their assigned reference frame (left, lower/bluer is

better). The results from tracking with the two candidate reference frames are evaluated for all

other frames (right, lower/bluer is better). We can compare the resulting profiles of score and

accuracy for each pair of candidate frames in order to evaluate the efficacy of the recommenda-

tion method (more similar is better).

(EPS)

S3 Fig. Verifying parent-child selection. When sorting based on frame similarity, each subse-

quent child frame is selected to minimize the distance from a parent frame. We test pairs of

frames to study the effect of distance between parent and child frames. In these tests, the parent

frames provide both the initial positions of the keypoints in the child frame and the reference

descriptors as registration targets, and tracking results for keypoints in the child frame are

evaluated. It is evident in the resulting curve that accuracy quickly falls with distance.

(EPS)

S4 Fig. Testing sensitivity to weight (λN) of spring network loss (LN). We calculate the

tracking accuracy (top) and precision (bottom) for tracking 178 neurons in freely moving C.
elegans (see Fig 3) using 3 reference frames. The weight of the spring network loss is adjusted

while all other hyperparameters remain fixed. Within a single order of magnitude, the effect of

the hyperparameter on the accuracy and precision is small (<2%). However, it is important to

note that continuing to increase the loss coefficient begins to deteriorate the accuracy, most

likely due to exploding gradients during optimization. The vertical line indicates the default

value, 1.0.

(EPS)

S5 Fig. Testing motion prediction. We evaluate tracking accuracy (top left, higher is better)

and precision (bottom left, lower is better) for keypoints in a child frame (bottom right) as we

add partial annotations. In these tests, we use another frame (top, middle right) as both the
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parent (providing initial positions for keypoints) and reference frame (providing reference

descriptors for registration). We compare the improvements in performance from using dis-

place vectors sampled from ZephIR’s interpolated flow field (top right) and those sampled

from taCNN’s low-frequency deformation field (top middle).

(EPS)

S6 Fig. Freely deforming Hydra. We track 50 neurons across 1000 frames with four reference

frames. Each panel shows a trail of the neurons’ motions for the 100 frames preceding the

frame shown.

(EPS)
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56. Lagache T, Hanson A, Pérez-Ortega JE, Fairhall A, Yuste R. Tracking calcium dynamics from individual

neurons in behaving animals. PLoS Computational Biology. 2021; 17(10):1–25. https://doi.org/10.1371/

journal.pcbi.1009432 PMID: 34624016

57. Spilger R, Imle A, Lee JY, Muller B, Fackler OT, Bartenschlager R, et al. A Recurrent Neural Network

for Particle Tracking in Microscopy Images Using Future Information, Track Hypotheses, and Multiple

Detections. IEEE Transactions on Image Processing. 2020; 29:3681–3694. https://doi.org/10.1109/

TIP.2020.2964515 PMID: 31940539

PLOS COMPUTATIONAL BIOLOGY ZephIR: Multiple object tracking via image registration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012075 May 20, 2024 23 / 23

https://doi.org/10.1038/nmeth.1554
https://doi.org/10.1038/nmeth.1554
http://www.ncbi.nlm.nih.gov/pubmed/21240279
https://doi.org/10.3389/fncir.2014.00028
https://doi.org/10.3389/fncir.2014.00028
http://www.ncbi.nlm.nih.gov/pubmed/24715856
https://doi.org/10.7554/eLife.63711
https://doi.org/10.7554/eLife.63711
http://www.ncbi.nlm.nih.gov/pubmed/34011433
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1523/JNEUROSCI.2601-12.2012
https://doi.org/10.1523/JNEUROSCI.2601-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23035093
https://doi.org/10.1371/journal.pcbi.1009432
https://doi.org/10.1371/journal.pcbi.1009432
http://www.ncbi.nlm.nih.gov/pubmed/34624016
https://doi.org/10.1109/TIP.2020.2964515
https://doi.org/10.1109/TIP.2020.2964515
http://www.ncbi.nlm.nih.gov/pubmed/31940539
https://doi.org/10.1371/journal.pcbi.1012075

