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Abstract

Target-mediated drug disposition (TMDD) is a phenomenon characterized by a drug’s high-

affinity binding to a target molecule, which significantly influences its pharmacokinetic profile

within an organism. The comprehensive TMDD model delineates this interaction, yet it may

become overly complex and computationally demanding in the absence of specific concen-

tration data for the target or its complexes. Consequently, simplified TMDD models employ-

ing quasi-steady state approximations (QSSAs) have been introduced; however, the precise

conditions under which these models yield accurate results require further elucidation. Here,

we establish the validity of three simplified TMDD models: the Michaelis-Menten model

reduced with the standard QSSA (mTMDD), the QSS model reduced with the total QSSA

(qTMDD), and a first-order approximation of the total QSSA (pTMDD). Specifically, we find

that mTMDD is applicable only when initial drug concentrations substantially exceed total tar-

get concentrations, while qTMDD can be used for all drug concentrations. Notably, pTMDD

offers a simpler and faster alternative to qTMDD, with broader applicability than mTMDD.

These findings are confirmed with antibody-drug conjugate real-world data. Our findings pro-

vide a framework for selecting appropriate simplified TMDD models while ensuring accuracy,

potentially enhancing drug development and facilitating safer, more personalized treatments.

Author summary

Target-mediated drug disposition (TMDD) is a phenomenon characterized by the high-

affinity binding of a drug to its target molecule. The TMDD model can describe the pro-

cess to elucidate the binding of the drug to its target and its elimination from the body.

However, when target or complex concentrations are not available, simpler models of the

TMDD model need to be used to avoid over-parameterization and to improve computa-

tional efficiency and analysis. Several simplified TMDD models based on quasi-
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equilibrium, Michaelis-Menten (MM), or quasi-steady-state (QSS) approximation have

been proposed. However, their validity conditions have not been fully investigated. In this

study, we derive the validity conditions for the approximations of the TMDD model, pro-

viding insights into the appropriate use of simplified models. We also propose a first-

order approximation of the QSS model, which is faster than the QSS model and more

accurate than the MM model. We also applied the simplified models to antibody-drug

conjugate real-world data and obtained the same results. Our work provides clear guid-

ance on the use of the simplified TMDD models, potentially leading to improved drug

development and safer, more tailored treatments for patients.

Introduction

Drugs that bind to their target sites can undergo a nonlinear pharmacokinetic phenomenon

that is called “target-mediated drug disposition” (TMDD), first introduced by Levy [1].

TMDD occurs when the binding of a drug to its target influences the distribution and elimina-

tion of the drug, and is particularly common with biologics, such as monoclonal antibodies

[2]. TMDD can be described with a system of ordinary differential equations for a drug, target,

and drug-target complex [3]. The TMDD model takes into account the fact that drugs can

bind to their target molecules and be eliminated from the body, or they can dissociate from

their target molecules and re-enter the circulation. This model is critical to drug development

for predicting drug efficacy and safety, selecting drug candidates, and optimizing lead com-

pounds [4–6].

The TMDD model can be simplified to increase computational efficiency, make analysis

easier, and provide insights into the behavior of the system [7–9]. Furthermore, it is critical to

avoid over-parameterization and to simplify the complexity of the TMDD model [10]. This is

particularly important when dealing with relatively sparse clinical data, because of ethical

issues. The application of these techniques helps to streamline the model, making it more man-

ageable and interpretable, while ensuring robust and accurate predictions despite limited data

availability. Applications generally employ the following processes: parameter reduction,

which reduces the number of model parameters; state variable reduction, which reduces the

number of state variables in the model; and structural model reduction, which simplifies the

structure of the model [11,12].

Previous studies compared the advantages and disadvantages of various TMDD models:

the quasi equilibrium (QE) model reduced with quasi-equilibrium, the Michaelis-Menten

(MM) model reduced with standard QSSA (sQSSA), and the QSS model reduced with total

QSSA (tQSSA) [11,13,14]. The QE model has proven effective under conditions of higher drug

concentrations than target concentrations but has not held when the internalization rate of the

complex is non-negligible. Subsequently, the MM model has been introduced, streamlining

equations and parameters for more efficient outcomes [15]. Although widely applied, the MM

model requires significantly higher drug concentrations than the target concentration for vali-

dation [10,16]. In addressing these challenges, Gibianski et al. introduced the QSS model,

which offers improved approximations across various cases [10]. While the validity conditions

of the approximations were investigated, the research was performed in limited conditions,

such as excessive drug concentration over the target concentration [15,17]. While the condi-

tion of excessive drug concentration is common, there are cases when the target concentration

is comparable to or exceeds that of the drug, in particular for micro-dosing studies or for

drugs having highly non-specific protein binding.
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In this study, we derived the validity criteria of approximations of the TMDD model: the

