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Abstract

Chromosome conformation capture (3C) technologies reveal the incredible complexity of

genome organization. Maps of increasing size, depth, and resolution are now used to probe

genome architecture across cell states, types, and organisms. Larger datasets add chal-

lenges at each step of computational analysis, from storage and memory constraints to

researchers’ time; however, analysis tools that meet these increased resource demands

have not kept pace. Furthermore, existing tools offer limited support for customizing analysis

for specific use cases or new biology. Here we introduce cooltools (https://github.com/

open2c/cooltools), a suite of computational tools that enables flexible, scalable, and repro-

ducible analysis of high-resolution contact frequency data. Cooltools leverages the widely-

adopted cooler format which handles storage and access for high-resolution datasets. Cool-

tools provides a paired command line interface (CLI) and Python application programming

interface (API), which respectively facilitate workflows on high-performance computing clus-

ters and in interactive analysis environments. In short, cooltools enables the effective use of

the latest and largest genome folding datasets.

Author summary

Chromosome conformation capture (3C) experiments, including Hi-C, measure the 3D

organization of chromosomes inside cells. As 3C datasets grow larger and higher-resolu-

tion, analyzing them poses computational challenges. Our open-source Python package

cooltools meets these challenges. Cooltools integrates smoothly with cooler, a software

library for storing and accessing very large Hi-C datasets. Cooltools enables users to

extract key features seen in 3C maps, including: the decay of contact frequency with
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genomic distance, plaid patterns of active and inactive compartments, domains, and dots.

Cooltools quantifies these folding features from raw contact data efficiently, handling

chromosome-scale datasets too large to fit in memory. The command-line and Python

interfaces make cooltools easy to integrate into pipelines or customized for new analyses.

By overcoming data size and memory hurdles, cooltools allows researchers to harness

3C’s full potential for understanding principles of genome folding and function.

This is a PLOS Computational Biology Software paper.

Introduction

Chromosome conformation capture technologies are powerful tools for experimentally char-

acterizing higher-order genome organization [1]. Multiple labs and consortia, including the

4D Nucleome project (4DN) [2], the International Nucleome Consortium (INC), and

ENCODE [3], are generating increasingly larger datasets to probe genome organization at ever

higher resolutions. Larger datasets increase the challenges at each step of computational analy-

sis, from storage to memory, to researchers’ time—at the highest resolutions, the data for even

a single chromosome does not fit easily in memory.

Computational analyses of genome folding typically employ multiple approaches to quan-

tify the variety of patterns in contact maps. These include: (i) enrichment of contacts within

chromosomes, referred to as chromosome territories, (ii) decreasing contact frequency versus

distance within chromosomes, or P(s); (ii) plaid patterns of preferential contacts, referred to as

compartmentalization, (iii) squares of enriched contact frequency, referred to as topologically
associated domains (TADs), (iv) focal peaks of pairwise contact frequencies, referred to as

loops or dots. To quantitatively describe these features, and assay how they change across con-

ditions, maps are summarized in many ways. Summaries include 2D pairwise averages, 1D

profiles, and lists of genomic positions. The variety of Hi-C features and summaries benefits

from a set of modular tools, rather than end-to-end pipelines, for data analysis.

The features in genome folding maps vary substantially through cell states, across organ-

isms, and between protocols. As C-data is obtained from a growing variety of contexts, compu-

tational analyses must co-evolve and expand as well. Because of this, computational

researchers require APIs that can not only perform standard analyses but also enable the

design of new analyses. This includes flexibility over parameters and thresholds, but also

encompasses more dramatic extensions.

Python provides one of the most popular environments for flexible data analysis and soft-

ware development. This is in part due to the rich ecosystem of numpy [4], scipy [5], scikit-learn
[6], and pandas [7]. For Hi-C analysis in Python, the widely-adopted cooler [8] format and

library present an ideal foundation. Cooler handles storage and access for high-resolution data-

sets via a sparse data model. To fully leverage the advantages of cooler, however, requires a cor-

responding analysis framework in Python.

While there are existing computational suites for extracting features of genome folding via

the CLI [9–13] or an R API [14], only FAN-C [13] and TADbit [11] have Python APIs

(Table 1). However, FAN-C and TADbit neither take full advantage of the Python ecosystem

nor provide consistent low-level access to the data, limiting their flexibility. We note the
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TADbit framework was developed before cooler was available, and hence without sparse stor-

age considerations, and had an orthogonal primary focus on building 3D models.

