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Abstract

Anti-cancer response of cell lines to drugs is in urgent need for individualized precision med-

ical decision-making in the era of precision medicine. Measurements with wet-experiments

is time-consuming and expensive and it is almost impossible for wide ranges of application.

The design of computational models that can precisely predict the responses between

drugs and cell lines could provide a credible reference for further research. Existing methods

of response prediction based on matrix factorization or neural networks have revealed that

both linear or nonlinear latent characteristics are applicable and effective for the precise pre-

diction of drug responses. However, the majority of them consider only linear or nonlinear

relationships for drug response prediction. Herein, we propose a Dual Branch Deep Neural

Matrix Factorization (DBDNMF) method to address the above-mentioned issues. DBDNMF

learns the latent representation of drugs and cell lines through flexible inputs and recon-

structs the partially observed matrix through a series of hidden neural network layers. Exper-

imental results on the datasets of Cancer Cell Line Encyclopedia (CCLE) and Genomics of

Drug Sensitivity in Cancer (GDSC) show that the accuracy of drug prediction exceeds state-

of-the-art drug response prediction algorithms, demonstrating its reliability and stability. The

hierarchical clustering results show that drugs with similar response levels tend to target

similar signaling pathway, and cell lines coming from the same tissue subtype tend to share

the same pattern of response, which are consistent with previously published studies.

Author summary

As is known, the phenotype of cancer is closely related to gene expression in the human

body. In the era of precision medicine, an increasing amount of anti-cancer drug response

data is urgently needed for individualized therapy. Measurements with wet-experiments

are time-consuming and costly, and computational methods are necessary. Existing meth-

ods mainly focused predominantly on linear or nonlinear relationships between cells and

drugs for prediction. However, it has been shown that both linear and nonlinear relation-

ships could contribute to more precise response prediction. Here, we propose a Dual
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Branch Deep Neural Matrix Factorization (DBDNMF) method to better use both linear

and nonlinear relationships and the experimental results show that it outperforms state-

of-the-art algorithms. Our results suggest that drugs showing similar response levels tend

to target similar signaling pathways while cell lines sharing similar response patterns tend

to come from the same tissue subtype. The analysis of experimental results may benefit

medical decision-making.

Introduction

In recent years, cancer has become a serious illness that endangers both life and health. The

rates of morbidity and mortality are rising globally right now. Due to the heterogeneity of

tumors, there are variations in medication sensitivity throughout tumor deterioration [1].

Based on the results of clinical experiments, precision medicine, which has become the domi-

nant trend in medicine, asks for customized treatment strategies for individual cancer patient

[2]. Numerous academic institutions and organizations have constructed cancer pharmacoge-

nomics databases as high-throughput sequencing technology has advanced over time [3].

However, to recommend precise medications for each patient based on response, clinical trials

must be conducted to measure their individual response, which is time-consuming and labori-

ous. Prediction of unknown anti-cancer medication responses based on known ones has there-

fore emerged as a crucial area for further study in the bioinformatics community.

The matrix factorization-based drug response prediction method has demonstrated satis-

factory prediction performance in several recent investigations. In MF-based methods, the

response matrix is roughly determined by the product of latent drug and latent cell line vari-

ables. Therefore, MF approaches are widely used in response prediction due to their effective-

ness in learning latent features. According to the MF concept, the response matrix R can be

divided into the product of two or more low-rank factor matrices, as illustrated in (1).

R ¼ C � D ð1Þ

where the matrix R2Rm×n, the latent factors C2Rm×r, D2Rr×n, and r = rank(R) [4]. The

unknown responses can be recovered by finding the best of C and D. Numerous strategies

have been put forth to improve the MF method’s accuracy. A prediction model based on ker-

nel Bayesian matrix factorization (KBMF), which incorporates genomic information, drug

chemical characteristics, and target information, was proposed by Ammad-ud-din et al. It has

been demonstrated that this information is of practical importance for drug response predic-

tion [5]. The chemical characteristics of drugs and data on cell line gene expression were used

by Wang et al. to construct cell line similarity and drug similarity matrices, which were then

combined with the conventional matrix decomposition model as regularization terms to accu-

rately predict the drug-gene association [6]. Suphavilai et al. suggested a thorough model

(CaDRReS) to pinpoint drug response mechanisms by utilizing information on how different

medications interact with various cell types. To forecast unknown drug reactions, the model

learns the projections of medicines and cell lines in a latent space [7]. To sparse the similarity

matrix, Guan et al. presented weighted graph regularization matrix decomposition (WGRMF),

which created p-nearest neighbor graphs of pharmaceuticals and cell lines, respectively. Exper-

imental findings clearly show how effective this strategy is at forecasting drug responses [8].

Based on the idea of subspace clustering, Zhang et al. proposed a new self-expression matrix

completion model (SEMCM) aimed at improving the prediction performance of drug

response prediction [9]. Liu et al. proposed a Neural Matrix Factorization (NeuMF)
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framework, which used a deep neural network to figure out drug and cell lines’ latent vari-

ables to help predict the unknown responses of cell lines to drugs [10]. These MF-based

methods have shown good predictive impact by providing linear reconstructions of the

observed data. That means these MF-based methods depend on the linear latent variable

models [11].

