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Abstract

Cardiovascular diseases are the leading cause of death globally, making the development

of non-invasive and simple-to-use tools that bring insights into the state of the cardiovascu-

lar system of utmost importance. We investigated the possibility of using peripheral pulse

wave recordings to estimate stroke volume (SV) and subject-specific parameters describing

the selected properties of the cardiovascular system. Peripheral pressure waveforms were

recorded in the radial artery using applanation tonometry (SphygmoCor) in 35 hemodialysis

(HD) patients and 14 healthy subjects. The pressure waveforms were then used to estimate

subject-specific parameters of a mathematical model of pulse wave propagation coupled

with the elastance-based model of the left ventricle. Bioimpedance cardiography measure-

ments (PhysioFlow) were performed to validate the model-estimated SV. Mean absolute

percentage error between the simulated and measured pressure waveforms was 4.0% and

2.8% for the HD and control group, respectively. We obtained a moderate correlation

between the model-estimated and bioimpedance-based SV (r = 0.57, p<0.05, and r = 0.58,

p<0.001, for the control group and HD patients, respectively). We also observed a correla-

tion between the estimated end-systolic elastance of the left ventricle and the peripheral

systolic pressure in both HD patients (r = 0.84, p<0.001) and the control group (r = 0.70,

p<0.01). These preliminary results suggest that, after additional validation and possibly fur-

ther refinement to increase accuracy, the proposed methodology could support non-inva-

sive assessment of stroke volume and selected heart function parameters and vascular

properties. Importantly, the proposed method could be potentially implemented in the exist-

ing devices measuring peripheral pressure waveforms.

Author summary

With a growing number of people suffering from cardiovascular diseases (CVD), it is

extremely important to develop non-invasive methods that could quickly and comprehen-

sively assess the condition of the cardiovascular system. Hemodialysis (HD) patients are
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particularly prone to CVD, but studies aimed at developing new techniques for non-inva-

sive assessment of cardiovascular parameters are typically based on healthy subjects. We

set out to investigate the possibility of using peripheral pressure waveforms to estimate

stroke volume (SV) and selected parameters of the cardiovascular system in both healthy

subjects and HD patients. To that aim, we developed a mathematical model of pulse wave

propagation coupled with an elastance-based model of the left-ventricular function. The

validity of the model has been assessed using bioimpedance-based SV estimates from both

healthy subjects and HD patients. We believe that the proposed model-based procedure,

subject to further validation and improvements, could serve as an auxiliary tool for evalu-

ating SV. In addition, it enables estimation of selected cardiovascular parameters, some of

which, as we have shown, appear to be related to known pulse wave-derived parameters.

Introduction

Chronic kidney disease (CKD) is a long-term decrease in kidney function characterized by its

progressive nature, lack of a definitive cure, and high morbidity and mortality. It is relatively

common in the general adult population, particularly among individuals affected by diabetes

and hypertension [1]. Prevalence of CKD is estimated at 13.4% globally and its incidence is

expected to rise in the future [2,3]. About 50% of patients with CKD stage 4 or 5 have a cardio-

vascular disease (CVD), with approximately 40% to 50% of all deaths in this group being

attributed to CVD [2]. CVD risk factors in patients with CKD include, among others, vascular

calcification, inflammation, hypertension, or diabetes [2]. Furthermore, nearly half of patients

with heart failure suffer from CKD [4] and a long-term decrease in cardiac output or stroke

volume may indicate progression of heart failure, which can decrease kidney perfusion and

lead to kidney failure [5,6]. Non-invasive methods of assessing the patient’s cardiovascular

health can be an important aid in understanding the CKD-related mechanisms behind CVD,

predicting hemodynamic response to various treatments, or creating personalized treatment

plans. Moreover, non-invasive assessment of stroke volume in end-stage CKD patients receiv-

ing dialysis treatment could potentially help in assessing the fluid overload in such patients

and prescribing an adequate and safe dialysis treatment. It could also be used for categorizing

dialysis patients based on their intradialytic hemodynamic changes [7]. For these reasons, it is

critically important to develop easy-to-use and non-invasive methods of assessing the patient’s

cardiovascular condition.

In recent years, personalized cardiovascular mathematical models of various complexity have

begun to play an increasingly important role in the assessment of the state of the patient’s car-

diovascular system [8–13]. Coupled 0-1D models are a good compromise between the simplicity

of lumped models and the complexity of multidimensional models in the case when one is inter-

ested in describing the whole-body circulation. In this type of reduced-order modeling, the

pulse and flow wave propagation are described using a one-dimensional bifurcation tree reflect-

ing the largest arteries in the body, on which the flow equations are imposed. In such models,

the lumped parts typically explain the behavior of the peripheral arteries and the work of the

heart. The size of the modeled system, as well as the parameters describing the heart and the vas-

culature (i.e. peripheral compliance, resistance, etc.) are subject-specific and should be estimated

for a given patient. To personalize a model, one needs to collect (preferably non-invasively)

patient data corresponding to the model outputs and then to adjust the model (i.e. optimize the

model parameters), so that its outputs match gathered data as closely as possible. A proper opti-

mization method, combined with appropriately assigned initial values of the parameters to be

PLOS COMPUTATIONAL BIOLOGY Pulse-wave based estimation of heart function parameters

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012013 April 18, 2024 2 / 21

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1012013


optimized (e.g. based on patient size, age, gender, etc.), should minimize the difference between

the model outputs and patient data, providing the final estimates of patient-specific values of

those parameters, thus making the model personalized. Depending on the application and the

details of the model, various approaches to model personalization may be used.

