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1 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands,

2 Department of Vision and Cognition, Netherlands Institute for Neuroscience, Amsterdam, Netherlands,

3 Laboratory of Visual Brain Therapy, Sorbonne University, Paris, France, 4 Department of Integrative

Neurophysiology, VU Amsterdam, Amsterdam, Netherlands, 5 Department of Psychiatry, Amsterdam UMC,

Amsterdam, Netherlands

* thirza.dado@donders.ru.nl (TD); u.guclu@donders.ru.nl (UG)

Abstract

A challenging goal of neural coding is to characterize the neural representations underlying

visual perception. To this end, multi-unit activity (MUA) of macaque visual cortex was

recorded in a passive fixation task upon presentation of faces and natural images. We ana-

lyzed the relationship between MUA and latent representations of state-of-the-art deep gen-

erative models, including the conventional and feature-disentangled representations of

generative adversarial networks (GANs) (i.e., z- and w-latents of StyleGAN, respectively)

and language-contrastive representations of latent diffusion networks (i.e., CLIP-latents of

Stable Diffusion). A mass univariate neural encoding analysis of the latent representations

showed that feature-disentangled w representations outperform both z and CLIP represen-

tations in explaining neural responses. Further, w-latent features were found to be posi-

tioned at the higher end of the complexity gradient which indicates that they capture visual

information relevant to high-level neural activity. Subsequently, a multivariate neural decod-

ing analysis of the feature-disentangled representations resulted in state-of-the-art spatio-

temporal reconstructions of visual perception. Taken together, our results not only highlight

the important role of feature-disentanglement in shaping high-level neural representations

underlying visual perception but also serve as an important benchmark for the future of neu-

ral coding.

Author summary

Neural coding seeks to understand how the brain represents the world by modeling the

relationship between stimuli and internal neural representations thereof. This field focuses

on predicting brain responses to stimuli (neural encoding) and deciphering information

about stimuli from brain activity (neural decoding). Recent advances in generative adver-

sarial networks (GANs; a type of machine learning model) have enabled the creation of

photorealistic images. Like the brain, GANs also have internal representations of the
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images they create, referred to as “latents”. More recently, a new type of feature-disentan-

gled “w-latent” of GANs has been developed that more effectively separates different

image features (e.g., color; shape; texture). In our study, we presented such GAN-gener-

ated pictures to a macaque with cortical implants and found that the underlying w-latents

were accurate predictors of high-level brain activity. We then used these w-latents to

reconstruct the perceived images with high fidelity. The remarkable similarities between

our predictions and the actual targets indicate alignment in how w-latents and neural rep-

resentations represent the same stimulus, even though GANs have never been optimized

on neural data. This implies a general principle of shared encoding of visual phenomena,

emphasizing the importance of feature disentanglement in deeper visual areas.

1 Introduction

The brain is adept at recognizing a virtually unlimited variety of different visual inputs depict-

ing different faces, objects and scenes, with each stimulus generating a unique pattern of neural

activity. However, the complexity of multi-layered visual processing between stimulus and

neural response has hindered a comprehensive understanding of the transformation between

the two. In the field of neural coding, our focus is to characterize the stimulus-response rela-

tionship that underlies the brain’s ability to recognize the statistical invariances of structured

yet complex naturalistic environments. Neural encoding seeks to find how properties of exter-

nal phenomena are processed in the brain [1–14], and vice versa, neural decoding aims to find

what information about the original stimulus is present in and can be retrieved from the

recorded brain activity by classification [15–19], identification [20–23] or reconstruction [24–

37]. In classification, brain activity is taken to predict the category to which the original stimu-

lus belongs, based on a predefined set of categories. In identification, brain activity is utilized

to identify the most probable stimulus from a given set of available stimuli. In reconstruction,

a literal replica of the original stimulus is recreated which involves the extraction of specific
stimulus characteristics from neural data (Fig 1). Note that the latter problem is considerably

harder as its solution exists in an infinitely large set of possibilities whereas those of classifica-

tion and identification can be selected from a finite set. In both neural encoding and -decod-

ing, it is common to factorize the direct transformation into two by invoking an in-between

feature space (Fig 2). The rationale behind this is twofold:

1. Efficiency: modeling the direct stimulus-response relationship from scratch requires large

amounts of training data (up to the order of millions) which is challenging because neural

data is scarce. To work around the problem of data scarcity, we can leverage the knowledge

of computational models (typically, deep neural networks that are pretrained on huge data-

sets) by extracting their feature activations to images and then aligning these with the elic-

ited neural activity to those images during neuroimaging experiments, based on the

systematic correspondence between the two. This correspondence is discussed under ‘ear-

lier work’.

2. Interpretability: the computational model whose features align best with neural activity can

be informative about what drives the neural processing of the same stimulus (i.e., a data-

driven approach). As such, alternative hypotheses can be tested about what drives neural

representations themselves (e.g., alternative objective functions and training paradigms).

This explanatory property can be limited when models are directly optimized on neural

data (i.e., an exploratory approach) due to the complexity of the learned transformations.
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The main aim of this study was to characterize high-level neural representations underlying

perception, for which we analyzed the relationship between brain responses and various fea-

ture representations of recent generative models with different properties such as feature

disentanglement and language regularisation, each of which captured a specific set of features

and patterns about the visual stimuli. The representation that best predicted neural activity, by

taking a linear combination of its features, was used to reconstruct perceived stimuli with

state-of-the-art quality (Fig 1).

1.1 Modeling neural activity via feature-disentangled generative latents

Although neural representations are constructed from experience, an infinite amount of visual

phenomena can be represented by the brain to successfully interact with the environment.

That is, novel yet plausible situations that respect the regularities of the natural environment

can also be mentally simulated or imagined [38]. From a machine learning perspective, genera-

tive models achieve the same objective by capturing the probability density underlying a huge

set of observations. We can sample from this modeled distribution and synthesize new

instances that appear as if they belong to the real data distribution yet are suitably different

from the observed instances thereof. Particularly, generative adversarial networks (GANs) [39]

are among the most impressive generative models to date which can synthesize novel yet real-

istic-looking images (e.g., images of human faces, bedrooms, cars and cats [40–43] from latent

vectors. In the context of generative models, like GANs, a latent space refers to a lower-dimen-

sional data distribution (e.g., a standard Gaussian distribution) in which a more complex data

distribution (e.g., face- or natural images) is encoded; it is a compressed and abstract space

that captures the most essential features of the more complex data. A GAN consists of two neu-

ral networks: a generator network that synthesizes images from randomly-sampled latent vec-

tors and a discriminator network that distinguishes synthesized from real images. During

training, these networks are pitted against each other until the generated data are indistin-

guishable from the real data. The one-to-one (bijective) mapping from latents to images by the

generator effectively models the ‘synthesis’ operation (as specified in Fig 2) which can be

exploited in neural coding to disambiguate the images from brain activity via their latents,

since the visual content is deterministically specified by their underlying latents (such an

approach was earlier suggested by [44]), and perform analysis by synthesis [45]. Note that,

while the generator’s latent-to-image transformation performs the reconstruction of the

Fig 1. Example results. Stimulus (top) and reconstructions (bottom) from brain activity in V1, V4 and IT. Face images in this figure are replaced for

copyright reasons. The original version of the figure can be accessed here.

https://doi.org/10.1371/journal.pcbi.1012058.g001
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perceived stimuli, it is the feature-response correspondence that enables the interpretation of

neural activity as variations in the latent features.