Deep neural networks’ success in recent years has been attributed to their efficiency in

learning hidden characteristics and data representations. These techniques can also approxi-

mate the data from nonlinear latent variable models by utilizing a nonlinear activation func-

tion, as demonstrated in (2),

R ¼ f ðDÞ or R ¼ f ðCÞ ð2Þ

where f(�) is a nonlinear transformation. By f(�), the latent factor D or C can approximately

predict the unknown responses in R. For instance, Hossein et al. proposed a multi-omics data

integration model based on a deep neural network (MOLI) to predict the sensitivity of targeted

drugs. MOLI combines three independent sub-networks for extracting cell line mutation,

expression, and copy number change features, as well as four multi-layer feedforward sub-net-

works. The final sub-network uses the characteristics that the other three sub-networks pro-

duce as its input and then produces drug sensitivity [12]. Jia et al. developed a deep variational

autoencoder (VAE) model to generate representative models using expression profiles and

train prediction models for drug response based on the latent representation. It was shown

that the VAE could correctly predict drug response and effectively manage the overfitting

issue [13]. The vector Embedding neural network (VENN) predicts the drug response by gen-

erating a corresponding k-dimensional Embedding vector by the drug or cell line number,

which is then used to represent k features of the drug or cell line. The Self-information Collab-

oration Neural Network (SCNN) extracts the drug and cell line information from the response

matrix through a deep neural network. The information is projected into a latent space of the

same dimension where they can interact to produce the predicted drug response. Graph neural

networks have shown ground-breaking performance in the field of bioinformatics. Zhu et al.

proposed a novel Drug response prediction framework comprised of Twin Graph neural net-

works for Drug Response Prediction (TGDRP) and a Similarity Augmentation (TGSA) mod-

ule to fuse fine-grained and coarse-grained informatio [14]. Peng et al. proposed an end-to-

end algorithm based on Multi-Omics Fusion and Graph Convolution Network (MOFGCN) to

predict drug sensitivity in cell lines [15]. Peng et al. also proposed a neighborhood interaction-

based heterogeneous graph convolution network method (NIHGCN) for anticancer drug

response prediction [16]. These methods reveal that nonlinear latent characteristics are also

applicable and effective for the precise prediction of drug response. As a result, both linear and

nonlinear association features can contribute to the precise prediction of anti-drug responses.

However, current solutions are limited since the majority of them only consider linear or non-

linear contributions.

To address the above issue, we propose here a Dual Branch based Deep Neural Matrix

Factorization method (DBDNMF) to extract both linear and nonlinear contribution fea-

tures for drug response prediction. Experiments are also carried out on both CCLE and

GDSC datasets, and the results show that, compared with some state-of-the-art algorithms,

DBDNMF method can achieve better prediction performance. This paper is organized as

follows. Section 2 introduces the datasets and the proposed DBDNMF method. Section 3

evaluates the performance of DBDNMF based on both CCLE and GDSC datasets. Section 4

gives our conclusion.
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Experimental design

Datasets. The first dataset comes from Cancer Cell Line Encyclopedia (CCLE), which col-

lected activity area to represent the degree of sensitivity of a given cell line to a given com-

pound. The activity area refers to the area under the fitted dose-response curve for each

experiment. The higher the activity area is, the more sensitive the cell line is to the drug. From

this dataset, the response levels of 491 cell lines to 23 drugs are considered for further study.

The sparsity of the CCLE matrix is 3.75% out of the 11293 entries, of which 10870 have been

determined by a pharmacological method, while the rest 423 remain unknown.

The second dataset comes from Genomics of Drug Sensitivity in Cancer (GDSC) with the

lasted version. It uses the half maximal inhibitory concentration (IC50) to represent cell line–

drug interactions. IC50 indicates the drug response characteristics by natural logarithm means

the concentration at which the compound reaches a 50% reduction in cell viability. The lower

the IC50 is, the more sensitive the cell line is to the drug. From this dataset, the response levels

of 969 cell lines to 295 drugs are considered, including 285855 entries, with 242036 entries

known and 43819 to be predicted. The sparsity of the GDSC matrix is 15.32%, and the missing

values are distributed in blocks, which brings more difficulties to prediction.

Performance evaluation. In this paper, 10-fold cross validation experiment is conducted

for evaluation [17]. To be specific, the observed drug cell-line responses (known entries in R)

are first divided into 10 disjoint folds that have approximately the same number of instances

randomly. Then each fold in turn plays the role for testing the model induced from the rest 9

folds. Then, a predictive matrix of the same size as the original can be recovered by combining

the outcomes of 10 folds.

Pearson correlation coefficient (PCC) and Root mean square error (RMSE) are adopted to

assess the prediction performance [18,19]. PCC can inspect the degree of correlation between

the predicted value and the original value, while RMSE can calculate the error between the pre-

dicted value and the original value. On this basis, we further refine the evaluation indices to

the averaged Pearson correlation coefficient (ave_PCC) defined in (3) and the Root mean

squared drug error (ave_RMSE) in (4) from the perspective of real data application.

ave PCC ¼
1

m

Xm

i¼1

Xn

j¼1;ði;j2OÞ

ðRi;j �
�RjÞðR̂ i;j �

�̂RjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where �R and
�̂Rrepresent the mean of R and R̂ respectively. |X| represents the number of ele-

ments in X. m is the number of drugs, and n is the number of cell lines.

Sensitive and resistant cell lines for each drug will be of greater assistance when choosing a

drug therapy for cancer cell lines. In the experimental analysis, the response values of all cell

lines for each drug are first divided into quartiles based on the response value, with the first

and the fourth quartiles representing sensitive (resistant) and resistant (sensitive) ones respec-

tively. Thus, ave_PCC_sr and ave_RMSE_sr are defined to indicate the averaged PCC and

RMSE of these cell lines only.
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Experimental results

Global effect removal helps improve the prediction. As shown in Fig 1, the distribution

range of responses among different drugs in CCLE dataset is quite different, which is consis-

tent with the fact that there are substantial variations in responses because different drugs dif-

fer in their molecular structure and chemical properties. At the same time, data deviation

during collection is unavoidable. Reasonable variations will influence the results of the predic-

tion, but a significant departure from the global benchmark will make the prediction difficult.

