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Abstract

Using the CRISPR-Cas9 system to perform base substitutions at the target site is a typical

technique for genome editing with the potential for applications in gene therapy and agricul-

tural productivity. When the CRISPR-Cas9 system uses guide RNA to direct the Cas9 endo-

nuclease to the target site, it may misdirect it to a potential off-target site, resulting in an

unintended genome editing. Although several computational methods have been proposed

to predict off-target effects, there is still room for improvement in the off-target effect predic-

tion capability. In this paper, we present an effective approach called CRISPR-M with a new

encoding scheme and a novel multi-view deep learning model to predict the sgRNA off-tar-

get effects for target sites containing indels and mismatches. CRISPR-M takes advantage

of convolutional neural networks and bidirectional long short-term memory recurrent neural

networks to construct a three-branch network towards multi-views. Compared with existing

methods, CRISPR-M demonstrates significant performance advantages running on real-

world datasets. Furthermore, experimental analysis of CRISPR-M under multiple metrics

reveals its capability to extract features and validates its superiority on sgRNA off-target

effect predictions.

Author summary

Genome editing using the CRISPR-Cas9 system, particularly base substitutions directed

by guide RNA, holds immense potential for applications in gene therapy and agricultural

productivity. However, the risk of unintended off-target effects poses a challenge, as mis-

direction of the Cas9 endonuclease can lead to unintended genome alterations. While

computational methods exist for predicting off-target effects, there remains a need for

encoding methods with more representation space and deep learning models with gener-

alization capability and the adaptability. This paper introduces CRISPR-M, an innovative

approach addressing the limitations of existing methods in predicting off-target effects,

especially for target sites with indels and mismatches. CRISPR-M employs a novel encod-

ing scheme and a multi-view deep learning model, combining convolutional neural net-

works and bidirectional long short-term memory recurrent neural networks. The three-
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branch network structure enhances the prediction accuracy by considering multiple per-

spectives. Compared with previous representative methods, CRISPR-M exhibits remark-

able performance advantages when applied to real-world datasets. The experimental

evaluation of CRISPR-M, assessed by various metrics such as ROC, PRC, GC content and

melting temperature, demonstrates its ability to extract meaningful features and estab-

lishes its superiority in predicting off-target effects of sgRNA.

Introduction

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated with

protein Cas9 (Cas9) system (CRISPR-Cas9 system) is an advanced technology that can be

applied in genome engineering [1–4]. It is a two-component system, in which the first compo-

nent Cas9 endonuclease is guided to the DNA target sequence upstream of PAM (protospacer

adjacent motif) and complementary to the second component sgRNA (single-guide RNA),

allowing the bases of the target sequence to be edited [5,6]. It has the potential to be applied in

gene therapy and agriculture productivity [7–9]. The sgRNA represents a synthetic adaptation

of the native two-piece guide RNA complex, combining the crRNA for directing Cas9 to the

target site and the trans-activating crRNA (tracrRNA) acting as a binding scaffold, thereby

streamlining the CRISPR-Cas9 system for precise and efficient genome editing[6]. The

CRISPR-Cas9 system still needs to be further optimized, as its off-target effect could diminish

the specificity of gene editing [10,11]. Quantifying off-target effects by using sequencing tech-

nologies, such as GUIDE-seq (genome-wide, unbiased identification of DSBs enabled by

sequencing) [12], SITE-seq (selective enrichment and identification of tagged genomic DNA

ends by sequencing) [13], CIRCLE-seq (circularization for in vitro reporting of cleavage effects

by sequencing) [14] and Digenome-seq (in vitro Cas9-digested whole-genome sequencing)

[15], could contribute to the optimization of CRISPR-Cas9 systems. Introducing in silico

methods to quantify off-target effects is promising in saving time, money and labor cost [16].

Furthermore, using machine learning techniques to capture latent features is promising and

helpful to enhance the efficiency and specificity of CRISPR-Cas9 systems [17].

Early hypothesis-driven in silico tools such as MIT [11], CCTop [18] and CROP-IT [19] are

centered on empirically determined hand-crafted rules including sensitivity of number, posi-

tion and distribution of mismatch sites [11], distance to the closest annotated exon [18] and

chromatin state information [19]. Based on the rule set regarding mismatch substitution types

and mismatch positions, CFD [20,21] performs predictions of sgRNA off-target effects and

outperforms previous hypothesis-driven methods (i.e., CCTop score, CROP-IT score and MIT

score) [22]. Based on a two-layer machine learning model, ELEVATION [23] uses features

derived from the mismatch sites between intended target sequences and potential off-target

sequences to implement off-target prediction. These previous studies have encountered two

main difficulties: i) hand-crafted features may increase specialization and heterogeneity, result-

ing in weak generalization ability of machine learning models [20], ii) The machine learning

approaches above are limited in the ability of mining data features and making predictions.