Traditional GANs are known to suffer from feature entanglement where the generator has

learned to fuse multiple features into a single latent dimension (i.e., a hyperplane in the multi-

dimensional latent space) [46]. As a consequence of this fusion, the latent space contains biases

inherited from the training dataset. To illustrate this, consider an example of generating

images of human faces. A conventional GAN may entangle features like “gender” and “hair

length” when predominantly exposed to feminine-looking faces with long hair and masculine-

looking faces with short hair. Entanglement of these two features would result in biased out-

puts, hindering the generator’s ability to synthesize a masculine face with long hair, even if

such combinations exist in reality. The concept of feature disentanglement, on the other hand,

refers to the independence of different visual features, allowing variations in one feature to be

untangled from others [47]. In a feature-disentangled GAN, the generator has learned to

encode each facial feature independently. For example, changing the latent dimension corre-

sponding to “hair length” would only modify the hair region of the generated face while keep-

ing other features invariant. Here, we posit that feature-disentangled GAN latents exhibit a

stronger alignment with neural representations in the ventral visual stream.

One member of the family of feature-disentangled GANs is StyleGAN [42] (Fig 3)—which

maps the conventional z-latent via a multilayer perceptron (MLP) to an intermediate and less

entangled w-latent space. Feature disentanglement is an emergent property that arose as the

MLP learned to control diverse aspects of the image synthesis process within the training

framework of StyleGAN. That is, the interplay between the generator’s evolving architecture,

the injection of w-latents at different levels, and the network’s optimization for image genera-

tion contributes to the disentanglement of features in the w-latent space. Here, we propose fea-

ture-disentangled w-latents as a promising feature candidate to explain neural responses

during visual perception. In brief, visual stimuli were synthesized by a feature-disentangled

GAN and presented during a passive fixation task to a macaque with cortical implants in visual

areas V1, V4 and IT (Fig 4). In contrast to many previous studies that relied on noninvasive

fMRI signals with limited temporal resolution and low signal-to-noise ratio, the current use of

multi-unit activity (MUA) [48] via 15 chronically implanted multielectrode arrays (each with

64 channels) provided opportunities for spatiotemporal analysis of brain activity in unprece-

dented detail. The electrode placings across these three visual areas are visualized in Fig 2. For

neural encoding, we predicted brain activity from StyleGAN’s z- and w-latent representations,

as well as Contrastive Language-Image Pre-training (CLIP; ViT-L/14@336px) latents which

Fig 2. Neural coding. The transformation between sensory stimuli and brain responses via an intermediate feature space. Neural encoding is factorized

into a nonlinear “analysis” and a linear “encoding” mapping. Neural decoding is factorized into a linear “decoding” and a nonlinear “synthesis”

mapping.

https://doi.org/10.1371/journal.pcbi.1012058.g002
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represent images and text in a shared representational space that captures their semantic rela-

tionships [49]. CLIP-latents are not just abstract representations of visual content, but they are

also pivotal in the generative processes of contemporary latent diffusion models like Stable Dif-

fusion [50]. Their key strength for our purposes lies in their ability to capture the essence of

images in a way that reflects how the visual system of the brain processes visual inputs into

semantic representations [51, 52].

The contributions of this work are as follows: first, our encoding analysis revealed that w-

latents, compared to the z- and CLIP-latents, were the most successful at predicting high-level

brain activity in the inferior temporal (IT) cortex, which is located at the end of the visual ven-

tral pathway. Second, neural decoding using w-latents resulted in highly accurate reconstruc-

tions that matched the stimuli in their specific visual characteristics. This was done by fitting a

decoder to the recorded brain responses and the ground-truth w-latents of the training stimuli.

We then used this decoder to predict the w-latents from responses of the held-out test set and

fed these to the generator of the GAN for reconstruction [36]. Our findings indicate that the

brain’s representation of visual information, in the context we studied, exhibits a degree of

structured organization that aligns with our model, offering a new way forward for the

Fig 3. StyleGAN3 generator architecture. The generator takes a 512-dim. z-latent (entangled or correlated dimensions) as input and maps this to its

512-dim. w-latent (disentangled or decorrelated dimensions) via the MLP, f(), for feature disentanglement. Then, the w-latent is transformed into a

1024 × 1024 px RGB image. Face images in this figure are replaced for copyright reasons. The original version of the figure can be accessed here.

https://doi.org/10.1371/journal.pcbi.1012058.g003

Fig 4. Passive fixation task. The monkey was fixating a red dot with gray background for 300 ms followed by a fast sequence of four face images (5002

pixels): 200 ms stimulus presentation and 200 ms inter-trial interval. The stimuli were slightly shifted to the lower right such that the fovea

corresponded with pixel (150, 150). The monkey was rewarded with juice if fixation was kept for the whole sequence.

https://doi.org/10.1371/journal.pcbi.1012058.g004
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previously limited yet biologically more plausible unsupervised models of brain function.

Third, time-based neural decoding showed how the brain captured meaningful information

about the stimulus in time. Finally, the interpretation of neural activity via the established

response-latent relationship was explored by the application of linear operations to control

specific visual features in the images. Taken together, the high quality of the neural recordings

and feature representations resulted in novel experimental findings that not only demonstrate

how advances in machine learning extend to neuroscience but also serve as an important

benchmark for future research.

1.2 Earlier work

Visual experience is partially determined by the selective responses of neuronal populations

along the visual ventral “what” pathway [53] where the receptive fields of neurons in early cor-

tical regions are selective for simple features (e.g., local edge orientations [54]) and those in

more downstream regions respond to more complex patterns of combined features [55, 56].

At first, neural coding studies primarily relied on retinotopy to infer visual content since the

spatial organization of images is reflected in the stimulus-evoked responses in the primary

visual cortex (V1) [57]. As such, visual content was mainly inferred from neural responses in

early cortical areas, and the stimuli often consisted of low-resolution contrast patterns or digits

[24, 25, 27, 29, 32]. Attempts to reconstruct more complex naturalistic images from activations

in early regions were taken [28] but still fell short of capturing the full complexity of high-level

neural activity required for reconstructing more intricate visual content. To successfully

decode more high-level information from anterior regions, suitable feature representations

were required that captured similar information about the stimulus as these responses, as

attempted with more high-level hand-engineered features by [26] and [58] to reconstruct natu-

ralistic images and scene backgrounds, respectively.

Next, the complexity gradient in visual processing, where increasingly complex features are

represented across the ventral stream, was also identified in deep neural networks (DNNs): the

alignment of DNN layers with neural activations revealed that early layers were mainly predic-

tive of responses in upstream visual areas whereas deeper layers were more predictive of more

downstream visual areas in humans [3–8, 11] as well as in primates [1, 12]. At present, DNNs

are commonly used to decode more high-level neural activity during visual perception, imag-

ery and dreaming [19, 33–36, 59–62]. For reconstruction, the decoded feature representations

of discriminative DNNs were used, for instance, by providing them directly as input to a

decoder DNN (feature-to-image) [33] or by using a feature loss to iteratively optimize the

pixel values in an input image [34] or decoder weights [63] so that the reconstruction features

matched those of the stimulus. At this time, unsupervised learning paradigms, although more

biologically plausible, seemed to appear less successful in modeling neural representations in

the primate brain than their supervised counterparts [5].