Therefore, appropriate data preprocessing is expected to help to enhance the prediction.

In this paper, the matrix preprocessing method of removing Global Effect Removal (GER)

is adopted, which was first proposed by Yehuda Koren et al. in the Netflix Grand Prize and

applied to movie score prediction [20]. To eliminate the bias between the different drug

responses, we preprocessed datasets so that the drug responses of all cell lines have the same

benchmark.

Based on the normalization of global effect, the original responses can be considered as

composed of global effect, drug-specific effect, cell line-specific effect, and interaction effect

between drug and cell line, as shown in (5).

R ¼ Rglobal þ Rdrug þ Rcell þ Rres ð5Þ

where Rglobal is the global average of responses, which indicates that the unknown response

depends on the benchmark of overall responses; Rdrug, the average of each column in the

response matrix, demonstrates that the unknown response influenced by the specific effect of

cell lines; Rcell, the average of each row in the response matrix, suggests that the unknown

response relies on the specific effect of drugs; Rres is the residual after removal of the effect,

which represents the interaction effect between the drug and the cell line. Compared with the

prediction by the original responses, the residual after eliminating the above effects can

improve the accuracy.

As shown in Fig 2, preprocessing not only causes a decrease in the overall value but also sig-

nificantly lowers the deviation between columns and rows. 10-fold cross validation experi-

ments are performed on the original matrix R and the matrix Rres preprocessed by GER under

the assumption that no model parameters are changed. According to Fig 3, the PCC_sr after

Fig 1. Distribution of CCLE cell line-drug response values. A) Violin-plot of existing values for 23 drugs in CCLE; B) Heatmap of cell lines-drug response

matrix.

https://doi.org/10.1371/journal.pcbi.1012012.g001
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preprocessing is higher than that without preprocessing, and the RMSE_sr is correspondingly

lower in CCLE and GDSC datasets. Therefore, it has been demonstrated that GER preprocess-

ing on CCLE and GDSC increases prediction accuracy.

From a mathematical perspective, GER guarantees the sensitivity/resistance of drug cell

lines and also eliminates the significant difference between cell lines and drugs.

Dual branch structure helps improve prediction

This section discusses the role of parameters α in the model, namely the contribution of non-

linear structure in the network, and determines its optimal weight. The experiment is based on

the network with drug factors as input and the network with cell line factors as input respec-

tively. The other network parameters are left unaltered, setting α as [0.1, 0.2,. . ., 0.9] in turn.

Fig 4 records the results on CCLE and GDSC datasets by comparing the experimental results

under various α with the ave_PCC and ave_RMSE obtained by 10-fold cross validation as

indices.

Fig 4A records the network experimental results based on drug and cell line latent factors

under various α in GDSC dataset. Combined with PCC and RMSE comprehensive evaluation,

Fig 2. Distribution of CCLE cell line-drug response values after global effect removal. A) Violin-plot of 23 drugs’ response distribution in CCLE; B)

Heatmap of cell line-drug response matrix.

https://doi.org/10.1371/journal.pcbi.1012012.g002

Fig 3. Comparison of results with and without GER preprocessing for prediction. A) Radar plots of PCC_sr and RMSE_sr for 23 drugs in CCLE; B) Box-

plots of ave_PCC (ave_PCC_sr), ave_RMSE (ave_RMSE_sr) on the GDSC.

https://doi.org/10.1371/journal.pcbi.1012012.g003
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the best results for the model occur when α is 0.9 or 0.7, that is when nonlinear structure pre-

dominates in the network; The network experimental results based on drug and cell line latent

factors under various α in CCLE dataset are shown in Fig 4B. When α is 0.5, that is, when non-

linear structure and linear structure are equally distributed in the network, the result of the

model is best.

Consequently, the experimental results on two datasets are compared, and it is found that

the weight varies depending on the dataset. For the two datasets in this paper, the prediction

ability of linear structure in GDSC is inferior to that of the nonlinear structure; however, in

CCLE, the nonlinear structure and linear structure achieve the best performance when they

cooperate to form a network. The following conclusions are reached after taking into account

the analysis of experimental findings: since GDSC dataset has a much larger scale and sparser

matrix than CCLE dataset, it relies more on the nonlinear structure.

DBDNMF improves prediction by both linear and nonlinear contributions

The outcomes of the 10-fold cross validation are compared to the leading methods, WGRMF,

SRMF, KBMF, NeuMF, and TGSA which are considered state-of-the-art (SOTA). The experi-

mental parameters of WGRMF, SRMF, KBMF, NeuMF, and TGSA are set according to the

optimum. The CCLE and GDSC datasets are used to test the methods, and the outcomes are

displayed in Tables 1 and 2, respectively. The standard deviation of evaluation is shown in

Fig 4. Effect of the weight of the nonlinear structure α on prediction. A) ave_PCC and ave_RMSE of network based on drug and cell line latent factors in

GDSC; B) ave_PCC and ave_RMSE of network based on drug and cell line latent factors in CCLE.

https://doi.org/10.1371/journal.pcbi.1012012.g004

Table 1. Comparison of ave_PCC (ave_PCC_sr), ave_RMSE (ave_RMSE_sr) of different methods for 10-fold cross-validation on CCLE dataset.