Using pairs of on-target and off-target sequences encoded by ONE-HOT encoding and OR

operations as input features, CNN_std [24] uses the convolutional neural networks to perform

off-target predictions. Extracting features from sgRNA and DNA sequence pairs, AttnToMis-

match_CNN [25] constructs a model based on a self-attention-based transformer architecture

[26] combined with CNN to deal with off-target predictions. Using on-target sequences, off-

target sequences and epigenetic features as training features, DeepCRISPR [27] constructs a

convolutional neural network model to achieve off-target predictions. However, these methods
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consider mismatches in the off-target prediction only, and ignore insertions/deletions (i.e.,

indels) between target DNA and guide RNA sequences [28]. Recent approaches incorporate

insertions and deletions into training features, for example, CRISPR-Net [29] trains a deep

learning model based on the Inception architecture and the LSTM (Long Short-Term Mem-

ory) architecture using seven-bit encoded features. R-CRISPR [30] uses an encoding approach

similar to CRISPR-Net, using the RepVGG architecture to enhance the deep learning model.

CRISPR-IP [31] compresses the encoding scheme and adds an attention layer to the deep

learning model. However, these existing deep learning approaches depend on OR operations

to artificially compress the encoding scheme for on-target and off-target sequences, which lim-

its the representation space of the input features to some extent. Meanwhile, they use models

with relatively few layers, which limit the generalization capability and the adaptability of pro-

cessing datasets with multiple different characteristics.

To deal with the issues above and enhance off-target effect prediction, in this paper, we pro-

pose a novel multi-view deep learning model with a new feature encoding scheme, named

CRISPR-M, regarding sgRNA off-target effect prediction for target sites containing indels and

mismatches. In particular, we firstly design three views encoding pairs of on- and off-target

sequence, on-target sequences and off-target sequences, aiming to capture the features of asso-

ciations between on- and off-target sequences, the features of on-target sequences and the fea-

tures of off-target sequences, respectively. Secondly, we develop a dictionary of base pairs and

individual bases to encode the features of multi-views above, with the assistance of word

embedding and positional encoding. Based on the convolutional neural network and the

recurrent neural network, we propose a multi-branch deep learning model called CRISPR-M,

associated with these three input features. Experimental evaluation on real-world datasets

demonstrates that CRISPR-M outperforms previous approaches in terms of ROC (receiver

operating characteristic curve), PRC (precision recall curve), Spearman correlation rank coef-

ficient and F-score. In addition, experimental results on encoding scheme, epigenetic features

and sampling scheme also validate the superiority of our proposed approach on sgRNA off-

target effect predictions. Finally, we perform a visual analysis of the features captured by

CRISPR-M and reveal the influence of mismatches and indels on off-target effects.

Results

Datasets

We collect two categories of datasets for model learning and validation. One category contains

mismatches and indels, i.e., datasets CIRCLE and GUIDE_I in Table 1, and the other category

contains mismatches only, i.e., other datasets in Table 1. The CIRCLE dataset identifies 340

Table 1. Datasets used for model learning and validation.

Dataset aliases Total Sites Off-Target Sites Indel gRNAs

CIRCLE [14] 584949 7371 430 10

GUIDE_I [23] 213943 60 13 6

Protein knockout detection (PKD) [20] 4853 2273 N/A 65

SITE [13] 217733 3767 N/A 9

GUIDE_II [33] 95829 54 N/A 5

GUIDE_III [23] 383463 56 N/A 22

HEK293T [27] 132914 536 N/A 18

K562 [27] 20319 120 N/A 12

https://doi.org/10.1371/journal.pcbi.1011972.t001
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active off-target loci samples containing indels and 7031 active off-target loci samples contain-

ing mismatch only using the CIRCLE-seq technique. The Cas-OFFinder tool [32] is used to

search the genomes and obtain 252,539 inactive off-target loci samples containing indel and

325,039 inactive off-target loci samples containing mismatch only. Note that the CIRCLE data-

set is derived from the experimental data of 10 gRNAs and contains sufficient off-target sam-

ples for each gRNA, which is suitable for ten-fold cross validation. The GUIDE_I dataset also

contains indel samples, but contains only 60 active off-target loci samples. For the rest datasets

in Table 1, we use PKD (Protein knockout detection), SITE, GUIDE_II, and GUIDE_III for

the mismatch-only experiments, and HEK293T and K562 for the experiments regarding epige-

netic features. PKD has sufficient data for active off-target sites, but insufficient data for inacti-

vated off-target sites. SITE has sufficient active off-target sites and inactivated off-target sites.

