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Abstract

Current malaria elimination targets must withstand a colossal challenge–resistance to the

current gold standard antimalarial drug, namely artemisinin derivatives. If artemisinin resis-

tance significantly expands to Africa or India, cases and malaria-related deaths are set to

increase substantially. Spatial information on the changing levels of artemisinin resistance

in Southeast Asia is therefore critical for health organisations to prioritise malaria control

measures, but available data on artemisinin resistance are sparse. We use a comprehen-

sive database from the WorldWide Antimalarial Resistance Network on the prevalence of

non-synonymous mutations in the Kelch 13 (K13) gene, which are known to be associated

with artemisinin resistance, and a Bayesian geostatistical model to produce spatio-temporal

predictions of artemisinin resistance. Our maps of estimated prevalence show an expansion

of the K13 mutation across the Greater Mekong Subregion from 2000 to 2022. Moreover,

the period between 2010 and 2015 demonstrated the most spatial change across the

region. Our model and maps provide important insights into the spatial and temporal trends

of artemisinin resistance in a way that is not possible using data alone, thereby enabling

improved spatial decision support systems on an unprecedented fine-scale spatial resolu-

tion. By predicting for the first time spatio-temporal patterns and extents of artemisinin resis-

tance at the subcontinent level, this study provides critical information for supporting malaria

elimination goals in Southeast Asia.

Author summary

Resistance to artemisinin derivatives has been confirmed in the Greater Mekong Subre-

gion, with worrying signs of spread in India and more recently emergence in Rwanda and

Uganda. This situation is dire given the way that the emergence and spread of resistance
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to other antimalarial drugs, chloroquine and later sulphadoxine–pyrimethamine, resulted

in dramatic increases in malaria-related morbidity and mortality across sub-Saharan

Africa in the 1990s. To eliminate malaria, up-to-date maps of artemisinin resistance are

urgently needed; predictive models of the spread of drug resistance can make far-reach-

ing, significant, changes in our approach to malaria elimination by informing appropriate

changes to drug policy. In this study, we have provided the first data-driven, predictive

maps of the changing landscape of resistance to artemisinin derivatives in the Greater

Mekong Subregion. These maps provide estimates where no data are available and can be

used by health agencies to guide the prioritisation of surveillance for resistance, and poli-

cies to improve treatment and prevent the further spread of resistance.

Introduction

Antimalarial drugs are essential tools for the control and elimination of malaria. Resistance to

all currently available antimalarials, including the pivotal artemisinin derivatives, have been

confirmed. This situation is dire considering how the multi-foci emergence and spread of

resistance to other antimalarial drugs–chloroquine and, later, sulphadoxine–pyrimethamine

(SP)–have resulted in dramatic increases in malaria-related morbidity and mortality [1].

Studies conducted in 2006–2007 first reported that P. falciparum in north-west Cambodia

had reduced in vivo susceptibility to artemisinins, which manifested as delayed clearance of

parasites from the blood of patients treated with ACTs [2]. Delayed parasite clearance in P. fal-
ciparum infections following artemisinin-based therapies is the clinical hallmark of resistance

[3]. P. falciparum infections with significantly slowed parasite clearance under artemisinin-

based therapies have now been detected in neighbouring countries in the Greater Mekong

Subregion; namely in Vietnam, Thailand and Myanmar [4,5].

Spatial information on changes to antimalarial resistance is critical for health organisations

to prioritise control measures, but available data on artemisinin resistance are sparse. No such

fine-scale predictive maps exist for artemisinin resistance within Southeast Asia. However, to

generate predictive maps using appropriate model-based geostatistics, large numbers of

unique spatio-temporal locations are needed [6]. This is impossible to achieve with clinical

measures of resistance; the data are simply not available owing to the expensive and time-con-

suming nature of clinical studies [4,7]. A way forward is to use molecular markers associated

with resistance.