Methods ave_PCC_sr ave_RMSE_sr ave_PCC ave_RMSE
KBMF 0.65(±0.10) 0.81(±0.20) 0.61(±0.10) 0.64(±0.17)

SCNN 0.68(±0.07) 0.80(±0.49) 0.61(±0.12) 0.62(±1.18)

VENN 0.72(±0.10) 0.74(±0.57) 0.64(±0.11) 0.43(±0.44)

SRMF 0.78(±0.07) 0.74(±0.23) 0.71(±0.09) 0.57(±0.18)

WGRMF 0.79(±0.07) 0.69(±0.19) 0.72(±0.09) 0.56(±0.19)

NeuMF 0.78(±0.09) 0.68(±0.25) 0.71(±0.10) 0.57(±0.24)

DBDNMF 0.79(±0.09) 0.65(±0.16) 0.73(±0.10) 0.53(±0.22)

DBDNMFGER 0.86(±0.07) 0.52(±0.13) 0.81(±0.08) 0.44(±0.10)

https://doi.org/10.1371/journal.pcbi.1012012.t001
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brackets in the table; DBDNMFGER denotes the DBDNMF prediction preprocessed by the

Global Effect Removal.

According to Table 1, the DBDNMFGER proposed in this paper yields the highest value

(0.81 and 0.86) in ave_PCC (ave_PCC_sr) and the lowest value (0.44 and 0.52) in ave_RMSE

(ave_RMSE_sr). With regard to the GDSC dataset, our model is still able to predict the drug

responses with the best performance in ave_PCC (ave_PCC_sr) and ave_RMSE (ave_RM-

SE_sr), as shown in Table 2. This demonstrates the robustness of learning and prediction

capabilities of the neural matrix factorization with dual branch structure, particularly when

applied to the datasets processed by Global Effect Removal. The model can fit the factor matrix

of drugs and cell lines thanks to flexible input while achieving response prediction which is

important for analyzing the latent correlation properties between cells and drugs.

Individual drug prediction evaluation on CCLE

Drugs in CCLE datasets are essential for treating cancer, and DBDNMFGER could more pre-

cisely predict the responses. In the CCLE dataset, six representative drugs, Irinotecan, Topote-

can, PD-0325901, PD-0332991, AZD6244, as well as Lapatinib are further investigated in

Fig 5, which confirms the statistically significant correlation between the predicted and

observed activity area levels, demonstrating the accuracy of DBDNMF’s prediction perfor-

mance for individual drug. Additionally, the histogram shows that there is excellent agreement

between the predicted and observed drug activity area distributions. Fig 5 demonstrates that

the prediction accuracy is relatively high for drugs with a relatively large response span, such

as Irinotecan, PD-0325901, AZD6244, and Topotecan. Regarding PD-0325901 and Lapatinib,

the prediction performance is less than satisfactory and the response values are generally low,

ranging from 0 to 4. Consequently, our future work will consider it during data preprocessing.

Blind test on GDSC

The rows and columns represent the cell lines and the drugs, respectively, in the cell line-drug

response matrix. In the cold-start test, we suppose a row or a column in the response matrix as

the testing set, with the remaining rows and columns serving as the training set. The experi-

ment aims to assess the ability to predict responses for a new drug or a new cell line. Tables 3

and 4 report the comparison of the ave_PCC (ave_PCC_sr), and ave_RMSE (ave_RMSE_sr)

of DBDNMF and baselines for cold-start scenarios on both CCLE and GDSC datasets.

The experiment results, as presented in Tables 3 and 4, demonstrate that, in both leave-cell-

line-out and leave-drug-out scenarios, DBDNMF outperforms other methods on the CCLE

and GDSC datasets. The algorithms typically only generate features from side information,

Table 2. Comparison of ave_PCC (ave_PCC_sr), ave_RMSE (ave_RMSE_sr) of different methods for 10-fold cross-validation on GDSC dataset.

Methods ave_PCC_sr ave_RMSE_sr ave_PCC ave_RMSE
KBMF 0.50 (±0.15) 2.23(±0.66) 0.40(±0.14) 1.69(±0.50)

SCNN 0.63(±0.16) 1.58(±0.81) 0.53(±0.16) 1.26(±0.82)

VENN 0.63(±0.17) 1.49(±0.99) 0.53(±0.17) 1.08(±0.86)

SRMF 0.71(±0.15) 1.73(±0.46) 0.62(±0.16) 1.43(±0.36)

WGRMF 0.73(±0.14) 1.71(±0.16) 0.64(±0.16) 1.37(±0.15)

NeuMF 0.82(±0.09) 1.43(±0.48) 0.76(±0.10) 1.27(±0.82)

TGSA 0.85(±0.10) 1.01(±0.36) 0.78(±0.12) 0.88(±0.30)

DBDNMF 0.89(±0.08) 0.94(±0.35) 0.82(±0.10) 0.93(±0.30)

DBDNMFGER 0.91(±0.06) 0.83(±0.31) 0.86(±0.08) 0.81(±0.25)

https://doi.org/10.1371/journal.pcbi.1012012.t002
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such as drug fingerprints or gene expression, in the absence of known associations between

new drugs and cell lines or new cell lines and drugs. However, given some drugs or some cell

lines might share similar characteristics, DBDNMF could still predict drug responses to cell

lines in the cold-start scenarios.

Drug response predictions on TCGA

The drug response prediction model developed in cell line experiments (in vitro) is difficult to

apply to real-world clinical settings (in vivo). The Cancer Genome Atlas (TCGA) is a compre-

hensive reference database for cancer research that compiles a variety of clinical data related to

cancer. In the test, we used the responses from the GDSC dataset to train DBDNMF and

NIHGCN, which we then applied to the TCGA dataset to predict the responses. Table 5 dis-

plays the Area Under Curve (AUC) and the Area Under the Precision-Recall Curve (AUPRC)

of the methods in terms of predicting 430 responses from 403 patients to 228 drugs from the

Fig 5. Scatter-plot between the drug responses predicted by the DBDNMF model and the original responses in CCLE.

https://doi.org/10.1371/journal.pcbi.1012012.g005

Table 3. The ave_PCC (ave_PCC_sr), ave_RMSE (ave_RMSE_sr) of NeuMF vs. DBDNMF for cold-start scenarios on CCLE dataset.