For instance, in the study by Zang et al [14] a 0-1D model describing 55 main arteries

(defined previously in the works of Stergiopulos et al. [15] and Olufsen et al. [16]) was person-

alized by scaling the artery lengths and diameters according to subject height and a cluster-

dependent scaling factor, followed by minimizing the error between the measured and simu-

lated peripheral pressure waveforms using the gradient-based optimization algorithm. In the

study by Bikia et al. [11] a model based on a more detailed bifurcation tree with 103 arteries

(defined previously by Reymond et al. [17]), was personalized by: 1) adjustments of the arterial

tree based on age, gender, height, and body surface area; 2) using a gradient-based optimiza-

tion procedure to minimize the error between the measured and computed cardiovascular var-

iables such as systolic and diastolic blood pressure, and carotid-femoral pulse wave velocity.

Carson et al. [18] used a two-tier optimization procedure involving adjustments of parameters

such as peripheral resistances, compliances, blood volume, and arterial cross-sectional areas to

fit the model to the measured systolic and diastolic blood pressure, pulse wave velocity, as well

as peak systolic and end-diastolic blood flow velocity.

Once the model is personalized, the resulting set of subject-specific parameters can provide

deeper insight into the patient’s condition without the use of invasive measurements [9–

11,19]. However, to our knowledge, not many of such studies have been conducted in patients

with chronic diseases such as CKD, who, as already mentioned, are particularly prone to CVD.

In our previous papers, we have investigated whether a 0-1D model could reproduce appla-

nation tonometry recordings of pressure waves from the radial artery in healthy subjects and

hemodialysis (HD) patients [10,19]. We also performed a detailed study on whether the car-

diovascular risk factors for HD patients, such as arterial stiffness, could be derived from the

measured pressure waveforms [19]. In the present paper, we extend our previous study by

investigating if the measured pressure waveform can be used for a detailed heart function

assessment, including stroke volume (SV) estimation. We use a similar 0-1D model as before

i.e. the model based on the aforementioned commonly-used 55-element arterial tree and a

3-element Windkessel model at the terminal ends of the arteries. However, we decided to use a

different boundary condition describing the inflow of blood to the arterial tree, which in the

present study is based on the elastance function of the heart. To validate the model-based esti-

mates of SV, we used bioimpedance cardiography measurements (PhysioFlow, Manatec Bio-

medical, France) performed simultaneously with peripheral pulse waves recordings.

Results

Reproduction of the measured pressure waveforms

After subject-specific personalization (calibration) of the model (see Fig 1 for a graphical repre-

sentation of the calibration process), our pulse wave propagation model was able to reproduce

the pressure waveforms recorded in the radial arteries with satisfactory accuracy in most cases.

Exemplary model simulations after data fitting are presented in Fig 2, whereas all cases are pre-

sented in the S1 File. Additionally, S1 Fig shows exemplary model outputs at different locations

in the arterial tree (i.e. flow and pressure waveforms). For the control group, the average mean

absolute percentage error (MAPE) between the measured and fitted pressure waveforms (for

all available data points) was 2.8%, whereas for HD patients it was 4% (see Fig 3 for more

details). The average MAPE for the measurements performed during HD after a long interdia-

lytic break (i.e. 3 days) was slightly lower compared with that obtained for the measurements
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performed after a short, 2-day break (3.8% vs. 4.2%; difference not significant), see Fig 3b. The

worst (highest) MAPE values were obtained for the measurements conducted after the end of

HD (average 4.9% for all HD sessions, 4.4% for the sessions after the long interdialytic break,

and 5.5% for the sessions after the short interdialytic break; difference not significant).

Fig 1. Simplified workflow of the study. For each measured pressure waveform, model personalization (calibration) was performed. An iterative optimization

procedure was employed to tune the values of parameters describing the function of the heart (i.e. Emax–maximal value of the elastance function, and tm–time to the

onset of constant elastance) as well as terminal compliances and resistances (Sc and SR, respectively) that would minimize the error between the measured and

simulated pressure waveform in the radial artery. After model personalization, the model-simulated blood flow waveform in the ascending aorta was used to estimate

stroke volume (SV). Finally, model-estimated and reference SV values have been compared.

https://doi.org/10.1371/journal.pcbi.1012013.g001
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Stroke volume estimation

For the control group, the Pearson correlation coefficient between SVs estimated by the bioim-

pedance cardiograph and those estimated using our model was r = 0.57 (p = 0.032), see the

scatter plot in Fig 4a. For HD patients, the correlation coefficient for all measurements was

Fig 2. Exemplary model simulations of the pressure waveform in the radial artery (upper panels) and the corresponding blood flow waveform in the ascending

aorta (lower panels) in four subjects: Two HD patients and two subjects from the control group.

https://doi.org/10.1371/journal.pcbi.1012013.g002

Fig 3. The quality of model fits: Mean absolute percentage error (MAPE) between the measured and model-simulated

pressure waveforms in the radial artery for (a) control group and (b) HD patients. For HD patients, the results are divided

based on either the length of the interdialytic break before the HD session (a long, 3-day break vs short, 2-day break) or the time

of the measurement (before/after the start of the HD session and before/after the end of the session).

https://doi.org/10.1371/journal.pcbi.1012013.g003
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r = 0.58 (p< 0.001), with r = 0.56 and r = 0.59 for the measurements performed after the short

and long interdialytic break, respectively (p< 0.001 in both cases; see Fig 4b for the scatter

plots). The correlation coefficients were similar regardless of the time of measurement during

the HD session, with the only exception for the measurements performed before the end of

HD session after a long interdialytic break, where the correlation was higher (r = 0.75,

p< 0.001), although only after excluding one clear outlier, see S2 Fig.