Here we introduce cooltools, a suite of computational methods that enable the analysis of

high-resolution genome folding data accessible using cooler (Fig 1). Cooltools features a

Python API paired with command line tools. The methods in cooltools are modular and pro-

vide access to both high-level and low-level APIs. The high-level API enables users to repro-

ducibly perform routine analysis. The low-level API allows for troubleshooting challenges

posed by new organisms or cell states and developing new advanced analyses. cooltools is part

of a research community and broader ecosystem of open-source chromosome data analysis

tools, Open2C (https://open2c.github.io/). cooltools provides detailed introductions to key

concepts in Hi-C-data analysis with interactive notebook documentation. Collectively,

Table 1. Overview of software suites for C-data analysis.

Tool suite CLI API Storage

cooltools Yes Python .cool

FAN-C Yes Python .cool or.hic

TADbit Yes Python .bam,.txt

Genova No R .cool or.hic

HiCExplorer Yes No .cool or.hic

JuicerTools Yes No .hic

HiC-Bench Yes No .tsv

Despite the multiple existing suites for extracting features of genome folding from Hi-C maps, only cooltools and

FAN-C both have a Python API and accept input files with a standard binned Hi-C format. Currently, the standard

binned formats used by the 4D Nucleome project [2] and others are: (i).cool, the hdf5-based storage format used by

cooler [8], and (ii).hic, the custom binary format generated by Juicer [12].

https://doi.org/10.1371/journal.pcbi.1012067.t001

Fig 1. Overview of cooltools functionality. Open2C provides a modular ecosystem of software libraries for Hi-C analysis (highlighted

with gray boxes). Pairtools [58] takes in paired-end sequence alignments and extracts contact pairs in the 4DN.pairs format. cooler [8]

bins these contact pairs and stores the resulting sparse matrices in.cool and.mcool formats. The nextflow pipeline distiller [59] converts

sequencing reads from FASTQ files directly into binned and normalized cooler files, integrating read alignment with pairtools and

cooler. The library introduced in this paper, cooltools (in bold), provides methods to quantify and extract features from high-resolution

contact maps stored by cooler.

https://doi.org/10.1371/journal.pcbi.1012067.g001
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cooltools enables computational analysis and methods development to keep pace with the rap-

idly-increasing quantity of experimental data and rapidly-evolving understanding of genome

organization.

Design and implementation

The design of cooltools stems from its goal to enable flexible analyses of large quantities of

high-resolution Hi-C data.

1. Provide a modular set of tools with a balance between comprehensiveness and flexibility.

Modular tools can be used separately or combined in a custom order. The set of core tools

extracts and quantifies the majority of common features in the Hi-C literature.

2. Separate processing from data analysis. Cooltools works with processed Hi-C data and is

not concerned with mapping workflows.

3. Separate data analysis from plotting, with a focus on the former. For Hi-C data, plotting

often has a greater range of user-specific needs than feature extraction and quantification.

4. Provide a paired Python API and CLI. CLI tools enable their use in computational pipelines

and have a one-to-one correspondence with user-facing Python API functions. The user-

facing API and CLI both have a standard format for arguments and take a cooler as their

first input. For other types of genomic data besides Hi-C, the cooltools API accepts pandas
dataframes, while the CLI reuses existing formats when possible: BED-like files for interval

data and bedgraphs or bigwigs for genomic tracks.

5. Split the Python API into two layers: a high-level API for user-facing functions and a flexi-

ble low-level APIs. A modular, consistent, and well-documented internal Python API

allows experienced users to customize existing analysis routines or create entirely new ones.

6. Enable analyses for custom genomes and non-model organisms. This includes user-defined

subsets of regions from a reference genome, e.g. chromosomal arms. Leveraging its use of

standard Python data structures, cooltools enables these analyses with bioframe [15]. A

view specifies a unique 1D coordinate axis with an ordered set of non-overlapping genomic

intervals, also referred to as regions.

7. Leverage indexed sparse storage. Cooltools is built directly on top of the cooler storage for-

mat and library, which allows it to operate on sparse matrices and/or out-of-core, either on

raw counts or normalized contact matrices.