Genetic mutations known to be associated with drug resistance can be used to monitor spa-

tio-temporal trends in antimalarial drug resistance as a proxy of clinical efficacy. Genetic stud-

ies are easier to conduct and are a fraction of the cost of clinical studies, thereby allowing

larger numbers of samples to be collected across more spatio-temporal locations [7]. Data

from genetic studies are readily amenable to model-based geostatistics. In a previous study,

Flegg et al. developed a predictive model for the geographical and temporal trends across

Africa of the prevalence of mutations in the dhps gene of the parasite that are known to be

associated with SP resistance [8]. A continuous predictive surface in space and time was

inferred for dhps markers using Bayesian model–based geostatistics over the spatial domain of

sub-Saharan Africa from 1990 to 2010. This has since been extended with more data to make

more recent predictions up until 2020 [9]. These models were built in a Bayesian framework

so that predictions can be informed not only by the observed data but also by prior knowledge.

The maps have proved useful to policymakers, and the predictive maps of SP resistance were

combined with clinical data on low birthweight [10]. The analysis showed that SP should be
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considered compromised, and countries should switch to alternative strategies if the dhps-
A581G marker is prevalent at more than 30%.

In 2014, mutations in the propeller region of the K13 protein that are associated with slow

parasite clearance response to artemisinins were identified and almost 200 different candidate

mutant genotypes were established [11]–a list that has been subsequently revised [12]. Since

the identification of K13 markers, many studies have been conducted (and historical blood

samples reanalysed) so that now a significant amount of data exists on the prevalence of these

markers.

In this paper, data-driven, predictive spatio-temporal maps are presented for the first time

of the changing landscape of resistance to artemisinin derivatives across the Greater Mekong

Subregion. We develop a geostatistical model of the presence of molecular markers associated

with artemisinin resistance, in the Kelch 13 (K13) gene, calibrated to the most comprehensive

dataset available from the WorldWide Antimalarial Resistance Network (WWARN). The spa-

tio-temporal maps of K13 marker prevalence presented in this paper will be able to support

monitoring of drug resistance in Southeast Asia, appropriate targeting of preventive strategies

and malaria elimination efforts.

Methods

We use a Bayesian model–based geostatistics approach to create predictive maps of K13

marker prevalence. Predictions at a spatial location are influenced by (1) the distance in space

and time to all available data and (2) a set of spatio-temporal covariates in the regression sub-

model for the mean of the stochastic process. A brief overview is given below with details on

the covariate data, geostatistical model, clustering and validation provided in the Supplemen-

tary Methods in S1 Text.

Kelch 13 data and model

We use data publicly available through WWARN’s comprehensive artemisinin molecular sur-

veyor [13], which collates the prevalence of molecular markers in the propeller region of the

K13 gene of the malaria parasite. All non-synonymous mutations at any K13 locus > 440 (i.e.,

within the propeller region) are captured along with a date of sample collection and geospatial

information. In some studies, a non-synonymous mutation in locus 252, outside the propeller

domain, was captured. Data were included from diverse types of studies, for example, cross-

sectional studies and therapeutic efficacy trials; however, any studies whose samples were col-

lected after treatment with an antimalarial were not included. Note that the spatial location

refers to the sample collection site, which in some instances could differ from the location of

infection. For example, artemisinin-resistant P. falciparum infections may have been detected

in Thailand, resulting from movement across borders from Cambodia and Myanmar [14].

Only studies where an individual site location could be determined (e.g. a single village) were

included in the study; for any aggregated data (e.g. across multiple villages), the data contribu-

tors were contacted, and individual site locations were sourced. We downloaded data from

WWARN’s Artemisinin Molecular Surveyor on 7 June 2023.

In this work, we model the overall prevalence of any K13 mutation that has been associated

with delayed parasite clearance [12]. That is, a sample is classified as ‘positive’ if it has a muta-

tion at any K13 locus listed in Table 1 and classified as ‘negative’ otherwise. For a given study,

the prevalence of K13 mutations is then defined as the proportion of positive K13 samples out

of those tested. We include only studies with a sample size of at least 10. Fig 1A shows the spa-

tial locations of 431 studies included in the analysis; the studies were conducted in Cambodia,

Laos, Myanmar, Thailand and Vietnam (Fig 1B). In each of these countries, the trend of K13
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marker prevalence has risen since the early 2000s (Fig 1C). S1 Video shows the time course of

K13 data collection over the period of 2000 to 2022, for which the data visualised in each year

shows studies conducted before or during the year associated with the map.

Results

We use the K13 molecular marker data detailed in the Methods to calibrate the geostatistical

model (see S1 Text for details). The four covariates used in the model are malaria parasite rate

(posterior median regression coefficient of -0.78), human population density (-0.015), malaria

temperature suitability (0.071), and travel time to nearest city as a measure of accessibility

(-0.024).