Fig 5 presents the Bland-Altman plots comparing the model-estimated and bioimpedance-

based SV values in both control and HD groups. Since the differences in SV from the two

methods were not normally distributed in the HD group (Shapiro-Wilk test statistic: 0.98,

p< 0.05), a logarithmic transformation of the data was performed [20] (Shapiro-Wilk test sta-

tistic: 0.991, p = 0.52).

Estimation of cardiovascular parameters

Table 1 presents the average values of the estimated subject-specific parameters and their

standard deviations. The first two parameters are related to the elastance heart model of the

left ventricle, while the last two describe the properties of the terminal vascular beds, (see

also Fig 6 to compare).

Table 2 shows the comparison between the mean values of the cardiovascular parameters

estimated in HD patients for the measurements performed after the long vs short interdialytic

break. This comparison is shown in two versions: first, for the available data from all four mea-

surement moments during HD, and second, for the measurements taken only before the start

of HD (to exclude the impact of the dialysis itself). In both cases, when paired measurements

were taken into account, no statistically significant differences were observed with regard to

the length of the interdialytic break.

Fig 4. Comparison between the model-estimated (computed) stroke volume (SV) and bioimpedance-based (measured)

SV values for (a) control group and (b) HD patients (data shown separately for the HD sessions after a long and short

interdialytic break). Solid and dashed lines represent linear regression, and 95% confidence intervals, respectively.

https://doi.org/10.1371/journal.pcbi.1012013.g004
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Correlations with PWA-derived indices

The SphygmoCor device, which was used for peripheral pressure waveform recordings, per-

forms also the so-called Pulse Wave Analysis (PWA), which is a non-invasive method of

assessing the state of the cardiovascular system. The PWA method relies on a generalized

transfer function that allows reconstruction of the central pressure waveform from that

recorded in the radial artery. Thus, the device also returns parameters characterizing the

peripheral and central pressure waveforms, such as the augmentation index. To determine

whether the model-estimated SV and the cardiovascular parameters tuned in our model fitting

procedure are somehow related to the indices derived by SphygmoCor and the general patient

characteristics (age, height, weight), we calculated the Pearson correlation coefficients between

those values and presented them in the form of a heatmap, see Fig 7.

Discussion

We presented a model-based methodology for estimating SV based on the pressure waveform

recorded in the radial artery. We observed a moderate correlation between the SV estimated

by our model and that obtained from bioimpedance cardiography in both healthy subjects and

Fig 5. Bland-Altman plots comparing the stroke volume estimated by the model versus estimated using

bioimpedance cardiography (PhysioFlow) for (a) control group and (b) hemodialysis patients. Dashed horizontal

lines represent the 95% limits of agreement, straight horizontal line represents the mean difference. Before plotting, the

data have been logarithmically transformed. SD denotes standard deviation.

https://doi.org/10.1371/journal.pcbi.1012013.g005

Table 1. Summary of the estimated patient-specific values of the model parameters for hemodialysis (HD) patients and control group. The data are shown as means

and standard deviations (SD).

Parameter Unit HD patients Control group

Mean SD Mean SD

Emax Maximal systolic value of elastance function mmHg/ml 3.13 1.27 2.56 1.06

tm Time to the onset of constant elastance s 0.57 0.09 0.56 0.05

SR Scaling factor of terminal resistances - 1.66 0.71 2.02 0.75

Sc Scaling factor of terminal compliances - 10.18 4.34 11.89 4.39

https://doi.org/10.1371/journal.pcbi.1012013.t001
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HD patients (Pearson correlation coefficient of around 0.6). However, our model-based esti-

mates of SV were generally lower than those obtained from bioimpedance cardiography,

which may be either due to the limitations of our model or due to imperfectly recorded periph-

eral pressure waveforms to which our model was fitted, or due to inaccuracy of the reference

(bioimpedance-based) SV values (or a combination of the above). For instance, in some cases

PhysioFlow provided SV values that could be considered unrealistic (e.g., values over 150 ml,

see Fig 4b and S2 Fig). The model, on the other hand, operates on physiological parameters,

such as the maximum left-ventricular volume (properly scaled for the given patient), and thus

is unable to provide such unrealistically high values of SV. Nevertheless, ignoring the cases

with questionable reference data (SV over 150 ml) did not significantly affect the correlation

coefficients.

PhysioFlow employs neck and chest electrodes to measure changes of the thorax impedance

induced by pulsatile blood flow generated by the heart, thus enabling the estimation of SV.

Compared to the well-established echocardiography, bioimpedance cardiography is less

Fig 6. Box-plots for the estimated cardiovascular parameters in the hemodialysis (HD) and control groups. The

description of parameters and their units are provided in Table 1.

https://doi.org/10.1371/journal.pcbi.1012013.g006

Table 2. Summary of the estimated values of the cardiovascular parameters in hemodialysis (HD) patients depending on the length of the interdialytic break before

the studied HD session (a long, 3-day break vs a short, 2-day break). The data are presented as means (± standard deviation).