MM model (referred to as mTMDD), the QSS model (referred to as qTMDD), and the

pTMDD, which is the first-order approximation of the qTMDD model and the first derived in

this study. We found that when the criteria were satisfied, the models became accurate. From

the criteria analysis, we found that mTMDD is accurate when the initial drug concentrations

significantly exceed the target concentrations, as known. On the other hand, the qTMDD is

accurate regardless of the relationship between drug and target concentrations. pTMDD is

simpler and faster than qTMDD, and it is accurate as long as drug and target concentrations

are not similar. These findings are supported by our results from an antibody-drug conjugate

real-world data application study. Our findings provide clear guidelines for the use of various

TMDD models in the right context.

Results

Derivation of the mTMDD, qTMDD, and pTMDD

In this section, the outcomes are described without the detailed derivation of the mathematical

models. We recommend reading the materials and methods section in advance for those who

wish to review the detailed derivation of the models.

The TMDD model consists of two variables (Table 1). This model can be reduced to a one-

variable model, the mTMDD model, by using the sQSSA, yielding the MM model (Table 1).

With another model reduction technique, tQSSA [18], another one-variable model, the

qTMDD model, can be derived (Table 1). We further simplified the qTMDD model by using

the Padé approximant [19], yielding the first-order approximation of the qTMDD model: the

pTMDD model (Table 1). While the TMDD model comprises a system of ODEs along with

five parameters, all approximations have four parameters.

The validity criteria for mTMDD, qTMDD, and pTMDD

We derived the validity criteria (Lm, Lq and Lp) of mTMDD, qTMDD, and pTMDD, which are

summarized in Table 1. See Materials and Methods for the detailed derivations. We investi-

gated whether the criteria we derived can predict the accuracy of the models. For this, we uti-

lized the parameter values used in a previous study [10] with various initial drug

concentrations: 20 (small), 200 (intermediate), and 2000 (large) units (Table 2).

For these parameters, we calculated Lm, Lq, and Lp and the relative errors of mTMDD,

qTMDD, and pTMDD, respectively (Fig 1A). The values of L and the relative errors are highly

correlated, indicating that Lm, Lq, and Lp can be used as indicators for the accuracy of the

Table 1. Approximate models compared to the TMDD model and validity criteria. The TMDD model can be

reduced to two differential equations when kint = kdeg. Other models were formulated using the balance equation and

the first-order Taylor expansion (see Materials and Methods).

Equations Validity Criteria (L)

TMDD dC
dt ¼ � kelC � konC � Rtot þ konC þ kof f

� �
RC

dRC
dt ¼ konC � Rtot � konC þ kof f þ kint

� �
RC

mTMDD dC
dt ¼ � kelC � kint

Rtot �C
kmþC

Lm ¼
kel

konðC0þkmÞ
þ

Rtot
C0þkm

qTMDD dCtot
dt ¼ � kelC � kint

Rtot �CðCtot Þ
kmþCðCtot Þ

C Ctotð Þ ¼ 1
2 Ctot � Rtot � kmð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCtot � Rtot � kmÞ
2
þ 4kmCtot

q� �
Lq ¼

kel
konðC0þkmþRtot Þ

þ
kintRtot

konðC0þkmþRtot Þ
2

pTMDD dCtot
dt ¼ � kelCtot � kint � kelð Þ

Rtot �Ctot
kmþRtotþCtot

Lp ¼ Lq þ
4C0Rtot

ðC0þRtotþkmÞ
2

https://doi.org/10.1371/journal.pcbi.1012066.t001
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simplified models. In particular, when Lm is below 0.1, the relative error of mTMDD is less

than 0.1. Furthermore, when Lq and Lp are below 0.6, the relative errors of qTMDD and

pTMDD are less than 0.1, respectively.

For mTMDD, when the condition Km+C0�Rtot is not satisfied (i.e., Lm is not small), it

fails to approximate the TMDD model (Fig 1B; Case 4–8). On the other hand, qTMDD is

accurate for all of the cases (Fig 1C). This is because Lq <
kel

konðC0þkmþRtotÞ
þ

kint
4konðC0þkmÞ

<

kel
konðC0þkmþRtotÞ

þ 1

4
� 1

4
as long as kel�kon(C0+km). In the case of pTMDD, the additional condi-

tion 4C0Rtot�(Rtot+C0+km)2 should be met, which holds if C0�Rtot+km or C0+km�Rtot
[20]. Thus, pTMDD provides a better approximation than mTMDD when Rtot significantly

exceeds C0 (Fig 1D; cases 7–8). However, pTMDD becomes inaccurate when C0+km�Rtot
(Fig 1D; cases 4–6). Similar patterns were observed when initial drug concentrations were

either 20 (S1 Fig) or 2000 (S2 Fig).