The calibrated geostatistical model allows quantification of the predicted distribution of

K13 prevalence for any location of interest in any year in the Greater Mekong Subregion. It is

important to note that these maps do not represent resistance in malaria cases being transmit-

ted at each location, but rather the malaria cases presenting at these locations (in that the loca-

tion where malaria is transmitted by mosquito bite may be quite different to the location

where the malaria case presents due to travel of the infected person).

Model validation

Overall, there is good agreement between the observed (in hold-out data) and predicted preva-

lence (correlation coefficient of 0.82). There is a small amount of bias (mean error of −0.0035),

and the accuracy is reasonable (mean absolute error of 0.13). Fig G in S1 Text shows good

agreement between the observed and predicted prevalence, and reliability of the credible inter-

vals is strong, especially for narrow intervals. When we perform a spatially explicit cross valida-

tion with the data spatially clustered into 50 clusters, there is still reasonable agreement

between observed and predicted prevalence (correlation coefficient of 0.56, mean error of

-0.058 and mean absolute error of 0.22).

Kelch 13 marker prevalence over time

Fig 2 compares the predicted distributions at two locations: Pailin, Cambodia (left-hand side),

and Kyaukme, Myanmar (right-hand side), in 2000 (second row) and 2020 (third row). The

complete posterior predictive distribution is presented, and the median is shown as a solid red

vertical line. In 2000, the predicted level of K13 prevalence is already high in Pailin compared

with Kyaukme. By 2020, both locations have increased predicted levels of resistance compared

with 2000.

The posterior predictive distribution of K13 prevalence is obtained on a 5 x 5 km grid in the

Greater Mekong Subregion from 2000 to 2022. The median and uncertainty (standard devia-

tion) of the distribution are shown in Fig 3 for the Greater Mekong Subregion in 2000, 2010

and 2020, in regions where the median estimate of parasite rate among those aged 2–10 years

is predicted to be non-zero (see Fig C in S1 Text for results over the entire Greater Mekong

Subregion). We note that we could exclude regions based on other measures of malaria trans-

mission that are more likely to reflect disease burden in the region accurately; however, para-

site rate is the only metric publicly available at an appropriate spatial and temporal scale.

Table 1. K13 mutant alleles that have been strongly associated with slow parasite clearance from [12], that are considered here for spatio-temporal mapping.

N458Y Y493H R539T I543T R561H C580Y E252Q P441L

F446I G449A M476I A481V R515K P527H N537I G538V

P553L V568G P574L P667T A675V R539R/T C580C/Y

https://doi.org/10.1371/journal.pcbi.1012017.t001
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In locations where resistance is predicted to be established in 2000 already (e.g., Thai–Cam-

bodia border), resistance levels are predicted to have increased (spread out or emerged) geo-

graphically in neighbouring regions (compare Fig 3A–3C for 2000, 2010 and 2020,

respectively). The associated uncertainties show a general increase in uncertainty from 2000 to

2020 (compare Fig 3D–3F for 2000, 2010 and 2020, respectively). S2 and S3 Videos show the

median and uncertainty, respectively, of the posterior predictive distribution of K13 preva-

lence over 2000–2022.

Predicted extent of Kelch 13 mutations

Fig 3 shows that resistance is predicted to have spread and emerged geographically. This is fur-

ther quantified in Fig 4, which highlights the geographical extent to which K13 prevalence is

predicted to exceed 10% (based on the median estimates). The extent of resistance (using 10%

K13 prevalence as a proxy) in 2000 is predicted to be isolated to near the Thai–Cambodia bor-

der and north Myanmar (Fig 4A). In the subsequent 5-year intervals, more of the region is pre-

dicted to exceed 10% K13 marker prevalence (see Fig 4B–4E showing the extent in 2005, 2010,

2015 and 2020, respectively). Fig 4F summarises the extent of resistance (at 10% K13 marker

Fig 1. (a) Map showing the spatial location of the studies included in the modelling of K13 prevalence. The size of the

marker is proportional to the number of patients in the study and the colour of the marker denotes the observed K13

marker prevalence. National shapefiles were obtained from the Malaria Atlas Project (MAP; https://malariaatlas.org/)

under their open access policy (https://malariaatlas.org/open-access-policy/) and no changes were made. (b) Number

of studies each year since 2000, broken down by country. (c) Temporal trends in country level K13 prevalence data

since 2000, where the number of patients is denoted by the size of the circles.