Parameter Unit All measurement moments1 Before Start2

long break short break long break short break

Emax mmHg/ml 2.99±1.13 2.89±1.24 3.43±1.06 3.44±1.24

tm s 0.58±0.09 0.58±0.09 0.58±0.06 0.58±0.08

SR - 1.57±0.65 1.77±0.75 1.51±0.50 1.71±0.91

Sc - 10.93±4.70 10.49±3.99 11.82±4.17 11.41±4.66

1) the results combine data from all moments of measurements, i.e. before and after the start of the HD session and before and after the end of the session, but limited to

cases for which the data for the given patient and the given moment of measurement was available for both HD sessions (i.e. paired data only)
2) the results refer to measurements performed before the start of the HD session but limited to cases for which the data for the given patient was available for both HD

sessions (i.e. paired data only)

https://doi.org/10.1371/journal.pcbi.1012013.t002
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demanding when cardiovascular parameters need to be evaluated multiple times during an

HD session [21]. Echocardiography, which uses ultrasound waves to obtain images of the

heart structure and function must be operated by a qualified clinician. Given that in our study

for each HD session we needed four reference measurements (estimations) of SV performed

over the span of approximately 4 hours, we decided, therefore, to use PhysioFlow, which did

not require qualified personnel and hence was much easier and cheaper (the electrodes were

attached to the patient before the HD session and were kept on for the whole session). A disad-

vantage of this approach is the aforementioned possible inaccuracy of bioimpedance cardiog-

raphy in estimating SV–even though some studies report good accuracy of this method,

including in HD patients, both at the beginning and at the end of HD [21,22], there are also

studies that questioned it in certain groups of patients, such as anemic or pediatric patients

[23,24].

The Bland-Altman analysis presented in Fig 5 showed that there was no relation between

the differences and the means of the logarithmically transformed SVs obtained from the

model and PhysioFlow. For HD patients, the mean difference of the log-transformed SVs was

-0.41. The antilog of this difference gives a dimensionless ratio of 0.66, with the relatively wide

95% limits of agreement equal to 0.30 and 1.42. Thus, the model-based estimates of SV were,

Fig 7. Correlation matrix between the parameters estimated by the model (Y axis) and cardiovascular parameters or indices derived by SphygmoCor

(X axis) for (a) control group of healthy subjects and (b) hemodialysis patients, * p< 0.05, ** p< 0.01, *** p< 0.001. CSV–computed stroke volume,

BMI–body mass index, PSP–peripheral systolic pressure, CSP–central systolic pressure, PDP–peripheral diastolic pressure, CDP–central diastolic pressure,

CAI–central augmentation index, CAP–central augmentation pressure, PAI–peripheral augmentation index, CESP–central end-systolic pressure, PESP–

peripheral end-systolic pressure, PF SV–stroke volume estimated by PhysioFlow.

https://doi.org/10.1371/journal.pcbi.1012013.g007
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on average, 34% lower than the bioimpedance-based values from PhysioFlow, with approxi-

mately 95% of results being up to 42% higher and up to 70% lower than the reference values.

Bikia et al. used a similar model but with a more advanced arterial bifurcation tree to esti-

mate the cardiac output (CO) and central systolic blood pressure, based on brachial systolic

and diastolic pressure (brSP, brDP) and carotid-to-femoral pulse wave velocity (cf-PWV) [11].

Their approach is based on the assumption that the parameters describing arterial compliance,

total peripheral resistance, and maximal blood flow from the left ventricle may be unambigu-

ously estimated from brSP, brDP, and cf-PWV. When they adjusted their model to match

brSP, brDP and cf-PWV obtained with SphygmoCor, they achieved a relatively high correla-

tion between the model-estimated CO and the reference CO obtained using 2–D transthoracic

echocardiography (r = 0.73), although they studied healthy subjects only (n = 20).

Since HD patients have a very high rate of cardiovascular morbidity and mortality [2,25],

similar research in these patients is of utmost importance. Therefore, in our study, we sought

to investigate whether a model-based estimation of SV is possible when based on data from

HD patients, whose hemodynamics may be impaired due to both CKD and HD treatment.

The main difference between our approach and that of Bikia et al. [11], is that we used the

entire shape of the peripheral pressure waveform measured by SphygmoCor to inform the

model. To our knowledge, no such study has been conducted to date.

The factors leading to the increased incidence of CVD in HD patients are complex and not

fully understood [26]. Mathematical models may help explain these relationships. Subject-spe-

cific models can allow for an in-depth analysis of the physiological state of the patient using

only non-invasive diagnostic tools. In particular, non-invasive estimation of stroke volume or

left-ventricular end-systolic elastance, Emax, can provide useful information about the condi-

tion of the heart. The scaling factor SR, in turn, may shed some light on the level of peripheral

resistance, which is mainly influenced by the resistance of small arteries and arterioles. Track-

ing changes in the aforementioned parameters for a given patient could help in the early detec-

tion of CVD or in the monitoring of CVD progression, and hence it could improve treatment

outcomes.

