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Abstract

Intrinsically disordered regions (IDRs) are segments of proteins without stable three-dimen-

sional structures. As this flexibility allows them to interact with diverse binding partners,

IDRs play key roles in cell signaling and gene expression. Despite the prevalence and

importance of IDRs in eukaryotic proteomes and various biological processes, associating

them with specific molecular functions remains a significant challenge due to their high rates

of sequence evolution. However, by comparing the observed values of various IDR-associ-

ated properties against those generated under a simulated model of evolution, a recent

study found most IDRs across the entire yeast proteome contain conserved features. Fur-

thermore, it showed clusters of IDRs with common “evolutionary signatures,” i.e. patterns of

conserved features, were associated with specific biological functions. To determine if simi-

lar patterns of conservation are found in the IDRs of other systems, in this work we applied a

series of phylogenetic models to over 7,500 orthologous IDRs identified in the Drosophila

genome to dissect the forces driving their evolution. By comparing models of constrained

and unconstrained continuous trait evolution using the Brownian motion and Ornstein-

Uhlenbeck models, respectively, we identified signals of widespread constraint, indicating

conservation of distributed features is mechanism of IDR evolution common to multiple bio-

logical systems. In contrast to the previous study in yeast, however, we observed limited evi-

dence of IDR clusters with specific biological functions, which suggests a more complex

relationship between evolutionary constraints and function in the IDRs of multicellular

organisms.

Author summary

Proteins are the molecular machines that carry out many processes required for life at an

atomic level. Though many proteins use fixed structures to perform their functions, pro-

teins with flexible segments are widespread, especially in multicellular organisms. Further-

more, these intrinsically disordered regions (IDRs) are often involved in essential cellular

functions. However, the sequences of IDRs evolve quickly, which challenges traditional
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bioinformatics methods that depend on sequence conservation to predict function. Sev-

eral studies have demonstrated that distributed biophysical features of IDRs are con-

strained rather than their exact sequences, and a recent study in yeast found that IDRs

with common patterns of conserved features were associated with specific functions.

Therefore, in this work we ask if IDRs in fruit flies, another common laboratory organism,

also have patterns of conservation with associated functions. We build on the previous

study by integrating their approach into a fully statistical framework based on mathemati-

cal models of trait evolution. Though we identify widespread signals of conservation in

the IDRs of fruit flies, we find less evidence of a simple relationship between features and

function. These methods and results will provide a valuable resource that can guide future

experimental analyses of IDRs in fruit flies and other organisms.

Introduction

Intrinsically disordered regions (IDRs) are segments of proteins which lack stable three-

dimensional structures and instead exist as ensembles of rapidly interconverting conforma-

tions [1]. As a result of this structural heterogeneity, IDRs can interact with diverse binding

partners. Often these interactions have high specificity but moderate affinity, which permits

the efficient propagation of signals by rapid binding and dissociation [2,3]. Furthermore, as

IDRs readily expose their polypeptide chains, they are enriched in recognition motifs for post-

translational modifications which allow environmental or physiological conditions to modu-

late their interactions. Accordingly, IDRs often act as the “hubs” of complex signaling net-

works by integrating signals from diverse pathways and coordinating interactions [4,5].

However, as IDRs are ubiquitous in eukaryotic proteomes, with estimates of the fractions of

disordered residues in the human, mouse, and fruit fly proteomes ranging between 22 and

24% [6,7], they are involved in diverse processes [8] including transcriptional regulation [9]

and the formation of biomolecular condensates [10].

Despite the prevalence and importance of IDRs in eukaryotic proteomes, associating them

with specific molecular functions or biological processes remains a significant challenge. The

sequences of IDRs are generally poorly conserved, so traditional bioinformatics approaches

which rely on the conservation of amino acid sequences to identify homologous proteins and

transfer annotations between them are largely unsuccessful when applied to IDRs. However,

several recent studies have demonstrated evidence that IDRs are constrained to preserve “dis-

tributed features” such as flexibility [11], chemical composition [12], net charge [13], or charge

distribution [14,15]. Because many sequences can yield a region with a specific composition,

for example, this mode of constraint uncouples an IDR’s fitness from its strict sequence of

amino acids. Furthermore, in contrast to folded regions whose precise contacts and packing

geometries are easily disrupted by amino acid substitutions, distributed features are robust to

such changes, as individual residues only weakly contribute to a region’s fitness. For example,

a mutation at one site in an IDR that changes its net charge is easily reversed by subsequent

compensatory mutations elsewhere in the region. Thus, under this model the sequences of

IDRs can rapidly diverge and still preserve their structural or functional properties.

This form of selective constraint can also describe the evolution of more “localized” features

in IDRs such as short linear motifs (SLiMs). Because SLiMs are composed of fewer than 12 res-

idues, they form limited interfaces that frequently mediate the transient binding events

involved in signaling pathways [16]. Accordingly, they are highly enriched in IDRs, which pro-

vide an accessible and flexible scaffold for these interactions [17,18]. While some SLiMs in
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IDRs are strongly conserved at specific positions, these constitute a small fraction of disor-

dered residues, estimated at roughly 17% in the yeast proteome [19]. Instead, as SLiMs are

compact and often highly degenerate at some positions, they can arise de novo from a small

number of mutations and therefore have high rates of turnover. Furthermore, when IDRs con-

tain multiple copies of a motif that jointly mediate a high-avidity interaction [16] or a graded

response to a signal via the accumulation of multiple phosphorylations [3,20], the individual

motifs are under weak selective constraints. As a result, though SLiMs are encoded by specific

sequences, in some contexts they may evolve as distributed features that characterize IDRs as a

whole rather than specific sites within them [21].

The initial studies demonstrating evidence of constraint were generally restricted to specific

features or proteins. However, by comparing the observed values of various IDR-associated

properties against those generated under a simulated model of evolution, Zarin et al. [22]

showed most IDRs across the entire yeast proteome contain conserved features. Furthermore,

they identified clusters of IDRs with common “evolutionary signatures,” i.e. patterns of con-

served features, which were associated with specific biological functions. This analysis for the

first time provided a global view of the relationship between sequence and function in IDRs. A

follow-up study then expanded on this initial finding by applying techniques from machine

learning and statistics to predict the functions of individual IDRs using their evolutionary sig-

natures [23].

However, no known subsequent studies have determined if similar patterns of conservation

are found in the IDRs of other systems. As another foundational model organism with abun-

dant genomic information across many evolutionary lineages [24–27], the fruit fly, Drosophila
melanogaster, is a natural choice for subsequent investigation. Furthermore, given its complex

multicellular development process and shared signaling pathways with humans, the findings

of such a study would significantly advance our understanding of the role of IDRs in gene reg-

ulation as well as human health and disease. The concordance of these results with the previ-

ously identified IDR clusters would also have profound implications for the broader

mechanisms of IDR evolution. For example, the absence of global patterns of evolutionary sig-

natures across IDRs in Drosophila would suggest they are property of IDRs which is unique to

yeast. In contrast, the identification of clusters similar to those in yeast would support the exis-

tence of a taxonomy of IDRs which is conserved across the tree of life. The latter result would

represent a significant step towards the creation of resources for the classification of IDRs anal-

ogous to those for folded domains such as Pfam [28], CATH [29], or SCOP [30,31].

Therefore, in this work we applied a series of phylogenetic models to dissect of evolution of

a set of orthologous IDRs identified in the Drosophila genome. Our analyses span multiple lev-

els, ranging from the sequences that compose these regions to the distributed features that

characterize them as a whole. For the latter, though the previous approach relied on simula-

tions to generate the null distribution for a hypothesis of no constraint, we instead leveraged a

fully statistical phylogenetic comparative framework [32]. By comparing models of con-

strained and unconstrained continuous trait evolution, i.e. the Brownian motion and Orn-

stein-Uhlenbeck models, respectively, we can demonstrate evidence of selective constraint on

features independent of any assumptions about the underlying process of sequence evolution.