Recent advancements have shifted attention towards the potential of unsupervised genera-
tive (rather than discriminative) models and their latent spaces, such as Variational Autoenco-

ders (VAEs) [35, 64] and GANs [36, 60–62, 65]. In contrast to discriminative features,

generative latents offer a distinctive advantage by aligning neural representations with genera-

tive processes the brain might perform during various cognitive functions (e.g., anticipation

and mental imagery). Also, it is not possible to directly model the synthesis operation from dis-

criminative features because they are primarily optimized to differentiate between classes

rather than generate new visual content. However, the challenge posed by the scarcity of neural

data, along with the substantial data requirements for properly training data-hungry DNNs

with numerous parameters, has hindered effective GAN training from scratch (see [61], for an
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attempt using 6000 training examples). To address this issue, [60] trained an encoder model to

generate synthetic neural activity to a much broader set of images which was then utilized to

train a GAN. However, biases and inaccuracies in the synthetic neural data fail to capture the

intricate details of authentic neural responses, leading to discrepancies between the recon-

structions and stimuli. Rather than training our own models from limited data, we can also

leverage pretrained GANs and their latent spaces as a proxy for brain activity. For this, access

to the latents of the visual stimuli is required so that a linear model can be fit on these latents

and the neural data, after which predicted latents from held-out brain activity can be fed to the

GAN for image reconstruction. Yet, the inherent nonlinearities in the transformation from

latent space to image space by the generator render it inherently unidirectional. Post-hoc

approximate inversion has shown to work to some extent but entails information loss [62, 65]

(note that VAEs do approximate inference by design). Instead, to have direct access to the

ground-truth latents, [36] used synthesized stimuli by a pretrained progressively grown GAN,

which was the state-of-the-art generative model for generating high-quality and high-resolu-

tion images at the time. The current work adopted and improved this experimental paradigm

to study neural representations in the ventral visual stream during visual perception.

Finally, an earlier study already showed that disentangled latent units learned by a β-VAE

better explained the coding of single neurons in the primate inferior temporal (IT) cortex at

the end of the ventral stream during face perception [66]. This further underscores the poten-

tial of such generative models to unravel intricate neural representations and their interactions

with complex visual stimuli.

2 Results

We used two datasets of visual stimuli. (i) Face images synthesized by StyleGAN3 (pretrained

on the Flickr Faces High-Quality (FFHQ) dataset) consisting of 4000 and 100 training and test

set images, respectively. (ii) High-variety natural images synthesized by StyleGAN-XL (pre-

trained on ImageNet), consisting of 4000 and 200 training and test set images, respectively.

2.1 Neural encoding

We studied how well neural responses were predicted from latents of recent generative models.

Specifically, we focused on three types of latents: z-latents of StyleGAN3/StyleGAN-XL (512-/

128-dim.), feature-disentangled w-latents of StyleGAN3/StyleGAN-XL (512-/512-dim.) and

language-regularized CLIP-latents (768-dim.). In the case of natural images, we used the

embedding that integrated both z-latent and class information, which serves as the input for

the first layer of the mapping MLP. For each individual unit within a multi-unit microelec-

trode (960 individual units in total), we fit three distinct kernel ridge regression models on the

aforementioned z-, w- and CLIP-latents, of which the optimal regularization parameter λ was

determined per visual area using 5-fold cross-validation.

For reference, we also fit three distinct encoding models on feature representations

extracted from the discriminative VGG16 network, which was pretrained for either face or

object recognition. Concretely, we used early (1; layer 2/16, after max pooling), middle (2;

layer 7/16, after max pooling) and deep (5; layer 13/16, after max pooling) activations for this

purpose. Note that the numbering system ‘1, 3, 5’ refers to the max pooling operations in

VGG16, which has a total of five max pooling layers. This numbering is used for the remainder

of this manuscript. The encoding performance was quantified by Pearson product-moment

correlation coefficients. Notably, among the generative-based encoders, the w-latent-based

encoder statistically outperformed those of z- and CLIP-latents in predicting the neural activity

(Figs 5 and 6). For face images, the w-latent-based encoder demonstrated significant
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Fig 5. Encoding performance. The effectiveness of each encoding model is assessed using the Pearson correlation coefficients between predicted and

recorded neural responses. For each dataset, the first and second graphs denote discriminative and generative representations, respectively. The

correlation distribution across each encoding model shows a robust level of accuracy.

https://doi.org/10.1371/journal.pcbi.1012058.g005

Fig 6. Generative-based encoding performance. For each individual microelectrode unit, we fit three encoding models based on three distinct feature

representations: z-, w− and CLIP-latent representations. As such, we fit 3× 960 independent encoders, resulting in 3× 960 predicted neural responses

because there were seven, four and four microelectrode arrays (64 units each) for V1, V4 and IT, respectively (i.e., 7 × 64 = 448 in V1, 4 × 64 = 256 in V4

and 4 × 64 = 256 in IT). The scatterplots display the prediction-target correlation (r) of one encoding model on the X-axis and another encoding model

on the Y-axis to investigate the relationship between the two. Each dot represents the performance of one modeled microelectrode unit in terms of both

encoding models (960 dots per plot, in total). Negative correlation values were set to zero. The diagonal represents equal performance between both

models. The critical r-value at Bonferonni-corrected α = 5.21e–5 is at r = 0.3895 and r = 0.2807 for faces (df = 100) and natural images (df = 200),

respectively, and is denoted by the shaded area. It is clear that w-latents outperform both z- and CLIP-latents because most dots lie in the direction of

the w-axis (above the diagonal). The stars indicate the mean correlation coefficient per region of interest based on the data points outside the shaded

area. Face images in this figure are replaced for copyright reasons. The original version of the figure can be accessed here.

https://doi.org/10.1371/journal.pcbi.1012058.g006
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superiority over the z-based encoder (2-Sample T-Test; t(1918) = −13.8067, p = 2.07e–41) as

well as the CLIP-based encoder (2-Sample T-Test; t(1918) = 16.0527, p = 1.65e–54). Addition-

ally, the CLIP-based encoding also outperformed the z-based encoding (2-Sample T-Test; t
(1918) = 2.1068, p = 0.0353) although the difference was not as pronounced. Similarly, for nat-

ural images, the w-latent-based encoder significantly outperformed the z-based encoder

(2-Sample T-Test; t(1918) = −44.4495, p = 3.13e–297) and the CLIP-based encoder (2-Sample

T-Test; t(1918) = 6.2957, p = 3.78e–10). And CLIP-based encoding also outperformed z-based

encoding (2-Sample T-Test; t(1918) = −35.3777, p = 1.79e–211). Fig 7 directly compares the

raw w-based encoding performance across visual areas and shows that the w-latents of natural

images mainly captured visual information relevant to high-level neural activity, as indicated

by the increasing variance explained from V1 to IT. This pattern was however not observed for

face images.

