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Abstract

Public health decisions must be made about when and how to implement interventions to

control an infectious disease epidemic. These decisions should be informed by data on the

epidemic as well as current understanding about the transmission dynamics. Such deci-

sions can be posed as statistical questions about scientifically motivated dynamic models.

Thus, we encounter the methodological task of building credible, data-informed decisions

based on stochastic, partially observed, nonlinear dynamic models. This necessitates

addressing the tradeoff between biological fidelity and model simplicity, and the reality of

misspecification for models at all levels of complexity. We assess current methodological

approaches to these issues via a case study of the 2010-2019 cholera epidemic in Haiti. We

consider three dynamic models developed by expert teams to advise on vaccination poli-

cies. We evaluate previous methods used for fitting these models, and we demonstrate

modified data analysis strategies leading to improved statistical fit. Specifically, we present

approaches for diagnosing model misspecification and the consequent development of

improved models. Additionally, we demonstrate the utility of recent advances in likelihood

maximization for high-dimensional nonlinear dynamic models, enabling likelihood-based

inference for spatiotemporal incidence data using this class of models. Our workflow is

reproducible and extendable, facilitating future investigations of this disease system.

Author summary

Quantitative understanding of infectious disease transmission dynamics relies upon

mathematical models informed by scientific knowledge and relevant data. The models

aim to provide a statistical description of the trajectory of an epidemic and its uncertainty,

together with a representation of the underlying biological mechanisms. Evaluation of

success at these goals is necessary in order for a model to provide a reliable tool for guid-

ing evidence-based public policy interventions. In this article, we conduct a re-analysis of

the 2010–2019 cholera outbreak in Haiti. We use this case study to investigate current

procedures for fitting mechanistic models to time series data, while identifying limitations
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of these methodologies and proposing remedies. Our analysis presents methodology for

diagnosing how well a model describes observed data. Using objective measures to assess

model fit ensures that our evaluation is based on quantifiable criteria. Incorporating

reproducibility into this assessment results in a framework that enables the validation or

refinement of model based inferences when revisiting the data, facilitating scientific dis-

covery. Our data analysis workflow is supported by recent advances in algorithms, soft-

ware and hardware, which facilitate statistical fitting of nonlinear stochastic dynamic

models to observed incidence data. However, inference for high-dimensional systems

remains a methodological challenge. One of the models under consideration involves spa-

tially coupled stochastic meta-populations, and we demonstrate how a recently developed

algorithm permits likelihood-based inference and model diagnostics in this setting. We

contend that raising the currently accepted standards of infectious disease modeling will

result in a greater ability of scientists and policy makers to understand and respond to

future infectious disease outbreaks.

Introduction

Regulation of biological populations is a fundamental topic in epidemiology, ecology, fisheries

and agriculture. Population dynamics may be nonlinear and stochastic, with the resulting

complexities compounded by incomplete understanding of the underlying biological mecha-

nisms and by partial observability of the system variables. Quantitative models for these

dynamic systems offer potential for designing effective control measures [1, 2]. Developing

and testing models for dynamic systems, and assessing their fitness for guiding policy, is a

challenging statistical task [3]. Questions of interest include: What indications should we look

for in the data to assess whether the model-based inferences are trustworthy? What diagnostic

tests and model variations can and should be considered in the course of the data analysis?

What are the possible trade-offs of increasing model complexity, such as the inclusion of inter-

actions across spatial units?

This case study investigates the use of dynamic models and spatiotemporal data to inform

public health policy in the context of the cholera outbreak in Haiti, which started in 2010. Vari-

ous dynamic models were developed to study this outbreak: searching PubMed with keywords

“Haiti, cholera, model” we obtained 22 studies that utilized deterministic mechanistic dynamic

models [4–25] and 11 studies that used stochastic models [4, 26–35]. Incidence data on the

outbreak are available at various spatial scales, motivating 17 studies in our literature review to

consider spatially explicit dynamic models [4, 5, 8–11, 14, 17, 19, 20, 22–25, 27, 33, 34]. Here

we focus on a multi-group modeling exercise by Lee et al. [4] in which four expert modeling

teams developed models to the same dataset with the goal of comparing conclusions on the

feasibility of eliminating cholera by a vaccination campaign. Model 1 is stochastic and

describes cholera at the national level; Model 2 is deterministic with spatial structure, and

includes transmission via contaminated water; Model 3 is stochastic with spatial structure, and

accounts for measured rainfall. Model 4 has an agent-based construction, featuring consider-

able mechanistic detail but limited ability to calibrate these details to data. These modeling

strategies were selected by Lee et al. [4] to represent the range of approaches used in the

research community. We focus on Models 1–3, as the strengths and weaknesses of the agent-

based modeling approach [36] are outside the scope of this article. In addition, agent-based

models were less widely used, the agent based model in [4] being the only model of this class

PLOS COMPUTATIONAL BIOLOGY Informing policy via dynamic models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012032 April 29, 2024 2 / 31

Funding: This work was supported by National

Science Foundation (http://www.nsf.gov/div/index.

jsp?div=dms) grants DMS-1761603 (EI) and DMS-

1646108 (EI). The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1012032
http://www.nsf.gov/div/index.jsp?div=dms
http://www.nsf.gov/div/index.jsp?div=dms


that was found in our literature review. The data that were used in [4], and that we reanalyze,

are displayed in Fig 1.

The four independent teams were given the task of estimating the potential effect of pro-

spective oral cholera vaccine (OCV) programs. While OCV is accepted as a safe and effective

tool for controlling the spread of cholera, the global stockpile of OCV doses remains limited

[37]. Advances in OCV technology and vaccine availability, however, raised the possibility of

planning a national vaccination program. The possibility of controlling the Haiti cholera out-

break via OCV was considered by various research groups [4, 6, 11, 12, 22, 35, 38–41]. In the

Lee et al. [4] study, certain data were shared between the groups, including demography and

vaccination history; vaccine efficacy was also fixed at a shared value between groups. Beyond

this, the groups made autonomous decisions on what to include and exclude from their mod-

els. Despite their autonomy, the four independent teams obtained a consensus that an exten-

sive nationwide vaccination campaign would be necessary to eliminate cholera from Haiti,

estimating that a large number of cumulative cholera cases would be observed in the absence

of additional vaccination efforts (Figure 3 and 4 of [4]). These forecasts are inconsistent with

the prolonged period with no confirmed cholera cases between February, 2019 and September,

2022 [17]. Though cholera has recently reemerged in Haiti [42, 43], the inability to accurately

forecast cholera incidence from 2019–2022 prompts us to consider retrospectively what may

have been done differently in order to obtain more reliable conclusions, leading to recommen-

dations for future studies.

The discrepancy between the model-based conclusions of Lee et al. [4] and the prolonged

absence of cholera in Haiti has been debated [44–47]. Suggested origins of this discrepancy

include the use of unrealistic models [45] and unrealistic criteria for cholera elimination [46].

We find a more nuanced conclusion: attention to methodological details in model fitting, diag-

nosis and forecasting can improve each of the proposed model’s ability to quantitatively

describe observed data. This improved ability may result in more accurate forecasts and facili-

tates the exploration of model assumptions. Based on this retrospective analysis, we offer sug-

gestions on fitting mechanistic models to dynamic systems for future studies.

Numerous guidelines have been proposed for using mechanistic models to inform policy,

reviewed in [48]. Behrend et al. [48] identify the importance of stakeholder engagement, trans-

parency, reproducibility, uncertainty communication, and testable model outcomes. These

and related principles are echoed by other influential articles [49, 50]. Additional literature

Fig 1. Weekly cholera cases. Weekly reported cholera cases in Haiti from October 2010 to January 2019 for each of

the 10 administrative departments.

https://doi.org/10.1371/journal.pcbi.1012032.g001
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emphasizes model calibration and evaluation techniques [51–53]. These guidelines often lack

implementation specifics. As an example, [4] largely adhere to the principles of [48]—though

assessing the extent of stake-holder engagement is challenging—yet their projections are

inconsistent with actual cholera incidence data from 2019 to 2022, demonstrating the limita-

tions of current standards. We provide methodology for rigorous statistical calibration and

evaluation of dynamic models (as advocated by [54]), thereby expanding on the prevailing

guidance. We specifically emphasize principles that prove essential in our case study. Comple-

mentary methodological suggestions arising from a spatio-temporal analysis of COVID-19 are

detailed in [55].