8. Allow parallel processing to take advantage of modern multi-core CPU architectures. Most

operations are performed via iteration over genomic regions or chunks of non-zero pixels,

enabling straightforward multiprocessing.

9. Leverage the Python data science stack to promote interoperability. Cooltools delegates to

numpy, scipy, and pandas when possible and aims to follow the style of these APIs. To accel-

erate specific low-level computations, cooltools uses the just-in-time compiler numba [16].

10. Return widely-used Python data structures, pandas dataframes, and numpy arrays, for

user-facing outputs, and avoid the use of custom classes. This allows cooltools to operate

on low-level and easily modifiable Python objects with an intuitive, consistent, and flexible

interface.
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Cooltools is open-source and structured to encourage future contributions. For experimen-

tal code, cooltools provides a sandbox to enable easy sharing, safe testing, and eventual adop-

tion of novel analysis routines.

Results

Overview

The main cooltools modules were initially developed with mammalian interphase Hi-C maps

in mind, but the flexible implementation of cooltools has made it useful for analysis of data

from different organisms (e.g., Drosophila [17,18], yeast [19,20], nematodes [21], chicken [22])

and cellular states (mitosis [22,23], meiosis [20,24]). We explain cooltools in tripartite chapters

for each module below, describing the relevant features, the implementation, and analyses

where the flexible API has proven useful. Conceptually, cooltools modules can be grouped in

two main ways. First, modules can be grouped by whether they perform feature extraction

(compartments, insulation, dots) versus feature quantification (expected, saddles, pileups).

Alternatively, modules can be grouped by whether they make use of chromosome-wide infor-

mation (expected, compartments, saddles) or more local information (insulation, dots, pile-

ups). The design choice to separate analysis from plotting facilitated the creation of interactive

notebook documentation (https://cooltools.readthedocs.io/en/latest/notebooks). These note-

books also provide flexible starting points for custom visualization and analysis. To highlight

the practical application of cooltools, the figures throughout this manuscript are all generated

using the same HFF micro-C dataset from Krietenstein et al., [25] stored as an.mcool file,

which provides a convenient access to sparse matrices binned at multiple resolutions, and the

code to generate all figures is additionally available for download as interactive notebooks

(https://github.com/open2c/open2c_vignettes/tree/main/cooltools_manuscript).

Contacts-vs-distance & expected

Contact frequency decreases rapidly with genomic separation within chromosomes, which

arises because chromosomes are long polymers [26] This feature is interchangeably referred to

as the: (i) expected because locus-specific features increase or decrease contact frequency rela-

tive to this major trend, (ii) scaling which is borrowed from the polymer physics literature, (iii)
P(s), or contact probability, P, as a function of genomic separation, s. The shape of P(s) reflects

folding patterns at different length scales, from those of adjacent nucleosomes to full chromo-

somes [26,27], and can be quantified with its derivative. P(s) varies through the cell cycle,

across cell types, and is modified by structural maintenance of chromosomes complexes

(SMCs) in interphase, mitosis, and meiosis (review [28]).

To quantify P(s) at sub-kilobase resolution (Fig 2), cooltools avoids conversion from sparse-

to-dense matrices. Instead, the calculation is done by iterating over chunks of pixels stored in

coolers, assigning pixels to regions, and aggregating at each distance. Avoiding conversion to

dense also requires keeping track of filtered-out bins and a non-trivial accounting of the num-

ber of intersecting filtered bin pairs per-region per-distance. By allowing users to specify a cor-

rection weight, cooltools also enables P(s) calculation on raw data. To reduce variation at large

genomic separations due to increasing sparsity of the data, cooltools returns P(s) curves

smoothed in log-space using a numba-accelerated approach. This also allows cooltools to more

robustly compute the derivative of P(s) and observed-over-expected maps. To quantify P(s) for

arbitrary sets of regions, users can specify a view. The resulting curves for each region are then

optionally averaged together. To enable interoperability with downstream analyses that require

accounting for P(s), cooltools defines an expected format with specifications and checks. This
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includes both pairs of regions within chromosomes (cis expected) or pairs of regions on differ-

ent chromosomes (trans expected).