The simple validity criteria for mTMDD, qTMDD, and pTMDD

Although the validity criteria (Table 1) provide accurate validity conditions for approxima-

tions, they contain various parameters, causing inconvenience in their use. Thus, we propose a

simpler rule to determine them faster (Table 3). The simplified criteria are derived with the

assumption of kel�kon(C0+km), which typically holds because kel is small [21–23].

To assess the simple criteria, we adopted a parameter set which was obtained by estimation

from clinical PK data using the TMDD model in a previous study [10]. Then, we varied C0 so

that C0/Rtot became either 0.1, 1, 10, or 100. For these cases, again all models showed accurate

approximations when their validity conditions were satisfied (Fig 2A). When C0/Rtot was

small, qTMDD and pTMDD, but not mTMDD, were accurate (Fig 2B and 2C). When C0/Rtot
= 1, only qTMDD was accurate (Fig 2B and 2D). Finally, when C0/Rtot was large, all models

were accurate (Fig 2F). This result supports the simple criteria (Table 3): qTMDD is generally

accurate and pTMDD is more accurate than mTMDD. Typically, C0/Rtot was large, so all

approximate models were reliable to use. However, there were cases when C0/Rtot was not

large. In particular, this situation was likely to occur at phase 0 of the study, where a micro-

dose was actively used. For instance, the micro-dose (100 μg) of warfarin was much lower than

its therapeutic dose (5 mg) in Lappin’s study [24]. In addition, albumin, the plasma protein for

high non-specific binding with warfarin, lowered the concentration of free warfarin concen-

tration. In consequence, the micro-dosing and the presence of albumin have contributed to

making the drug concentration even lower than the target protein in the case of warfarin.

Table 2. Parameters used for comparisons of the TMDD model, mTMDD, qTMDD, and pTMDD. The parameter values were obtained from a previous study [10],

but koff was changed from 0 to 0.01 in cases 1, 4, and 7 for realistic considerations.

Cases kon koff kint Rtot km ¼
kof fþkint
kon

kel konR0
kint

1 0.1 0.01 2 10 20 1e-5 1/2

2 0.1 2 2 10 40 1e-5 1/2

3 0.5 0.5 2 10 5 1e-5 5/2

4 0.1 0.01 0.2 100 2 1e-5 50

5 0.1 2 0.2 100 22 1e-5 50

6 0.5 0.5 0.2 1000 1.4 1e-5 2500

7 0.1 0.01 0.02 1000 0.2 1e-5 5000

8 0.1 2 0.02 1000 20.2 1e-5 5000

9 0.0001 0.1 3 1000 31000 1e-5 1/30

https://doi.org/10.1371/journal.pcbi.1012066.t002
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Fig 1. When Lm, Lq, and Lp are small, mTMDD, qTMDD, and pTMDD provide accurate approximation for TMDD. (a) Relative errors of mTMDD,

qTMDD, and pTMDD are small when Lm, Lq, and Lp are small, respectively. The number in the figure represents the case number in Table 2. Here, 200 units of

initial drug were used. For 20 and 2000 units of initial drugs, see Figs. S2-S3. (b) mTMDD accurately approximated TMDD when Lm<0.1 (blue font) but failed

otherwise (red font). The numbers in the figure represent the value of Lm. Note that C represents Ctot in mTMDD because it assumes RC is negligible. (c)

qTMDD accurately approximated TMDD for all cases because Lq<0.6. (d) pTMDD accurately approximated TMDD for the total drug when Lp<0.6 (blue

font) but failed otherwise (red font).

https://doi.org/10.1371/journal.pcbi.1012066.g001

Table 3. Simple validity criteria.

mTMDD qTMDD pTMDD

C0+km�Rtot O O O

C0+km�Rtot X O O

Otherwise X O X

https://doi.org/10.1371/journal.pcbi.1012066.t003
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Application of antibody-drug conjugate real-world data

Next, we applied the approximate models to antibody-drug conjugate real-world data based

on a physiologically based mechanistic FcRn model for antibody coupled with TMDD [25].