Our recommendations are presented in the context of a case study, with the goal of demon-

strating how careful adherence to statistical principles may result in improved model fits. We

proceed by introducing the general modeling scheme employed by Models 1–3 and provide

details of each individual model; we then describe how each model is calibrated to data, and

present a systematic approach to examining and refining these models. Specifically, we focus

on how to develop and test variations of the proposed models, as well as diagnosing the models

once they have been assimilated to incidence reports. This includes a comprehensive tutorial

on performing inference with Model 3 (S5 Text), a highly non-linear, spatially explicit stochas-

tic model, a challenging task that is possible due to recent methodological advancements. We

then use the improved model fits to project cholera incidence in Haiti under various vaccina-

tion scenarios considered by Lee et al. [4]. Finally, we conclude with a discussion of the results,

in which we relate our general recommendations for model based inference of biological sys-

tems to the case study of the Haiti cholera outbreak.

Materials and methods

Mechanistic models for disease modeling

Mechanistic models representing biological phenomena are valuable for epidemiology and

consequently for public health policy [56, 57]. More broadly, they have useful roles throughout

biology, especially when combined with statistical methods that properly account for stochasti-

city and nonlinearity [58]. In some situations, modern machine learning methods can outper-

form mechanistic models on epidemiological forecasting tasks [59, 60]. The predictive skill of

non-mechanistic models can reveal limitations in mechanistic models, but cannot readily

replace the scientific understanding obtained by describing the biological dynamics of the sys-

tem in a mathematical model [60, 61].

In this article, we refer to models that focus on learning relationships between variables in a

dataset as associative, whereas models that incorporate a known scientific property of the sys-

tem we call causal or mechanistic. The danger in using forecasting techniques which rely on

associative models to predict the consequence of interventions is called the Lucas critique in

an econometric context. Lucas et al. [62] pointed out that it is naive to predict the effects of an

intervention on a given system based entirely on historical associations. To successfully predict

the effect of an intervention, a model should therefore both provide a quantitative explanation

of existing data and should have a causal interpretation: a manipulation of the system should

correspond quantitatively with the corresponding change to the model. This motivates the

development of mechanistic models, which provides a statistical fit to the available data while

also supporting a causal interpretation. Despite their limited ability to project the effect of

interventions on a system, associative models can be effectively used to make inference on an

certain features of a system. In our literature review, there were 14 studies that used associative

models to describe various aspects of the cholera epidemic [9, 40, 63–74].
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The four mechanistic models of Lee et al. [4] were deliberately developed with limited coor-

dination. This allows us to treat the models as fairly independently developed expert

approaches to understanding cholera transmission. However, it led to differences in notation,

and in subsets of the data chosen for analysis, that hinder direct comparison. Here, we have

created a common notational framework that facilitates model comparison, and put all com-

parable model parameters—including parameters that were estimated or held constant—into

Fig 2. Translations back to the original notation of Lee et al. [4] are given in the supplement

(S1 Table).

Each model describes the cholera dynamics as a partially observed Markov process

(POMP) with a latent state vector X(t) for each continuous time point t. N observations on

the system are collected at time points t1, . . ., tN, written as t1:N. The observation at time tn is

modeled by the random vector Yn. While the latent process exists between observation times,

the value of the latent state at observations times is of particular interest. We therefore write

Xn = X(tn) to denote the value of the latent process at the nth observation time, and X1:N is the

collection of latent state values for all observed time points. The observable random variables

Y1:N are assumed to be conditionally independent given X0:N. Together, with the density for

the initial value of the latent state X0 = X(t0), each model defines a joint density

fX0:N ;Y1:N
ðx0:N ; y1:N ; yÞ, where θ is a parameter vector that indexes the model. The observed data

y∗
1:N , along with the unobserved true value of the latent state, are modeled as a realization of

this joint distribution.

Because of the probabilistic nature of both the unobserved latent state and the observable

random variables, it is possible to consider various marginal and conditional densities of these

two jointly random vectors. An important example is the marginal density of the observed

Fig 2. Model parameters. References to the relevant equation are given in parentheses. Parameters that were fixed and

not calibrated using the data are indicated with †; all fixed parameters values were chosen to match the fixed parameter

values of [4]. Parameters that were added during our re-analysis and were not considered by Lee et al. [4] are indicated

with *. Confidence intervals for model parameters are given in the supplement (S7 Text). Translations back into the

notation of [4] are given in S1 Table.

https://doi.org/10.1371/journal.pcbi.1012032.g002
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random vector Y1:N, evaluated at the observed data y∗
1:N , as shown in Eq (1):

fY1:N
ðy∗

1:N ; yÞ ¼

Z

fX0:N ;Y1:N
ðx0:N ; y

∗
1:N ; yÞdx0:N : ð1Þ

When treated as a function of the parameter vector θ, this marginal density is called the likeli-
hood function, which is the basis of likelihood based statistical inference.

Using the conditional independence of Y1:N given X0:N and the Markov property of X0:N,

the joint density can be re-factored into the useful form given in Eq (2):

fX0:N ;Y1:N
ðx0:N ; y1:N ; yÞ ¼ fX0

ðx0; yÞ
YN

n¼1

fXn jXn� 1
ðxnjxn� 1; yÞfYnjXn

ðynjxnÞ: ð2Þ

This factorization is useful because it demonstrates that POMP models may be completely

described using three parts: the initialization model for the latent states fX0
ðx0; yÞ; the one-step

transition density, or the process model fXnjXn� 1
ðxnjxn� 1; yÞ; and the measurement model

fYn jXn
ðynjxnÞ. In the following subsections, we describe Models 1–3 in terms of these three com-

ponents. The latent state vector X(t) for each model consists of individuals labeled as suscepti-

ble (S), infected (I), asymptomatically infected (A), vaccinated (V), and recovered (R), with

various sub-divisions sometimes considered. The observable random vector Y1:N represents

the random vector of cholera incidence data for each model; Models 2 and 3 have metapopula-

tion structure, meaning that each individual is a member of a spatial unit, denoted by a sub-

script u 2 1:U, in which case we denote the observed data for each unit using y∗
1:N ¼ y∗

1:N;1:U .

Here, the spatial units are the U = 10 Haitian administrative départements (henceforth angli-

cized as departments).

While the complete model description is scientifically critical, as well as necessary for trans-

parency and reproducibility, the model details are not essential to our methodological discus-

sions of how to diagnose and address model misspecification with the purpose of informing

policy. A first-time reader may choose to skim through the rest of this section, and return

later. Additional details about the numeric implementation of these models are provided in a

supplemental text (S1 Text). While each of the dynamic models considered in this manuscript

can be fully described using the mathematical equations provided in the following section, dia-

grams of dynamic systems can be helpful to understand the equations. For this reason, we pro-

vide flow chart diagrams for Models 1–3 in supplement figures (S1–S3 Figs).

Model 1. The latent state vector X(t) = (Sz(t), Ez(t), Iz(t), Az(t), Rz(t), z 2 0 : Z) describes

susceptible, latent (exposed), infected (and symptomatic), asymptomatic, and recovered indi-

viduals in vaccine cohort z at time t. Here, z = 0 corresponds to unvaccinated individuals, and

z 2 1:Z describes hypothetical vaccination programs. Each program z indexes differences in

both the number of doses administered (one versus two doses per individual) and the round of

vaccine administration, separating individuals into compartments with distinct dynamics

based on vaccination status. The force of infection is

lðtÞ ¼
XZ

z¼0

IzðtÞ þ �
XZ

z¼0

AzðtÞ

 ! n

dGðtÞ
dt

bðtÞ=N; ð3Þ

where β(t) is a periodic cubic spline representation of seasonality, given in terms of a B-spline

basis {sj(t), j 2 1:6} and parameters β1:6 as

bðtÞ ¼ �b expð
X6

j¼1

bjsjðtÞÞ; ð4Þ
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where �b ¼ 1 (wk)-1 is a dimensionality constant. The process noise dΓ(t)/dt is multiplicative

Gamma-distributed white noise, with infinitesimal variance parameter s2
proc. Lee et al. [4]

included process noise in Model 3 but not in Model 1, i.e., they fixed s2
proc ¼ 0. Gamma white

noise in the transmission rate gives rise to an over-dispersed latent Markov process [75] which

has been found to improve the statistical fit of disease transmission models [2, 76].