The flexible approach for computing P(s) used in cooltools has proven useful in multiple sit-

uations. For example, the ability to specify regions with a view has been used to calculate both

within-arm P(s) and within-compartment P(s). Within-arm P(s) was particularly useful in

mitosis, as P(s) is the main point of comparison with models of large-scale chromosome orga-

nization and is altered greatly across centromeric regions [22]. Within-compartment P(s) [29]

revealed that extrusion occurs in compartment B as well as in A.

Compartmentalization

A second prominent signal in mammalian interphase contact maps is plaid patterns that

appear both within and between chromosomes, termed chromosome compartments. These

plaid patterns reflect tendencies of chromosome regions to make more frequent contacts with

regions of the same type: active regions have increased contact frequency with other active

regions, and inactive regions tend to contact other inactive regions more frequently. The

strength of compartmentalization varies through the cell cycle, across cell types, and after the

degradation of components of the cohesin complex (for review [28]).

Cooltools calculates compartmentalization profiles using matrix eigenvector decomposition

(Fig 3). For cis profiles, cooltools first adjusts the contact matrix for distance dependence before

decomposition. For trans profiles, cooltools implements the ICE approach which masks cis
portions of the map with randomly sampled trans data. Since eigenvectors are determined up

to a sign and compartmentalization patterns are sometimes better captured by second or third

eigenvectors, calculated vectors often need to be oriented and sorted according to their corre-

lation with known markers of activity (e.g., GC content, density of genes). Cooltools allows

users to request an arbitrary number of eigenvectors and can sort and orient eigenvectors

according to a provided “phasing track”, most commonly the GC content per genomic bin.

The flexible implementation makes it useful for downstream analysis. For example, [29]

modifies cooltools to extract 50+ eigenvectors, which are then used to find multiple classes of

Fig 2. Expected and contact frequency versus distance. a. Observed contact map for HFF Micro-C for chr2 and chr17 at 1Mb.

Chromosomal arms p and q are depicted as light and dark grey rectangles respectively. Note the wide unmappable centromeric regions

(white rows and columns) between chromosomal arms. Accounting for these regions is a key aspect of calculating an expected map. b.

Expected map for three classes of regions: intra-chromosomal intra-arm, intra-chromosomal inter-arm, and inter-chromosomal.

Regions for expected are specified using genomic views, where individual regions are chromosomal arms. Note that intra-chromosomal

expected has a strongly decreasing contact frequency with genomic distance, whereas inter-chromosomal expected appears flat. c.
Average contact frequency versus genomic separation, or P(s), for intra-arm interactions (blue, orange) and for inter-arm interactions

(green), calculated from contact maps at 10kb. P(s) curves are matched by region and color with arrows on the middle heatmap.

https://doi.org/10.1371/journal.pcbi.1012067.g002
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compartments. In Drosophila, GC content did not always reliably orient eigenvectors, but the

flexible interface allowed gene density to be used instead [17].

Pairwise class-averaging & saddles

Contact frequency preferences between pairs of genomic loci can depend on multiple proper-

ties, including chromatin state and position along a chromosomal arm [30]. Pairwise summa-

ries, obtained by averaging over pairs of regions assigned to a set of classes, are a

straightforward way to quantify these preferences. Pairwise summaries are commonly visual-

ized as a 2D heatmap. For genome folding, these are most frequently used to quantify the

strength of compartmentalization after assigning classes from the extracted compartment pro-

file. The pattern of preferences revealed by this averaging (where contacts are disfavored

between active and inactive chromatin) led to these summaries being referred to as “saddle
plots” [31]. Pairwise summaries have also been used to quantify GC content and fragment

length biases [32].

To quantify these preferences with cooltools saddle (Fig 4), the approach is to: (i) group bins

with similar properties into classes, (ii) average over all map pixels specified by the bins in each

pair of classes (i.e. for each pair of classes p, q, summarize the collection of pixels {Aij | i in p, j
in q}). Bins can be assigned to classes either by discrete properties, or by discretizing a quanti-

tative signal. cooltools operates on observed-over-expected contact frequencies, either based on

raw counts or balanced data, and can be restricted to either cis or trans portions of the genome

wide map.

The flexibility of cooltools saddle enables 2D summaries to be used in many ways. This

includes considering the average pairwise preferences over a reduced set of four histone modi-

fication states [29]. Saddle plots have also been used to quantify contact preferences relative to

the nuclear lamina and speckles [33], as well as differences between experimental protocols

Fig 3. Compartments and eigenvectors. a. To obtain cis compartments profiles, observed maps are first divided by expected. b.