These PK models with TMDD, mTMDD, qTMDD, and pTMDD were fitted to totals of 640

and 456 time verses plasma concentration data of case 1 for hIL-1Ra-hyFc and case 2 for rhIL-
7-hyFc from randomized clinical trials, respectively.

In the case 1 data, when C0/Rtot (= 22.33) was large, the PK models with mTMDD,

qTMDD, and pTMDD provided a similar estimation of the PK parameters with the PK model

with TMDD (Table 4), supporting our simple criteria (Table 3). Furthermore, all PK models

reasonably explained the observation data according to visual predictive check plots (Fig 3A):

all of the model-predicted confidence intervals encompassed 5%, 95th percentile, and median

observations, so the approximation models reasonably explained the observation data.

On the other hand, in case 2 data where C0/Rtot (= 0.01) was small, the PK models with

qTMDD and pTMDD, but not the mTMDD model, provided a similar estimation with the PK

model with TMDD (Table 4). This was consistent with our simple criteria (Table 3). From the

result of visual predictive check plots, the PK models with TMDD, qTMDD, and pTMDD suit-

ably explained the observation data (Fig 3B). However, the PK models with the mTMDD model

did not explain the observation data since the 95th percentile of the observations was located too

low to be adequately encompassed by the model-predicted confidence interval of 95% (Fig 3B).

Fig 2. The accuracy of the models strongly depends on the ratio between drug concentration and total receptor concentration. (a) Relative errors are

plotted against validity criteria for various drug concentrations with the parameter set obtained from [10]. The parameter values of kel, kon, koff, kint, and Rtot
were 0.05, 0.5, 0.1, 1, 20, respectively, so that km = 2.2. The number shown in the figure represents the value of C0/Rtot. (b) The relative errors of the models with

respect to C0/Rtot.The mTMDD model was accurate only when C0/Rtot was large. The pTMDD model was accurate except for C0/Rtot� 1. The qTMDD model

was accurate regardless of C0/Rtot. (c) pTMDD and qTMDD, but not mTMDD were accurate when C0/Rtot = 0.1. (d) When C0/Rtot = 1, only qTMDD was

accurate. (e-f) As C0/Rtot increased, all models became more accurate.

https://doi.org/10.1371/journal.pcbi.1012066.g002
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We also assessed the ‘elapsed time,’ defined as the time needed to execute estimation using

the final model as the starting point. This estimation process was replicated three times using

the identical model to calculate an average duration. In every instance, the PK model incorpo-

rating TMDD required the longest estimation time. This was followed by the PK model with

qTMDD. Conversely, the PK models with pTMDD and mTMDD were more time-efficient.

Collectively, these results suggest that pTMDD could serve as a computationally more efficient

substitute for qTMDD, without compromising accuracy.

Discussion

In this study, we investigated the applicability of various TMDD (Target-Mediated Drug Dis-

position) approximations—mTMDD, qTMDD, and pTMDD—particularly under conditions

where the standard TMDD model may be infeasible due to limited data. The mTMDD and

qTMDD were derived with the standard QSSA and the total QSSA, respectively. Here, we

Table 4. Summary of the parameters estimated in the antibody-drug conjugate real-world data application study.

Model Case 1 for hIL-1Ra-hyFc
(C0/Rtot = 22.33)

Case 2 for rhIL-7-hyFc
(C0/Rtot = 0.01)

TMDD mTMDD qTMDD pTMDD TMDD mTMDD qTMDD pTMDD

OFV 1556.40 1564.45 1556.59 1561.90 1552.90 1611.92 1552.90 1553.14

AIC 1918.403 1926.45 1918.59 1923.90 1796.9 1855.92 1796.90 1797.14

CL 0.210 0.209 0.207 0.199 5.26 16.8 5.23 5.27

Ka 1.22 1.17 1.21 1.23 1.22(im), 0.665(sc) 0.848(im), 0.817(sc) 1.23(im), 0.697(sc) 1.24(im), 0.679(sc)

Q 0.0285 0.0145 0.0292 0.0279 1.21 73.5 1.21 1.3

Vc 11.4 11.6 11.2 11.3 1.96 3.96 1.97 2.07

Vd 117 - - - 31.4 0.00810 28.2 35.9

KSS1 - 5.97 233 162 - 41327.42 29824.48 29824.52

KSS2 - 67.8 14.1 14.7 - 29007.90*
Kdeg 0.264* 0.642*
Rtot 2.23* 1060*
Kuptake 0.00952* 0.00952*
Kint 0.206* 0.642*
Krecycle 0.0346 0.0104 0.0332 0.0403 0.000607 4.68 0.000602 0.000619