The analysis of correlations between parameters obtained from our model and those

derived by SphygmoCor showed that, for both HD and control groups, there was a significant

correlation between the maximal (end-systolic) elastance (Emax) and systolic pressure (both

central and peripheral) and between Emax and the end-systolic pressure estimated for the cen-

tral pressure waveform. Emax is generally load-independent (just a little dependent on the arte-

rial load) and is determined by cardiac muscle contractility and ventricular wall mass [27]. It is

often approximated by the slope of the line connecting the top-left corners of the cardiac pres-

sure-volume loops [27]. In some studies, the authors underlie that this relation is more curved

than straight, which suggests that Emax may be dependent on the pressure and volume of the

left ventricle [28,29]. This in turn may explain the correlation that we observed between the

end-systolic elastance and systolic pressure. Interestingly, in HD patients we observed a mod-

erate correlation between Emax and diastolic pressure (both central and peripheral) that was

not present in the control group. Moreover, we observed a low positive correlation of Emax

with weight, height or BMI in HD patients, and no such correlations in the control group.

Limitations

Mathematical modeling of complex systems, such as the cardiovascular system, typically

involves many simplifications and thus limitations. In our previous study, we have mentioned

the possible limitation related to the fact that our model does not account for the presence of

an arteriovenous fistula, which may influence the model-derived parameters [19]. Another
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limitation is related to the selection of parameters tuned in the optimization procedure, while

leaving other parameters fixed. Moreover, in our model, we consider only the work of the left

ventricle, with the pressure in the left atrium fixed at a constant level, which makes it impossi-

ble to take into account the Frank-Starling mechanism. Furthermore, an important limitation

of our study is the possibly low reliability of some of the reference SV values obtained with

PhysioFlow in HD patients. Transthoracic bioimpedance methods are cheap, non-invasive,

and relatively easy to use. However, some studies challenge the accuracy of PhysioFlow, e.g., in

patients with chronic anemia [23] or pediatric patients [24]. To properly validate our model,

future studies should ideally use gold-standard invasive methods for SV estimation, such as

the direct Fick method. Also, a more in-depth sensitivity and identifiability analysis should be

performed to potentially improve the selection of parameters to estimate.

Materials and methods

Ethics statement

The study was approved by the Bioethical Committee at the Medical University of Lublin

(Poland), and informed verbal consent has been obtained from all subjects. Our study was per-

formed in accordance with the Declaration of Helsinki and all applicable regulations.

Study subjects

We studied two groups: 1) the control group consisting of 14 healthy subjects, 2) the HD

group, consisting of 35 anuric, prevalent hemodialysis patients, i.e. patients with end-stage

renal disease, monitored during two standard HD sessions: after a long (3-day) and a short

(2-day) interdialytic break, i.e. the time since the previous HD session. All HD patients had

arteriovenous fistulas. None of the patients were diagnosed with CVD at the time of the study.

For more detailed information on the studied HD patients, please see our previous work [19]

and Table 3.

Measurements

The pressure wave measurements were performed by one trained clinician (on the non-fistula

arms in HD patients) using applanation tonometry (SphygmoCor, AtCor Medical, Australia).

The results were calibrated with the systolic and diastolic blood pressure measured oscillome-

trically at the brachial artery (Omron M3, Omron Healthcare, Kyoto, Japan). Based on the

“operator index” of the SphygmoCor device, we excluded from the analysis all low-quality

recordings (according to the manufacturer’s user manual, the results are acceptable when the

operator index is� 80).

Table 3. Characteristics of the study subjects. Data are reported as means ± standard deviation. The data reported for hemodialysis (HD) patients were assessed after

the mid-week HD hemodialysis session.

Unit HD patients Controls

N = 35 N = 14

Gender % (male) 43 43

Age years 61.2 ± 14.3 45.3 ± 12.0***
Height cm 167.9 ± 9.4 171.2 ± 6.8

Weight kg 72.2 ± 19.9 77.4 ± 13.2

Ethnic origin % (white Caucasian) 100 100

*** p < 0.001; Mann-Whitney test

https://doi.org/10.1371/journal.pcbi.1012013.t003
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For each subject from the control group, one to three measurements were taken, and the

measurement with the best operator index was selected for further analysis. For the HD group,

in each patient, 8 recordings of the pressure waveform in the radial artery were performed.

The waves were recorded about 15 minutes before the start, after the start, before the end and

after the end of two HD sessions, and took about 2 minutes each, see Fig 8. In 18 patients, the

measurements were performed in the morning (HD starting around 7 AM), 13 patients had

the measurements taken during the midday session (HD starting around 12PM), and the

remaining 4 patients were measured in the evening sessions (HD starting around 6 PM). For a

given patient, both studied HD sessions (i.e. after the long and the short interdialytic break)

were performed at the same time of day.

The measurements of SV were performed using a non-invasive impedance cardiograph

(PhysioFlow, Manatec Biomedical, France), according to the manufacturer’s protocol. The

measurements were taken simultaneously with the pulse wave recordings. The quality of the

obtained data was evaluated based on the “signal quality” index recorded by the device during

the measurement procedure. Each bioimpedance measurement took about 2 minutes. We

averaged the SVs obtained during this time, after excluding all measurements with the signal

quality index not exceeding 90 on a scale from 1 to 100. According to the manufacturer, the

respiratory component of the chest impedance signal is filtered out and should not affect SV

estimation [30]. More detailed description of the measurement methodology can be found in

[31] During all measurements the patients were lying motionless in the supine position.

The data for HD patients were divided according to the duration of the interdialytic break

(a short vs long break, i.e. a two-day vs three-day break since the previous HD session), and by

the moment of measurement (before the start, after the start, before the end, and after the end

of the HD session), see S3 Fig.