Observed/expected maps are decomposed into a sum of eigenvectors and associated eigenvalues. c. Illustration of eigenvector phasing.

In mammalian Hi-C maps, the first eigenvector typically, but not always, corresponds to the compartment signal. Since eigenvectors are

determined only up to a sign, their orientations are random. To obtain consistent results, the final cis compartment profile (right) is

obtained as the eigenvector most correlated with a phasing track (here, GC content), and oriented to have a positive correlation.

https://doi.org/10.1371/journal.pcbi.1012067.g003
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[34]. Finally, since extraction of compartment profiles is decoupled from quantification, cool-
tools can be used to quantify how compartmental preferences shift with respect to a reference

map, either through the cell cycle [23] or in single cells [35].

Insulation and boundaries

At small genomic distances (~2 Mb and shorter), mammalian interphase contact maps display

square-like features along the diagonal. These 2D features, also referred to as domains, or

TADs, are often summarized with 1D profiles of insulation. Insulation profiles quantify the

frequency of contacts across each genomic bin averaged over a sliding diamond-shaped win-

dow. Sites with lower scores, reflecting reduced contact frequencies between upstream and

downstream loci, are often referred to as insulating boundaries and coincide with the edges of

domains. Insulation scores are popular for analysis due to their simplicity and relative robust-

ness to Hi-C sequencing depth [36]. Obtaining the positions of boundaries along the genome

has in turn helped uncover relationships between genome folding and key genome-organizing

proteins like CTCF and cohesin.

To enable calculation of insulation profiles for high resolution data (Fig 5), cooltools iterates

and aggregates over the sparse cooler pixel table. The size of the sliding window is chosen by

the user. cooltools detects insulating boundaries as local minima of the insulation profile and

quantifies their strength as their topographic prominence. Random variations in insulation

along the genome lead to many local minima with very small prominences that are not desired

in downstream analysis. To select strong boundaries from this set of minima, cooltools relies

Fig 4. Pairwise class averaging and saddle plots. a. Compartment profile, where more negative values are B regions, and positive values

A for a 15Mb region of chr2. b. Digitized compartment profile, quantized into 5 classes by percentile. The lowest is highlighted as a

thicker line. c. Observed/expected map with pairs of B regions highlighted. d. Saddle-plot for the 5 digitized classes, highlighted regions

in the observed/expected map contribute to the top left pixel boxed in grey.

https://doi.org/10.1371/journal.pcbi.1012067.g004
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on Li and Otsu automated thresholding criteria borrowed from the image processing field

(from scikit-image [37]).

Cooltools can calculate insulation profiles and boundaries at extremely high resolution (100

and 200 bp resolution [25,38]). The flexible window size has also been used to analyze Micro-

C boundaries at multiple levels [38]. Finally, the flexibility of cooltools enabled its use to calcu-

late insulation even with assays modified to detect sister chromatids [39,40].

Dots

Punctate pairwise peaks of contact frequency are another prevalent feature of mammalian

interphase contact maps. These features are also referred to as ‘dots’ or ‘loops’ in the literature,

and can appear either in isolation or as parts of grids and at the corners of domains. In mam-

malian interphase, peaks seen between loci at distances <2Mb are often enriched for binding

of CTCF and cohesin [41]. In the context of loop extrusion, such peaks can emerge by the

reproducible positioning of extruded cohesin loops at CTCF barriers [27]. Peaks in mamma-

lian interphase maps can also emerge due to other complexes, like polycomb [42,43]. Peaks

have also been observed and quantified in other contexts, including yeast meiosis and mitosis

[20,44,45].

Cooltools implements a HiCCUPs-style [41] approach for peak detection (Fig 6): briefly, (i)

maps are queried with a dense set of tiles that fit easily into memory, (ii) convolutional kernels

are swept across map tiles to score all pixels for local enrichment (iii) significant pixels are

determined by thresholding relative to their local background expected values, using a

Fig 5. Insulation and boundaries. a. Diamond insulation is calculated as the sum in a sliding window (gray) across the genome, shown here for HFF