Interindividual variability (ω2, variance)

Ka 0.88 1.21 0.94 1.01 - - - -

Krecycle 0.098 0.398 0.110 0.0977 - - - -

Kdeg 0.0851 0.0798 0.0751 0.0638 - - - -

CL 0.0497 0.0389 0.0532 0.0553 - - - -

Kuptake 0.886 0.927 0.813 0.827 - - - -

Q - - - - 0.292 13.2 0.292 0.303

Additive error (pmol/L) 0.188 0.237 0.184 0.185 0.00303 1.14 0.00348 0.00486

Proportional error (ratio) 0.115 0.0984 0.115 0.116 0.332 0.33 0.332 0.332

Elapse time (seconds) 5345.33 403.25 1113.53 555.99 136.09 44.35 65.26 39.11

OFV: objective function value, AIC: Akaike information criterion, CL: clearance, Ka: absorption rate constant, Q: apparent inter-compartment clearance of drug, Vc:
apparent volume of distribution (central), Vd: apparent volume of distribution (peripheral), KSS1: equilibrium dissociation rate constant of drug and target binding, KSS2:
equilibrium dissociation rate constant of drug and FcRn receptor binding, Kdeg: degradation rate of drug at distribution space, Rtot: total concentration of receptor,

Kuptake: uptake rate of antibody, Kint: internalization rate constant of FcRn-drug complex, Krecycle: recycling rate constant from distribution space to a central

compartment.

*Those parameters were fixed based on values from the literature.

https://doi.org/10.1371/journal.pcbi.1012066.t004
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Fig 3. Visual predictive checks of (A) Case 1 for hIL-1Ra-hyFc (C0/Rtot = 22.33) and (B) Case 2 for rhIL-7-hyFc (C0/Rtot = 0.01) [25]. The red line indicates the 50th

percentile of observations, and the lower and upper blue lines indicate the 5th and 95th percentile of observations, respectively. Blue shades indicate model-predicted

confidence intervals of the 5th and 95th percentile, and red shade indicates model-predicted confidence intervals of the 50th percentile. For all PK models of case 1 and

the TMDD, qTMDD, and pTMDD PK models of case 2, the model-predicted confidence interval encompassed the 5th percentile, 95th percentile, and median

observations. Hence, the approximation models reasonably explained the observation data. For the mTMDD PK model of case 2, the 95th percentile of the observations

was low compared to the 95% confidence interval. Therefore, the model cannot be said to predict appropriately.

https://doi.org/10.1371/journal.pcbi.1012066.g003
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derived the pTMDD as a first-order Taylor approximation of qTMDD. Specifically, mTMDD was

derived with the balanced equation, konC�R = (koff+kint)RC, and the total target, Rtot = R+RC.

qTMDD was derived with the conditions of mTMDD and the additional condition of the total

drug, Ctot = C+RC, enabling the derivation of the closed form of C = C(Ctot). pTMDD was derived

with the Taylor expansion of C = C(Ctot). We established the validity criteria of these approxima-

tions, whose accuracies are supported by both simulation and real data analysis. Precisely,

mTMDD, qTMDD, and pTMDD were validated by Lm, Lq, and Lm sufficiently less than one.

Additionally, we provided a simpler validity condition for the approximations by comparing

C0+km and Rtot. We found that pharmacokinetic models utilizing mTMDD, qTMDD, and

pTMDD yielded estimates consistent with the full TMDD model when drug concentrations

exceed the target. Conversely, qTMDD and pTMDD remained accurate even when target concen-

trations surpassed drug levels, while mTMDD did not align as closely. Notably, pTMDD offered

computational efficiency without sacrificing accuracy, making it a viable option in resource-con-

strained scenarios. Ultimately, our research provides valuable insights into model selection and

recommends appropriate approximations for scenarios with limited data availability.

Previous studies suggested that mTMDD is effective when a drug concentration exceeds

the target concentration [10,16]. This was rigorously validated in this study. While it was previ-

ously known that qTMDD outperforms mTMDD [11], the underlying reasons for this superi-

ority remained unclear. In this study, we found the reason for the accuracy of the qTMDD by

deriving its validity criteria. Specifically, the validity criteria of qTMDD holds as long as

kel�kon(C0+km), which is commonly accepted in pharmacokinetic (PK) studies [21–23]. How-

ever, if kel is non-negligible, qTMDD could fail to approximate the TMDD model (S3 Fig).