However, we also propose hybrid approaches that combine simulations with phylogenetic

comparative methods to test increasingly refined models of IDR evolution. We found that

IDRs exhibit unique patterns of amino acid substitution and that in some proteins disorder

itself is a dynamically evolving property. Furthermore, though IDRs are broadly unconstrained

along several axes of feature evolution, we identified signals of widespread constraint in IDRs,

indicating conservation of distributed features is mechanism of IDR evolution common to

multiple biological systems. Unlike in yeast, though, we observed limited evidence of IDR
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clusters with specific biological functions, which suggests a more complex relationship

between evolutionary constraints and function in the IDRs of multicellular organisms. These

conclusions, however, are tempered by several methodological limitations, e.g., the application

of continuous models of trait evolution to discrete data, which are explored in greater detail in

the discussion.

Results

IDRs are shorter and more divergent than non-disordered regions

As many IDRs evolve rapidly, a major challenge for proteome-wide comparative analyses is

correctly inferring and aligning homologous IDRs. We therefore relied on a set of over 8,500

high quality alignments of full-length single copy orthologs from 33 species in the Drosophila
genus which we had previously generated and characterized [33]. (The use of full-length single

copy orthologs ensures that IDRs are properly aligned by “anchoring” them to more conserved

regions and that the proteins are unlikely to have undergone functional divergence as a result

of gene duplication.) We then identified regions with high levels of inferred intrinsic disorder

using the disorder predictor AUCPreD [34]. To highlight the unique features of IDR evolution

in subsequent analyses, we also extracted a complementary set of regions with low levels of

inferred disorder.

Both sets were filtered on several criteria, including the lengths of their sequences and their

phylogenetic diversity, which yielded 11,445 and 14,927 regions, respectively, from 8,466

unique alignments. In the subsequent discussion, we refer to these sets as the “disorder” and

“order” regions, respectively. To investigate the differences in basic sequence statistics between

the two region sets, we first generated histograms from the average length of each region (S1

Fig). Although both distributions span several orders of magnitude, the order regions are gen-

erally longer than the disorder regions, with means of 245 and 105 residues, respectively. We

then quantified the sequence divergence in each region by fitting phylogenetic trees to the

alignments using amino acid and indel substitution models, which are probabilistic descrip-

tions of sequence evolution that are parameterized in terms of the rates of change between resi-

dues or between aligned residues and gaps, respectively [35]. The average rates of substitution

are significantly larger in the disorder regions, demonstrating that while both sets contain con-

served and divergent regions, IDRs are enriched in more rapidly evolving sequences (S1 Fig).

We also searched the database of Pfam domains against the full-length D. melanogaster pro-

teins in these alignments and measured their overlap with the disorder and order regions. The

results show the disorder set has a clear enrichment in regions with no or only small amounts

of overlap relative to the order set, indicating that, compared to structured domains, IDRs are

especially resistant to homology-based methods of functional annotation (S2 Fig).

IDRs have distinct patterns of residue substitution

To gain insight into the substitution patterns of amino acid residues in the disorder and order

regions, we fit substitution models to meta-alignments sampled from the respective regions.

As these models are parameterized in terms of the one-way rates of change from one residue

to another, the rates are not necessarily equal for a given pair when the initial and target resi-

dues are swapped. For example, the rate of change of valine to tryptophan can be distinct from

that of tryptophan to valine. In practice, however, substitution models are typically constrained

to fulfill a condition called time-reversibility, as this converts a difficult multivariate optimiza-

tion of the tree’s branch lengths into a series of simpler univariate optimizations [36]. A com-

mon method for fulfilling this condition is parameterizing the model in terms of a frequency

vector, π, and an exchangeability matrix, S. The frequency vector determines the model’s
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expected residue frequencies at equilibrium, meaning the model dictates that all sequences

eventually approach this distribution, no matter their initial composition. The exchangeability

matrix is symmetric (sij = sji) and encodes the propensity for two residues to interconvert.

Because the rate of change from residue i to residue j is given by rij = sij πj, higher exchangeabil-

ity coefficients yield higher rates of conversion. Thus, exchangeability coefficients are fre-

quently interpreted as a measure of biochemical similarity between residues.

To highlight the differences in patterns of residue substitution between the disorder and

order regions, the parameters in each model are directly compared in Fig 1, beginning with

Fig 1. Amino acid substitution models fit to disorder and order regions. (A) Amino acid frequencies of substitution models. Amino acid symbols are ordered by

their enrichment in disorder regions, calculated as the disorder-to-order ratio of their frequencies. Error bars represent standard deviations over models fit to different

meta-alignments (n = 25). (B-C) Exchangeability coefficients of disorder and order regions, respectively, averaged over meta-alignments. (D) log10 disorder-to-order

ratios of exchangeability coefficients. (E-F) Rate coefficients of disorder and order regions, respectively, averaged over meta-alignments. The vertical and horizontal

axes indicate the initial and target amino acids, respectively. (G) log10 disorder-to-order ratios of rate coefficients.

https://doi.org/10.1371/journal.pcbi.1012028.g001
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the frequency vectors. The disorder regions show an enrichment of “disorder-promoting” resi-

dues such as serine, proline, and alanine, and a depletion of hydrophobic and bulky residues

such as trytophan and phenylalanine (Fig 1A). The exchangeability matrices fit to the disorder

and order regions have similar overall patterns of high and low coefficients (Fig 1B–1C). How-

ever, the log ratios of the disorder to the order exchangeability coefficients show clear differ-

ences within and between the disorder-enriched and -depleted residues. The disorder-

enriched residues are less exchangeable with each other, whereas disorder-depleted residues

are more exchangeable with each other and with disorder-enriched residues (Fig 1D). Like-

wise, we observe a trend in the log ratios of the rate coefficients where the coefficients above

the diagonal are generally positive, and those below the diagonal are generally negative (Fig

1E–1F). As the coefficients model the one-way rates of substitution between residues with the

vertical and horizontal axes indicating the initial and target residues, respectively, this suggests

a net flux towards a more disorder-like composition. Though, the coefficients between the dis-

order-depleted and -enriched classes of residues for both the exchangeability and rate matrices

should be interpreted with caution, as they are estimated with a high amount of uncertainty

(S6–S7 Figs). A second, more general, caveat is these trends may result from fitting substitu-

tion matrices to alignments which were created using other substitution matrices derived from

alignments of largely structured proteins. However, as addressed in the discussion, their con-

sistency with several similar analyses suggests they represent true differences in the substitu-

tion patterns of IDRs [37,38].

Intrinsic disorder is poorly conserved in some proteins

Though the substitution models reveal specific patterns of evolution at the level of individual

residues, the large amounts of sequence divergence between many orthologous IDRs implies

their evolution is not well-described by fine-scale models of residue substitution. Given the

growing evidence that IDRs are constrained to conserve distributed properties, we instead

turned towards characterizing their evolution in terms of 82 disorder-associated “molecular

features” obtained from the previous study of IDRs in the yeast proteome. However, before

conducting an in-depth analysis of these features, we examined the disorder score traces in

greater detail and were struck by the significant variability between species. For each residue in

the input sequence, AUCPreD returns a score between 0 and 1 where higher values indicate

higher confidence in a prediction of intrinsic disorder. In some alignments, the disorder scores

vary by nearly this entire range at a given position even when there is a relatively high level of

sequence identity (Fig 2A). Though we cannot fully eliminate the possibility that this result is a

prediction artifact, the strong performance of AUCPreD in a recent assessment of disorder

predictors suggests the observed variability reflects true changes in these residues’ propensity

for disorder [39].