As discussed in ‘earlier work’, the complexity gradient observed across the ventral stream in

the brain is reflected in the multi-layered architecture of discriminative DNNs [1, 3–8, 11, 12].

As such, the representations extracted from early layers are more predictive of responses in

early visual areas, while the deeper representations are more predictive of responses in more

downstream areas. This refers to the progression from simpler, lower-level visual processing in

early visual areas, like V1, to more complex, higher-level processing in areas like IT. We repro-

duced this complexity gradient by assigning the discriminative representation with the highest

encoding performance to each microelectrode unit on the brain (Fig 8, bar graphs in the first

column). Subsequently, we explored the positioning of generative w-latents along this com-

plexity gradient. To this end, we replaced each level of discriminative feature representation

with the w-latent representation to see where along this gradient the w-latents have the most

predictive power (Fig 8). The results of this comparative analysis revealed that w-latents of

both image types were predominantly assigned to the higher end of the complexity spectrum.

This indicates that w-latents captured visual features particularly relevant to high-level neural

activity. This positioning should not be interpreted as a competition between discriminative

and generative latents; rather, it highlights their complementary nature as high-level represen-

tations in the overall hierarchy of neural encoding. It is possible that while w-latents explain

more variance in higher visual areas for both face and natural images, the increase in variance

explained from V1 to IT (the gradient) was more pronounced for natural images than for face

images (as suggested by Fig 7) and therefore not as apparent when looking at w-latents in

isolation.

Fig 7. w-based encoding performance across visual areas. The left panel presents the distribution of correlation coefficients for face images using a

swarm plot, with mean values indicated for V1 (0.53), V4 (0.52) and IT (0.53). The right panel displays the distribution for natural images, with mean

values for V1 (0.40), V4 (0.47) and IT (0.56).

https://doi.org/10.1371/journal.pcbi.1012058.g007
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It is worth noting that encoders based on discriminative models appear to generally outper-

form those based on generative models. The performance proximity of w-latents to some dis-

criminative-based predictions suggests that feature disentanglement in generative models may

enhance their predictive capabilities. However, generative models inherently differ from dis-

criminative models in their primary function and approach to data. Nevertheless, given that

the w-based and discriminative-based encoders are compared, we statistically analyzed these

comparisons for a more informed understanding of the relative strengths of each encoding

approach. For faces, the comparison between w-based and VGGFace-1-based encoders shows

no significant difference (2-Sample T-Test; t(1918) = −0.2859, p = 0.78) but we found highly

significant differences when comparing w-based encoders with VGGFace-3 (2-Sample T-Test;

t(1918) = 16.5817, p = 8.21e − 58) and with VGGFace-5 (2-Sample T-Test; t(1918) = 15.0820,

p = 1.17e − 48). For natural images, the disparity between w- and VGGFace-1-based encoders

also shows no significance (2-Sample T-Test; t(1918) = 0.7771, p = 0.4372). In contrast, we

observed a highly significant difference between w-based and VGGFace-3-based encoders

(2-Sample T-Test; t(1918) = 12.7855, p = 5.56e–36) and a significant difference between w-

based and VGGFace-5-based encoders (2-Sample T-Test; t(1918) = 3.7425, p = 0.0002).

Despite their statistical similarity to the encoders based on early activations of VGG16–1, w-

based encoders were mainly predictive of high-level brain activity in IT.

2.2 Neural decoding

The ‘analysis’ component of neural decoding was modeled by multiple linear regression from

neural responses to the feature-disentangled w-latents, which were subsequently fed to the

generator for ‘synthesis‘. This resulted in remarkably accurate reconstructions that closely

Fig 8. w-latents explain high-level brain activity. Three encoding models were fit on early (1; layer 2/16), middle (3; layer 7/16) and deep (5; layer 13/

16) feature representations of VGG16 pretrained for face/object recognition. The representation that led to the highest encoding performance was

assigned to each microelectrode unit, resulting in the complexity gradient where more low-level and high-level representations are assigned to earlier

and more downstream brain areas, respectively (see most-left graph for reference). In each of the three plots, one VGG16 representation was replaced

by the w-latent representation to see where it falls on the complexity gradient. The results illustrate that w-latents predominantly accounted for neural

responses in downstream IT. Face images in this figure are replaced for copyright reasons. The original version of the figure can be accessed here.

https://doi.org/10.1371/journal.pcbi.1012058.g008
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resembled the stimuli in their specific characteristics; Figs 9 and 10. Perceptually, we can notice

a high similarity between stimuli and their reconstructions in terms of their specific attributes

(e.g., gender, age, pose, haircut, lighting, hair color, skin tone, smile and eyeglasses for faces;

shapes, colors, textures, object locations, (in-)animacy for natural images). We repeated the

experiment with another macaque that had silicon-based electrodes in V1, V2, V3 and V4 (S1

Appendix).

The supplementary materials contain decoding results from z-latents (S2 Appendix) and

another reconstruction approach based on [28] (S3 Appendix). The former not only demon-

strates superior performance using w-latents over z-latents in conditional image generation

but also that this disentanglement enables unconditional image generation using GANs.

Fig 9. Qualitative reconstruction results: The 100 test set stimuli (top row) and their reconstructions from brain activity in V1, V4 and IT (bottom

row) via w-latents. Face images in this figure are replaced for copyright reasons. The original version of the figure can be accessed here.

https://doi.org/10.1371/journal.pcbi.1012058.g009
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Furthermore, a leave-one-class-out analysis confirmed that our approach extends beyond

mere classification (S5 Appendix).

The quantitative metrics in Table 1 show the similarity between stimuli and their recon-

structions from brain activity in terms of six metrics that evaluated reconstruction quality at

different levels of abstraction (see S7 Appendix for the visual guide). Specifically, a stimulus

and its reconstruction were both fed to VGG16 (pretrained on face- and object recognition for

faces and natural images, respectively) and we extracted five intermediate activations (the five

MaxPool layers) thereto. The early layers capture more low-level features (e.g., edges and ori-

entations) whereas deeper layers capture increasingly higher-level features (e.g., textures to

object parts to entire objects). We then compared the cosine similarity between these extracted

representations of stimulus and reconstruction. Next, to study the decoder that resulted in

Fig 10. Qualitative reconstruction results: The 200 test set stimuli (top row) and their reconstructions from brain activity in V1, V4 and IT. (bottom

row) via w-latents.

https://doi.org/10.1371/journal.pcbi.1012058.g010
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these accurate reconstructions, the contribution of each visual area was determined by the

occlusion of the microelectrode recordings in the other two brain areas (rather than fitting

three independent decoders on subsets of brain activity). It is reasonable to say that, of the

three cortical areas, the area that resulted in the highest similarity contains the most informa-

tion about that representation. For faces, decoding performance was for the largest part deter-

mined by responses from IT—which is the most downstream site we recorded from. For

natural images, we found that the lower-level representations (VGG16 layers 1–2) were most

similar when decoded from V1 and the higher-level representations (VGG16 layers 3–5) and

latent space were most similar when decoded from area IT. We validated our quantitative

results with a permutation test as follows: per iteration, we sampled a hundred/two-hundred

random latents from the same distribution as our original test set and generated their corre-

sponding images. We assessed whether these random latents and images were closer to the

ground-truth latent and images than our predictions from brain activity, and found that our

predictions from brain activity were always closer to the original stimuli than the random sam-

ples for all metrics, yielding statistical significance (p< 0.001) (in S6 Appendix, the results of

random permutation analyses can be found).