Datasets ave_PCC_sr ave_RMSE_sr ave_PCC ave_RMSE

NeuMF new cell-line 0.77(±0.22) 1.42(±0.68) 0.69(±0.24) 1.34(±0.52)

new drug 0.77(±0.23) 1.43(±0.69) 0.68(±0.24) 1.34(±0.53)

DBDNMF new cell-line 0.84(±0.14) 1.14(±0.59) 0.77(±0.16) 1.01(±0.40)

new drug 0.83(±0.14) 1.14(±0.60) 0.76(±0.17) 1.02(±0.41)

https://doi.org/10.1371/journal.pcbi.1012012.t003
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TCGA dataset for performance comparison. Since the considered responses are not split into

positive and negative classes under absolutely balanced scenarios, AUPRC may be a better

metric for performance validation. As illustrated in Fig 6, DBDNMFGER still outperforms

NIHGCN. These outcomes validate that DBDNMFGER is transferable from in vitro cell lines

to in vivo datasets.

PI3K pathway analysis on GDSC

The Phosphoinositide 3-kinase (PI3K) signaling pathway is well known for its role in regulat-

ing a wide range of cellular processes, including proliferation, growth, and apoptosis, as well as

cytoskeletal rearrangement under some circumstances [21]. According to research on cancer,

Table 4. The ave_PCC (ave_PCC_sr), ave_RMSE (ave_RMSE_sr) of TGSA, NeuMF vs. DBDNMF for cold-start scenarios on GDSC dataset.

Datasets ave_PCC_sr ave_RMSE_sr ave_PCC ave_RMSE

TGSA new cell-line 0.66(±0.14) 1.69(±0.42) 0.56(±0.15) 1.32(±0.25)

new drug 0.56(±0.19) 2.24(±1.18) 0.46(±0.20) 2.07(±1.19)

NeuMF new cell-line 0.70(±0.11) 0.89(±0.30) 0.62(±0.11) 0.73(±0.23)

new drug 0.69(±0.12) 0.89(±0.33) 0.61(±0.12) 0.77(±0.24)

DBDNMF new cell-line 0.72(±0.11) 0.79(±0.29) 0.63(±0.11) 0.63(±0.23)

new drug 0.71(±0.11) 0.79(±0.30) 0.63(±0.11) 0.64(±0.24)

https://doi.org/10.1371/journal.pcbi.1012012.t004

Table 5. Results of drug response prediction on the TCGA dataset.

Methods AUC AUPRC

NIHGCN 0.6651±6×10–3 0.5937±6×10–3

DBDNMF 0.6172±1×10–3 0.6127±1×10–3

DBDNMFGER 0.6932±1×10–3 0.6326±1×10–3

https://doi.org/10.1371/journal.pcbi.1012012.t005

Fig 6. The comparison of drug response prediction. A) The Receiver Operating Characteristic Curve; B) The Precision-Recall Curve.

https://doi.org/10.1371/journal.pcbi.1012012.g006
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PI3K and other kinases in the PI3K pathway are amenable to pharmacological intervention,

which makes the PI3K pathway one of the most alluring targets for therapeutic intervention in

human cancer [22]. Therefore, it is of biological significance to evaluate the prediction of

drugs whose target genes participate in the PI3K pathway [23]. Additionally, assessing the per-

formance of drug predictions whose target genes participate in the ERK pathway, whose role

in cellular regulation is also well known, is of great biological significance. The PCC_sr and

RMSE_sr of the drugs by different methods are compared, as shown in S1A and S1B Fig.

34 drugs whose targets are involved in the PI3K pathway are chosen from the GDSC dataset

to further evaluate the prediction performance of DBDNMF on individual drugs. The predic-

tion results of the 34 drugs by various models are then compared, as shown in Fig 7. For most

drugs targeting the PI3K pathway, DBDNMF could achieve higher PCC_sr and lower

RMSE_sr than NeuMF. It conclusively demonstrates that the DBDNMF has better prediction

performance when compared to other approaches. Temsirolimus, Rapamycin, and OSI-027

significantly improve the prediction effect among drugs. Temsirolimus is a potent and specific

inhibitor of the mammalian target of rapamycin (mTOR) kinase which makes it an appropri-

ate therapeutic target against tumors [24]. Rapamycin has antifungal, immunosuppressive,

and potent antiangiogenic properties that significantly slow the growth of tumors [25]. OSI-

027, a selective and potent dual inhibitor of mTORC1 and mTORC2, effectively inhibits the

proliferation of both non-engineered and engineered cancer cell lines [26].

Mutation consistency analysis on GDSC

As is known, the human retinoblastoma susceptibility gene (RB1), a tumor-suppressor gene, is

mutated at various frequencies in a wide range of cancers. The RB1 protein (pRB) plays impor-

tant roles in different molecular processes, such as gene transcription, DNA replication, and

DNA repair [27]. IOX2, a well-characterized and selective inhibitor of the HIF prolyl-hydroxy-

lases, has been reported to exert an anti-proliferative in human breast cancer cell lines [28].

Dactolisib, an orally administered potent dual inhibitor of PI3K/mTOR, shows promising

anti-tumor efficacy [29]. IOX2’s responses have missing values in 76% of cases (743/969) and

the response values of Dactolisib are missing in 1.1% of cases (14/969) in GDSC. Fig 8A and

8B display the distribution of the observed and predicted responses of IOX2 and Dactolisib on

RB1-mutant/wild cell lines, respectively. Based on known and predicted responses, RB1-mu-

tant cell lines are more sensitive to IOX2, while RB1-mutant cell lines are more resistant to

Dactolisib. Refametinib is a potent, allosteric MEK1/2 inhibitor that has shown promise in the

treatment of a variety of tumor types, including colorectal cancer and hepatocellular carci-

noma, and MEK inhibitors outperformed BRAF inhibitors in the ability to inhibit BRAF-

mutated melanoma cell lines in preclinical models [30]. The predicted results shown in Fig 8C

lead to the same conclusion that the BRAF mutant cell lines are sensitive to Refametinib.