To better understand the relationship of this variability to differences in the regions’ bio-

physical properties, we sought to correlate the average disorder score of the segments in a

region with their molecular features. However, as the sequences are not independent but

instead related by a hierarchical structure which reflects their evolutionary relationships, any

features derived from them are unsuitable for direct use in many standard statistical proce-

dures. In the most severe cases, traits derived from clades of closely-related species can effec-

tively act as duplicate observations, which can yield spurious correlations. We therefore

applied the method of contrasts to both the disorder scores and the features [40,41]. This algo-

rithm takes differences between adjacent nodes in the phylogenetic tree relating the species to

generate “contrasts,” which, under some general assumptions of the underlying evolutionary

process, are independent and identically-distributed and therefore appropriate for use in
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Fig 2. Analyses of disorder scores. (A) Example region in the alignment of the sequences in orthologous group 07E3 with their corresponding disorder

scores. Higher scores indicate a higher probability of intrinsic disorder. Disorder score traces are colored by the position of their associated species on the

phylogenetic tree. (B) Correlations between disorder scores and feature contrasts in regions. Asterisks indicate statistically significant correlations as

computed by permutation tests (p< 0.001). (C-D) Example scatter plots showing correlations given in panel B. (E) GO term analysis of regions with

rapidly evolving disorder scores. Only terms where p< 0.001 are shown.

https://doi.org/10.1371/journal.pcbi.1012028.g002
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correlation analyses. (A sample calculation using this algorithm is shown in S8 Fig.) The result-

ing feature contrasts have varying degrees of correlation with the score contrasts (Fig 2B–2C).

Some, like isopoint, are uncorrelated, but most are significantly, if weakly, correlated. In gen-

eral, the strongest correlations are observed for features which have a direct biophysical rela-

tionship to the presence or absence of disorder, such as disorder_fraction or hydrophobicity.

Interestingly, the correlations with many motifs were statistically significant, though small in

magnitude relative to the non-motif features. However, a more detailed analysis of this obser-

vation is presented in the discussion. To determine if regions with rapidly evolving disorder

scores are associated with particular functions, processes, or compartments, we then extracted

the regions in the upper decile of the rate distribution and performed a term enrichment anal-

ysis on their associated annotations (S9 Fig). The most significant terms are generally related

to DNA repair or extracellular structure, which suggests these processes and components are

enriched in proteins whose structural state is rapidly evolving (Fig 2E).

IDRs have three axes of unconstrained variation

Having calculated the features associated with the sequence segments composing each region

in our data set, we then sought to determine if their distributions contained any global struc-

ture which would enable us to identify classes with distinct biophysical or functional proper-

ties. These distributions are generated by a complex underlying evolutionary process which

reflects the combined effects of selection, drift, and mutation. However, to leverage a statistical

framework to infer the properties of this process, we fit a Brownian motion (BM) model to

each feature calculated from the segments in each region. BM is a simple model of evolution

where continuous traits change through a series of small, undirected steps. Thus, the traits

accumulate variation at a constant rate over time but do not on average deviate from their

original values. BM models are therefore specified by two parameters: a rate (s2
OU), which

describes the speed at which trait variation accumulates, and a root (μBM), which describes the

ancestral trait value.

We then applied principal components analysis (PCA) to visualize the major axes of varia-

tion of the root and rate parameters for each feature and region. A difficulty with a direct anal-

ysis of the parameter estimates, however, is the sensitivity of PCA to differences in scaling

between variables, and some features have dramatically different intrinsic scales. For example,

many compositional features, like fraction_S, are restricted to the interval [0, 1], whereas SCD

is unbounded and can vary from negative to positive infinity. As a result, SCD is responsible

for a significant fraction of the overall variance in both parameter distributions (S10–S11

Figs). Therefore, we first normalized the parameters associated with each feature by transform-

ing them into z-scores relative to their proteome-wide distributions.

The first two principal components of the root distributions show little overall structure,

though there is a slight enrichment of regions along two axes that correlate with acidic and

polar features, respectively (S12 Fig). Likewise, the projections of the rates onto the first two

principal components are largely distributed along the first (Fig 3A). This observation and the

variable amounts of sequence divergence in the regions led us to suspect the first principal

component was a measure of the overall rate of sequence evolution. Plotting the first principal

component against the sum of the average amino acid and indel rates as measured by substitu-

tion models revealed a strong association (Fig 3B). We then projected the rates along second

and third principal components to determine if these higher order components contained any

additional structure. The resulting distribution is roughly triangular and contains three major

axes of variation, corresponding to rapid changes in the regions’ proportions of glutamine,

charged, and glycine residues (Fig 3C and 3D). Inspection of regions selected along these axes
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Fig 3. PCA of disorder regions’ feature rates. (A) The first two PCs of the disorder regions’ feature rate distributions. The explained variance percentage of each

component is indicated in parentheses. (B) Scatter plot of the disorder regions’ feature rates along the first PC against the sum of the average amino acid and indel

substitution rates in those regions. (C) The second and third PCs of the disorder regions’ feature rate distributions. The explained variance percentage of each

component is indicated in parentheses in the axis labels. (D) The same plot as panel C with the projections of original variables onto the components shown as

arrows. Only the 16 features with the largest projections are shown. Scaling of the arrows is arbitrary. (E-G) Example alignments of disorder regions from the

orthologous groups 0A8A, 3139, 04B0, respectively. The colored bars on the left indicate the hexbin containing that region in panel C.

https://doi.org/10.1371/journal.pcbi.1012028.g003
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confirmed the high rates of evolution of these features (Fig 3E–3G). Furthermore, we observe

a similar distribution when the rates of the order regions were projected along their second

and third principal components, which suggests a lack of constraint along these axes is a gen-

eral property of rapidly evolving proteins (S13 Fig).

A model of constrained evolution can identify signals of conservation

Though the BM process permits the inference of the rates of feature evolution after accounting

for the phylogenetic relationships between species, it does not directly test for their conserva-

tion. In fact, under the BM model, trait variation is unconstrained and will increase without

bound over time. Instead, evidence of conservation requires comparison to a model where

trait variation is constrained. A common choice for modeling the effect of selection on the evo-

lution of a continuous trait is the Ornstein-Uhlenbeck (OU) model. The OU model is similar

to the BM model where a trait accumulates variation through a series of small, undirected

steps. However, it differs in that the trait is also attracted towards an optimal value where the

attraction is proportional to the trait’s distance from this value. Under an additional assump-

tion of stationarity that ensures parameter identifiability and estimate consistency, the OU

model is accordingly specified with three total parameters: the optimal value (μOU), the fluctua-

tion magnitude (s2
OU), and the selection strength (α) [42,43]. While the first two parameters

are analogous to the root and rate parameters in the BM model, respectively, the selection

strength has no equivalent.

As both models are fully probabilistic, the data’s support for the OU model relative to the

BM model is quantified by the log ratio of their likelihoods, with greater values indicating

more support for the OU model. However, to empirically relate these values to type I and II

error rates under a hypothesis testing framework and to assess other statistical properties of

the models, we simulated data under each model with a range of values for each of its parame-

ters. Because the likelihood of both models is unchanged if the mean and observations are

shifted by a constant, we fixed the mean and optimal values of the BM and OU models to zero

in our simulations.

The results show the rate of the BM model is accurately estimated over several orders of

magnitude (Fig 4A). Additionally, the variance of these estimates is proportional to the magni-

tude of the rate, indicated by the constant height of the violin plots in log scale. In contrast, the

estimate of the rate of the OU model can have significant bias depending on relative values of

the true parameters. For example, in the lower left, when log
10

a

s2
OU

� �
< 1; s2

OU is accurately

estimated, as α is small relative to s2
OU (Fig 4B). In the central band, however, when 1 <

log
10

a

s2
OU

� �
< 3; s2

OU; s
2
OU is overestimated, as some movement towards the optimal value is

likely attributed to a greater fluctuation magnitude. Finally, in the upper right, when

log
10

a

s2
OU

� �
> 3; s2

OU is underestimated, as movement from the restoring force overwhelms the

contribution of the stochastic component. Similarly, the estimate of the selection strength is

biased for many parameter value combinations, though the relationship is more complex (Fig

4C).