2.2.1 Time-based neural decoding. Time-based neural decoding showed the gradual

extraction of stimulus-related information over the trial of 300 ms, with stimulus presentation

occurring at 100 ms, by sliding a 100 ms time window across the entire time course using a

stride of 25 ms, resulting in nine averaged points of neural activity across time (Fig 11A). We

fit separate decoders for individual time points but decoding via the original decoder, which

was fit on brain activity within the predefined time windows, yielded similar results. Initially,

the reconstructions exhibited an average appearance, but then gradually acquired their distinct

visual features upon stimulus onset (Fig 11B and 11D). Noteworthy, the reconstructions prior

to stimulus onset exhibit an average-looking appearance because we averaged multiple repeti-

tions in the test set, where each repetition was preceded by a different stimulus due to the ran-

domized order of stimulus presentation. Although canceled out following our approach, it

remains highly plausible that the information about the preceding stimulus is still preserved in

the brain. Moreover, the area-based reconstructions and performance graphs revealed that V1

generally displayed stimulus-like visual features earlier in time whereas IT consistently outper-

formed the other two in the final reconstruction of stimulus information (Fig 11C and 11E).

Albeit trivial, the finding that reconstruction from all rather than isolated areas yields the high-

est performance confirms that visual perception involves a distributed process across multiple

areas that each hold distinct information about the stimulus.

Table 1. Quantitative results. The upper and lower block display model performance (mean ± std.error) when reconstructing face images and natural images, respectively,

in terms of six metrics of perceptual cosine similarity using the five MaxPool layer outputs of VGG16 for face recognition (face images) / object recognition (natural

images) and latent cosine similarity between w-latents of stimuli and their reconstructions. The rows display decoding performance when using the recordings from all

recording sites (i.e., V1, V4 and IT together) or the recordings within a specific brain area.

VGG16–1 sim. VGG16–2 sim. VGG16–3 sim. VGG16–4 sim. VGG16–5 sim. Lat. sim.

Face images all 0.7871 ± 0.0102 0.7681 ± 0.0075 0.5874 ± 0.0075 0.6170 ± 0.0085 0.5940 ± 0.0104 0.5548 ± 0.0045

V1 0.6382 ± 0.0079 0.6758 ± 0.0064 0.4891 ± 0.0064 0.5041 ± 0.0083 0.4442 ± 0.0092 0.5022 ± 0.0047

V4 0.6303 ± 0.0101 0.6729 ± 0.0068 0.4890 ± 0.0068 0.5006 ± 0.0085 0.4191 ± 0.0091 0.5026 ± 0.0040

IT 0.7123 ± 0.0110 0.7133 ± 0.0073 0.5093 ± 0.0073 0.5253 ± 0.0087 0.4434 ± 0.0096 0.5176 ± 0.0039
Natural images all 0.4083 ± 0.0036 0.3322 ± 0.0036 0.2555 ± 0.0025 0.2192 ± 0.0043 0.2497 ± 0.0066 0.8032 ± 0.0032

V1 0.3929 ± 0.0031 0.3147 ± 0.0031 0.2223 ± 0.0019 0.1511 ± 0.0023 0.1367 ± 0.0037 0.7336 ± 0.0036

V4 0.3790 ± 0.0029 0.3132 ± 0.0029 0.2270 ± 0.0019 0.1641 ± 0.0027 0.1617 ± 0.0045 0.7614 ± 0.0034

IT 0.3798 ± 0.0026 0.3127 ± 0.0026 0.2302 ± 0.0020 0.1790 ± 0.0039 0.1692 ± 0.0057 0.7653 ± 0.0039

https://doi.org/10.1371/journal.pcbi.1012058.t001

PLOS COMPUTATIONAL BIOLOGY Brain2GAN

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012058 May 6, 2024 13 / 27

https://doi.org/10.1371/journal.pcbi.1012058.t001
https://doi.org/10.1371/journal.pcbi.1012058


Fig 11. Time-based decoding. A For each trial, responses were recorded for 300 ms with stimulus onset at 100 ms. Rather than taking the average

response within the original time windows (see the three color-coded windows for V1, V4 and IT), we slid a 100 ms window with a stride of 25 ms over

the entire time course, resulting in nine average responses across time. B, D Two stimulus-reconstruction examples evolve over time for faces and natural

images, respectively. C, E Decoding performance over time for faces and natural images, respectively. The error bars denote the standard error of the

cosine similarities between features of stimuli and reconstructions. It can be noted how V1 performance climbs up slightly earlier in time than the other

two visual areas. For faces, IT outperforms V1 and V4 in most instances. For natural images, V1 outperforms V4 and IT for low-level feature similarity,

after which V4 and IT climb up together and outperform V1 for the more high-level feature similarity metrics. Face images in this figure are replaced for

copyright reasons. The original version of the figure can be accessed here.

https://doi.org/10.1371/journal.pcbi.1012058.g011
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2.2.2 Linear operations. The application of linear operations to GAN-latents directly

translates to meaningful perceptual changes in the generated images because visual data that

look perceptually similar in terms of certain features are also closely positioned in latent space.

As such, pathways through the well-structured latent landscape can be explored by interpolat-

ing two distinct latents, resulting in an ordered set of images whose semantics vary smoothly

with latent codes [67] (Fig 12A1 and 12B) and simple arithmetic operations [68] (Fig 12A2).

Since such operations can be performed to traverse the latent space (Fig 12, row 1), without

needing to understand the intricate details of the underlying generator network, the latent-

response correspondence also opens the door to interpreting neural activity in terms of such

operations within the latent space (Fig 12, row 2). To illustrate, consider having a neural

response to a neutral face and another neural response to a smiling face, interpolating their

respective decoded latents yields a sequence of latents, and consequently, a series of images

transitioning from neutral to smiling expressions. Note that both the operations applied to

neural activity as well as the decoder are linear, resulting in “linearity stacking”. This means

that we can also apply the linear operations directly to the neural responses themselves, decode

them into latents, and feed them to the GAN for reconstruction. This would yield the same

images as those in row 2 of Fig 12.

The linear relationship between neural activity patterns and latent codes, coupled with the

feature-disentangled nature of the GAN’s latent space, enables synthesis (and analysis) of spe-

cific aspects of the visual experience captured by the neural responses—which is the key idea

of our decoding approach.