Analyzing measurements performed at different times during moments of dialysis treat-

ment is justified by hemodynamic changes occurring during HD. Initiating an HD session typ-

ically leads to a decrease in arterial blood pressure and workload on the heart. This is

attributed to the reduction in the volume of blood in the body, as part of it is redirected to fill

the extracorporeal tubing and the dialyzer (assuming that the priming fluid is discarded and

not infused to the patient). Typically, all further reductions in blood volume due to removal of

Fig 8. Graphical summary of the timeline of measurements in HD patients. Measurements of the pulse wave in the

radial artery were performed in 35 HD patients at 4 time points during two HD sessions (after a long and a short

interdialytic break). In the control group the measurements were performed at one time only.

https://doi.org/10.1371/journal.pcbi.1012013.g008
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the excess fluid in the dialyzer, result in additional reduction in the ventricular afterload, until

a relatively steady state is achieved towards the end of the session (assuming no hypotensive or

hypertensive episodes). The final phase of a dialysis session involves the return of blood from

the extracorporeal circuit to the body, which increases the intra-body blood volume, having

the opposite effects on the heart and pulse wave compared to the pre-dialysis procedure [19].

The duration of the interdialytic break, on the other hand, may be related to the level of car-

diovascular risk–the longer the break, the higher the risk, which may be due to greater changes

in fluid and electrolyte balance, acidity levels, or arterial wall parameters [32]. Given the ongo-

ing debate on the mechanisms behind increased cardiac mortality rates following a three-day

interval break [32], it seems desirable to investigate how cardiovascular parameters correlate

with the duration of the interdialytic break.

The cardiovascular model

We propose a one-dimensional bifurcation arterial tree model consisting of 55 compliant

arteries coupled with zero-dimensional boundary conditions representing the downstream

vessels. The bifurcation tree represents the most important arteries in the human body and has

been frequently used to analyze the hemodynamics of the human cardiovascular system

[10,14,16,33]. We assumed that blood is an incompressible, Newtonian fluid, flowing with a

parabolic velocity profile through axisymmetric elastic cylinders that taper along their length.

The equations describing the blood flow and pressure were derived by integrating the incom-

pressible longitudinal components of the Navier-Stokes equations over the vessel cross-sec-

tional area. To close the system and ensure the uniqueness of the solution, we included the

following state equation:

P x; tð Þ � P0 ¼ f xð Þ 1 �
A0 x; tð Þ

A x; tð Þ

� �

ð1Þ

which relates the blood pressure P (at distance x and at time t) to the cross-sectional area A of

the vessel (A0 is the cross-sectional area of the vessel at the nominal pressure P0). In the below

equation, we define the elasticity function of the arteries analogously to how it was done by

Olufsen et. al. [16],

f xð Þ ¼
4

3
k1 þ exp � k2r0 xð Þð Þ þ k3ð Þ; ð2Þ

where parameters ki are global, i.e., the same for each artery and

r0 xð Þ ¼ rin
rout
rin

� �x=L

; ð3Þ

describes the vessel’s tapering at the nominal pressure P0 with rin, rout being the proximal and

distal radii of the artery, and L–the length of the artery. At the distal ends, as an outflow bound-

ary condition, we consider the 3-element Windkessel model, which may be expressed by the

following formula describing the relation between the terminal flow Qend and pressure Pend
[34],

R1R2CT
dQend tð Þ

dt
¼ R2CT

dPend tð Þ
dt

þ Pend tð Þ � PTð Þ � R1 þ R2ð ÞQend tð Þ; ð4Þ

where, R1, R2 are the proximal and distal resistances, respectively, CT is the total compliance of

the terminal vascular branch, PT is the reference terminal pressure. It was assumed, that R1/RT

= 0.2 [35], where RT is the total resistance of the terminal vascular branch (R1 + R2 = RT,). The
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values of RT, CT were taken from [36]. The 3-element Windkessel model is directly connected

to the 1D model using the “ghostpoint” method, described in [9,37].

We assume that there are no blood leakages or energy losses at the vessel junctions, which

are all characterized by mass conservation and pressure continuity equations:

Qend;p ¼ Qin;d1
þ Qin;d2

; and Pend;p ¼ Pin;d1
¼ Pin;d2

; ð5Þ

where p denotes the parent vessel and d1, d2 are the daughter vessels. In reality, there may be

some loss of energy at the bifurcations due to the formation of vortices. However, it was

shown that assuming pressure continuity is a good approximation for the considered system

[15,16,38].

In our previous study, we used a phenomenological inflow boundary condition to describe

the work of the heart, as previously proposed by Olufsen [36]. In the present study, to validate

the model-based estimations of stroke volume (SV), we decided to use a more accurate

description of the aortic inflow based on the elastance function of the left ventricle [39]. For

simplicity, we decided not to modify our model of the cardiovascular system by including the

arteriovenous (AV) fistula for HD patients. As shown in our previous work, the pulse wave

analysis (PWA) is not significantly affected by the presence of an AV fistula, which has only a

little effect on the radial-to-aortic transfer function [19].