We then quantified the type I and II error rates under a hypothesis testing framework. We

first calculated the type I error rate as a function of the critical value of the log likelihood ratio

for each value of the BM rate separately (Fig 4D). As the overlapping curves indicate the ratios

are independent of the true value, we merged the simulations and calculated empirical critical

values for 5% (2.58) and 1% (4.20) type I error rates (Fig 4E). Using the 1% critical value, we

calculated the type II error rate as a function of the OU parameter values (Fig 4F). The results
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show a strong dependence on the log ratio of α to s2
OU , with the error rate sharply declining to

zero when log
10

a

s2
OU

� �
> 1. In summary, these results demonstrate that while the parameter

estimates of the OU model can have significant bias, when selection is strong relative to the

fluctuation magnitude, the log likelihood ratio of the two models can reliably signal against a

null hypothesis of Brownian motion.

Signals of feature conservation are widespread in IDRs

Having evaluated the statistical properties of the hypothesis testing framework, we next sought

to investigate the distribution of significant features across all regions. However, to ensure we

would not identify signals of conservation simply as a result of high levels of sequence identity,

we restricted our subsequent analyses to disorder regions with a minimum amount of diver-

gence as measured by substitution models (S14 Fig). We first quantified the fraction of regions

with significant log likelihood ratios using the empirical critical values for 1 and 5% type I

error rates, finding that all non-motif features show significance rates that greatly exceed their

nominal error rates (Fig 5A). The motif features, though, are more variable, with some

Fig 4. Hypothesis testing statistics under simulated BM and OU models. (A) Violin plots of the estimated rates as a function of the true rates (s2
BM) under the BM

model. (B) log10 ratio of the mean estimated rate over its true value as a function of the true rates (s2
OU) and selection strengths (α). (C) log10 ratio of the mean

estimated selection strength over its true value as a function of the true rates (s2
OU) and selection strengths (α). (D) The probability of incorrectly rejecting the BM

model in favor of the OU model (type I error) as a function of a given critical value of the log likelihood ratio. Each line indicates a different value of the true rate

under the BM model. (E) Type I error as a function of a given critical value as in panel D but with all simulations under different values of the true rate combined

into a single data set. (F) The probability of incorrectly failing to reject the BM model in favor of the OU model (type II error) as a function of the true rates (s2
OU) and

selection strengths (α). The probabilities were calculated using the critical value obtained from the empirical 1% type I error rate shown in panel E.

https://doi.org/10.1371/journal.pcbi.1012028.g004
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reaching significance rates similar to those of the non-motif features, whereas many others

have rates at or below the nominal values. Generally, the shorter and more degenerate motifs

associated with modification sites have higher rates of significance, which may reflect stronger

constraints on motifs which are more likely to arise by random mutations. We next calculated

the number of significant features in each region using the same critical values. Both yielded

highly skewed distributions, indicating the observation of a significant feature increases the

probability of observing another significant feature (Fig 5B). However, as many features have

overlapping definitions, this dependence is expected. To correct for this effect, we randomly

shuffled the log likelihood ratios between regions for each feature independently and calcu-

lated the overall significance rate across all features. For both critical values, the empirical sig-

nificance rate exceeds the nominal error rate. Thus, constrained feature evolution is

widespread in IDRs, with each region containing an average of seven significant features

under the 1% type I error rate.

To illustrate the utility of this method for generating hypotheses to guide the functional dis-

section of specific proteins, we next compared two regions with elevated values of fraction_Q

Fig 5. Distributions of significant features in regions. (A) Fraction of regions with significant log likelihood ratios for each feature under 1 and 5% type I error rates.

(B) Distribution of number of features with significant log likelihood ratios under 1 (left) and 5% type I error rates. The random distributions were computed by

randomly shuffling the log likelihood ratios between regions for each feature independently.

https://doi.org/10.1371/journal.pcbi.1012028.g005
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and repeat_QN but different signals of conservation for each (Fig 6A–6B). Though the align-

ments of both regions are enriched in glutamine and asparagine residues (Fig 6C and 6E), the

first has significant signals of conservation for both features (Fig 6D), whereas the second does

not (Fig 6F). Notably, the first region is from an orthologous group that contains a sequence

from the D. melanogaster gene ewg, which is a transcription factor. As polyglutamine stretches

can modulate the activity of transcription factor activation domains [44,45], this observation is

consistent with the maintenance of an optimal level of transcriptional activation mediated by

constraints on glutamine-associated features. In contrast, the low log likelihood ratios of the

second region, whose D. melanogaster gene is unannotated, are suggestive of unconstrained

glutamine repeat expansion and contraction. Interestingly, this region has highly significant

log likelihood ratios for several features associated with glycine or phenylalanine repeats

despite having few of these residues. However, careful inspection of the alignment reveals sev-

eral positions where such repeats appear in only one or two sequences, e.g., columns 153 and

208. While these strong signals of conservation may represent artifacts of applying a continu-

ous model of trait evolution to features derived from discrete data, they could also indicate

true constraints against the presence of flexible or hydrophobic patches in those sequence seg-

ments. Taken together, these results highlight this method’s ability to identify biochemical fea-

tures with signals of constrained evolution while also emphasizing the importance of

combining this information with a protein’s biological context to jointly suggest testable

hypotheses of function.

Clustering by evolutionary signatures reveals limited patterns of conserved

features

Given our observation of widespread signals of feature conservation in Drosophila IDRs, we

next sought to investigate if there are IDRs with similar patterns of conserved features and

common functions. Accordingly, we treated the set of log likelihoods ratios for each region as

its “evolutionary signature” and clustered them as in Zarin et al. [22]. The resulting heatmap

reveals patterns of similar signatures interspersed among a high background of noise, and we

identified at least 39 clusters with strong and consistent patterns of constraint (Fig 7). To gain

greater insight into their functional properties, we performed term enrichment analyses using

the annotations associated with each region’s protein. After correcting for multiple compari-

sons using a 5% false discovery rate, only five clusters were significantly enriched for any

terms, which are given in Table 1. Most enriched terms are associated with fewer than ten pro-

teins in each cluster, though the enriched terms for cluster 12 are markedly stronger and con-

sistently associated with protein localization. We also observed that while many clusters are

defined by a single strongly conserved feature, three (clusters 15, 23, and 24) have multiple fea-

tures with signals of constraint. To determine if these more highly constrained regions are

associated with a common underlying pattern of features, we compared their evolutionary sig-

natures to normalized values of their inferred optima (Fig 8B–8D). The heatmaps reveal that

while the regions in these clusters have common patterns of constraint, the optimal values of

their features can vary considerably. Likewise, cluster 12’s strongly constrained feature,

repeat_K, is similarly variable (Fig 8A). Interestingly, this feature is consistent with its enrich-

ment in annotations related to protein localization, as mitochondrial or nuclear targeting sig-

nals are characterized by a net positive charge or clusters of basic residues, respectively [46,47].

However, the relative depletion of lysine repeats in some regions implies they are constrained

against the formation of such targeting signals. This interpretation in turn suggests that IDRs

may in general have complex relationships between their evolutionary constraints and func-

tions where constraints can both preserve beneficial functions as well as prevent the
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Fig 6. Example regions with significant and non-significant glutamine-associated features. (A-B) Scatter plot of the regions’ log likelihood ratios against the

estimated optimal value for the feature fraction_Q and repeat_QN, respectively. (C) Alignment of disorder region from orthologous group 03BB. The colored bar

on the left indicates the hexbins containing that region in panels A-B. (D) Log likelihood ratios of features for the region in panel C. Critical values for 1 and 5%

type I error rates are shown with dotted lines. (E) Alignment of disorder region from orthologous group 0715. The colored bar on the left indicates the hexbins

containing that region in panels A-B. (F) Log likelihood ratios of features for the region in panel E. Critical values for 1 and 5% type I error rates are shown with

dotted lines.

https://doi.org/10.1371/journal.pcbi.1012028.g006
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acquisition of deleterious ones. Furthermore, though a similar analysis of the inferred optima

reveals some analogous patterns of clusters, they are generally more fragmented and diffuse,

indicating that despite these caveats, the log likelihood ratios can highlight common patterns

of constraint that are not readily apparent from the optimal values of the molecular features

alone (S15 Fig).