Consistency analysis of Top-5 sensitive and resistant drugs

There are cell lines of 30 specific cancer types involved in the GDSC dataset in total. The top-5

sensitive and top-5 resistant drugs for each cell line predicted by DBDNMF are further investi-

gated (S1 and S2 Tables). For the top-5 sensitive drug list, Docetaxel, as a type of chemotherapy

called a taxane, has been predicted as in the top-5 sensitive drug list for 657 out of 969 cell lines

(67.8%). As is known, it has been proved to stop the growth of cancer cells and other dividing

cells by blocking cell division, which has been approved to be used alone or with other drugs

to treat breast cancer, non-small cell lung cancer, prostate cancer, gastroesophageal junction

adenocarcinoma, etc. Romidepsin, a histone deacetylase (HDAC) inhibitor for the treatment

of T-cell lymphoma (TCL), has been predicted as in the top-5 sensitive drug list for 859 out of

PLOS COMPUTATIONAL BIOLOGY A dual branch deep neural matrix factorization method

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012012 April 4, 2024 11 / 22

https://doi.org/10.1371/journal.pcbi.1012012


969 cell lines (88.6%). Bortezomib, the first proteasome inhibitor to have shown anti-cancer

activity in both solid and hematological malignancies, has been predicted as in the top-5 sensi-

tive drug list for 665 out of 969 cell lines (68.6%). It is known to block the activation of nuclear

factor-kappa B(NF-kB), resulting in increased apoptosis, decreased angiogenic cytokine pro-

duction, and inhibition of tumor cell adhesion to stroma. It has also been approved to treat

Fig 7. Comparison histogram of PCC_sr and RMSE_sr for the drug targets that are involved in the PI3K pathway of GDSC. A) Comparison histogram of

PCC_sr for drugs targeting the PI3K pathway; B) Comparison histogram of RMSE_sr for drugs targeting the PI3K pathway.

https://doi.org/10.1371/journal.pcbi.1012012.g007
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multiple myeloma as well as many other hematologic and solid tumors, most of which are

involved in the GDSC dataset.

For the top-5 resistant drug list for each cell line, glutathione is a vital component of the cell

antioxidant system which is involved in cellular functions and human pathology and repre-

sents a rational therapeutic target against cancer. The experiments about the drug showed that

the multidrug-resistant phenotype of human breast cancer cells is related to the elevated activi-

ties of glutathione peroxidase and glutathione transferase [31].

We also conducted hierarchical clustering on predicted cell line drug response matrix and

found that most drugs that are clustered together, which means they show similar response

levels tend to target similar signaling pathways. For example, for the cluster 2 shown in S2 Fig,

the most involved drugs, such as Ulixertinib, ERK_2440, ERK_6604, SCH772984, Selumetinib,

Refametinib, PD0325901, Trametinib, and VX.11e, are targeting ERK MAPK signaling path-

way. As is known, the ERK MAPK signaling pathway is known to regulate various cellular pro-

cesses, such as proliferation, differentiation, survival, and gene expression. Thus, it is

implicated in tumorigenesis and drug resistance in leukemia and other cancers [32,33].

We further investigate the response of specific cancer type-related cell lines to the above-

mentioned 11 drugs from the cluster 2, and find that cell lines coming from the same tissue

subtype tend to share the same pattern of response. For example, for Acute Lymphocytic Leu-

kemia (ALL) cancer cell lines, the responses of cell lines coming from lymphoblastic_leukemia

are different from those from lymphoblastic_T_cell_leukaemia, as shown in Fig 9.

We can also get almost the same finding for the cell lines of Multiple Myeloma (MM) can-

cer, as shown in Fig 10. It may indicate that for the same cancer type, the response to the drug

may differ from each other if the cancer cells come from different tissue subtypes.

Discussion

In this paper, we propose a dual branch deep neural matrix factorization (DBDNMF) for drug

response prediction. DBDNMF introduces the dual branches to handle both linear and non-

linear relations between drugs and cell lines to enhance the prediction performance. It can

give potentially the most sensitive and resistant list of drugs for each cell line. Experimental

results on CCLE and GDSC datasets demonstrate that the proposed method outperforms the

state-of-the-art methods, and shows better biological interpretability.

Compared with conventional methods, DBDNMF can predict the drug response to

explore the latent features and association mechanisms without the aid of auxiliary side

Fig 8. Association of drug sensitivity with cancer gene mutations is consistent for predicted and existing responses. A) RB1 mutated cell lines are more

sensitive to the drug IOX2; B) RB1 mutated cell lines are more resistant to the drug Dactolisib; C) BARF mutated cell lines are more sensitive to the drug

Refametinib.

https://doi.org/10.1371/journal.pcbi.1012012.g008
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information or prior hypotheses. DBDNMF constructs networks based on drug and cell

lines respectively, and introduces Global Effect Removal to obtain residual which represents

interaction effect.