Fig 12. Linear operations to latent codes. (row 1) shows linear operations to two ground-truth w-latents and (row 2) to two predicted w-latents from

brain activity. The linearly-manipulated latents were then fed to the generator for image generation. (A1, A2) face images, also contains vector

arithmetic. (B) As for (A1, A2) but for natural images. Face images in this figure are replaced for copyright reasons. The original version of the figure

can be accessed here.

https://doi.org/10.1371/journal.pcbi.1012058.g012
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3 Discussion

In this study, we characterized neural representations of visual perception using high-level

latent representations of generative models. Our encoding analysis showed feature-disentan-

gled w-latents conditioned on StyleGAN3/StyleGAN-XL to outperform the other latent candi-

dates in explaining neural responses. Subsequently, we used the w-latents for neural decoding

of the recorded brain activity, which resulted in reconstructions that strongly resembled the

original stimuli in their specific characteristics. Given the virtually infinite number of possible

candidate representations to encode the same image, finding a representation that accurately

reflects the information in brain activity is not a trivial task. In our approach, the decoded w-

latents resulted in image reconstructions that closely matched the stimuli in their semantic as

well as structural features. Overall, this work highlights the importance of feature disentangle-

ment in explaining high-level neural responses and demonstrates the potential of aligning

such unsupervised generative models with biological processes. These findings have implica-

tions for the advancements of computational models and the development of clinical applica-

tions for people with disabilities. For instance, neuroprosthetics to restore vision in blind

patients as well as brain-computer interfaces (BCIs) to enable nonmuscular communication

with individuals who are locked-in.

3.1 Uncovering principles of neural coding

The primary goal of our study was to uncover principles that govern neural coding of the

visual world and gain a more interpretable understanding of high-level neural representations

underlying visual perception using deep generative modeling. As such, similarities between w-

latents and the brain could provide further insights into what drives the organization of visual

processing in the brain. First, GANs are trained in an unsupervised setting; they learn directly

from raw visual data without explicit labels or annotations. Not only does this make GANs

more biologically plausible than their supervised counterparts since it resembles more closely

how the brain learns from its environment but they may also lead to more flexible and general-

izable representations that are better able to capture the underlying structure and patterns in

the observed data. Note that our finding that discriminative-based encoders (supervised) out-

perform w-based encoders (unsupervised) in neural encoding does not directly challenge this

notion since these models were optimized for different objectives (i.e., image recognition and

image generation, respectively). Second, StyleGAN was designed to disentangle different visual

semantics into separate w-latent features. The superior performance of w-latents relative to

other generative latents highlights the role of feature disentanglement in explaining the high-

level neural representations and the ability to disentangle the object manifold [69]. Keep in

mind that StyleGAN itself has never been optimized on neural data which implies a general

principle of shared encoding of real-world phenomena. Finally, there is a conceptual analogy

between the adversarial training of GANs and the predictive coding theory of perception

where the brain uses top-down predictions, based on prior knowledge and experience, to

guide bottom-up sensory processing and adjusts its internal models based on the mismatch

between expectations and actual observations. In GANs, the discriminator and generator

engage in a similar process with the discriminator evaluating the “real” sensory input and the

“predicted/imagined” instances by the generator. Based on the mismatch, as determined by

the discriminator, the internal model of the generator is refined such that its outputs match

the real-world data closer; the generator harnesses the knowledge of the discriminator to learn

how to represent the world in its latent space. And like generative models interpolate between

latent vectors to create intermediate outputs, the brain might engage in similar processes that

interpolate between neural representations to accommodate variations in mental simulation.
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So, while the exact mechanisms used by the brain and GANs differ significantly, their concep-

tual similarities could provide insights into the nature of perception and the potential of

machine learning to capture some of the same principles underlying this ability.

3.2 Limitations and future directions

It is essential to clarify that the brain’s overall functioning is far more complex than a linear

system; our approach merely exploits the linearity within a particular representation space.

Further investigation of the correspondence between latents and responses is needed by, for

instance, obtaining neural responses to more diverse stimuli and stimulus manipulations to

identify which visual properties could be effectively translated to the latent space and where

this approach falls short. We did observe that, within the limitations of StyleGAN-XL’s design

tied to the natural image distribution, the generator exhibits the capability to synthesize

abstract stimuli (see S8 Appendix), which offers a promising perspective for future investiga-

tions in this direction. Further, this study solely used synthesized stimuli with known latent

representations generated by StyleGAN. While this allowed for a controlled and systematic

examination of neural representations of visual information, future studies should also include

real photographs to see how this method generalizes. This requires accurate inversion methods

of the generator’s ‘synthesis’ operation, yet this endeavor is intricate due to the inherent infor-

mation loss associated with post-hoc inference. That said, the current study still performed

valid neural encoding and reconstruction from brain activity despite the nature of the pre-

sented images themselves. Another limitation is the small sample size of one subject (note that

we did include face reconstructions from a second subject with different cortical implants in

S1 Appendix). Although small sample sizes are common in studies using invasive recordings

—larger sample sizes are needed to further confirm the robustness of our findings. Finally, it is

worth noting that the use of deep neural networks to model brain activity is still a developing

field and the models used in this study are not flawless representations of the underlying neural

processes.

4 Materials and methods

4.1 Ethics statement

All procedures complied with the NIH Guide for Care and Use of Laboratory Animals and

were approved by the local institutional animal care and use committee of the Royal Nether-

lands Academy of Arts and Sciences.

In conjunction with the evolving field of neural decoding grows the concern regarding

mental privacy [70]—a concept that safeguards the sanctity of individual cognitive experi-

ences. Importantly, our methodology included extensive datasets for which constant and com-

plete subject cooperation was required throughout the process to decode very specific

information from the brain. Together with the invasive nature of our approach, which entails

surgical interventions, this presents substantial barriers to any unsolicited invasion of mental

privacy. Furthermore, it is important to at all times strictly follow ethical rules and regulations

that govern data extraction, storage, and protection. Finally, this work solely concentrated on

reconstructing visual perception; it has not extended into the domains of imagery or dreams

which are more closely aligned with private cognitive experiences.

4.2 Stimuli

StyleGAN [42, 71] was developed to optimize control over the semantics in the synthesized

images in single-category datasets (e.g., only-faces, -bedrooms, -cars or -cats) [43]. This

PLOS COMPUTATIONAL BIOLOGY Brain2GAN

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012058 May 6, 2024 17 / 27

https://doi.org/10.1371/journal.pcbi.1012058


generative model maps z-latents via an MLP to an intermediate w-latent space in favor of fea-

ture disentanglement. That is, the original z-latent space is restricted to follow the data distri-

bution that it is trained on (e.g., old-looking faces wear eyeglasses more often than young-

looking faces) and such biases are entangled in the z-latents. The less entangled w-latent space

overcomes this such that unfamiliar latent elements can be mapped to their respective visual

features.

Dataset i: Face images. We synthesized photorealistic face images of 1024 × 1024 px reso-

lution from (512-dim.) z-latent vectors with the generator network of StyleGAN3 (Fig 3)

which is pretrained on the high-quality Flickr-Faces-HQ (FFHQ) dataset [42]. The z-latents

were randomly sampled from the standard Gaussian. We specified a truncation of 0.7 so that

the sampled values are ensured to fall within this range to benefit image quality. During syn-

thesis, learned affine transformations integrate w-latents into the generator network with

adaptive instance normalization (like style transfer [72]). Finally, we synthesized a training set

of 4000 face images that were each presented once to cover a large stimulus space to fit a gen-

eral model. The test set consisted of 100 synthesized faces.