While mTMDD is derived with sQSSA, the qTMDD is derived with tQSSA. Thus, qTMDD can

be used in a wider range of conditions than mTMDD. Similar to this, recently tQSSA has been used

to derive alternative equations to predict hepatic drug clearance [26] and drug-drug interactions

[27]. These newly derived equations also outperformed the canonical equations based on MM equa-

tion derived with standard QSSA. Such outperformance of total QSSA over the standard QSSA has

also been reported in modeling and inference of various biological systems [18,26,28–32].

We assumed that the total target concentrations were constant (i.e., kdeg = kint) in order to

prevent the validity criteria complex. This assumption simplified the TMDD model by reduc-

ing it to two compartments (C and RC). While this assumption is commonly used [11,16,17],

developing more flexible criteria without this assumption may offer a more comprehensive

assessment of the TMDD model, facilitating better-informed decisions. We also assumed that

the drug amount in the peripheral compartment was zero. Without this assumption, the

peripheral compartment needs to be incorporated in Eq (1). Future work will investigate a

new approach to validity criteria in generalizing the TMDD model considering a non-zero

drug amount in the peripheral compartment.

Materials and methods

Target-mediated drug disposition (TMDD) model and assumptions

The general TMDD model is as follows [11]:

dAd
dt
¼ � kaAd;

dC
dt
¼

lnðtÞ þ kaAd
V

� kel þ kpt
� �

C � konC � Rþ koff RCþ ktp
AT
V
;
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dAT
dt
¼ kptC � V � ktpAT;

dR
dt
¼ ksyn � kdegR � konC � Rþ koff RC;

dRC
dt
¼ konC � R � kint þ koff

� �
RC:

where, C, R, RC, and AT represent the free drug, target, complex concentrations in the central

(plasma) compartment, and the amount of drug in the peripheral compartment of the tissue,

respectively. Ad is the amount of drug in the depot compartment when an oral or subcutane-

ous dose is administered, and ln(t) is the infusion rate. Thus, when an IV injection is adminis-

tered, Ad = ln(t) = 0, and the initial free drug concentration is set to C(0) = C0. The initial

values of the target and complex are set as their equilibrium: R 0ð Þ ¼ R0 ¼
ksyn
kdeg

and RC(0) = 0.

In addition, the elimination constant kel is defined by cl
V, where V and cl represent the systemic

volume and clearance, respectively.

To create a simplified model with a more straightforward and concise model structure

within the general TMDD framework,

1. The peripheral compartment is not considered.

2. The degeneration rate constant, kdeg, and the internalization rate constant, kint, are the same.

If this condition is satisfied, the total target concentration, Rtot = R+RC, is constant [11,16,17].

With the assumptions above, the TMDD model is simplified as

dC
dt
¼ � kelC � konC � Rtot þ konC þ koff

� �
RC; ð1Þ

dRC
dt
¼ konC � Rtot � konC þ koff þ kint

� �
RC: ð2Þ

Model approximations and validity conditions

MM kinetics assume that the binding rate konC�R is balanced by the sum of dissociation and

internalization (koff+kint)RC on the scale of other processes as follows:

C � R
RC
¼
kint þ koff
kon

km:

Since R = Rtot−RC, we can get

RC ¼
Rtot � C
km þ C

:

By substituting this to Eq (1) with the balanced equation, konC Rtot = (konC+koff+kint)RC, we

obtain mTMDD:

dC
dt
¼ � kelC � kint

Rtot � C
km þ C

:
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This model is valid when the relative change of C should be small during the time when RC
approaches equilibrium (tc), which represents initial transient time. In this case, we can esti-

mate tc by substituting C�C0 to Eq (2) as follows:

dRC
dt
¼ konC0 � Rtot � konC0 þ koff þ kint

� �
RC:

Thus,

RC ¼
RtotC0

C0 þ km
1 � e� konðC0þkmÞt
� �

:

This indicates that RC= RtotC0

C0þkm
represents the cumulative distribution function of an expo-

nential distribution. Thus, the mean duration of RC is the same as in the exponential distribu-

tion with tc = 1/[kon(C0+km)].

Then the validity condition of mTMDD is as follows:

DC
C0

�
�
�
�

�
�
�
� ¼

CðtcÞ � C0

C0

�
�
�
�

�
�
�
� �

1

C0

dC
dt

�
�
�
�

�
�
�
�
max
� tc�C�C0

1

C0

kelC0 þ konC0 � Rtotð Þ � tc

¼
kel

konðkm þ C0Þ
þ

Rtot
km þ C0

� 1:

We refer to Lm≔
kel

konðkmþC0Þ
þ

Rtot
kmþC0

� 1 as the validity criterion of mTMDD (Table 1). If

kel�kon(km+C0), this validity criterion of mTMDD can be simplified as Rtot�km+C0 (Table 3).