MicroC data in a region of chr2 at 10kb resolution (chr2:10900000–11650000). b. The resulting insulation profile is shown in black. Local minima are

indicated with dots. Positions of strong boundaries shown as orange dots, and filtered weak boundaries as blue dots. Two-sided gray arrow shows the

boundary strength of the strong boundary at chr2:1146000–1147000, calculated relative to the maximum insulation achieved before a more

prominent minima in either genomic direction. Here, strength is relative to the prominent minima at chr2:11130000–11140000, and maximum

insulation is indicated with a dashed gray line.

https://doi.org/10.1371/journal.pcbi.1012067.g005
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modified Benjamini-Hochberg FDR procedure (iv) adjacent significant pixels are optionally

clustered and further filtered by enrichment. Cooltools enables control over dot calling at mul-

tiple levels, including: the area of the map queried by tiling, allowing user-specified kernels,

choosing the FDR, and whether to perform the final clustering and filtering.

The cooltools dots module has been used in multiple settings, including: calling peaks in

MicroC data [25], calling peaks across conditions [34], and in yeast meiosis [20]. In yeast mei-

osis, dot-calling benefited from the flexibility in cooltools to choose a smaller kernel and

relaxed filters in the clustering step.

Pileups and average snippets

Different classes of genomic elements display distinct local contact patterns depending on

their propensity to form features like boundaries or dots. These patterns are typically quanti-

fied by extracting local 2D contact maps, or snippets, and then averaging snippets to create pile-
ups or average Hi-C maps. Averaging can reveal genome-wide trends that might otherwise be

masked by locus-specific structures or noise in individual snippets. Due to the symmetry of

Fig 6. Dots. a. Dots calls from a region of chromosome 17, highlighted by squares on the upper triangular portion of the map. Squares show the size of the

region scanned by convolutional kernels. b. illustration of convolutional kernels used for dot calling around one example, from left to right: ‘donut’, ‘top’,

‘bottom’, ‘lowerleft’. Local enrichment at the center pixel is calculated relative to the shaded regions in each kernel.

https://doi.org/10.1371/journal.pcbi.1012067.g006
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Hi-C maps, pileups come in two varieties: (i) on-diagonal pileups around a set of anchor posi-

tions, and (ii) off-diagonal pileups around a set of paired-anchors. On-diagonal pileups are

useful for quantifying the strength of boundaries, which define a set of anchors, and off-diago-

nal pileups are useful for quantifying the strength of dots, which define a set of paired-anchors.

Both types of pileup can be useful for determining the relationship between other genomic

data (e.g., CTCF binding) with genome folding.

To calculate pileups (Fig 7), cooltools first retrieves snippets for the specified set of anchors,

a procedure termed snipping. Pileups can be built either directly from observed contact map

snippets or from snippets normalized by a specified expected table. This is especially useful

when the pileups are created for regions with different P(s), and specific expected tables are

used for different regions. Users can also specify their choice of balancing weights or whether

to calculate pileups directly on raw data. Multiprocessing can be specified to speed up snipping

for large sets of anchors.

The modular cooltools API facilities interactive analysis of snippets. The flexibility of

using raw data for cooltools snipping has enabled its use with single-cell Hi-C [35]. The flex-

ibility offered by cooltools enables more complex analyses, including considering aggregate-

peak-analysis (APA) as a function of genomic distance between anchors [20]. In [25], mini-

mal modifications to the cooltools code enabled nucleotide-resolution pileups, revealing

patterns of nucleosomes around dots, CTCF anchors and gene starts. Leveraging the flexi-

bility of cooltools, coolpuppy [46] enables distance-stratified analyses [42] as well as addi-

tional functionality for pileups. The separation of feature extraction and quantification has

also enabled the quantification of features like TAD strength and peak strength in more

sparsely sequenced datasets relative to a more deeply sequenced reference (e.g., for CTCF

mutants [47]).

Fig 7. Pileups and average snippets. a. snippets, or regions around called dots, are extracted from the genome-wide

map. b. set of extracted snippets. c. average pileup for dots created by averaging the set of snippets.

https://doi.org/10.1371/journal.pcbi.1012067.g007
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Coverage (cis/total), smoothing, and sampling

In addition to the main modules described above, cooltools provides additional tools for com-

puting coverage, adaptive smoothing, and resampling.

An early observation from Hi-C maps was that contacts are more frequent within chromo-

somes than between them, even at large genomic separations [48]. This corresponds to the

established concept of chromosome territoriality (for review [49]). In cooltools, cis and total

coverage profiles are calculated by iterating over chunks of pixels followed by summation. One

usage of this feature was to determine that dot anchors in yeast meiotic Hi-C maps had higher

proportions of cis contacts [20].