Dataset ii: Natural images. Recently, StyleGAN-XL (three times larger in depth and

parameter count than a standard StyleGAN3) was developed to scale up to larger and less-

structured datasets using a new training strategy [73]. Concretely, the new training strategy

combined (i) the progressive growing paradigm where architecture size is gradually increased

by adding new layers, (ii) the projected GAN paradigm where both synthesized and real sam-

ples are mapped to four fixed feature spaces before being fed to four corresponding and inde-

pendent discriminator networks and (iii) classifier guidance where the cross-entropy loss of a

pretrained classifier is added as a term to the generator loss. As such, StyleGAN-XL has been

successfully trained on ImageNet [74] to generate high-resolution images of a thousand differ-

ent categories, resulting in a complex and diverse stimulus dataset. We synthesized images

from the 200 classes from Tiny ImageNet (a subset rather than all thousand classes from Ima-

geNet) [75] so that each class was represented by twenty training set stimuli and one test set

stimulus (S9 Appendix lists the labels). First, a 64-dimensional vector was sampled from a stan-

dard Gaussian and concatenated with the 64-dimensional embedded representation of the

class category, resulting in 128-dimensional z-latents that were utilized to synthesize 512 × 512

px resolution RGB images. For the training set, z-latents were randomly sampled and mapped

to w-latents that were truncated at 0.7 to support image quality as well as diversity. The average

w-latent of each category was utilized for the test set due to the high quality and because varia-

tion was not required as we only used one image per category (in S4 Appendix, we qualitatively

confirmed that our findings were not attributed to the use of the average w-latent). The z-

latents of the test set were obtained by activation maximization of an input vector by minimiz-

ing its distance to the target w-latent. In total, the training and test set consisted of 4000 (each

presented once) and 200 stimuli (averaged over 20 repetitions), respectively.

4.3 Features

As the in-between feature candidates, we used the (generative) z-latents of StyleGAN3/Style-

GAN-XL (512-/ 128-dim.), w-latents of StyleGAN3/StyleGAN-XL (512-/512-dim.) and CLIP-

latents (768-dim.). In the case of natural images, we used the embedding that integrated both

z-latent and class information, which serves as the input for the first layer of the mapping

MLP. We also used the five (discriminative) layer activations of VGG16 for face recognition

[76] and object recognition [77]. Specifically, we utilized the outputs from layers 2/16, 4/16, 7/

16, 10/16, 13/16, referred to as layers 1–5, following max pooling. Because the features from

layer 1 and 2 were very large (* 106), we performed downsampling, as done in [11]. That is,
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for each channel in the activation, the feature map was spatially smoothed with a Gaussian fil-

ter and subsampled with a factor 2. The kernel size was set to be equal to the downsampling

factor.

4.4 Responses

We recorded multi-unit activity (MUA) [48] with 15 chronically implanted electrode arrays

(64 channels each) in one macaque (male, 7 years old) upon presentation with images (resized

to 500 × 500 px) in a passive fixation experiment (Fig 4). During the experiment, 4000 training

images were each presented once, which ensured that these training set responses covered a

diverse set of stimulus variations (note that repetitions would limit the total number of distinct

images presented). In contrast, 100/200 test set images were each presented twenty times to

increase the signal-to-noise ratio, which facilitated more reliable assessment and interpreta-

tion. The images were presented in a randomized order. Next, neural responses were recorded

in V1 (7 arrays), V4 (4 arrays) and IT (4 arrays) leading to a total of 960 channels (see electrode

placings in Fig 2). For each trial, we averaged the early response of each channel using the fol-

lowing time windows: 25–125 ms for V1, 50–150 ms for V4 and 75–175 ms for IT. To capture

feedforward processing in each region, the time windows were centered on the response peaks

and averaged across trials and channels, as determined on an independent dataset of responses

to 22k natural images. The 100 ms window length accounted for the variability of response

latency across channels and stimuli. Normalization was carried out as in [78], such that for

each channel, the mean response was subtracted from all the values which were then divided

by the standard deviation.

To determine the contribution of the activity in each brain region to the overall model per-

formance, we evaluated the decoder using partially occluded test set data. Concretely, we used

our main decoder which was trained on neural data from all three brain areas and evaluated it

using test set recordings from one brain area. To do this, the responses from the other two

areas were occluded by the average response of all but the corresponding response. Alterna-

tively, one could also evaluate the contribution per region by training three independent
decoders on subsets of neural data (V1-only, V4-only and IT-only) which would allow for eval-

uation of the contribution of each brain area independently of one another. But in our case, we

used the occlusion approach to investigate the area-specific contribution to the same decoder’s

performance by keeping the contributions from the other two areas constant.

4.5 Models

We used linear mapping to evaluate our claim that the feature- and neural representation

effectively encode the same stimulus properties, as is standard in neural coding [6, 79]. A more

complex nonlinear transformation would not be valid to support this claim since nonlineari-

ties will fundamentally change the underlying representations.

4.5.1 Encoding. Kernel ridge regression was used to model how every recording site in

the visual cortex is linearly dependent on the stimulus features. That is, an encoding model is

defined for each electrode. Encoding required regularization to avoid overfitting since we pre-

dicted from feature space xi! ϕ(xi) where ϕ() is the feature extraction model. Hence we used

ridge regression where the norm of w is penalized to define encoding models by a weighted

sum of ϕ(xi):

L ¼
1

2

XN

i¼1

ð yi � wT�ðxiÞÞ
2
þ

1

2
ljjwjj

2
ð1Þ
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where x ¼ ðx1; x2; . . . ; xNÞ
T
2 RN�d

, y ¼ ðy1; y2; . . . ; yNÞ
T
2 RN�1

, N the number of stimulus-

response pairs, d the number of pixels and λ� 0 the regularization parameter. We then solved

for w by applying the “kernel trick” [80]:

w ¼ ðlIq þ FF
TÞ
� 1
Fy ð2Þ

where F ¼ ð�ðx1Þ; �ðx2Þ; . . . ; �ðxNÞÞ
T
2 RN�q (i.e., the design matrix) where q is the number

of feature elements and y ¼ ðy1; y2; . . . ; yNÞ
T
2 RN�1

. This means that w must lie in the space

induced by the training data even when q� N. The optimal λ is determined with grid search,

as in [2]. The grid is obtained by dividing the domain of λ in M values and evaluating model

performance at every value. This hyperparameter domain is controlled by the capacity of the

model, i.e., the effective degrees of freedom dof of the ridge regression fit from [1, N]:

dofðljÞ ¼
XN

i¼1

s2
i

s2
i þ lj

ð3Þ

where s are the non-zero singular values of the design matrix F as obtained by singular value

decomposition. We can solve for each λj with Newton’s method. Now that the grid of lambda

values is defined, we can search for the optimal λj that minimizes the 5-fold cross-validation

error.

4.5.2 Decoding. Multiple linear regression was used to model how the individual units

within feature representations yi (e.g., wi-latents) are linearly dependent on brain activity xi:

L ¼
1

2

XN

i¼1

yi � wTxiÞ
2

�
ð4Þ

where i ranges over samples. We reconstructed the images by feeding the predicted latents to

brain responses of the test set by feeding them to the generator without truncation.