For any time point in t1:N, the process model fXn jXn� 1
ðxnjxn� 1; yÞ is defined by describing

how individuals move from one latent state compartment to another. Per-capita transition

rates are given in Eqs (5)–(12):

mSzEz
¼ lðtÞ; ð5Þ

mEzIz
¼ mEIð1 � fzðtÞÞ; ð6Þ

mEzAz
¼ mEI fzðtÞ; ð7Þ

mIzRz
¼ mAzRz

¼ mIR; ð8Þ

mRzSz
¼ mRS; ð9Þ

mS0Sz
¼ mE0Ez

¼ mI0Iz
¼ mA0Az

¼ mR0Rz
¼ ZzðtÞ; ð10Þ

mSz�
¼ mEz�

¼ mIz�
¼ mAz�

¼ mRz�
¼ d; ð11Þ

m�S0
¼ mS; ð12Þ

where z 2 0:Z. Here, μAB is a transition rate from compartment A to B. We have an additional

demographic source and sink compartment • modeling entry into the study population due to

birth or immigration, and exit from the study population due to death or immigration. Thus,

μA• is a rate of exiting the study population from compartment A and μ•B is a rate of entering

the study population into compartment B.

In Model 1, the advantage afforded to vaccinated individuals is an increased probability

that an infection is asymptomatic. Conditional on infection status, vaccinated individuals are

also less infectious than their non-vaccinated counterparts by a rate of � = 0.05 in Eq (3). In

Eqs (7) and (6) the asymptomatic ratio for non-vaccinated individuals is set f0(t) = 0, so that

the asymptomatic route is reserved for vaccinated individuals. For z 2 1:Z, the vaccination

cohort z is assigned a time τz, and we take fz(t) = cϑ*(t − τz) where ϑ*(t) is efficacy at time t
since vaccination for adults, a step-function represented in Table S4 of [4], and c = (1 − (1

− 0.4688) × 0.11) is a correction to allow for reduced efficacy in the 11% of the population

aged under 5 years. Single and double vaccine doses were modeled by changing the waning of

protection; protection was modeled as equal between single and double dose until 52 weeks

after vaccination, at which point the single dose becomes ineffective.

The latent state vector X(t) is initialized by setting the counts for each compartment and

vaccination scenario z 6¼ 0 as zero, and introducing initial-value parameters I0,0 and E0,0 such

that R0(0) = 0, I0(0) = Pop × I0,0, E0(0) = Pop × E0,0 and S0(0) = Pop × (1 − I0,0 − E0,0), where

Pop is the total population of Haiti. The measurement model describes reported cholera cases

at time point n come from a negative binomial distribution, where only a fraction (ρ) of new

weekly cases are reported. More details about the initialization model fX0
ðx0; yÞ and the
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measurement model fYn jXn
ðynjxnÞ for Models 1–3 are provided in a supplement text (S2 and S3

Text).

Model 2. Susceptible individuals are in compartments Suz(t), where u 2 1:U corresponds

to the U = 10 departments, and z 2 0:4 describes vaccination status:

z = 0: Unvaccinated or waned vaccination protection.

z = 1: One dose at age under five years.

z = 2: Two doses at age under five years.

z = 3: One dose at age over five years.

z = 4: Two doses at age over five years.

Like Model 1, the process model fXnjXn� 1
ðxnjxn� 1; yÞ is primarily defined via the description

of movement of individuals between compartments, however Model 2 also includes a dynamic

description of a latent bacterial compartment as well. Individuals can progress to a latent infec-

tion Euz followed by symptomatic infection Iuz with recovery to Ruz or asymptomatic infection

Auz with recovery to RA
uz. The force of infection depends on both direct transmission and an

aquatic reservoir, Wu(t), and is given by

luðtÞ ¼ 0:5 1þ a cos 2pt þ �ð Þð Þ
bW WuðtÞ

Wsat þWuðtÞ
þ b

X4

z¼0

IuzðtÞ þ �
X4

z¼0

AuzðtÞ

( )

: ð13Þ

The latent state is therefore described by the vector

XðtÞ ¼ ðSuzðtÞ;EuzðtÞ; IuzðtÞ;AuzðtÞ;RuzðtÞ;RA
uzðtÞ;Wu; u 2 1:U; z 2 0:4Þ. The cosine term in

Eq (13) accounts for annual seasonality, with a phase parameter ϕ. The Lee et al. [4] implemen-

tation of Model 2 fixes ϕ = 0.

Individuals move from department u to v at rate Tuv, and aquatic cholera moves at rate TW
uv .

The nonzero transition rates are

mSuzEuz
¼ ð1 � WzÞluðtÞ; ð14Þ

mEuzIuz
¼ fmEI; mEuzAuz

¼ ð1 � f ÞmEI; ð15Þ

mIuzRuz
¼ mAuzRAuz

¼ mIR; ð16Þ

mRuzSuz
¼ mRAuzSuz

¼ mRS; ð17Þ

mSuzSvz
¼ mEuzEvz

¼ mIuzIvz
¼ mAuzAvz

¼ mRuzRvz
¼ mRAuzR

A
vz
¼ Tuv; ð18Þ

mSu1Su0
¼ mSu3Su0

¼ o1; ð19Þ

mSu2Su0
¼ mSu4Su0

¼ o2; ð20Þ
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m�Wu
¼ mW

X4

z¼0

IuzðtÞ þ �W
X4

z¼0

AuzðtÞ

( )

; ð21Þ

mWu�
¼ dW ; ð22Þ

mWuWv
¼ wrTW

uv : ð23Þ

In Eq (18) the spatial coupling is specified by a gravity model,

Tuv ¼ vrate �
PopuPopv

D2
uv

; ð24Þ

where Popu is the mean population for department u, Duv is a distance measure estimating

average road distance between randomly chosen members of each population, and vrate =

10−12 km2yr−1 was fixed at the value used in [4]. In Eq (23), TW
uv is a measure of river flow

between departments. The unit of Wu(t) is cells per ml, with dose response modeled via a satu-

ration constant of Wsat in Eq (13). In Eq (14), ϑz denotes the vaccine efficacy for each vaccina-

tion campaign z 2 Z, with ϑ0 = 0, ϑ1 = 0.429q, ϑ2 = 0.519q, ϑ3 = 0.429, and ϑ4 = 0.519 Here,

q = 0.4688 represents the reduced efficacy of the vaccination for children under the age of five

years, and the values 0.429 and 0.519 are the median effectiveness of one and two doses over

their effective period respectively, according to Table S4 in the supplement material of Lee

et al. [4]. Because vaccine efficacy remains constant, individuals in this model transition from

a vaccinated compartment to the susceptible compartment at the end of the vaccine coverage

period.

The starting value for each element of the latent state vector X(0) are set to zero except for

Iu0ð0Þ ¼ y∗uð0Þ=r and Ru0(0) = Popu − Iu0(0), where y∗uð0Þ is the reported number of cholera

cases in department u at time t = 0. Reported cases are described using a log-normal distribu-

tion, with the log-scale mean equal to the reporting rate ρ times the number of newly infected

individuals. See the supplement material on model initializations for more details (S2 Text).

Model 3. The latent state is described as X(t) = (Suz(t), Iu(t), Au(t), Ruzk(t), Wu(t), u 2 0:U,

z 2 0:4, k 2 1:3). Here, z = 0 corresponds to unvaccinated, z = 2j − 1 corresponds to a single

dose on the jth vaccination campaign in unit u and z = 2j corresponds to receiving two doses

on the jth vaccination campaign. k 2 1:3 models non-exponential duration in the recovered

class before waning of immunity. The processes model fXnjXn� 1
ðxnjxn� 1; yÞ describes the move-

ment of individuals between latent compartments, as well as the birth and death process of

local, unobserved bacterial compartments Wu(t). The force of infection is

luðtÞ ¼ bWu
þ 1ðt�thmÞb

hm
Wu
e� hhmu ðt� thmÞ

� � WuðtÞ
1þWuðtÞ

þ bu

X

v6¼u

IvðtÞ þ �AvðtÞð Þ; ð25Þ

where thm is the time Hurricane Matthew struck Haiti [77], and 1(A) is the indicator function

for event A. In [4], b
hm
Wu

and hhmu were set to zero for all u; the need to account for the effect Hur-

ricane Matthew had on cholera transmission for this model is explored in the supplement (S5

Text).
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Per-capita transition rates are used for both compartments representing human counts and

the aquatic reservoir of bacteria; these rates are given in Eqs (26)–(33).

mSuzIu
¼ f luð1 � WuzðtÞÞ dG=dt; ð26Þ

mSuzAu
¼ ð1 � f Þluð1 � WuzðtÞÞ dG=dt; ð27Þ

mIuRuz1
¼ mAuRuz1

¼ mIR; ð28Þ

mIuSu0
¼ dþ dC; mAuSu0

¼ d ð29Þ

mRuz1Ruz2
¼ mRuz2Ruz3

¼ 3mRS; ð30Þ

mRuzkSu0
¼ dþ 3mRS 1fk¼3g; ð31Þ

m�Wu
¼ ½1þ aðJuðtÞÞ

r
�Denu mW ½IuðtÞ þ �WAuðtÞ�; ð32Þ

mWu�
¼ dW : ð33Þ

As with Model 1, dΓu(t)/dt is multiplicative Gamma-distributed white noise in Eqs (26) and

(27). In Eq (32), Ju(t) is a dimensionless measurement of precipitation that has been standard-

ized by dividing the observed rainfall at time t by the maximum recorded rainfall in depart-

ment u during the epidemic, and Denu is the population density. Demographic stochasticity is

accounted for by modeling non-cholera related death rate δ in each compartment, along with

an additional death rate δC in Eq (29) to account for cholera induced deaths among infected

individuals. All deaths are balanced by births into the susceptible compartment in Eqs (29)

and (31), thereby maintaining constant population in each department.