Because we do not model the venous return to the heart, it is sufficient for the inflow

boundary condition to consider only the left-ventricular function. According to the work of

Suga et.al. [40] and Danielsen and Ottesen [39], the relation between the pressure in the left

ventricle Plv and ventricular volume Vlv may be described by the following equation:

Plv ¼ Elv tð Þ Vlv � V0ð Þ ð6Þ

where V0 is the volume of the left ventricle at the zero transmural pressure and Elv(t) is a time-

varying elastance function of the left ventricle, which can be approximated by the following

formula

Elv tð Þ ¼ Emin 1 � � tð Þð Þ þ Emax� tð Þ ð7Þ

where

� tð Þ ¼
a sin

pt
tm

� �

� b sin
2pt
tm

� �

for 0 � t < tm

0 for tm � t < T

8
><

>:
: ð8Þ

The parameters Emax and Emin are the maximal (systolic) and minimal (diastolic) values of

the elastance function, T denotes the heart period, and tm–the time until the onset of constant

(minimal) elastance. The parameters a and b describe the shape of Elv function, see S4 Fig for

an exemplary plot of the elastance function.

During the isovolumic relaxation phase, both valves in the left ventricle are closed. The

pressure in the left ventricle Plv decreases according to the formula (6), until it is lower than

the pressure in the left atrium (Pla, constant in our model), that is when the mitral valve opens

and the ventricular filling begins. The flow between the left atrium and left ventricle Qla is

described as follows:

dQla

dt
¼

1

Lla
Pla � Plvð Þ �

Rla

Lla
Qla; ð9Þ

where Lla is an inertia term and Rla denotes ventricular filling resistance caused mainly by the
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viscous properties of the blood. Simultaneously, the volume of the left ventricle increases,

according to the formula

dVlv

dt
¼ Qla: ð10Þ

Once the volume Vlv is greater than the maximal volume of the left ventricle, the mitral

valve closes (which implies that Qla returns to 0) and the isovolumic contraction begins.

During this phase, both the mitral and aortic valves are closed and the ventricle contracts,

which implies that the pressure in the left ventricle increases. When Plv> Pa, where Pa is the

root aortic pressure, the aortic valve opens, and the heart starts to eject blood into the ascend-

ing aorta. The flux between the left ventricle and aorta, Qlv, is given by a formula similar to (9),

dQlv

dt
¼

1

Llv
Plv � Pað Þ �

Rlv

Llv
Qlv; ð11Þ

where Pa is taken directly from the 1D model of the arterial tree. Concurrently, the volume Vlv

decreases:

dVlv

dt
¼ � Qlv: ð12Þ

During the aortic valve closure (which begins at time t*), some blood flows back to the left

ventricle (negative Qlv). We allow for a certain volume of the backflow Vb , before the complete

closure of the aortic valve. When the backflow volume Vb given by

Vb ¼
R t

t∗ jQlvj; t > t∗ ð13Þ

exceeds Vb , the aortic valve closes, which implies that Qlv = 0, and the cycle repeats.

The above equations and conditions fully describe the blood flow in the modelled system.

The governing equations of the blood flow in the 1D domain were solved using the Lax-

Wendroff scheme [41]. The inflow and outflow boundary conditions were connected to the

1D model using the “ghost point” method [9,37]. The inflow boundary condition was solved

iteratively, i.e. after solving the equations of the 1D model, the elastance model of the left ven-

tricle used the computed pressure, Pa, from the root of the ascending aorta. Then, using the

Runge-Kutta scheme, Eqs (6)–(12) were solved. At this point, we had information about the

outflow from the left ventricle and the cross-sectional area at the root of the ascending aorta.

In the same iterative step, using the explicit Euler method, we solve Eq (4) characterizing the

outflow boundary conditions.

Parameter estimation procedure

The bifurcation tree we use describes the vascular system for a 175 cm tall man. To personalize

the vascular domain for a given subject, we multiply the lengths of all arteries, along with their

proximal and distal lumen radii by the scaling factor S defined as the ratio of the subject height

to the default height of 175 cm. Because the values of the resistances and compliances of the

terminal branches depend on, among others, the size of the vessels, we also scale their default

values by 1/S3 and S3 respectively, similarly as done in our previous studies [10,19]. The

parameters k1, k2 and k3, which describe the stiffness of arteries were taken from the work of

Olufsen [36]. The distending pressure P0 from the Eq (1) was set at the level of 97 mmHg [15].

In the elastance model of the left ventricle [23] the initial end-systolic left ventricular volume,

Vlv, was set to 120 ml and then scaled by S3. In a similar manner we scaled the volume of the

left ventricle at zero pressure, Vo with the default value of 15 ml. The values of the heart
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resistances and inertances, (Rlv, Rla, Llv, Lla) as well as the values describing the shape of the ela-

stance function (a, b, Emin) and the assumed volume of the backflow, �Vb , were taken from [39]

or assumed. All aforementioned parameters remain constant in our model, and their values

can be found in the S2 File.

Parameter estimation was carried out in two steps. In the first step, we used the meta-heu-

ristic Particle Swarm Optimization (PSO) method [42]. The optimization started with 15 parti-

cles (a swarm), each representing a different combination of the values of the four patient-

specific parameters being estimated. Then, these particles iteratively explored the search space

to find a near-optimal solution (i.e., to minimize the error function). In our case, we set up 10

iterations, during which, in simple terms, the position of each particle was modified based on

its own best previous position and based on the best previous position within the whole

swarm, looking for the global minimum of the error function. In the second step, the best set

of parameter values obtained with PSO served as the starting point for the gradient-based algo-

rithm (GBA) [43,44], complementing and refining the previous optimization method.