Discussion

IDRs have distinct patterns of sequence and feature evolution

In this study, we applied several phylogenetic models to IDRs to interrogate the evolution of

their sequences and molecular features. Most significantly, through a comparison of two

Fig 7. Hierarchical clustering of evolutionary signatures. Clusters are indicated by rectangles on the right. Clusters

with fewer than 75 regions are omitted for clarity.

https://doi.org/10.1371/journal.pcbi.1012028.g007
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models of continuous trait evolution we demonstrate evidence of widespread constraint in

IDRs within the Drosophila proteome. Furthermore, by quantitatively ranking the importance

of various molecular features, these results can generate hypotheses to guide the functional dis-

section of IDRs in specific proteins. More broadly, though, it suggests that constraint of dis-

tributed features is a mechanism of IDR evolution common to multiple biological systems.

Using evolutionary signatures derived from these models, we also attempted to identify clus-

ters of IDRs with shared patterns of constraint and common functions. However, in contrast

to the previous study in yeast, we found limited evidence of IDR clusters with specific biologi-

cal functions. This may indicate a more complex regulatory environment in multicellular

organisms which lacks a simple mapping between molecular features and functions. For exam-

ple, as mentioned in the analysis of cluster 12, some constraints may correspond to the absence

of a property or function. As annotations are typically framed as positive statements about

function, enrichment analyses have less power to detect this type of negative relationship

between a feature and its function. Alternatively, conserved features may correspond to classes

of conformational ensembles or modes of molecular interaction which are not necessarily

associated with specific functions. Technical differences between the two studies may also

explain the discrepancy. In particular, the BM and OU processes are highly generic models of

trait evolution and may have less power to detect signals of constrained evolution than the sim-

ulation approach used in the previous study. The lack of region-specificity in annotations fur-

ther compounds these issues, as the spurious association of IDRs with annotations derived

from other regions introduces noise to the enrichment analyses. However, these and other

methodological limitations are discussed in greater detail in a subsequent section.

In addition to the conservation of molecular features, we found IDRs exhibit other distinct

patterns of evolution. For example, a comparison of the exchangeability matrices fit to the dis-

order and order regions shows that, relative to the order regions, the disorder regions have

decreased exchangeability coefficients between the disorder-enriched residues. Conversely, the

disorder-depleted residues have increased exchangeability coefficients with each other. As a

residue’s enrichment in IDRs is generally interpreted as a measure of its ability to promote

intrinsic disorder, these results indicate that within IDRs and relative to folded domains,

Table 1. Significantly enriched terms in clusters.

Cluster Regions in cluster Regions with term p-value Corrected p-value Term ID Term name

4 158 3 3.36E-05 9.93E-03 GO:0001671 ATPase activator activity

4 158 3 3.36E-05 9.93E-03 GO:0140677 molecular function activator activity

4 158 7 2.46E-04 4.84E-02 GO:0044281 small molecule metabolic process

6 44 2 1.58E-04 4.42E-02 GO:0044319 wound healing, spreading of cells

12 146 15 3.05E-05 1.65E-02 GO:0008104 protein localization

12 146 16 6.42E-05 1.74E-02 GO:0033036 macromolecule localization

12 146 8 1.51E-04 2.73E-02 GO:0045184 establishment of protein localization

12 146 6 5.38E-04 4.88E-02 GO:0008233 peptidase activity

12 146 7 5.03E-04 4.88E-02 GO:0015031 protein transport

12 146 5 5.73E-04 4.88E-02 GO:0035592 establishment of protein localization to extracellular region

12 146 5 6.31E-04 4.88E-02 GO:0071692 protein localization to extracellular region

26 141 2 1.66E-04 3.42E-02 GO:0031543 peptidyl-proline dioxygenase activity

26 141 2 1.66E-04 3.42E-02 GO:0019511 peptidyl-proline hydroxylation

26 141 2 1.66E-04 3.42E-02 GO:0018126 protein hydroxylation

38 82 4 8.30E-05 3.78E-02 GO:0010369 chromocenter

https://doi.org/10.1371/journal.pcbi.1012028.t001
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Fig 8. Example clusters with log likelihood ratios and normalized optimal values. (A-D) Each panel shows the pattern of log likelihood ratios of the

indicated cluster from Fig 7 in the upper half and the corresponding normalized estimated optimal values in the lower half. The optimal values are

expressed as z-scores relative to each feature distribution in the subset of rapidly evolving disorder regions clustered in Fig 7. Values below or above

negative or positive three are indicated with magenta and cyan, respectively.

https://doi.org/10.1371/journal.pcbi.1012028.g008
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disorder-promoting residues are subject to stricter constraints, whereas structure-promoting

residues are more biochemically interchangeable. A potential weakness of this analysis is its

dependence on sequence alignments which were created using scoring matrices that are in

turn derived from other substitution models. Previous studies have attempted to minimize the

impact of this circular dependency through an EM-like procedure where substitution models

are first fit to alignments, and the sequences in the alignments are then re-aligned with scoring

matrices derived from the fit models in alternating rounds until convergence [37,38]. Because

our analyses fit the substitution models directly from alignments, the observed patterns are

possibly an artifact of using a scoring matrix derived from folded domains to align IDRs. How-

ever, as our matrices reproduce the trends reported in these prior studies, they likely reflect

true differences in the patterns of residue substitution within IDRs.

This result is a partial reversal of the typical pattern observed in folded proteins where the

generally larger and more hydrophobic structure-promoting residues are subject to strict geo-

metric constraints imposed by the tightly packed hydrophobic core. In contrast, the smaller

and more hydrophilic disorder-promoting residues are more variable, as they often occur in

flexible, solvent-exposed regions. It is, however, consistent with other analyses of sequence-

function relationships in IDRs. For example, several studies demonstrated that acidic activa-

tion domains of transcription factors, which are usually disordered, contain clusters of hydro-

phobic residues interspersed throughout their largely acidic chains [48–50]. Additionally,

these studies showed that many distinct sequences can yield similar levels of transcriptional

activity. Together, these findings suggest a model of transcriptional activation where the repul-

sions between acidic residues maintain the bulky hydrophobic residues in accessible confor-

mations that in turn allow the activation domains to bind their targets through non-specific

hydrophobic interactions. As these interactions do not require highly complementary inter-

faces, the observed increase in exchangeability coefficients between hydrophobic residues is

consistent with this model and may reflect the prevalence of such “fuzzy complexes” in IDR

interactions. Furthermore, other studies have shown that different disorder-promoting resi-

dues have specific effects on the material properties of condensates formed by phase-separat-

ing IDRs. For example, in FUS family proteins glycine residues enhance fluidity, whereas

glutamine and serine residues promote hardening [51]. Even glutamine and asparagine resi-

dues, which differ by a single methylene group, can have disparate effects on the conforma-

tional preferences of IDRs. While glutamine-rich sequences are conformationally

heterogeneous and form toxic aggregates, asparagine-rich sequences instead assemble into

benign amyloids, as asparagine’s shorter side chain promotes the formation of turns and β-

sheets [52]. Thus, these observations along with the decreased exchangeability coefficients

between disorder-promoting residues suggest that subtle differences in their biochemical

properties may constrain patterns of residue substitution in IDRs.

Disorder is correlated with many molecular features

Though the mutations generated by evolution are not a random or exhaustive sample of

sequence space, they are perturbations of a common ancestor which can reveal the relationship

between a region’s biophysical properties and its propensity for disorder. Thus, the analysis of

feature and score contrasts is effectively a natural “mutational scanning” experiment. We

found that disorder scores have the strongest correlations with features that measure a region’s

overall polarity and hydrophobicity, e.g., fraction_disorder and hydropathy. As the formation

of a hydrophobic core is a major driving force in protein folding, this relationship is expected.

However, the strength of these correlations indicate that a region’s relative proportion of
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hydrophilic and hydrophobic residues is, to a first approximation, the largest determinant of

predicted intrinsic disorder.