Similar to Model 1, there are no distinct compartments for individuals under five years of

age, and the vaccination efficacy is taken as a age adjusted weighted average of the efficacy for

individuals both over and under five years of age: ϑuz(t) = cϑ*(t − τuz), where τuz is the vaccina-

tion time for unit u and vaccination campaign z. The value c and the function ϑ* are equivalent

to those described in the Model 1 description.

Latent states are initialized using an approximation of the instantaneous number of

infected, asymptomatic, and recovered individuals at time t0 by using the first week of cholera

incidence data. Specifically, we set Iu0ð0Þ ¼
y∗
1u

rðdþdCþmIRÞ
, Au0ð0Þ ¼

1� f
f Iu0ð0Þ,

Ru0k ¼ y∗
1u � Iu0ð0Þ � Au0ð0Þ, and we initialize Wu(0) by enforcing the rainfall dynamics sup-

posed by the one step transition model; all other compartments that represent population

counts are set to zero at time t0. For each unit u with zero case counts at time t1, this initializa-

tion scheme results in having zero individuals in the Infected and Asymptomatic compart-

ments, as well as having no bacteria in the aquatic reservoir. In reality, it is plausible that some

bacteria or infected individuals were present in unit u but went unreported. Therefore, for

departments with zero case counts in week 1, we estimate the number of infected individuals

rather then treating this value as a constant (S2 Text). Finally, reported cholera cases are mod-

eled using a negative binomial distribution with mean equal to a fraction (ρ) of individuals in

each unit who develop symptoms and seek healthcare, and with over-dispersion parameter ψ
(S3 Text).
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Model fitting

Each of the three models considered in this study describes cholera dynamics as a partially

observed Markov process (POMP) [3], with the understanding that the deterministic Model 2

is a special case of a Markov processes solving a stochastic differential equation in the limit as

the noise parameter goes to zero. Each model is indexed by a parameter vector, θ, and different

values of θ can result in qualitative differences in the predicted behavior of the system. There-

fore, the choice of θ used to make inference about the system can greatly affect model-based

conclusions [49]. Elements of θ can be fixed at a constant value based on scientific understand-

ing of the system, but parameters can also be calibrated to data by maximizing a measure of

congruency between the observed data and the model’s mechanistic structure. Calibrating

model parameters to observed data does not guarantee that the resulting model successfully

approximates real-world mechanisms, since the model description of the dynamic system may

be incorrect and does not change as the model is calibrated to data. However, the congruency

between the model and observed data serves as a proxy for the congruency between the model

and the true underlying dynamic system. As such, it is desirable to obtain the best possible fit

of the proposed mechanistic structure to the observed data.

In this article we follow [4] by calibrating the parameters of each of our models using maxi-

mum likelihood, as described in Eq (1). The likelihood for each of the fitted models—and the

corresponding AIC values for model comparisons that include an adjustment for the number

of calibrated parameters—is provided in Table 1. In the following subsections we describe in

detail our approach to calibrating the three proposed mechanistic models to observed cholera

incidence data. The main alternative to maximum likelihood estimation is Bayesian inference

via Markov chain Monte Carlo, used to analyze the Haiti cholera epidemic by [6, 10, 17, 23–

25, 27, 30, 33, 34].

Calibrating Model 1 parameters. Model 1 is a highly nonlinear over-dispersed stochastic

dynamic model, favoring a scientifically plausible description of cholera dynamics rather than

one that is statistically convenient [2]. This results in the inability to obtain a closed form

expression of the joint model density—described in Eq (2). Therefore in order to perform like-

lihood based inference on this model, we are restricted to use parameter estimation techniques

that have the plug-and-play property, which is that the fitting procedure only requires the abil-

ity to simulate the latent process rather than evaluating transition densities [2, 78]; in the con-

text of the notation and definitions employed in this article, this means that we only require

Table 1. AIC values for Models 1–3 and their benchmarks.

Model 1 Model 2 Model 3

Log-likelihood −2728.1 −21957.3 −17332.9

(−3030.9)1 (−29367.4) (−33832.6)2

Number of Fit Parameters 15 6 34

(20) (6) (29)

AIC 5486.3 43926.5 34733.9

(6101.8)1 (58746.9) (67723.2)2

Benchmark AIC 5585.3 36961.0 35945.2

Values in parentheses are corresponding values obtained using the models of [4].
1The reported likelihood is an upper bound of the likelihood of the model in [4].
2In [4], Model 3 was fit to a subset of the data (March 2014 onward, excluding data from Ouest in 2015–2016). On this subset, their model has a likelihood of −9721.2.

On this same subset, our model has a likelihood of −7219.5. Details of estimating the likelihood of the models used in [4] are provided in the supplement (S4 Text).

https://doi.org/10.1371/journal.pcbi.1012032.t001
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the ability to simulate from fX0
ðx0; yÞ and fXnjXn� 1

ðxnjxn� 1; yÞ rather than needing to evaluate

these densities. Plug-and-play algorithms include Bayesian approaches like ABC and PMCMC

[79, 80], but here we use algorithms that enable maximum likelihood estimation. To our

knowledge, the only plug-and-play methods that have been effectively used to maximize the

likelihood for arbitrary nonlinear POMP models are iterated filtering algorithms [81], which

modify the well-known particle filter [82].

The particle filter, also referred to as sequential Monte Carlo, is a simulation based method

that is frequently used in Bayesian inference to approximate the posterior distribution of latent

states. This algorithm can also be used to accurately approximate the log-likelihood of a

POMP model, defined as the integral in Eq (1). Iterated filtering algorithms, such as IF2 [81],

extend the particle filter by performing a random walk for each parameter and particle; these

perturbations are carried out iteratively over multiple filtering operations, using the collection

of parameters from the previous filtering pass as the parameter initialization for the next itera-

tion, and decreasing the random walk variance at each step. With a sufficient number of itera-

tions, the resulting parameter values converge to a region of the parameter space that

maximizes the model likelihood.

The ability to maximize the likelihood allows for likelihood-based inference, such as per-

forming statistical tests for potential model improvements. We demonstrate this capability by

proposing a log-linear trend z in transmission in Eq (4):

bðtÞ ¼ �b expð
X6

j¼1

bssjðtÞ þ z�tÞ; ð34Þ

where �t ¼ t� ðtNþt0Þ=2

tN � ðtNþt0Þ=2
, so that �t 2 ½� 1; 1�. The proposal of a trend in transmission is a result of

observing an apparent decrease in reported cholera infections from 2012–2019 in Fig 1. While

several factors may contribute to this decrease, one explanation is that case-area targeted inter-

ventions (CATIs), which included education sessions, increased monitoring, household

decontamination, soap distribution, and water chlorination in infected areas [66], may have

substantially reduced cholera transmission over time [83].

We perform a statistical test to determine whether or not the data indicate the presence of a

trend in transmissibility. To do this, we perform a profile-likelihood search on the parameter z

and obtain a 95% confidence interval via a Monte Carlo Adjusted Profile (MCAP) [84]. Lee

et al. [4] implemented Model 1 by fitting two distinct phases: an epidemic phase from October

2010 through March 2015, and an endemic phase from March 2015 onward. We similarly

allow the re-estimation of process and measurement overdispersion parameters (s2
proc and ψ),

and require that the latent Markov process X(t) carry over from one phase into the next. The

resulting 95% confidence interval for z is (−0.098, −0.009), with the full results displayed in Fig

3. These results are suggestive that the inclusion of a trend in the transmission rate improves

the quantitative ability of Model 1 to describe the observed data. The maximum likelihood esti-

mate for z corresponds to a 7.3% reduction to the transmission rate over the course of the out-

break, with a 95% confidence interval of (1.8%, 17.9%) for the overall reduction in

transmission. The reported results for Model 1 in the remainder of this article were obtained

with the inclusion of the parameter z. The inclusion of a trend in transmission rate demon-

strates a class of model variation that can be highly beneficial to consider: the model variation

has a plausible scientific justification, and is easily testable using likelihood based methods.