Since Hi-C maps are often sparse, especially at high resolutions, understanding and mitigat-

ing the impact of sampling noise is often a key component of computational analysis. To aid

such analyses, cooltools provides a module for generating randomly downsampled coolers.

This allowed controlled comparisons across stages of Drosophila germline cell differentiation

[50]. To mitigate sampling noise, cooltools provides an adaptive smoothing method that itera-

tively splits observed counts across multiple bins until reaching a user-defined threshold, simi-

lar to the approach in Serpentine [51]. Adaptive smoothing has proven useful for applications

ranging from visualization to preprocessing data for neural network training [52].

Availability and future directions

In summary, cooltools provides a suite of tools for genome folding analysis that are seamlessly

integrated with cooler. Available on GitHub since 2017, cooltools modernize, extend, and

replace the analysis routines in hiclib [30], the first open-source package for processing and

analyzing Hi-C data. Currently, cooltools and FAN-C are the only available Hi-C analysis suites

that provide a Python API and operate on the.cool data format (Table 1). Benchmarked on

Hi-C data, cooltools shows better performance, especially at higher resolutions (S1 Fig).

The methods in cooltools are modular, enabling the development of new analyses. The

Python API in cooltools yields interpretable and structured outputs (Pandas dataframes or

NumPy arrays), facilitating both data exploration as well as future tool development. For exam-

ple, since the output of cooltools insulation is a pandas DataFrame of genomic intervals with

additional score columns, the set of boundaries set can be interactively intersected with other

genomic data (e.g., CTCF occupancy or motifs) using bioframe [15].

The flexibility and breadth of the library make cooltools useful across a broad range of contexts.

Cooltools have been used to analyze Hi-C data across cell states, including mitosis and meiosis, and

for organisms ranging from bacteria to yeast to invertebrates to mammals. Analysis of data for non-

standard genomes is facilitated by the use of genomic views, which support flexible ordering and

naming of chromosomes, as implemented in bioframe [15]. Indeed, the flexibility of cooltools made

it the tool-of-choice for the largest evaluation of experimental Hi-C protocols to date [34].

Cooltools provides a foundation for multiple future directions. First, integration with dask
[53] could be used to further improve the performance of snippers and other tools. Second,

cooltools could be extended to support emerging types of contact data, including asymmetric

contacts (e.g., RNA-vs-DNA [54,55]), and single-cell data [56]. Finally, cooltools can be used to

develop reproducible analyses for Hi-C datasets. This includes reports, either on single datasets

or for cross-dataset analysis, workflow routines for reproducible analysis (e.g., https://github.

com/open2c/quaich), and integration with visualization platforms (e.g., HiGlass [57]).

Supporting information

S1 Fig. Performance benchmark of Python API software tool suites. We benchmarked cool-
tools and FAN-C [13] using HFF Micro-C from Krietenstein et al. [25] for two chromosomes,
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chr2 and chr17. Together, these chromosomes constitute ~325.5 Mb (~10.5% of the human

genome). Benchmarks were performed on a per-tool basis at resolutions typically used in pub-

lished Hi-C literature. Expected was assessed for 1kb, 10kb, 100kb, and 1Mb. Insulation was

assessed on 1kb and 10kb maps with window sizes 20 times larger than the resolution (20kb

and 200 kb, respectively). Pileups were assessed at resolutions of 1kb, 10kb, and 100kb at win-

dow sizes 20 times larger than the resolution (20kb, 200kb, and 2Mb, respectively). At 1kb res-

olution, FAN-C could not be benchmarked, due to high memory consumption (>94Gb) and

running time exceeding 20 mins. Compartments and saddles were calculated in cis at 100kb

and 1Mb. All benchmarks are posted on https://github.com/open2c/open2c_vignettes/tree/

main/cooltools_manuscript. Benchmarks used cooltools v.0.6.1, FAN-C v.0.9.27, system

Linux-6.2.0–37 with 24 CPUs at 3200 GHz (max 4717 GHz). a. CPU performance benchmark,

values above the bars indicate time in seconds. b. Memory requirements benchmark, values

above the bars indicate maximum used memory in MB.
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