4.6 Evaluation

Decoding performance was evaluated by six metrics that compared the stimuli from the held-

out test set with their reconstructions from brain activity: perceptual cosine similarity using

the five MaxPool layer outputs of VGG16 and latent cosine similarity. For perceptual cosine
similarity, we computed the cosine similarity between layer activations (rather than pixel space

which is the model input) extracted by VGG16 pretrained for object recognition. This metric

reflects human perception of similarity better because it takes more high-level visual cues into

account (e.g., color, texture and spatial information) and human perception is often not

directly related to the pixel values themselves. Specifically, we fed the stimuli and their recon-

structions to the DNN and then considered the cosine similarity per activation unit:

Spðx; x̂Þ ¼
f ðx̂Þi � f ðxÞiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1
ðf ðx̂ÞiÞ

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðf ðxÞiÞ

2

q

where x and x̂ are the visual stimuli and their reconstructions, respectively, n the number of

activation elements and f(.) the image-activation transformation. For latent similarity, we con-

sidered the cosine similarity per latent dimension between predicted and ground-truth latent

vectors:

Slðw; ŵÞ ¼
ẑ i � ziffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P512

i¼1
ðẑ iÞ

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P512

i¼1
ðziÞ

2

q
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where ŵ and w are the 512-dimensional predicted and ground-truth feature-disentangled

latent vectors, respectively.

4.7 Implementation details

All analyses were carried out in Python 3.8 on a cloud-based virtual machine with Intel(R)

Xeon(R) CPU @ 2.20GHz and NVIDIA Tesla T4 GPU (Driver Version: 510.47.03, CUDA

Version: 11.6) on a Linux-based operating system. We used the original PyTorch implementa-

tions of StyleGAN3 and StyleGAN-XL to generate the faces and natural images in this manu-

script. We used VGG16 for face recognition and object recognition for analysis of the faces

and natural images. The scripts to generate the visual datasets as well as our implementations

of neural encoding and -decoding can be found on our GitHub repository.

Supporting information

S1 Appendix. Results for macaque #2. Fig A: Encoding performance. The effectiveness of each

encoding model is assessed using the Pearson correlation coefficients between predicted and

recorded neural responses. The first and second graphs denote discriminative and generative

representations, respectively. Fig B: Generative-based encoding performance. For each individ-

ual microelectrode unit, we fit three encoding models based on three distinct feature represen-

tations: z-, w− and CLIP-latent representations. As such, we fit 3× 1024 independent encoders,

resulting in 3× 1024 predicted neural responses. The scatterplots display the prediction-target

correlation (r) of one encoding model on the X-axis and another encoding model on the Y-

axis to investigate the relationship between the two. Each dot represents the performance of

one modeled microelectrode unit in terms of both encoding models (so, 1024 dots per plot).

The diagonal represents equal performance between both models. It is clear to see that w-

latents always outperform z- and CLIP-latents because most dots lie in the direction of the w-

axis (above the diagonal). Fig C: Qualitative results. This figure shows the 100 test set stimuli

(top row) and their reconstructions from brain activity from subject 1 (middle row) and sub-

ject 2 (bottom row).

(PDF)

S2 Appendix. Reconstruction via z-latents. Fig A: Qualitative results for face images. Test set

stimuli (top), ‘original’ reconstructions from brain activity via w-latents (middle) and recon-

structions from brain activity via z-latents. Fig B: Qualitative results for natural images. Test

set stimuli (top), ‘original’ reconstructions from brain activity via w-latents (middle) and

reconstructions from brain activity via z-latents.

(PDF)

S3 Appendix. Reconstruction baseline. Table A: Quantitative results. Reconstruction perfor-

mance (mean ± std.error) in terms of six metrics of perceptual cosine similarity using the five

MaxPool layer outputs of VGG16 for face or image recognition and latent cosine similarity

between w-latents of stimuli and their reconstructions when using the recordings from all

recording sites (i.e., V1, V4 and IT together). The first row shows the original reconstruction

performance from the manuscript, and the second and third rows of the baseline using the

prior of 10,000 and 6,000,000 images, respectively. Fig A: Qualitative results for face images
(prior = 10,000). Test set stimuli (top), ‘original’ reconstructions from brain activity using lin-

ear decoding (middle) and reconstructions from brain activity using the baseline approach.

Fig B: Qualitative results for face images (prior = 6,000,000). Test set stimuli (top), ‘original’

reconstructions from brain activity using linear decoding (middle) and reconstructions from

brain activity using the baseline approach. Fig C: Qualitative results for natural images
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(prior = 10,000). Test set stimuli (top), ‘original’ reconstructions from brain activity using lin-

ear decoding (middle) and reconstructions from brain activity using the baseline approach.

Fig D: Qualitative results for natural images (prior = 60,000,000). Test set stimuli (top), ‘origi-

nal’ reconstructions from brain activity using linear decoding (middle) and reconstructions

from brain activity using the baseline approach.

(PDF)

S4 Appendix. Leave-one-example-out analysis. Table A: Quantitative results. Reconstruction

performance (mean ± std.error) in terms of six metrics of perceptual cosine similarity using

the five MaxPool layer outputs of VGG16 for object recognition and latent cosine similarity

between w-latents of stimuli and their reconstructions when using the recordings from all

recording sites (i.e., V1, V4 and IT together). The first row shows the original reconstruction

performance from the manuscript and the second row of the leave-one-example-out analysis.

Fig A: Qualitative reconstruction results: training examples that are used for testing (top) row

and their reconstructions from brain activity (bottom row) via w-latents.

(PDF)

S5 Appendix. Leave-one-class-out analysis. Table A: Quantitative results. Reconstruction

performance (mean ± std.error) in terms of six metrics of perceptual cosine similarity using

the five MaxPool layer outputs of VGG16 for object recognition and latent cosine similarity

between w-latents of stimuli and their reconstructions when using the recordings from all

recording sites (i.e., V1, V4 and IT together). The first row shows the original reconstruction

performance from the manuscript and the second row of the leave-one-class-out analysis. Fig

A: Qualitative reconstruction results: test set stimuli (top) and their reconstructions from brain

activity when the training examples of their class are excluded from training (middle). The

original reconstructions, when all classes are included during training, are also displayed for

reference.

(PDF)

S6 Appendix. Permutation test analysis. Fig A: Permutation results. The quantitative results

were verified with a permutation test as follows: per iteration, 100 and 200 latents (and their

corresponding images) were randomly sampled for faces and natural images, respectively, to

evaluate their similarity to the stimuli in terms of the six similarity metrics. In the above

graphs, these similarity metrics were plotted over 100 iterations and we discovered that ran-

dom samples were never better than our predictions from brain activity.

(PDF)

S7 Appendix. Visual guide. Fig A: Visual guide. For the six similarity metrics, we display the

five lowest and highest stimulus-reconstruction pairs from the datasets of faces (left panel) and

natural images (right panel). The top row denotes the stimulus and the bottom row the recon-

struction from brain activity. Face images in this figure are replaced for copyright reasons. The

original version of the figure can be accessed here.

(PDF)

S8 Appendix. Abstract stimuli. Fig A: Generating abstract images. Top: abstract image (taken

from [34]). Bottom: image corresponding to the iteratively-optimized latent to match its visual

features with those of the target latent.

(PDF)

S9 Appendix. Category labels (Tiny ImageNet [75]).

(PDF)
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Visualization: Thirza Dado.

Writing – original draft: Thirza Dado, Umut Güçlü.
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