If a mechanistic model including a feature (such as a representation of a mechanism, or the

inclusion of a covariate) fits better than mechanistic models without that feature, and also has

competitive fit compared to associative benchmarks, this may be taken as evidence supporting
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the scientific relevance of the feature. As for any analysis of observational data, we must be

alert to the possibility of confounding. For a covariate, this shows up in a similar way to regres-

sion analysis: the covariate under investigation could be a proxy for some other unmodeled

phenomenon or unmeasured covariate.

The statistical evidence of a trend in transmission rate in this model could be explained by

any trending variable (such as hygiene improvements, or changes in population behavior),

resulting in confounding from collinear covariates. Alternatively, it is possible that the negative

trend observed in the incidence data could be attributed to a decreasing reporting rate rather

than decreasing transmission rate. This could be formally tested by comparing models with

either trend specification. We did not do this because evidence suggests that reporting rate was

maintained or increased (Figure 1 of [83]). We instead argue that a decreasing transmission

rate is a plausible way to explain the decrease in cases over time, as there is alternative evidence

that supports this model [66, 83, 85]. It is not practical to test all remotely plausible model vari-

ations, yet a strongly supported conclusion should avoid ruling out untested hypotheses. The

robust statistical conclusion for our analysis is that a model which allows for change fits better

than one which does not, and a trend in transmission is a plausible way to do this.

We implemented Model 1 using the pomp package [3], relying heavily on the source code

provided by Lee et al. [4]. Both analyses used the mif2 implementation of the IF2 algorithm

to estimate θ by maximum likelihood. One change we made in the statistical analysis that led

to larger model likelihoods was increasing the computational effort in the numerical maximi-

zation. While IF2 enables parameter estimation for a large class of models, the theoretic ability

to maximize the likelihood depends on asymptotics in both the number of particles and the

number of filtering iterations. Many Monte Carlo replications are then required to quantify

and further reduce the error. The large increase in the log-likelihood for Model 1 (Table 1) can

primarily be attributed to increasing the computational effort used to calibrate the model. This

result highlights the importance of carefully determining the necessary computational effort

needed to maximize model likelihoods and acting accordingly. In this case study, this was

done by performing standard diagnostics for the IF2 and particle filter algorithms [3, 55, 86,

Fig 3. Confidence interval for the log-linear trend in transmission. Monte Carlo adjusted profile (MCAP) of z for

Model 1. The blue curve is the MCAP, the vertical blue line indicates the MLE, and the vertical dashed lines indicate

the 95% confidence interval.

https://doi.org/10.1371/journal.pcbi.1012032.g003

PLOS COMPUTATIONAL BIOLOGY Informing policy via dynamic models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012032 April 29, 2024 13 / 31

https://doi.org/10.1371/journal.pcbi.1012032.g003
https://doi.org/10.1371/journal.pcbi.1012032


87]. Given the considerable computational costs of simulation-based algorithms, we find it

useful to perform an initial assessment using hyperparameter values—such as the number of

particles, filtering iterations, and replicates based on different parameter initializations—that

enable relatively quick calculations. The insights obtained from this preliminary analysis help

in accurately determining the amount of computation that is required to achieve reliable out-

comes. Simulations from the initial conditions of our fitted model are plotted against the

observed incidence data in Fig 4.

Calibrating Model 2 parameters. Model 2 is a deterministic compartmental model

defined by a set of coupled differential equations. The use of deterministic compartment mod-

els have a long history in the field of infectious disease epidemiology [88–90], and can be justi-

fied by asymptotic considerations in a large-population limit [91, 92]. Because the process

model of Model 2 is deterministic, maximum likelihood estimation reduces to a least squares

calculation when combined with a Gaussian measurement model (S3 Text). Lee et al. [4] fit

two versions of Model 2 based on a presupposed change in cholera transmission from a epi-

demic phase to endemic phase that occurred in March, 2014. The inclusion of a change-point

in model states and parameters increased the flexibility of the model and hence the ability to fit

the observed data. The increase in model flexibility, however, resulted in hidden states that

were inconsistent between model phases. The inclusion of a model break-point by Lee et al.

[4] is perhaps due to a challenging feature of fitting a deterministic model via least squares: dis-

crepancies between model trajectories and observed case counts in highly infectious periods of

a disease outbreak will result in greater penalty than the discrepancies between model trajecto-

ries and observed case counts in times of relatively low infectiousness. This results in a bias

towards accurately describing periods of high infectiousness. This bias is particularly trouble-

some for modeling cholera dynamics in Haiti: the inability to accurately fit times of low infec-

tiousness may result in poor model forecasts, as few cases of cholera were observed in the last

few years of the epidemic.

To combat this issue, we fit the model to log-transformed case counts, since the log scale

stabilizes the variation during periods of high and low incidence. An alternative solution is to

change the measurement model to include overdispersion, as was done in Models 1 and 3.

This permits the consideration of demographic stochasticity, which is dominant for small

infected populations, together with log scale stochasticity (also called multiplicative, or

Fig 4. Simulations from Model 1 compared to reported cholera cases. The black curve is observed data, the blue

curve is median of 500 simulations from initial conditions using estimated parameters, and the vertical dashed line

represents break-point when parameters are refit.

https://doi.org/10.1371/journal.pcbi.1012032.g004
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environmental, or extra-demographic) which is dominant at high population counts. Here we

chose to fit the model to transformed case counts rather than adding overdispersion to the

measurement model with the goal of minimizing the changes to the model proposed by Lee

et al. [4].

We implemented this model using the spatPomp R package [93]. The model was then fit

using the subplex algorithm [94]. A comparison of the trajectory of the fitted model to the data

is given in Fig 5.

Calibrating Model 3 parameters. Model 3 describes cholera dynamics in Haiti using a

metapopulation model, where the hidden states in each administrative department has an

effect on the dynamics in other departments. The decision to address metapopulation dynam-

ics using a spatially explicit model, rather than to aggregate over space, is double-edged. Evi-

dence for the former approach has been provided in previous studies [95], including the

specific case of heterogeneity between Haitian departments in cholera transmission [19]. How-

ever, a legitimate preference for simplicity can support a decision to consider nationally aggre-

gated models [49, 96].

In our literature review, 17 articles considered dynamic models that incorporate spatial het-

erogeneity [4, 5, 8–11, 14, 17, 19, 20, 22–25, 27, 33, 34]. All but four [4, 27, 33, 34] of these stud-

ies used deterministic dynamic models: this greatly simplifies the process of calibrating model

parameters to incidence data, though deterministic models can struggle to describe complex

stochastic dynamics. The model in [27] was fit using an Ensemble Kalman Filter (EnKF) [97];

though EnKF scales favorably with the number of spatial units, it relies on linearization of

latent states which can be problematic for highly nonlinear systems [98, 99]. Alternative

approaches used to fit stochastic models included making additional simplifying assumptions

to aid in the fitting process [4], and using MCMC algorithms [33, 34] which require specific

structures in the latent dynamics, making these algorithms non plug-and-play. In this subsec-

tion, we present how the recently developed iterated block particle filter (IBPF) algorithm

[100, 101] can be used to fit a spatially explicit stochastic dynamic model to incidence data.

One issue that arises when fitting spatially explicit models is that parameter estimation tech-

niques based on the particle filter become computationally intractable as the number of spatial

units increases. This is a result of the approximation error of particle filters growing exponen-

tially in the dimension of the model [102, 103]. To avoid the approximation error present in

high-dimensional models, Lee et al. [4] simplified the problem of estimating the parameters of

Model 3 by creating an approximate version of the model where the units are independent

Fig 5. Simulated trajectory of Model 2. The black line shows the nationally aggregated weekly cholera incidence data.