Next, to derive qTMDD, we consider the total drug concentration, Ctot = C+RC, whose

dynamics are governed by the summation of Eq (1) and Eq (2) as follows:

dCtot
dt
¼ � kelC � kintRC: ð3Þ

By substituting RC = Ctot−C to the balance equation C�R = kmRC, we get C (Rtot−Ctot+C) =

km(Ctot−C). By solving this quadratic equation, we can express C in terms of

Ctot : C Ctotð Þ ¼ 1

2
½ðCtot � Rtot � kmÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCtot � Rtot � kmÞ
2
þ 4kmCtot

q

�. By substituting C into

Eq (3), we obtain qTMDD:

dCtot
dt
¼ � kelC Ctotð Þ �

kint � Rtot � CðCtotÞ
km þ CðCtotÞ

:

qTMDD is valid when the relative change of Ctot should be small during the time when RC
approaches equilibrium (tc). To estimate tc, we substitute Ctot�C0 to Eq (2) as follows:

dRC
dt
¼Ctot�C0

konC � R � koff þ kint
� �

RC ¼ kon C0 � RCð Þ Rtot � RCð Þ � koff þ kint
� �

RC

¼ kon C0Rtot � RtotRC � C0RC þ RC
2ð Þ � konkmRC:

During this period, RC begins from zero initially and remains relatively small, so we neglect

RC2 so that

dRC
dt
¼ konC0Rtot � kon Rtot þ C0 þ kmð ÞRC:
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As a result, we get tc ¼ 1

konðRtotþC0þkmÞ
. Then, the validity condition of qTMDD is as follows:

j
DCtot
C0

j ¼ j
CtotðtcÞ � C0

C0

j �
1

C0

j
dCtot
dt
jmax � tc�Ctot�C0

j � kel � kint
RC
C0

j � tc

�
kel

konðC0 þ km þ RtotÞ
þ

kintRtot
konðC0 þ km þ RtotÞ

2
� 1;

using RC�Ctot�C0

C0 �Rtot
C0þkmþRtot

. We refer to Lq :¼
kel

konðC0þkmþRtotÞ
þ

kintRtot
konðC0þkmþRtotÞ

2 � 1, as the validity

criterion of qTMDD (Table 2). If kel�kon(km+C0), Lq <
kint

4konðC0þkmÞ
< 1

4
because

kint
4konðC0þkmÞ

<
kint

4konkm
¼

kint
4ðkintþkoff Þ

� 1

4
. Therefore, if kel�kon(km+C0), the qTMDD is generally valid

(Table 3).

The pTMDD model is based on the Taylor expansion of C Ctotð Þ ¼ 1

2
½ðCtot � Rtot � kmÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCtot � Rtot � kmÞ
2
þ 4kmCtot

q

�

¼ Ctot �
1

2
Ctot þ Rtot þ km � ðCtot þ Rtot þ kmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
4CtotRtot

ðCtot þ Rtot þ kmÞ
2

s" #

. The first-order approximation of this equation is as follows:

C Ctotð Þ �
CtotðCtot þ kmÞ
Rtot þ Ctot þ km

;

satisfying r Ctotð Þ≔ 4CtotRtot
ðCtotþRtotþkmÞ

2 � 1. By substituting this to Eq (3), we can obtain pTMDD as fol-

lows:

dCtot
dt
¼ � kelCtot � kint � kelð Þ Ctot �

CtotðCtot þ kmÞ
Rtot þ Ctot þ km

� �

¼ � kelCtot � kint � kelð Þ
CtotRtot

Rtot þ Ctot þ km
:

The validity condition of pTMDD (Table 2) can be defined as the sum of Lq and r, that is,

Lp≔
kel

konðRtot þ C0 þ kmÞ
þ

kintRtot
konðRtot þ C0 þ kmÞ

2
þ

4C0Rtot
ðC0 þ Rtot þ kmÞ

2
� 1:

If kel�kon(km+C0), Lp < 1

4
þ

4C0Rtot
ðC0þRtotþkmÞ

2. Furthermore,
4C0Rtot

ðC0þRtotþkmÞ
2 � 1 if C0�Rtot+km or

C0+km�Rtot. Therefore, if kel�kon(km+C0), the validity criterion of pTMDD can be simplified

as C0�Rtot+km or C0+km�Rtot (Table 3).