Excluding these hydrophobicity-related features, the next strongest association is a negative

correlation with wf_complexity, demonstrating the predictor strongly associates low complex-

ity with intrinsic disorder. However, sequence complexity is a statistical rather than a biophysi-

cal criterion, and while many disordered regions have low levels of complexity, some low-

complexity regions, like collagen, are structured. This suggests that while disorder predictors

are in general accurate classifiers of a residue’s structural state [39], they can conflate the corre-

lates of intrinsic disorder with their causes. Therefore, in some cases their predictions may

require careful interpretation.

The remaining significant correlations are generally weak and likely reflect a partial redun-

dancy with the more strongly correlated features discussed previously. Interestingly, though,

disorder scores are weakly correlated with many motifs, with the signs largely reflecting their

class. For example, the correlations with docking (DOC) and ligand binding (LIG) sites are

largely negative, whereas those with modification (MOD) sites are generally positive. However,

this analysis does not indicate whether the predictor responds to these motifs directly or to fea-

tures that are correlated with them. For example, docking and ligand binding sites are gener-

ally mediated by small hydrophobic patches, so the correlations could reflect an increase in

hydrophobicity caused by an additional hydrophobic residue “completing” the motif rather

than the motif itself. Likewise, IDRs are highly enriched in phosphorylation sites, many of

which are targeted to disorder-promoting residues like serine or threonine. As the disorder

scores and features are calculated at the level of regions, whose lengths can exceed 1,000 resi-

dues, this analysis is limited in its ability to distinguish these possibilities. However, a more tar-

geted in silico mutational analysis would yield further insights.

The GO annotation enrichment analysis indicates that proteins involved in DNA repair

and extracellular structures contain a disproportionate number of regions whose disorder

scores are rapidly evolving. Because the significance tests were not corrected for multiple test-

ing or controlled for their false discovery rate, we caution against over-interpreting this result

and instead consider it as a hypothesis for further investigation. In general, however, the

regions with rapidly evolving disorder scores may correspond to molecular recognition fea-

tures (MoRFs), which are modules in IDRs that undergo a disorder-to-order transition on

binding their targets [8,53]. Because MoRFs already exist on the boundary between disorder

and structure, small changes in the biophysical properties of these regions may have large

effects on their structural ensembles. Thus, the most variable disorder scores may reflect

instances where a mutation triggered a “phase transition” between largely structured or disor-

dered native states.

Future evolutionary analyses of IDRs will require a multimodal approach

As discussed by Zarin et al., the interpretation of evolutionary signatures is complicated by

several methodological limitations [22]. For example, because IDRs are identified as contigu-

ous segments of high predicted disorder, their boundaries are defined by adjacent structural

elements. This approach can therefore split an IDR that is a single evolutionary or functional

unit if it contains a semi-disordered module that scores below the threshold. Conversely, it can

also merge two distinct IDRs if they are not separated by at least one folded domain. These

issues can have significant effects on the accuracy of our analyses, as mismatches between the

inferred boundaries of an IDR and its true evolutionary or functional divisions can introduce

noise or even spurious signals of constraint. However, more targeted applications of this
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framework where investigators manually choose the boundaries for specific IDRs can ensure

the results are directly related to the regions of interest.

Another challenge is the significant overlap in the definitions of the features used in this

study. As a result, many are highly correlated, which precludes straightforward quantitative

manipulations or interpretations of an IDR’s evolutionary signature. Additionally, the features

were originally compiled from a variety of previous reports on IDRs. Thus, they likely reflect

the biases of individual investigators or highly studied examples rather than constituting a

comprehensive set of IDR-associated properties. The original authors have since addressed

this in subsequent studies by applying machine learning methods to perform feature selection

or learn features directly from alignments of IDRs [23,54]. However, integrating these methods

into a unified phylogenetic comparative framework will require further effort.

Despite these caveats, by fitting the BM and OU models to molecular features calculated

from alignments of IDRs, we were able to quantify the relative support for constrained and

unconstrained models of IDR evolution using a statistical framework. As the BM and OU

models describe the evolution of arbitrary continuous traits, a strength of this approach is its

independence from assumptions about the underlying process of sequence evolution. In con-

trast, the previous study used simulations to generate null distributions for a model of no con-

straint and defined an IDR’s evolutionary signature as its deviation from these distributions.

However, these comparisons do not directly demonstrate evidence of stabilizing selection but

instead test for differences from the null hypothesis. Thus, this approach is highly dependent

on the specification and parameterization of these simulated models. Accordingly, an error in

either can yield evidence of constraint for an IDR even if none of its molecular features are

under selection.

However, the comparative phylogenetics methodology applied here also has limitations. As

many features have strict boundaries or cannot vary continuously, they violate one or more of

the underlying assumptions of the BM and OU models. Fortunately, for many features these

inconsistencies likely do not seriously compromise the analysis. For example, though composi-

tional features like fraction_S are mathematically restricted to the interval between zero and

one, they are likely constrained by much narrower selective regimes, and within these regimes,

their behavior is effectively described by an OU model. For other features, however, the devia-

tions are more consequential. For example, net_charge and the motif features can only assume

integer and natural number values, respectively, which imposes significant restrictions on

their allowed increments that are not reflected in the BM and OU models. Instead, more

appropriate models for count data are birth-death processes, which are Markov chains defined

on the natural numbers. However, though linear birth-death processes are well-studied and

widely applied in biology [55], to our knowledge there are no simple parameterizations which

describe a mean-reverting behavior analogous to the OU model. Thus, further theoretical

developments are needed to apply birth-death processes as a model of stabilizing selection in

studies of IDR evolution.

While the BM and OU models are powerful tools for studying trait evolution, their general-

ity limits the specificity of the hypotheses they can test. For example, because the log ratios of

the likelihoods are independent from the values of the inferred optima, this analysis cannot

distinguish between IDRs which have a common conserved feature but whose values of that

feature differ, e.g., IDRs with high and low fractions of glutamine residues. In contrast, because

simulation-based approaches can specify arbitrary constraints, they permit investigations of

increasingly refined models of IDR evolution. We therefore view the two approaches as com-

plementary and propose the use of hybrid methods where test statistics are derived from phy-

logenetic comparative methods like the BM model, and simulations generate the null

distributions for those test statistics. While simulations can eliminate specific hypotheses, the
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substantial resources involved both in designing them and generating samples make exhaus-

tively testing mechanisms of feature constraint by simulation impractical. We instead recom-

mend a workflow that begins with an analysis using general models of trait evolution to

suggest specific hypotheses of constraint that are then tested with a simulation-based

approach. Another hybrid method involves using sequence permutations to test for the con-

servation of motifs or patterned features like kappa [56]. In this method, a comparative model

like BM provides the test statistic as before, and a sample of shuffled sequences approximates

the null distribution. Because the background distribution of residues is preserved, this proce-

dure can specifically test for the conservation of motifs or patterned features in an IDR inde-

pendent of the conservation of its composition.

However, as IDRs are likely subject to multiple selective pressures where the constraints on

different compositional, patterned, or motif features are highly specific to each, we anticipate a

range of computational and experimental methods will be needed to disentangle the complex

forces driving their evolution. Accordingly, while these results represent a significant step for-

ward in relating sequence to function in IDRs, further studies exploring these and other

approaches will undoubtedly reveal new insights into these ubiquitous but poorly understood

regions of proteins.

Materials and methods

Alignment and species tree provenance

Alignments of 8,566 single copy orthologs and the corresponding outputs of the missing data

phylo-HMM were obtained from Singleton et al. [33]. Likewise, the LG consensus tree gener-

ated by the “non-invariant, 100% redundancy” sampling strategy was used as the input or ref-

erence where indicated in subsequent phylogenetic analyses.

IDR prediction and filtering

Based on its strong performance in a recent assessment of disorder predictors, AUCPreD was

chosen to identify regions with a high probability of intrinsic disorder [34,39]. After removing

the gap symbols from the sequences in the alignments, the disorder scores of each sequence

were predicted individually. (Alignments 0204 and 35C2 contained sequences which exceeded

the 10,000-character limit and were excluded from subsequent analyses.) The resulting scores

were then aligned using the original alignment. The average score for each position was calcu-

lated using Gaussian process sequencing weighting over the LG consensus tree [57]. Any posi-

tions inferred as “missing” by the missing data phylo-HMM or to the left or right of the first or

last non-gap symbol, respectively, were excluded. For simplicity, the Gaussian process weights

were not re-calculated from a tree pruned of the corresponding tips, and instead the weights

corresponding to the remaining sequences were re-normalized. The scores at any remaining

positions with gap symbols were inferred by linear interpolation from the nearest scored

position.