The blue curve from 2012–2019 is the trajectory of the calibrated version of Model 2. Projections under the various

vaccination scenarios, which are discussed in detail in the Forecasts subsection are also included. The gray ribbons

represent a 95% interval obtained from the log-normal measurement model. To avoid over-plotting, measurement

variance is only plotted for the V0 vaccination scenario.

https://doi.org/10.1371/journal.pcbi.1012032.g005
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given the observed data. Reducing a spatially coupled model to individual units in this fashion

requires special treatment of any interactive mechanisms between spatial units, such as found

in Eq (25). Because the simplified, spatially-decoupled version of Model 3 implemented in [4]

relies on the observed cholera cases, the calibrated model cannot readily be used to obtain fore-

casts. Therefore, in order to obtain model forecasts, Lee et al. [4] used the parameters estimates

from the spatially-decoupled approximation of Model 3 to obtain forecasts using the fully cou-

pled version of the model. This approach of model calibration and forecasting avoids the issue

of particle depletion, but may also be problematic. One concern is that cholera dynamics in

department u are highly related to the dynamics in the remaining departments; calibrating

model parameters while conditioning on the observed cases in other departments may there-

fore lead to an over-dependence on observed cholera cases. Another concern is that the two

versions of the model are not the same, resulting in sub-optimal parameter estimates for the

spatially coupled model, as parameters that maximize the likelihood of the decoupled model

almost certainly do not maximize the likelihood of the fully coupled model. These two con-

cerns may explain the unrealistic forecasts and low likelihood of Model 3 in [4] (Table 1).

At the time Lee et al. [4] conducted their study, there was no known algorithm that could

readily be used to maximize the likelihood of an arbitrary meta-population POMP model with

coupled spatial dynamics, which justifies the spatial decoupling approximation that was used

to calibrate model parameters. For our analysis, we calibrate the parameters of the spatially

coupled version of Model 3 using the IBPF algorithm [101]. This algorithm extends the work

of Ning and Ionides [100], who provided theoretic justification for the version of the algorithm

that only estimates unit-specific parameters. The IBPF algorithm enables us to directly esti-

mate the parameters of models describing high-dimensional partially-observed nonlinear

dynamic systems via likelihood maximization. The ability to directly estimate parameters of

Model 3 is responsible for the large increase in model likelihoods reported in Table 1. Simula-

tions from the fitted model are displayed in Fig 6.

Model diagnostics

The goal of parameter calibration—whether done using Bayesian or frequentist methods—is

to find the best description of the observed data in the context of the model. Obtaining the best

fitting set of parameters for a given model does not, however, guarantee that the model pro-

vides an accurate representation of the system under investigation. Model misspecification,

which may be thought of as the omission of a mechanism in the model that is an important

Fig 6. Simulations from Model 3 compared to reported cholera cases. Simulations from initial conditions using the

spatially coupled version of Model 3. The black curve represents true case count, the blue line the median of 500

simulations from the model, and the gray ribbons representing 95% confidence interval.

https://doi.org/10.1371/journal.pcbi.1012032.g006
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feature of the dynamic system, is inevitable at all levels of model complexity. To make progress,

while accepting proper limitations, one must bear in mind the much-quoted observation of

George Box [104] that “all models are wrong but some are useful.” Beyond being good practi-

cal advice for applied statistics, this assertion is relevant for the philosophical justification of

statistical inference as severe testing [105]. In this section, we discuss some tools for diagnosing

mechanistic models with the goal of making the subjective assessment of model “usefulness”

more objective. To do this, we will rely on the quantitative ability of the model to match the

observed data, which we call the model’s goodness-of-fit, with the guiding principle that a

model which cannot adequately describe observed data may not be reliable for useful purposes.

Goodness-of-fit may provide evidence supporting the causal interpretation of one model ver-

sus another, but cannot by itself rule out the possibility of alternative explanations.

One common approach to assess a mechanistic model’s goodness-of-fit is to compare simu-

lations from the fitted model to the observed data. Visual inspection may indicate defects in

the model, or may suggest that the observed data are a plausible realization of the fitted model.

While visual comparisons can be informative, they provide only a weak and informal measure

of the goodness-of-fit of a model. The study by Lee et al. [4] provides an example of this: their

models and parameter estimates resulted in simulations that visually resembled the observed

data, yet resulted in model likelihoods that were considerably smaller than likelihoods that can

be achieved (see Table 1). Alternative forms of model validation should therefore be used in

conjunction with visual comparisons of simulations to observed data.

Another approach is to compare a quantitative measure of the model fit (such as MSE, pre-

dictive accuracy, or model likelihood) among all proposed models. These comparisons, which

provide insight into how each model performs relative to the others, are quite common [10,

33]. To calibrate relative measures of fit, it is useful to compare against a model that has well-

understood statistical ability to fit data, and we call this model a benchmark. Standard statistical

models, interpreted as associative models without requiring any mechanistic interpretation of

their parameters, provide suitable benchmarks. Examples include linear regression, auto

regressive moving average (ARMA) time series models, or even independent and identically

distributed measurements. Benchmarks enable us to evaluate the goodness of fit that can be

expected of a suitable mechanistic model.

Associative models are not constrained to have a causal interpretation, and typically are

designed with the sole goal of providing a statistical fit to data. Therefore, we should not

require a candidate mechanistic model to beat all benchmarks. However, a mechanistic model

which falls far short against benchmarks is evidently failing to explain some substantial aspect

of the data. A convenient measure of fit should have interpretable differences that help to oper-

ationalize the meaning of far short. Ideally, the measure should also have favorable theoretical

properties. Consequently, we focus on log-likelihood as a measure of goodness of fit, and we

adjust for the degrees of freedom of the models to be compared by using the Akaike informa-

tion criterion (AIC) [106].

In some cases, a possible benchmark model could be a generally accepted mechanistic

model, but often no such model is available. Because of this, we use a simple negative binomial

model with an auto regressive mean as our associative benchmark; this model is described in

(35).

YnjYn� 1 � NBðaþ bYn� 1;φÞ; ð35Þ

where E(Yn|Yn−1) = α + βYn−1, and Var(Yn|Yn−1) = E(Yn|Yn−1) + E(Yn|Yn−1)2/φ. To obtain a

benchmark for models with a meta-population structure, we fit independent auto-regressive

negative binomial models to each spatial unit. Under the assumption of independence, the
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log-likelihood of the benchmark on the entire collection of data can be obtained by summing

up the log-likelihood for each independent model. In general, a spatially explicit model may

not have well-defined individual log-likelihoods, and, in this case, comparisons to benchmarks

must be made at the level of the joint model.

In the case where the case counts are large, an alternative benchmark recommended by He

et al. [2] is a log-linear Gaussian ARMA model; the theory and practice of ARMA models is

well developed, and these linear models are appropriate on a log scale due to the exponential

growth and decay characteristic of biological dynamics. We use the auto regressive negative

binomial model, however, because the large number of weeks with zero recorded cholera cases

in department level data makes a benchmark based on a continuous distribution problematic.

Log-likelihoods and AIC values of Models 1–3 and of their respective benchmark models are

provided in Table 1. Models that are fit to the same datasets can be directly compared using

AIC values, making it a useful tool to compare to benchmark models. Though Models 2 and 3

are both fit to department level incidence reports, their AIC values are not directly comparable

due to the way Model 3 initializes latent states (S2 Text).

It should be universal practice to present measures of goodness of fit for published models,

and mechanistic models should be compared against benchmarks. In our literature review of

the Haiti cholera epidemic, no non-mechanistic benchmark models were considered in any of

the 32 papers that used dynamic models to describe cholera in order to obtain scientific con-

clusions. Including benchmarks would help authors and readers to detect and confront any

major statistical limitations of the proposed mechanistic models. In addition, the published

goodness of fit provides a concrete point of comparison for subsequent scientific investiga-

tions. When combined with online availability of data and code, objective measures of fit pro-

vide a powerful tool to accelerate scientific progress, following the paradigm of the common
task framework [107].

The use of benchmarks may also be beneficial when developing models at differing spatial

scales, where a direct comparison between model likelihoods is meaningless. In such a case, a

benchmark model can be fit to each spatial resolution being considered, and each model com-

pared to their respective benchmark. Large advantages (or shortcomings) in model likelihood

relative to the benchmark for a given spatial scale that are not present in other spatial scales

may provide weak evidence for (or against) the statistical fit of models across a range of spatial

resolutions.

Comparing model log-likelihoods to a suitable benchmark may not be sufficient to identify

all the strengths and weaknesses of a given model. Additional techniques include the inspec-

tion of conditional log-likelihoods of each observation given the previous observations in

order to understand how well the model describes each data point (S5 Text). Other tools

include plotting the effective sample size of each observation [108]; plotting the values of the

hidden states from simulations (S5 Text); and comparing summary statistics of the observed

data to simulations from the model [95, 109].

Corroborating fitted models with scientific knowledge

The resulting mechanisms in a fitted model can be compared to current scientific knowledge

about a system. Agreement between model-based inference and our current understanding of

a system may be taken as a confirmation of both model-based conclusions and our scientific

understanding. On the other hand, comparisons may generate unexpected results that have

the potential to spark new scientific knowledge [110].