https://doi.org/10.1371/journal.pcbi.1012017.g001

PLOS COMPUTATIONAL BIOLOGY Spread of artemisinin resistance in Southeast Asia

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012017 April 16, 2024 5 / 13

https://malariaatlas.org/
https://malariaatlas.org/open-access-policy/
https://doi.org/10.1371/journal.pcbi.1012017.g001
https://doi.org/10.1371/journal.pcbi.1012017


Fig 2. Example posterior predictive distributions for K13 prevalence at two locations, in Pailin, Cambodia (left hand

side panels) and Kyaukme, Myanmar (right hand side panels). The rows relate to the predictive distribution in 2000

and 2020, respectively. The vertical red lines represent the median prevalence. National shapefiles were obtained from

the Malaria Atlas Project (MAP; https://malariaatlas.org/) under their open access policy (https://malariaatlas.org/

open-access-policy/) and no changes were made.

https://doi.org/10.1371/journal.pcbi.1012017.g002

Fig 3. Posterior predictive median prevalence of K13 marker in the Greater Mekong Subregion in 2000 (a), 2010 (b)

and 2020 (c), in regions where the median MAP estimates of parasite rate among those aged 2–10 years is predicted to

be non-zero are visualised (see Fig C in S1 Text for results for the entire Greater Mekong subregion). Associated

standard deviations for posterior predictions in 2000 (d), 2010 (e) and 2020 (f). National shapefiles were obtained from

the Malaria Atlas Project (MAP; https://malariaatlas.org/) under their open access policy (https://malariaatlas.org/

open-access-policy/) and no changes were made.

https://doi.org/10.1371/journal.pcbi.1012017.g003
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prevalence) over the Greater Mekong Subregion and shows that 2005 to 2015 demonstrate a sub-

stantial change in the extent. The extent of resistance at 50% K13 marker prevalence (panel (a) in

Fig E in S1 Text) shows an isolated focal point near Pailin, Cambodia in 2003, then wide geo-

graphical change to 2010 and again to 2015. From 2015 to 2020 the extent of resistance (at 50%

K13 marker prevalence) remains relatively static (see also panel (c) in Fig E in S1 Text, purple

line). A second focal point in north Myanmar appears in 2009. The extent of resistance at 80%

K13 marker prevalence (panel (b) in Fig E in S1 Text) isolates a focal point near Pailin, Cambo-

dia, in 2010, some spatial change by 2015, after which it remains relatively fixed (see also panel

(c) in Fig E in S1 Text, blue line). S4-5 and 6 Videos show, respectively, the changing extent of

resistance at 10%, 50% and 80% K13 marker prevalence over 2000–2022. There is notable uncer-

tainty in the proportion of the region that exceeds K13 marker prevalence of 10%, 50% and 80%

over time (panel (c) in Fig E in S1 Text); however, the increasing trends are clear. Country level

trends are broadly consistent with the trends for the whole region (Fig F in S1 Text). Cambodia

is predicted to reach larger extents of resistance before the other countries in the region.

Using predicted median prevalence values for the region, we cluster points that exceed

10%, 50% and 80% K13 marker prevalence in space (S7-8 and 9 Videos respectively), visualis-

ing only those clusters that appear in more than a single year. At 10%, three existing clusters in

2000 located at the Thai–Cambodia border, north Myanmar and south Thailand grow and

merge into one cluster encompassing most of the region by 2012. At 50%, a small cluster is

established in 2004 near the Thai–Cambodia border, which expands over time, eventually

encompassing several emerging clusters in the region. At 80%, a cluster emerges in 2010 and

persists over time near the Thai–Cambodia border.