The following parameters were estimated: the scaling factor of terminal resistances SR, the

scaling factor of terminal compliances, SC, maximal systolic elastance, Emax, and tm denoting

the time to the onset of constant elastance. The rationale behind the choice of these parameters

is presented in the S2 File.

The model fitting procedure was analogous to the one used in our previous studies [10,19]

but with a different error function. We defined the objective function as the sum of squares of

differences between the parameters of the Fourier series expansion of the measured and

model-simulated pressure waveforms. More precisely, for each measured and simulated pres-

sure waveform in the radial artery, we approximated the first six parameters of the following

sine-cosine Fourier series expansion, thus obtaining the following time-dependent signals:

signal �
a0

2
þ
X6

i¼1
an cos

2pt
T
þ bn sin

2pt
T

� �

; ð14Þ

where T is the heart period, and then for each case we defined the following 13-element vec-

tors:

c ¼ a0; a1; . . . ; a6; b1; . . . ; b6½ �: ð15Þ

The error function was defined as follows:

err ¼
X13

i¼1
cs;i � cm;i
� �2

; ð16Þ

where subscripts s and m denote simulation and measurement, respectively. The optimization

procedure involved minimizing that error by changing the values of the four selected model

parameters. A simplified workflow of the study is presented in Fig 1. The number of analyzed

harmonics has been chosen arbitrarily and represents a compromise between the accuracy of

the pulse wave representation and the complexity of the objective function; S5 Fig presents

some examples of Fourier-transformed pressure waveforms for healthy subjects and HD

patients.

Statistical methods

Statistical dependence between in vivo data and the model-estimated parameters was mea-

sured using Pearson correlation coefficient (r). Statistical differences between the paired data

were investigated using the Wilcoxon signed-rank test. Statistical significance was set at the

level of p = 0.05. To verify normal distribution of differences between the measured and
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estimated SV, the Shapiro-Wilk test was performed. The accuracy of model-simulated pressure

waveforms (with respect to the recorded waveforms) was assessed by mean absolute percent-

age error (MAPE). The regression lines were plotted with 95% confidence intervals.

Conclusions

We investigated the feasibility of using a patient-calibrated 0-1D model of the systemic circula-

tion to estimate SV. The preliminary validation of the model in a group of 35 HD patients and

a control group of 14 healthy subjects showed that the model was able to reproduce the pres-

sure waveforms recorded non-invasively in the radial artery with satisfactory accuracy in most

cases and that the model-based estimates of SV are correlated with the reference bioimpe-

dance-based SV estimates. However, the model seems to underestimate SV in both HD

patients and healthy subjects. This may be at least partly an apparent result, given the possible

inaccuracy of the reference bioimpedance measurements. If more accurate reference measure-

ments confirm that the model does, indeed, underestimate SV, this could be due to: 1) limita-

tions of our model, 2) too few fitted parameters of the model, or 3) a combination of the above

factors. To fully and properly validate the model, a larger study should be conducted with a

more accurate, gold-standard reference method for estimating SV, possibly with a larger num-

ber of model parameters to be fitted, selected after a more in-depth sensitivity and identifiabil-

ity analysis.

Supporting information

S1 File. Supporting materials. The file presents simulated vs measured pressure waveforms in

the radial artery.

(PDF)

S2 File. Supporting materials. The file presents the rationale behind the choice of model

parameters to be fitted, a sensitivity analysis, as well as justification that the selected parameters

uniquely determine the pulse wave.

(PDF)

S1 Fig. Exemplary outputs from the model at various locations of the arterial tree. The pre-

sented model outputs (i.e. blood pressure and flow rate waveforms) were obtained using the

baseline values of all model parameters (see S1 supplementary materials), for a 175 cm man

with a heart rate of 75 bpm.

(PNG)

S2 Fig. (a) Pearson correlation coefficients between the model-estimated (computed) SV

and the SV measured using bioimpedance cardiography for HD patients (additionally

divided into groups of measurements depending on the duration of the interdialytic break

before the studied HD session and the moment of measurement during the HD session).

(b) Scatter plots of model-estimated (computed) and bioimpedance-based SV values for

HD patients corresponding to different moments of measurement. Correlations were com-

puted after removing the outlier from the Before End group.

(PNG)

S3 Fig. Sankey diagram of the study dataset collected in HD patients. 136 cases were

excluded from the analysis due to missing or clearly erroneous data or due to low quality of

the recorded applanation tonometry or bioimpedance signals in accordance with the manufac-

turer’s instructions (SphygmoCor “Operator index” < 80 or PhysioFlow “Signal Quality” <

90). The remaining cases were divided according to the length of the interdialytic break before
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the studied HD session (a short, 2-day break vs a long, 3-day break) and according to the time

of measurement during the HD session (before start, after start, before end and after end of

the HD).

(PNG)

S4 Fig. Left-ventricular elastance function according to Eqs (7) and (8). Emax–maximal sys-

tolic elastance, Emin–minimal (diastolic) elastance, T–heart period, and tm–time to the onset of

constant (minimal) elastance.

(PNG)

S5 Fig. Exemplary pressure waveforms recorded in the radial artery by SphygmoCor along

with their transformations into Fourier series with 6 harmonics. Results are presented for

two healthy subjects and two HD patients and normalized against time, T–heart period.

(PNG)
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