Model application to real-world data of antibody-drug conjugates

Two antibody-drug conjugate clinical trial studies were selected from real case application

studies. Case 1 was hIL-1Ra-hyFc (human interleukin-1 receptor antagonist components into

one antibody-derived fragment crystallizable portion) for the case of large C0/Rtot (= 22.33)

and case 2 was rhIL-7-hyFc (recombinant human interleukin-7, hybrid Fc-fused) for the case

of small C0/Rtot (= 0.01), respectively. Specifically, the observed concentrations data were

obtained from clinical trials. See Ngo. et al., [33] and Lee et al. [34] for detailed information on

the clinical trials.

We applied the three methods (mTMDD, qTMDD, and pTMDD) to the binding of a drug

to its target in consideration of biological processes, and other processes were described as
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first-order kinetics. In addition, population models that considered inter-individual and resid-

ual variability were conducted on the three TMDD methods, respectively. As a general step in

the population model development process, inter-individual and residual variability were

explored and selected based on numerical (e.g., objective function value, OFV) and visual (e.g.,

goodness of fit, GoF) criteria. Parameter optimization for the models was performed using the

first-order conditional estimation with interaction (FOCE-I) method using NONMEM 7.5 and

PsN 5.3.1 software, and model performance was evaluated by model diagnostics criteria and

diagnostic plots. The codes and dataset are provided in the supporting information section

(S1 Text, S1 and S2 Tables).

Supporting information

S1 Text. The NONMEM code of the population pharmacokinetic model with each approxi-

mation method implemented.

(DOCX)

S1 Table. Dataset for case 1 (hIL-1Ra-hyFc).

(CSV)

S2 Table. Dataset for case 2 (rhIL-7-hyFc).

(CSV)

S1 Fig. When Lm, Lq, and Lp are small, mTMDD, qTMDD, and pTMDD provide accurate

approximation for TMDD with 20 units of initial drug. (a) Relative errors of mTMDD,

qTMDD, and pTMDD are small when Lm, Lq, and Lp are small, respectively. The number in

the figure represents the case number in Table 2. Here, 20 units of initial drug were used. (b)

mTMDD accurately approximated TMDD when Lm<0.1 (blue font) but failed otherwise (red

font). The numbers in the figure represent the value of Lm. Note that C represents Ctot in

mTMDD because it assumes RC is negligible. (c) qTMDD accurately approximated TMDD

for all cases because Lq<0.6. (d) pTMDD accurately approximated TMDD for the total drug

when Lp<0.6 (blue font) but failed otherwise (red font).

(TIF)

S2 Fig. When Lm, Lq, and Lp are small, mTMDD, qTMDD, and pTMDD provide accurate

approximation for TMDD with 2000 units of initial drug. (a) Relative errors of mTMDD,

qTMDD, and pTMDD are small when Lm, Lq, awpnd Lp are small, respectively. The number

in the figure represents the case number in Table 2. Here, 2000 units of initial drug were used.

(b) mTMDD accurately approximated TMDD when Lm<0.1 (blue font) but failed otherwise

(red font). The numbers in the figure represent the value of Lm. Note that C represents Ctot in

mTMDD because it assumes RC is negligible. (c) qTMDD accurately approximated TMDD

for all cases because Lq<0.6. (d) pTMDD accurately approximated TMDD for the total drug

when Lp<0.6 (blue font) but failed otherwise (red font).

(TIF)

S3 Fig. When the condition kel�kon(km+C0) is not met, qTMDD cannot accurately approx-

imate the TMDD model. (a) We used the values of parameters from Case 9 of Table 2 except

for Rtot and kel. We used Rtot = 100 and kel = 1. Furthermore, we varied initial drug concentra-

tions (C0) as 0.1, 1, 10 and 100 units so that C0/Rtot changes. C0/Rtot is represented as the num-

bers in the figure. In all these cases, kel�kon(km+C0) is not satisfied because kel = 1 and the

values of kon(km+C0) are 0.012 (C0/Rtot = 0.001), 0.021 (0.01), 0.111 (0.1) and 1.011 (1). As a

result, Lq exceeded 0.6 regardless C0/Rtot, resulting in relative errors of qTMDD greater than

PLOS COMPUTATIONAL BIOLOGY A validity and comparative study of approximations in TMDD

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012066 April 24, 2024 13 / 16

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012066.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012066.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012066.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012066.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012066.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012066.s006
https://doi.org/10.1371/journal.pcbi.1012066


0.1. (b) Since Lq>0.6 (red font), qTMDD fails to approximate TMDD regardless of C0/Rtot.
(TIF)
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