Fig 4. The predicted area with K13 marker prevalence exceeding 10% (shaded region), based on median predictions,

in 2000 (a), 2005 (b), 2010 (c), 2015 (d) and 2020 (e), in regions where the median MAP estimates of parasite rate

among those aged 2–10 years is predicted to be non-zero are visualised (see Fig D in S1 Text for results for the entire

Greater Mekong subregion). The changing extent of the region that exceeds 10% K13 marker prevalence is

summarised in (f). National shapefiles were obtained from the Malaria Atlas Project (MAP; https://malariaatlas.org/)

under their open access policy (https://malariaatlas.org/open-access-policy/) and no changes were made.

https://doi.org/10.1371/journal.pcbi.1012017.g004
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Discussion

This paper has provided the first data-driven, predictive maps of the changing landscape of

resistance to artemisinin derivatives in the Greater Mekong Subregion. These maps provide

estimates of drug resistance for locations where no data are available and can be used by health

agencies to guide the prioritisation of surveillance for resistance and policies to improve treat-

ment and prevent the further spread of resistance.

The work presented in this paper significantly advances earlier work by providing predic-

tions of K13 prevalence over the entire Greater Mekong Subregion from 2000 to 2022 based

on a comprehensive dataset of K13 studies conducted in the region. It illustrates the expansion

of artemisinin resistance in the Greater Mekong Subregion in the last 10 years and the increase

of prevalence in east and north Myanmar, bordering Indian States. In 2015, Tun et al. quanti-

fied the spread of K13 propeller mutations with a similar Bayesian model–based geostatistics

framework [15]; however, predictions were only for Myanmar in 2014 and based on the lim-

ited amount of available data at the time. The results presented in our paper are consistent

with this earlier modelling work as well as the underlying data collected to assess the spread of

artemisinin resistance (e.g. [4,5]).

The identification of mutations in the K13 protein that are associated with artemisinin

resistance in 2014 provided a means for monitoring artemisinin resistance on a large geo-

graphical scale. Almost 200 different candidate mutant genotypes were first established

[11,12]; meanwhile, a study from WWARN has since identified a refined set of K13 mutant

alleles associated with slow parasite clearance–the clinical hallmark of artemisinin resistance

[12]. This paper has presented maps for the prevalence of any of the K13 mutations associated

with slow parasite clearance (as defined in [12]), thereby reducing the many markers to a sin-

gle number of ‘positive’ observations for each study site. In this way, some of the statistical

power that is available in the data is lost. The discovery of a set of molecular markers of resis-

tance in the K13 gene drives the need for innovation in the model structure that can capture

the dependence between the markers. This will be possible with a joint statistical framework

drawing on all the information available for each of the K13 markers for which the correlation

structure between the markers is explicitly modelled; currently there is very limited data with

more than one molecular marker, so a joint model is beyond the scope of this paper with the

existing data. Furthermore, there is currently insufficient statistical power for a model for each

marker.

We have characterised the changes in artemisinin resistance in terms of the prevalence of

the K13 markers. Moreover, we have incorporated several key factors (transmission, human

population, temperature suitability and accessibility) as covariates in the mean of the Gaussian

process. However, these factors each have an important mechanistic role to play in the rate of

change of artemisinin resistance, which could be modelled by considering another hierarchical

layer in the statistical model that relates the level of resistance to, for example, the incidence of

Pf malaria during a time interval.

There are several limitations to the work presented here. Firstly, the timeline from field

data collection to publication to data sharing was often long; consequently, the modelling to

provide real-time (or near real-time) information for policymakers was dependent on this fac-

tor and the willingness of all actors to allow rapid access to relevant data. It is worth noting

that a pilot project conducted by Mahidol University and the WWARN from 2016 to 2019 had

a turn-around time of three months for data upload onto publicly accessible maps [16]. This

issue is highlighted by a known downward trend in K13 mutant infections in Cambodia since

2019 –likely driven by the change in first-line treatment–that is yet to be reflected in the data

stored in WWARN repositories. Secondly, the modelling approach did not allow us to
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distinguish between multiple emergences and spread; the maps can represent only the exten-

sion of resistance through both combined. Thirdly, different studies have collected data on dif-

ferent sets of markers; a modelling approach would ideally consider the spatio-temporal

changes in prevalence of each marker using a multi-output model. Fourthly, uncertainty exists

that is overlooked that ideally should be incorporated into the model framework, in particular

uncertainty concerning malaria transmission estimates. Additionally, other potential explana-

tory variables were not incorporated as covariates, because of a lack of sufficiently high-resolu-

tion spatial estimates. These include, but are not limited to, population movement,

antimalarial treatment access and use (including asymptomatic carriers), and first-line antima-

larial drug policy. Finally, the mediocre performance of the spatially explicit cross validation

compared to the random approach is worth further exploration. With the sparsity of spatial

data currently available this poor performance of long-range extrapolation is not unexpected

[17] and may be improved as (1) more spatial data is collected, (2) modelling methods are

improved for example to consider multi-model outputs, and (3) potential explanatory vari-

ables become available at sufficiently high spatiotemporal resolution.