Fig 9. Hierarchical clustering of ALL cancer cell lines to 11 drugs come from the cluster 2.

https://doi.org/10.1371/journal.pcbi.1012012.g009
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Case studies in conjunction with biological data prove the superiority of DBDNMF over

previous methods in ERK pathway prediction; the predicted and the original response of an

individual drug show a strong positive correlation; the consistency between the predicted

Fig 10. Hierarchical clustering of MM cancer cell lines to 11 drugs come from the cluster 2.

https://doi.org/10.1371/journal.pcbi.1012012.g010
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response and the original response distribution of mutant/wild cell lines verifies the reliability

of the model; the top-5 sensitive and top-5 resistant drugs for each cell line demonstrate the

consistency with previous studies, the clustering results on the predicted response matrix are

also proved that most drugs that are clustered together tend to share similar signaling pathway

and cell lines originating from the same tissue subtype prefer to cluster. Therefore, DBDNMF

could predict the unknown responses of cell lines and drugs, which have certain reference

significance.

In spite of the above encouraging performances, the model DBDNMF proposed in this

paper still shows some room for improvement in predicting drug sensitivity. DBDNMF only

refers to the known response levels of cell lines to drugs. However, on the one hand, tumor

phenotypes are typically associated with, copy number variation, gene expression profile, etc.

on the other hand, the drug attributes can also be achieved from drug chemical structures,

drug targets, side effects, etc., but all these extra information are not made use of at present.

Therefore, combining the above-mentioned side information could depict the characteristics

of drugs and cell lines in more detail, which may potentially improve the response prediction

performance for precision medicine. Besides, the incorporation of those kinds of side effects

may also help improve the cold start issue to some extent, which will also be promising. In

order to advance the methodology, it is necessary to preprocess and standardize omics datasets

that come from various sources and are not in the same format in a significant way. As a con-

sequence, the task of predicting drug response becomes more challenging due to the lack of

standardization. Therefore, our future work will focus on introducing and integrating biologi-

cal information from multiple sources into the model for drug response prediction perfor-

mance, which may better guide practical medical decision-making on patients.

Materials and methods

Model structure

As is known, a complete observed matrix can be denoted by low-rank unknown latent vari-

ables as shown in (6).

R̂ ¼ f ðDÞ þ C � Dþ ε ð6Þ

where f(�) is the projection function, R2Rm×n denotes the observed cell line-drug response

matrix with missing values, R̂ 2 Rm�n
denotes the cell line-drug response matrix recovered

with the prediction of all entries. C2Rm×r represents the row latent representation of the

response matrix, namely the cell line feature matrix. D2Rr×n represents the column latent

representation of the response matrix, namely the drug feature matrix. ε is additive white

Gaussian noise with standard deviation of 1. m is the number of drugs, and n is the number of

cell lines. With r = rank(R)<min(m,n), it means that there is a strong correlation between

rows and columns in R, so it can be projected into a low-dimensional subspace, which shows

that the matrix contains a lot of redundant information.

In reality, the datasets are influenced by noise, which makes it difficult to predict the exact

situation by linear transformation or nonlinear transformation only. If f(�), C and D can be

computed via the known entries, it is possible to achieve the recovery of R, where the latent

feature variables (C and D) are initialized randomly, and f(�) is a nonlinear function. In this

way, f(�), C and D are required to be optimized through backpropagation by solving minimiza-

tion problem simultaneously.

min
f ;C;D

1

2n
kM � ðR̂ � af ðDÞ � ð1 � aÞC � DÞk2

F ð7Þ
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where� stands for Hadamard product, k∗k2

Fdenotes the Frobenius norm, and M2Rm×n is a

binary mask matrix with the same size as R̂, which intends to distinguish the missing entries to

be completed in the original matrix. Thus, Mij = 1 if Rij is known, and 0, otherwise. For sim-

plicity, letO represent the observed entries of R, while Oc represents the unknown entries.

Therefore, the task of predicting unknown values can be approached by minimizing the differ-

ence between observed matrix R and prediction matrix R̂. The parameter α is introduced to

reach a compromise between nonlinear structure and linear structure.

In this paper, a dual branch deep neural network structure is proposed to address the above

issue, with each branch representing the nonlinear and linear term, respectively. In the nonlin-

ear part, we define the input drug latent feature variable as D, which is approximated by apply-

ing the nonlinear activation function of the hidden layers. Similarly, the weight matrix is

forced to approximate the linear part by setting a linear activation function.

In a single-layer neural network, the nonlinear function f(�) in (6) is computed by nonlinear

activation function and weight matrix in the nonlinear term, and the matrix C in (6) can be

approximated by weight in the linear term. Therefore, each column of the prediction matrix R̂
can be reconstructed by minimizing the following loss function.

min
di;Wc;bc

1

2n

Xn

i¼1

mi � ðr̂ i � sðWcdi þ bcÞ � WcdiÞ
2
þ l

1

2n

Xn

i¼1

kdik
2
þ

1

2
kWck

2

F

 !

ð8Þ

where Wc2Rm×k denotes the weight matrix of the network, and bc denotes the bias vector. mi,

r̂ i, and di are the i-th column of M, R̂, and D respectively. λ is the regularization parameter,

and σ(�) is the nonlinear activation function in the nonlinear term, e.g., Sigmoid, Tanh, and

Relu. The second part in (8) is a regularizer for model complexity regularization. It has been

shown that a deep neural network can generate better representations of arbitrary nonlinear

relations among input entries and outperforms single-layer structures [34]. Through the deep

neural network structure, the nonlinear and linear terms are approximately expressed as (9)

and (10), respectively.

f ðdÞ ¼ sðLþ1ÞðWðLÞ
c s

ðLÞðWðLÞ
c ð� � � s

ð1ÞðWð1Þ

c d þ bð1Þc Þ � � �Þ þ ðb
ðLÞ
c Þ þ bðLþ1Þ

c Þ ð9Þ

Cd ¼WðLÞ
c ðW

ðLÞ
c ð� � � ðW

ð1Þ

c d þ bð1Þc Þ � � �Þ þ bðLÞc Þ þ bðLþ1Þ

c Þ ð10Þ

where L denotes the number of hidden layers, d is a column of matrix D. W l
c and blc denotes

the weight matrix and the bias vector of the l-th layer, respectively. σl(.) is the nonlinear activa-

tion function of the l-th layer in the nonlinear term, and l = 1,2,. . .,L+1.