In the context of our case study, we demonstrate how the fit of Model 1 corroborates other

evidence concerning the role of rainfall in cholera epidemics. Specifically, we examine the
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results of fitting the flexible cubic spline term in Model 1 (Eqs (3) and (4)). The cubic splines

permit flexible estimation of seasonality in the force of infection, β(t). Fig 7 shows that the esti-

mated seasonal transmission rate β mimics the rainfall dynamics in Haiti, despite Model 1 not

having access to rainfall data. This is consistent with previous studies that incorporated rainfall

as an important part of their mechanistic model or otherwise argue that rainfall is an impor-

tant driver of cholera dynamics in Haiti [4, 9, 10, 18, 26, 27, 29, 63, 64]. The estimated seasonal-

ity also features an increased transmission rate during the fall, which was noticed at an earlier

stage of the epidemic [10]. The high transmission rate in the fall may be a result of the increase

transmission that occurred in the fall of 2016, when hurricane Matthew struck Haiti [77].

For any model-based inference, it is important to recognize and assess the modeling simpli-

fications and assumptions that were used in order to arrive at the conclusions. In epidemiolog-

ical studies, for example, quantitative understanding of individual-level processes may not

perfectly match model parameters that were fit to population-level case counts, even when the

model provides a strong statistical fit [2]. This makes direct interpretation of estimated param-

eters delicate.

Our case study provides an example of this in the parameter estimate for the duration of

natural immunity due to cholera infection, m� 1
RS . Under the framework of Model 2, the best esti-

mate for this parameter is 1.4 × 1011 yr, suggesting that individuals have permanent immunity

to cholera once infected. Rather than interpreting this as scientific evidence that individuals

have permanent immunity from cholera, this result suggests that Model 2 favors a regime

where reinfection events are a negligible part of the dynamics. The depletion of susceptible

individuals may be attributed to confounding mechanisms—such as localized vaccination pro-

grams and non-pharmaceutical interventions that reduce cholera transmission [17, 83]—that

were not accounted for in the model. Perhaps the best interpretation of the estimated parame-

ter, then, is that under the modeling framework that was used, the model most adequately

describes the observed data by having a steady decrease in the number of susceptible individu-

als. The weak statistical fit of Model 2 compared to a log-linear benchmark (see Table 1) cau-

tions us against drawing quantitative conclusions from this model. A model that has a poor

statistical fit may nevertheless provide a useful conceptual framework for thinking about the

system under investigation. However, a claim that the model has been validated against data

Fig 7. Seasonality of Model 1 transmission compared to rainfall data. (Top) weekly rainfall in Haiti, lighter colors

representing more recent years. (Bottom) estimated seasonality in the transmission rate (dashed line) plotted alongside

mean rainfall (solid line). The outsized effect of rainfall in the fall may be due to Hurricane Matthew, which struck

Haiti in October of 2016 and resulted in an increase of cholera cases in the nation.

https://doi.org/10.1371/journal.pcbi.1012032.g007
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should be reserved for situations where the model provides a statistical fit that is competitive

against alternative explanations.

A model which aspires to provide quantitative guidance for assessing interventions should

provide a quantitative statistical fit for available data. However, strong statistical fit does not

guarantee a correct causal structure: it does not even necessarily require the model to assert a

causal explanation. A causal interpretation is strengthened by corroborative evidence. For

example, reconstructed latent variables (such as numbers of susceptible and recovered individ-

uals) should make sense in the context of alternative measurements of these variables [111].

Similarly, parameters that have been calibrated to data should make sense in the context of

alternative lines of evidence about the phenomena being modeled, while making allowance for

the possibility that the interpretations of parameters may vary when modeling across differing

spatial scales.

In the supplement material (S5 Text), we explore in more detail the process of model fitting

and diagnostics for Model 3. Here we demonstrate that the model outperforms its benchmark

model on the aggregate scale. However, when focusing on the spatial units with the highest

incidence of cholera, Model 3 performs roughly the same as a simple benchmark. By compar-

ing simulations from the fitted model to the filtering distribution, we see that the reconstructed

latent states of the model favor higher levels of cholera transmission than what is typically

observed in the incidence data. These results hint at the possibility of model mispecification,

and warrant a degree of caution in interpreting the model’s outputs.

Results

Forecasts

Forecasts are an attempt to provide an accurate estimate of the future state of a system based

on currently available data, together with an assessment of uncertainty. Forecasts from mecha-

nistic models that are compatible with current scientific understanding may also provide esti-

mates of the future effects of potential interventions. Further, they may enable real-time

testing of new scientific hypotheses [112].

Forecasts of a dynamic system should should be consistent with the available data. It is par-

ticularly important that forecasts are consistent with the most recent information available, as

recent data is likely to be more relevant than older data. While this assertion may seem self-evi-

dent, it is not the case for deterministic models, for which the initial conditions together with

the parameters are sufficient for forecasting, and so recent data may not be consistent with

model trajectories. Epidemiological forecasts based on deterministic models are not uncom-

mon in practice, despite their limitations [95]. Lee et al. [4] chose to obtain forecasts from all

of their models by simulating forward from initial conditions, rather than conditioning fore-

casts based on the available data. This decision is possibly as a result of using a deterministic

model, as forecasts from different models may only be considered comparable if they are

obtained in the same way, which is most easily done be by simulating from initial conditions

because Model 2 is deterministic.

In contrast, for non-deterministic Models 1 and 3, we obtain forecasts by simulating future

values using latent states that are harmonious with the most recent data. This is done by simu-

lating forward from latent states drawn at the last observation time (tN) from the filtering dis-

tribution fXN jY1:N
ðxN jy∗1:N ; ŷÞ. The decision to obtain model forecasts from initial conditions

partially explains the unsuccessful forecasts of Lee et al. [4]. Table S7 in their supplement mate-

rial, which contains results that were not discussed in their main article, shows that the subset

of their simulations with zero cholera cases from 2019–2020 also correspond with its
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disappearance until 2022. These results support our argument that forecasts should be made

by ensuring the starting point for the forecast is consistent with available data.

Uncertainty in just a single parameter can lead to drastically different forecasts [49]. There-

fore, parameter uncertainty should also be considered when obtaining model forecasts to

influence policy. If a Bayesian technique is used for parameter estimation, a natural way to

account for parameter uncertainty is to obtain simulations from the model where each simula-

tion is obtained using parameters drawn from the estimated posterior distribution. For fre-

quentist inference, one possible approach is obtaining model forecasts from various values of

θ, where the values of θ are sampled proportionally according to their corresponding likeli-

hoods [95] (S6 Text). Both of these approaches share the similarity that parameters are chosen

for the forecast approximately in proportion to their corresponding value of the likelihood

function, fY1:N
ðy∗

1:N ; yÞ. In this analysis, we do not construct forecasts accounting for parameter

uncertainty as our focus is on the estimation and diagnosis of mechanistic models, rather than

providing forecasts intended to influence policy. Furthermore, we use the projections from a

single point estimate to highlight the deficiency of deterministic models that the only variabil-

ity in model projections is a result of parameter and measurement uncertainty, which can lead

to over-confidence in forecasts [95].

The primary forecasting goal of Lee et al. [4] was to investigate the potential consequences

of vaccination interventions on a system to inform policy. One outcome of their study include

estimates for the probability of cholera elimination under several possible vaccination scenar-

ios. Mimicking their approach, we define cholera elimination as an absence of cholera infec-

tions for at least 52 consecutive weeks, and we provide forecasts under the following

vaccination scenarios:

V0: No additional vaccines are administered.

V1: Vaccination limited to the departments of Centre and Artibonite, deployed over a two-

year period.

V2: Vaccination limited to three departments: Artibonite, Centre, and Ouest deployed over a

two-year period.

V3: Countrywide vaccination implemented over a five-year period.

V4: Countrywide vaccination implemented over a two-year period.

Simulations from probabilistic models (Models 1 and 3) represent possible trajectories of

the dynamic system under the scientific assumptions of the models. Because Model 1 only

accounts for national level disease dynamics, the pre-determined department-specific vaccina-

tion campaigns are carried out by assuming the vaccines are administered in one week to the

same number of individuals that would have obtained vaccines if explicitly administered to the

specific departments. We refer readers to [4] and the accompanying supplement material for

more details. Estimates of the probability of cholera elimination can therefore be obtained as

the proportion of simulations from these models that result in cholera elimination. The results

of these projections are summarized in Fig 8.