This paper has confirmed the spatio-temporal patterns of drug resistance to artemisinin

derivatives in Southeast Asia, where malaria elimination by 2030 is being actively targeted. The

current elimination targets need to withstand the challenge of resistance to the current gold

standard group of antimalarial drugs, artemisinin derivatives, that first emerged in Cambodia.

Such resistance has now been detected in the Greater Mekong Subregion [4, 5]. Of extreme

concern is that there are signs of emergence in Africa [18–20]. The consequences of artemisi-

nin resistance may be dire: historically, the emergence and spread of parasites resistant to the

antimalarial drugs chloroquine and later SP resulted in dramatic increases in malaria-related

morbidity and mortality across sub-Saharan Africa [1]. If artemisinin resistance becomes

established in Africa, it will likely facilitate the emergence and spread of ACT partner drug

resistance, jeopardising the efficacy of ACTs, which will lead to an increase in malaria cases

and, ultimately, an increase in malaria-attributable deaths.

The maps presented in this paper provide predicted artemisinin resistance levels in places

and at times for which no data are available. The maps and model output can be used to help

inform recommendations for appropriate drug choices at the local and regional levels. Fur-

thermore, the success of existing resistance containment strategies can be assessed using the

model by considering the predictions of the changing extent of resistance. The maps and

model outputs are available to share with regional national malaria control programs to facili-

tate spatial decision support, including country and provincial level predictions. The approach

presented here can naturally be extended to resistance of partner drugs (e.g. plasmepsin and

PfCRT for piperaquine and PfMDR1 for mefloquine) to provide insights into ACT resistance

[21], which would be most interesting for policymakers.

Supporting information

S1 Text. Contains supplementary methods and supplementary figures. Fig A. Covariates

used in modelling. (a) Predicted parasite rate in 2–10 year olds in 2000, 2005, 2010 and 2015,

(b) human population density, (c) P. falciparum temperature suitability, (d) travel time to

nearest city as measure of accessibility. National shapefiles were obtained from the Malaria

Atlas Project (MAP; https://malariaatlas.org/) under their open access policy (https://

malariaatlas.org/open-access-policy/) and no changes were made. Fig B. Conditional depen-

dency schematic for the geostatistical model. Here, solid arrows represent conditional depen-

dencies, the dashed arrow represents a deterministic relationship, the squares represent data

and the circles/ellipses represent random variables. Fig C. Posterior predictive median
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prevalence of K13 marker in the Greater Mekong Subregion in 2000 (a), 2010 (b) and 2020 (c).

Associated standard deviations for posterior predictions in 2000 (d), 2010 (e) and 2020 (f).

National shapefiles were obtained from the Malaria Atlas Project (MAP; https://malariaatlas.

org/) under their open access policy (https://malariaatlas.org/open-access-policy/) and no

changes were made. Fig D. The predicted area in the Greater Mekong subregion with K13

marker prevalence exceeding 10% (shaded region), based on median predictions, in 2000 (a),

2005 (b), 2010 (c), 2015 (d) and 2020 (e). The changing extent of the region that exceeds 10%

K13 marker prevalence is summarised in (f). National shapefiles were obtained from the

Malaria Atlas Project (MAP; https://malariaatlas.org/) under their open access policy (https://

malariaatlas.org/open-access-policy/) and no changes were made. Fig E. The changing extent

of the Greater Mekong subregion that exceeds 50% (a) and 80% (b) K13 marker prevalence.

The proportion of the region with K13 marker prevalence exceeding 10%, 50% and 80% over

the time period of 2000 to 2022 (c) where the median estimates are shown in the solid, col-

oured lines and the associated uncertainty (50% credible intervals) in the shaded regions.