The average disorder scores were converted into contiguous regions with the following

method. Two binary masks were defined as positions where the average score exceeded high

and low cutoffs of 0.6 and 0.4, respectively. The low-cutoff mask was subjected to an additional

binary dilation with a structuring element of size three to merge any contiguous regions sepa-

rated by a small number of positions with scores below the cutoff. “Seed” regions were then

defined as 10 or more contiguous “true” positions in the high-cutoff mask, and “disorder”

regions were obtained by expanding the seeds to the left and right until the first “false” position

in the low-cutoff mask or the end of the alignment. “Order” regions were taken as the comple-

ment of the disorder regions in each alignment.
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The regions were filtered with the following criteria. First, segments with non-standard

amino acid symbols, which overlapped with any position labeled as “missing” by the missing

data phylo-HMM, or whose number of non-gap symbols was below a length cutoff of 30 resi-

dues were removed. Regions whose remaining segments failed the set of phylogenetic diversity

criteria detailed in S1 Table were excluded. The final set contained 11,445 and 14,927 disorder

and order regions, respectively, from 8,466 distinct alignments.

Calculation of Pfam domain overlaps

The Pfam-A models (version 36.0) were downloaded from InterPro. The D. melanogaster
sequences were extracted from the alignments and searched against the Pfam models using

HMMER 3.4 with a per-domain reporting threshold (option—domE) of 1 × 10−10. Overlap

fractions for each region were calculated as the number residues overlapping with any Pfam

domain hit divided by the total number of residues in that region.

Fitting substitution models and trees

To fit amino acid substitution matrices to disorder and order regions, 25 meta-alignments for

each were constructed by randomly sampling 100,000 columns from the respective regions. To

determine the effect of gaps, the maximum fraction of gaps was set at 0, 50, 100%. The combi-

nation of the region types and sampling strategy yielded six different sets of meta-alignments.

A GTR20 substitution model with four FreeRate categories and optimized state frequencies

was fit to each meta-alignment using IQ-TREE 1.6.12 [58]. Exchangeability and rate coeffi-

cients were normalized, so the average rate of each model was equal to 1. Because exchange-

ability and rate coefficients are highly correlated across meta-alignments of the same region

type, all figures are derived from the maximum 50% gap fraction meta-alignment sets unless

otherwise noted (S3–S5 Figs).

To obtain estimates of the average substitution rates in each region, separate amino acid

and indel models were fit to each alignment. For the amino acid substitution models, the col-

umns in the alignments were manually segregated into disorder and order partitions using the

regions derived from the AUCPreD scores. However, to prevent poor fits from a lack of data, a

partition was created only if it contained a minimum of 20 sequences with at least 30 non-gap

symbols. If one partition met these conditions but the other did not, the disallowed partition

was consolidated into the allowed one. If neither partition passed, the alignment was skipped.

These rules ensured that the regions represented in the final set were fit with substitution mod-

els which were concordant with their predicted disorder states. Trees were fit to each partition

with an invariant and four discrete gamma rate categories using IQ-TREE 1.6.12 [59]. The dis-

order partition used a substitution model derived from the average of the state frequencies and

exchangeability coefficients fit to the 50% gap fraction meta-alignment sets sampled from the

disorder regions. The order partition used the LG substitution model [60]. To prevent overfit-

ting of branch lengths, the trees were restricted to scaled versions of the reference species tree

using the—blscale option.

As inference with models that allow insertions and deletions of arbitrary lengths is compu-

tationally intractable, a more heuristic approach was taken to quantify the amount of evolu-

tionary divergence resulting from indels in the alignments. For a given alignment, all

contiguous subsequences of gap symbols with unique start or stop positions in any sequence

were defined as binary characters. Then for each character a sequence was coded with the sym-

bol 1 if the character was contained in that sequence, or it was nested in another contiguous

subsequence of gap symbols in that sequence. Otherwise the sequence was coded with the sym-

bol 0. GTR2 models with optimized state frequencies and ascertainment bias corrections were
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fit to the resulting character alignments. A discrete gamma rate category was added for every

five character columns, up to a maximum of four. To prevent overfitting of branch lengths, the

trees were restricted to scaled versions of the reference species tree using the—blscale option.

Because the rate and branch lengths of a phylogenetic substitution model always appear as

products in the likelihood expression, they are not jointly identifiable parameters. Instead, the

rate is conventionally taken as equal to one (with inverse count units), and the branch lengths

are expressed in terms of the expected number of substitution events per column. For models

with multiple rate categories, the equivalent condition is that the mean of the prior distribution

over the rate categories is equal to one. This effectively makes each rate category a scaling factor

of the branch lengths. The inferred rate of a column, calculated as the mean of the posterior dis-

tribution over the rate categories, is therefore relative to the average across all columns in the

alignment. Thus, an absolute measure of the evolutionary divergence of a column can be

obtained by multiplying the inferred rate by the total branch length of the tree. However, as the

alignments contain variable numbers of species, this total branch length represents the contri-

bution of both the rate and the tree topology. To normalize for this effect, the total branch

length for each tree fit to an alignment was divided by the total branch length of the reference

species tree including only the species in that alignment. The reported substitution rate is there-

fore the product of this scaling factor and the inferred column rate. The average amino acid or

indel substitution rate for a region was calculated as the mean of the respective rates across all

columns. Because the indel rates were associated with columns in character alignments, they

were mapped back to the original sequence alignment by assigning half of a character’s rate to

its start and stop positions. Since indel models with limited data were prone to overfitting, rates

obtained from character alignments with fewer than five columns were set to zero.

Definition and calculation of features

Features were calculated as in Zarin et al. with the following modifications [22]. The regular

expression for polar residue fraction was [QNSTCH], which, in contrast to the original study,

excludes glycine residues. Additionally, length, expressed in log scale, was replaced with a fea-

ture proportional to the radius of gyration for an excluded-volume polymer [61]. Because the

radii of gyration of chemically denatured proteins closely match the values expected for equiva-

lent random coils [62], we felt this feature would better capture the relationship between an

IDR’s length and its biophysical properties. Finally, several motifs from ELM were replaced

with their metazoan counterparts or updated versions of the same entries [63]. These differ-

ences are noted in the supplementary data. Furthermore, unlike the previous work, motifs were

left as counts and not normalized to the proteome-wide average. Kappa, omega, SCD, hydropa-

thy, PPII propensity, and Wootton-Federhen sequence complexity were calculated with local-

CIDER 0.1.19 [64]. Isoelectric point was calculated with the Python package isoelectric, which

is available on PyPI or at https://isoelectric.org/ [65]. Otherwise, features were implemented

with custom code. A full list of features and their definitions is given in S2 and S3 Tables.

Estimation of Brownian motion and Ornstein-Uhlenbeck parameters

Brownian motion (BM) model parameters for each feature were calculated with two methods.

The first used Felsenstein’s contrasts algorithm to efficiently calculate roots and contrasts for the

disorder scores and features of each region [40,41]. Rates were calculated as the mean of the

squares of the contrasts. Though these values are unbiased, they are not maximum likelihood

estimates and are inappropriate for use with log likelihood ratio calculations. Thus, they were

used for analyses involving only the BM model. For comparison with the Ornstein-Uhlenbeck

(OU) model, the BM parameters were calculated by maximizing the likelihood. The OU model
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parameters for each feature were also calculated via maximum likelihood estimation as described

in Butler et al. [66]. To ensure parameter identifiability and estimate consistency, the root was

treated as a random variable [42,43]. Thus, the covariance matrix, V, was parameterized as Vij =

eαdij where dij is the tree distance between tips i and j, and α is the selection strength [42]. Both

the BM and OU models used the reference species tree to parameterize the branch lengths.