Fig 11. depicts the structure of the proposed DBDNMF method. By solving (6), the opti-

mized f(�), C and D can be achieved. Thus, based on (10), C is approximated by the product of

the linear hidden layer weights. In a broad sense, C also represents the latent factor matrix of

cell line learned in the DBDNMF.

C ¼
YLþ1

l¼1

W l
c ð11Þ

Therefore, the loss function of learning the latent representation of drugs (D) and the
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network parameters can be recast as follows by replacing (9) and (10).

L ¼ Lc þ lregc ð12Þ

Lc ¼
1

2Z
kM � R̂ � sðLþ1ÞðWðLþ1Þ

c sðLÞðWðLÞ
c � � � s

ð1ÞðWð1Þ

c Dþ Bð1Þc Þ � � �Þ þ BðLÞc Þ þ BðLþ1Þ

c

� �

� WðLþ1Þ

c ðWðLÞ
c ð� � � ðW

ð1Þ

c Dþ Bð1Þc Þ � � �Þ þ BðLÞc Þ þ BðLþ1Þ

c Þk
2

F

ð13Þ

regc ¼
1

2n
kDk2

F þ
1

2

XLþ1

l¼1

kW l
ck

2

F ð14Þ

In this way, the reconstructed R̂ can be optimized by minimizing the loss defined in for-

mula (12), which is comprised of reconstruction error and penalty term for regularization.

Previously, the prediction matrix should be pre-assumed to be a nonlinear (or linear) adapta-

tion of the low-dimensional latent representation. However, DBDNMF does not specify

Fig 11. Network structure. The input layer inputs a low-dimensional unknown potential matrix. The hidden layers

are divided into linear hidden layers and nonlinear hidden layers. The output layer outputs the completed cell line-

drug response matrix.

https://doi.org/10.1371/journal.pcbi.1012012.g011
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whether the link between latent factors is linear or nonlinear, but both linear and nonlinear

characteristics can be portrayed from the data in the final. Thus, the missing values in the orig-

inal drug-cell line response matrix R can be obtained by Formula (15).

R̂i;j ¼ ½af ðDÞ þ ð1 � aÞC � D�i;j; ði; jÞ 2 O
c

ð15Þ

Similarly, the network based on cell lines can also recover the cell line-drug response matrix

based on unknown cell line latent factor C. The latent representation of drugs (D) in the net-

work can be approximated as the product of network weights in the linear term, as shown in

(16).

DT ¼
YLþ1

l¼1

W l
d ð16Þ

where (�)T denotes the transposition of the matrix, DT represents the drug latent factor matrix

learned in the deep neural matrix factorization network in a generalized sense. In the network

based on latent factor of cell lines, the loss function is defined as follows.

L ¼ Ld þ lregd ð17Þ

Ld ¼
1

2Z
kMT � R̂T � sðLþ1ÞðWðLþ1Þ

d sðLÞðWðLÞ
d � � � s

ð1ÞðWð1Þ

d CT þ Bð1Þd Þ � � �Þ þ BðLÞd Þ þ BðLþ1Þ

d

� �

� WðLþ1Þ

d ðWðLÞ
d ð� � � ðW

ð1Þ

d CT þ Bð1Þd Þ � � �Þ þ BðLÞd Þ þ BðLþ1Þ

d Þk
2

F

ð18Þ

regd ¼
1

2m
kCk2

F þ
1

2

XLþ1

l¼1

kW l
dk

2

F ð19Þ

where W l
d and Bl

d denote the weights matrix and bias vector of the l-th hidden layer respec-

tively. Therefore, DBDNMF model differs from conventional methods in that it can accept

more flexible input. In addition to learning the latent factor matrix while achieving the recov-

ery matrix, the model is able to simultaneously combine linear and nonlinear contribution

features.

Optimization of the model

Since the loss optimization of the suggested model is non-convex, the optimal solution can

prevent local minima using nonlinear convex optimization techniques like BFGS, LBFGS,

iRprop+, and so on. Among these, the improved resilient back-propagation algorithm (iRprop

+) is known to control the learning rate within a predetermined range without increasing the

complexity of the model [35]. It can also achieve faster convergence than other neural network

optimization techniques when the input of the network is unknown [36]. In light of the afore-

mentioned facts, we choose iRprop+ for optimization in DBDNMF. Thus, the gradient of the

loss function in (12) is further inferred as (20),

Gradd ¼
@Lc

@D
þ
@Lc

@Wc
þ l

@Lregc

@D
þ
@Lregc

@Wc

� �

ð20Þ

In the same manner, the gradient of the loss function based on cell lines is shown in (21).

Gradc ¼
@Ld

@C
þ
@Ld

@Wd
þ l

@Lregd

@C
þ
@Lregd

@Wd

� �

ð21Þ
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Therefore, it is simple to compute the gradient of (12) and (17). The proposed network’s

bias vector can be viewed as a column of each layer’s output, so its gradient can be calculated

by also computing the gradient of the other parameters. Therefore, the parameters are initial-

ized to Gaussian random variables following [37] and the input C or D is initialized to zero. It

is also significant to select different activation functions according to different data features. In

DBDNMF model, the hyperbolic tangent function is used in nonlinear approximation branch,

while full connection is adopted in linear approximation branch.
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35. Igel C, Hüsken M. Improving the Rprop learning algorithm. In Proceedings of the Second International

Symposium on Neural Computation, NC’2000. ICSC Academic Press. 2000. p. 115–121
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