National shapefiles were obtained from the Malaria Atlas Project (MAP; https://malariaatlas.

org/) under their open access policy (https://malariaatlas.org/open-access-policy/) and no

changes were made. Fig F. The proportion of the Greater Mekong subregion with K13 marker

prevalence exceeding 10%, 50% and 80% over the time period of 2000 to 2022 for Cambodia

(a), Laos (b), Myanmar (c), Thailand (d), Vietnam (e) and the whole region (f). The median

estimates are shown in the solid, coloured lines and the associated uncertainty (50% credible

intervals) in the shaded regions. Fig G. Validation results showing (a) scatterplot of the pre-

dicted median prevalence from the validation models and observed prevalence in hold-out

data and (b) probability-probability plot of the fraction of observations that fell within a pre-

dictive credible interval of a given size. The dashed red lines show a 1:1 reference line. In (a),

the size of the dot is proportional to the sample size of the study. Table A. Summary of hyper-

parameters and prior choices in hierarchical model.

(DOCX)

S1 Video. K13 data collection over time. The video shows the time course of data collection

for K13 over the period of 2000 to 2022. Data visualized in each year shows studies conducted

before or during the year associated with the map. National shapefiles were obtained from the

Malaria Atlas Project (MAP; https://malariaatlas.org/) under their open access policy (https://

malariaatlas.org/open-access-policy/) and no changes were made.

(MP4)

S2 Video. Spatiotemporal modelling of K13 mutation prevalence. The video shows the

median of the posterior predictive distribution for K13 mutation prevalence over 2000 to

2022. National shapefiles were obtained from the Malaria Atlas Project (MAP; https://

malariaatlas.org/) under their open access policy (https://malariaatlas.org/open-access-policy/)

and no changes were made.

(MP4)

S3 Video. Spatiotemporal modelling of K13 mutation uncertainty. The video shows the

standard deviation of the posterior predictive distribution for K13 mutation prevalence over

2000 to 2022. National shapefiles were obtained from the Malaria Atlas Project (MAP; https://

malariaatlas.org/) under their open access policy (https://malariaatlas.org/open-access-policy/)

and no changes were made.

(MP4)

S4 Video. Spatiotemporal modelling of K13 mutation prevalence at 10% threshold. The

video shows the changing spatial extent of where resistance has reached 10% K13 marker
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prevalence over 2000 to 2022. National shapefiles were obtained from the Malaria Atlas Project

(MAP; https://malariaatlas.org/) under their open access policy (https://malariaatlas.org/open-

access-policy/) and no changes were made.

(MP4)

S5 Video. Spatiotemporal modelling of K13 mutation prevalence at 50% threshold. The

video shows the changing spatial extent of where resistance has reached 50% K13 marker prev-

alence over 2000 to 2022. National shapefiles were obtained from the Malaria Atlas Project

(MAP; https://malariaatlas.org/) under their open access policy (https://malariaatlas.org/open-

access-policy/) and no changes were made.

(MP4)

S6 Video. Spatiotemporal modelling of K13 mutation prevalence at 80% threshold. The

video shows the changing spatial extent of where resistance has reached 80% K13 marker prev-

alence over 2000 to 2022. National shapefiles were obtained from the Malaria Atlas Project

(MAP; https://malariaatlas.org/) under their open access policy (https://malariaatlas.org/open-

access-policy/) and no changes were made.

(MP4)

S7 Video. Spatiotemporal clustering of K13 mutation prevalence at 10% threshold. The

video shows the spatiotemporal clustered points that exceed 10% K13 marker prevalence in

space over 2000 to 2022. National shapefiles were obtained from the Malaria Atlas Project

(MAP; https://malariaatlas.org/) under their open access policy (https://malariaatlas.org/open-

access-policy/) and no changes were made.

(MP4)

S8 Video. Spatiotemporal clustering of K13 mutation prevalence at 50% threshold. The

video shows the spatiotemporal clustered points that exceed 50% K13 marker prevalence in

space over 2000 to 2022. National shapefiles were obtained from the Malaria Atlas Project

(MAP; https://malariaatlas.org/) under their open access policy (https://malariaatlas.org/open-

access-policy/) and no changes were made.

(MP4)

S9 Video. Spatiotemporal clustering of K13 mutation prevalence at 80% threshold. The

video shows the spatiotemporal clustered points that exceed 80% K13 marker prevalence in

space over 2000 to 2022. National shapefiles were obtained from the Malaria Atlas Project

(MAP; https://malariaatlas.org/) under their open access policy (https://malariaatlas.org/open-

access-policy/) and no changes were made.

(MP4)
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