Simulations of BM and OU models

Random variates for both the BM and OU models were generated by calculating the mean vec-

tors and covariance matrices given the simulation parameters and sampling directly from a

multivariate normal distribution. The mean vectors were fixed to zero, as the likelihood of each

model is unchanged under shifts by a constant. The covariance matrices were calculated using

the reference species tree where the branch lengths were scaled by the rate of each model. For

the BM model, the rate was varied from 10−3 to 103 in half log steps. For the OU model, the rate

and selection strength were varied from 10−3 to 103 and from 10−2 to 102, respectively, both in

half log steps. For both models, each parameter combination was simulated 100 times.

Calculation and clustering of evolutionary signatures

The log likelihoods were calculated for each feature in each region using the maximum likeli-

hood estimates of the parameters for the BM and OU models. The pairwise differences in the

log likelihoods of each model yielded a vector with 82 components, each representing the rela-

tive goodness of fit of the OU model over the BM model. The vectors were clustered using the

correlation distance metric and the UPGMA algorithm. Clusters were manually chosen for sub-

sequent GO analyses. To enrich these clusters for regions with a high likelihood of feature con-

servation despite low levels of sequence identity, this analysis was restricted to the 7,607 (67%)

regions whose amino acid and indel substitution rates exceeded 1 or 0.1, respectively (S14 Fig).

GO term analyses

The 2022-03-22 go-basic release of the Gene Ontology was obtained from the GO Consortium

website [67,68]. The gene association file for the 2022_02 release of the D. melanogaster
genome annotation was obtained from FlyBase [27]. Obsolete annotations were dropped, and

the remaining annotations were filtered by qualifiers and evidence code. The allowed qualifiers

were “enables,” “contributes_to,” “involved_in,” “located_in,” “part_of,” and “is_active_in.”

The allowed evidence codes were all experimental sources, traceable author statement (TAS),

and inferred by curator (IC). The annotations were propagated up the ontology graph and

joined with the region sets, so every annotation associated with a gene was associated with the

regions derived from that gene. P-values were calculated with exact hypergeometric probabili-

ties with regions considered as the sampling unit. For the disorder score analysis, the reference

set was the filtered regions, and the enrichment set was the regions in the upper decile of the

score rate distribution (S9 Fig). For the cluster analysis, the reference set was the regions after

the additional filtering by substitution rates, and the enrichment sets were the regions in each

cluster. Additionally, in the cluster analysis, tests were only performed for terms associated

with at least two regions, and the set of p-values for each cluster were corrected for multiple

testing using the Benjamini-Hochberg method.

Supporting information

S1 Fig. Summary statistics of disorder and order regions. (A) Distribution of mean lengths

of regions. (B) Violin plot of the sums of the average amino acid and indel substitution rates in
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the disorder and order regions. The substitution rates are significantly greater in the disorder

regions than in the order regions (p< 1 × 10−10, Mann-Whitney U test).

(TIFF)

S2 Fig. Overlap of disorder and order regions with Pfam domains. (A) Number of disorder

and order regions with zero and non-zero overlap with any Pfam domain. The proportion of

regions with no overlap is significantly greater for the disorder regions (p< 1 × 10−10, chi-

squared test). (B) Histogram of the disorder and order regions’ overlaps with any Pfam

domain. Regions with zero overlap are excluded to more clearly show the distribution.

(TIFF)

S3 Fig. Exchangeability matrices fit to meta-alignments yielded by different sampling

strategies. Each panel is a mean of the exchangeability coefficients fit to the meta-alignments

yielded by a single sampling strategy (n = 25). The prefix and suffix in the title of each panel

indicate the maximum gap fraction and region type of the columns in the meta-alignments,

respectively. For example, the columns in the “50R_disorder” set of meta-alignments were

fewer than 50% gaps and sampled from the disorder regions.

(TIFF)

S4 Fig. Rate matrices fit to meta-alignments yielded by different sampling strategies. Each

panel is a mean of the rate coefficients fit to the meta-alignments yielded by a single sampling

strategy (n = 25). See S3 Fig for an explanation of the panel labels.

(TIFF)

S5 Fig. Correlations between mean exchangeability and rate matrices fit to meta-align-

ments yielded by different sampling strategies. (A) Correlations between the mean

exchangeability matrices in S3 Fig. (B) Correlations between the mean rate matrices in S4 Fig.

(TIFF)

S6 Fig. Coefficients of variation of the exchangeability matrices. For all panels, the top and

bottoms rows correspond to the 50R_disorder and 50R_order meta-alignment sets, respec-

tively. (A, D) Mean exchangeability matrices. (B, E) Coefficients of variation (ratio of the stan-

dard deviation to the mean) of exchangeability matrices. (C, F) The coefficient of variation is

inversely proportional to the mean, indicating the variation in the parameter estimates is con-

stant relative to their magnitude.

(TIFF)

S7 Fig. Coefficients of variation of the rate matrices. For all panels, the top and bottoms rows

correspond to the 50R_disorder and 50R_order meta-alignment sets, respectively. (A, D) Mean

rate matrices. (B, E) Coefficients of variation (ratio of the standard deviation to the mean) of

rate matrices. (C, F) The coefficient of variation is inversely proportional to the mean, indicat-

ing the variation in the parameter estimates is constant relative to their magnitude.

(TIFF)

S8 Fig. Sample contrasts calculation. (A) Initial state of tree with three tips. Values of traits at

each tip are indicated on the tree and in the table. (B) Calculation of first contrast between tips

B and C. (C) Inference of trait value at internal node A. Its branch length is increased to

account for the uncertainty in the estimation of its value. (D) Calculation of second contrast

between tip D and internal node A.

(TIFF)

S9 Fig. Histogram of disorder score rates in regions. The grey interval indicates the upper

decile of the distribution across both disorder and order regions, which was used as the input
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set for the GO term enrichment analysis.

(TIFF)

S10 Fig. Variance ratios of disorder regions’ feature roots. (A) Variance ratios before nor-

malization. (B) Variance ratios after normalization. (C) Scree plot of the explained variance

ratio by PC.

(TIFF)

S11 Fig. Variance ratios of disorder regions’ feature rates. (A) Variance ratios before nor-

malization. (B) Variance ratios after normalization. (C) Scree plot of the explained variance

ratio by PC.

(TIFF)

S12 Fig. PCA of disorder regions’ feature roots. (A) The first two PCs of the disorder

regions’ feature root distributions. The explained variance percentage of each component is

indicated in parentheses in the axis labels. (B) The same plot as panel A with the projections of

original variables onto the components shown as arrows. Only the 16 features with the largest

projections are shown. Scaling of the arrows is arbitrary.

(TIFF)

S13 Fig. PCA of order regions’ feature rates. (A) The second and third PCs of the order

regions’ feature rate distributions. The explained variance percentage of each component is

indicated in parentheses in the axis labels. (B) The same plot as panel B with the projections of

original variables onto the components shown as arrows. Only the 16 features with the largest

projections are shown. Scaling of the arrows is arbitrary.

(TIFF)

S14 Fig. Rate distributions of substitution models fit to disorder regions. (A) Average

amino acid rates in regions. (B) Average indel rates in regions. For both panels, the grey inter-

vals correspond to the subsets of rapidly evolving regions used for the clustering and GO term

enrichment analyses. 5892 (52%) and 6052 (53%) regions pass the amino acid and indel rate

cutoffs, respectively, and 7607 (67%) of regions pass either.

(TIFF)

S15 Fig. Hierarchical clustering of normalized optimal values. The optimal values of the

OU model (μOU) are clustered with the same method as the signatures derived from the log

likelihood ratios in Fig 7. The optimal values are expressed as z-scores relative to each feature

distribution in the subset of rapidly evolving disorder regions. Values below or above negative

or positive three are indicated with magenta and cyan, respectively.

(TIFF)

S1 Table. Phylogenetic diversity criteria.

(XLSX)

S2 Table. Features and their definitions.

(XLSX)

S3 Table. Feature regular expressions.

(XLSX)
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