Probability of elimination estimates of this form are not meaningful for deterministic mod-

els, as the trajectory of these models only represent the mean behavior of the system rather

than individual potential outcomes. We therefore do not provide probability of elimination

estimates under Model 2, but show trajectories under the various vaccination scenarios using

this model (Fig 5).
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Discussion

The ongoing global COVID-19 pandemic has demonstrated how government policy may be

affected by the inferences drawn from mathematical modeling [49]. However, the develop-

ment of credible models—which are supported by data and can provide quantitative insights

into a dynamic system—remains a challenging task. In this article, we demonstrated opportu-

nities available for raising the current standards of statistical inference for mathematical mod-

els of biological systems.

We presented methodology consistent with existing guidelines [48] but going beyond stan-

dard practice. In particular, we showed the value of comparing the likelihood of fitted mecha-

nistic models versus non-mechanistic benchmarks, a practice that has been previously

advocated for [2] but was not done by any of the studies in our literature review. These com-

parisons, along with other likelihood based diagnostics, help identify specific limitations of

proposed models. Diagnostic tools include likelihood profile methods, which help to assess

parameter identifiability and enable the construction of confidence intervals for parameter

estimates [84, 113]. When reaching conclusions, it is important to consider potential conse-

quences of confounded variables and model misspecification.

Model diagnostics are a key tool for exposing unresolved model limitations and improving

model fit. In our case study, we compared the three models from Lee et al. [4] to statistical

benchmarks, revealing areas for improvement. For example, comparisons of Model 3 to a

benchmark revealed its inadequacy in accounting for the post-hurricane increase in transmis-

sion, leading to a beneficial model refinement. When a mechanistic model is competitive with

statistical benchmarks, we have a license to begin critical evaluation of its causal implications.

If a model falls far behind simple benchmarks, there is likely to be substantial limitation in the

data analysis that should be identified and remedied. In our case study, the re-calibrated ver-

sion of Model 1 outperformed its benchmark, so we proceeded to examine causal implications.

When doing so, we found that the fitted model provides a causal description of the dynamic

system that is consistent with known features of the system, such as the importance of rainfall

as a driver of cholera infection. The congruency between causal implications of the model and

our belief about the dynamic system, coupled with a strong quantitative description of

observed data relative to a benchmark, provides support for viewing the model as a plausible

quantitative representation of the system under investigation.

When fitting a mechanistic model to a dynamic system, the complexity of the model war-

rants consideration. Mathematical models provide simplified representations of complex sys-

tems, with the simplicity serving both to facilitate scientific understanding and to enable

statistical inference on unknown parameters. In our case study, employing deterministic

Fig 8. Simulated probability of elimination using Models 1 and 3. Probability of cholera elimination, defined as

having zero cholera infectious for at least 52 consecutive weeks, based on 10 year simulations from calibrated versions

of Models 1 and 3. Compare to Fig 3A of [4].

https://doi.org/10.1371/journal.pcbi.1012032.g008
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dynamics in Model 2 was found to be an over-simplification by comparing model fit with

benchmarks. Model 3 is distinct in that it is both stochastic and has a meta-population struc-

ture, making it challenging to draw likelihood-based inferences. In this paper, we demon-

strated how this model class can be calibrated to incidence data using the innovative IBPF

algorithm. One of only a few examples of fitting a nonlinear non-Gaussian meta-population

model via maximum likelihood [55, 101], this case study exemplifies the algorithm’s potential

benefits and provides an example for future researchers on a possible approach to fitting a

high-dimensional non-linear model.

Likelihood-based methods aid in determining an appropriate level of model complexity.

Models fit to the same data can be compared using a criteria such as AIC. Nested model varia-

tions are particularly useful as they enable formal statistical testing of the nested features via

likelihood ratio tests. Our case study demonstrated the examination of nested model features

for all three models. Model 1 investigated a time-varying transmission rate; Model 2 assessed a

phase-shift parameter in seasonal cholera peaks; Model 3 incorporated hurricane-related

parameters.

Unmodeled features of a dynamic system can lead to spurious or misleading parameter esti-

mates if the features substantially impact observed data. In deterministic models, features that

cannot be explained by measurement error must be accounted for by the choice of parameters.

For our case study, some of the parameter estimates for the deterministic Model 2 are implau-

sible, such as the infinite immunity discussed above, and this may be explained by compensa-

tion for model misspecification. Incorporating demographic and environmental stochasticity

into models can mitigate the impact of unmodeled features. Stochastic phenomena are not

only arguably present in biological systems, but their inclusion in a model also allows observed

data variations to be attributed to inherent uncertainty rather than to distorted parameter val-

ues. Models 1 and 3 suggest the presence of extra-demographic stochasticity [2, 55, 76], as evi-

denced by the confidence intervals for the corresponding parameter σproc (S7 Text).

If forecasts are an important component of a modeling task, the forecasts should be consis-

tent with the available data, particularly at the most recently available time points. In our case

study, we did this by simulating forward from the filtering distribution, as this procedure con-

ditions latent variables on the available data. This type of forecasting, however, is not directly

available using a deterministic model, where future dynamics are fully determined by initial

conditions and parameter values. This can result in over-confident model forecasts [95].

Despite their limitations, deterministic models can offer valuable insights into dynamic sys-

tems [58]. In [4], the forecasts from the deterministic Model 2 were qualitatively more consis-

tent with the observed disappearance of cholera than the stochastic models. In our case study,

we found improvements to Models 1 and 3 that resulted in improved forecasts for these

models.

In our case study, we found that additional attention to statistical details could have resulted

in an enhanced statistical fit to the observed incidence data. This would have improved the

accuracy of the policy guidance resulting from the study. We used the same data, models, and

much of the same code used by Lee et al. [4], but we arrived at drastically different conclusions.

Specifically, each of the re-calibrated models predicted with moderate probability that cholera

would disappear from Haiti. Although there have been new cases of cholera in Haiti, this con-

clusion aligns more with the prolonged absence of cholera cases from 2019–2022. We

acknowledge the benefit of hindsight: our demonstration of a statistically principled route to

obtain better-fitting models resulting in more robust insights does not rule out the possibility

of discovering other models that fit well yet predict poorly.

Mechanistic models offer opportunities for understanding and controlling complex

dynamic systems. This case study has investigated issues requiring attention when applying
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powerful new statistical techniques that can enable statistically efficient inference for a general

class of partially observed Markov process models. Researchers should ensure that intensive

numerical calculations are adequately executed. Using benchmarks and alternative model

specifications to assess statistical goodness-of-fit should also should be common practice.

Once a model has been adequately calibrated to data, care is required to assess what causal

conclusions can properly be inferred given the possibility of alternative explanations consistent

with the data. Studies that combine model development with thoughtful data analysis, sup-

ported by a high standard of reproducibility, build knowledge about the system under investi-

gation. Cautionary warnings about the difficulties inherent in understanding complex systems

[49, 110, 114] should motivate us to follow best practices in data analysis, rather than avoiding

the challenge.

Reproducibility and extendability

Lee et al. [4] published their code and data online, and this reproducibility facilitated our

work. Robust data analysis requires not only reproducibility but also extendability: if one

wishes to try new model variations, or new approaches to fitting the existing models, or plot-

ting the results in a different way, this should not be excessively burdensome. Scientific results

are only trustworthy so far as they can be critically questioned, and an extendable analysis

should facilitate such examination [115].

We provide a strong form of reproducibility, as well as extendability, by developing our

analysis in the context of a software package, haitipkg, written in the R language [116].

Using a software package mechanism supports documentation, standardization and portabil-

ity that promote extendability. In the terminology of Gentleman and Temple Lang [115], the

source code for this article is a dynamic document combining code chunks with text. In addi-

tion to reproducing the article, the code can be extended to examine alternative analysis to that

presented. The dynamic document, together with the R packages, form a compendium, defined

by Gentleman and Temple Lang [115] as a distributable and executable unit which combines

data, text and auxiliary software (the latter meaning code written to run in a general-purpose,

portable programming environment, which in this case is R).
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75. Bretó C, Ionides EL. Compound Markov Counting Processes and their Applications to Modeling Infini-

tesimally Over-Dispersed Systems. Stochastic Processes and their Applications. 2011; 121:2571–

2591. https://doi.org/10.1016/j.spa.2011.07.005

76. Stocks T, Britton T, Höhle M. Model Selection and Parameter Estimation for Dynamic Epidemic Mod-

els via Iterated Filtering: Application to Rotavirus in Germany. Biostatistics. 2020; 21(3):400–416.

https://doi.org/10.1093/biostatistics/kxy057 PMID: 30265310

77. Ferreira S. Cholera threatens Haiti after Hurricane Matthew. BMJ. 2016; 355:i5516. https://doi.org/10.

1136/bmj.i5516 PMID: 27729331
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