GUIDE_II and GUIDE_III have sufficient data for inactive off-target loci samples, but only a

small number of active off-target loci samples.

Performance measures

In the Results section, we use a series of metrics to evaluate the performance of our proposed

approaches. In particular, Accuracy, Precision, Recall, F1 Score, F2 Score, AUROC (Area

Under the Receiver Operating Characteristic), AUPRC (Area Under the Precision-Recall

Curve) and Spearman rank correlation coefficient (SRCC) are used for comparisons. The

detailed metrics are as follows:

Accuracy ¼
TP þ TN

TP þ FP þ FN þ TN
ð1Þ

Precision ¼
TP

TP þ FP
ð2Þ

Recall ¼
TP

TP þ FN
ð3Þ

F1 ¼
2� Precision� Recall
Precisionþ Recall

ð4Þ

F2 ¼
5� Precision� Recall
4� Precisionþ Recall

ð5Þ

SRCC ¼ 1 �
6�

PN
i¼1
jRðXiÞ � RðYiÞj

2

N � ðN2 � 1Þ
ð6Þ

TP denotes the number of true positive examples, FP denotes the number of false positive

examples, FN denotes the number of false negative examples and TN denotes the number of

true negative examples. N denotes the number of test samples. R(X) and R(Y) are the ranking

of the two sets of variables X and Y, representing the predicted values and real values. We use

the Spearman rank correlation coefficient to measure the correlation between the predicted

values and real values. We choose the F1 Score as the metric based on a combination of preci-

sion and recall. We also used the F2 Score with increased the weighting of Recall as another

evaluation metric. For ROC and PRC, we choose the macro-averaging calculation method to

minimize the effect of the different number of datasets. In addition, the GC content of sgRNA

and the melting temperature [34,35] between sgRNA and off-target site sequence are used for
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visual analysis.

GC content ¼
NG þ NC

sgRNA length
ð7Þ

Tm ¼
DH�

R ln Ct
n þ DS�

ð8Þ

Here NG indicates the amount of guanine in the sgRNA, and NC indicates the amount of

cytosine in the sgRNA. Tm indicates the melting temperature. R indicates the gas constant. ΔH
° and ΔS° indicate calculated enthalpy and entropy changes. Ct indicates the total strand con-

centration. The n indicates the symmetry factor, which is 1 for self-complementary strands

and 4 for non-self-complementary strands.

Comparisons on the target sites containing both mismatches and indels

Two datasets CIRCLE [14] and GUIDE_I [23] containing mismatches and indels are used in

the experiments. To verify the sgRNA off-target effect prediction capability of CRISPR-M, we

split the CIRCLE dataset into ten parts by the corresponding sgRNA of the samples for leave-

one-gRNA-out cross-validation (LOGOCV), at first. Then, we use the CIRCLE dataset as the

training set and the GUIDE_I dataset as the validation set (depicted as CIRCLE_GUIDE) to

perform the comparisons. Note that GUIDE_I dataset is not used as the training set due to the

relatively small amount of active off-target data, which could lead to unstable training of the

model. We compare CRISPR-M with previous representative approaches CRISRP-IP [31],

R-CRISPR [30] and CRISPR-Net [29]. In addition, we retrain the competition models on the

same dataset to ensure fairness of the comparisons.

Fig 1A–1C show the experimental results of the LOGOCV on dataset CIRCLE. CRISPR-M

performs the best on both the ROC and the PRC (the area under ROC, i.e., AUROC, is about

0.9683, and the area under PRC, i.e., AUPRC is about 0.51). In particular, Fig 1(A) shows that

CRISPR-M performs the best on ROC, and Fig 1(B) shows that CRISPR-M outperforms

CRISRP-IP, R-CRISPR and CRISPR-Net on PRC (in excess of 2%-4%). R-CRISPR outper-

forms CRISRP-IP and CRISPR-Net in terms of ROC (AUROC�0.9678). CRISPR-IP outper-

forms R-CRISPR and CRISPR-Net in terms of PRC (AUPRC�0.49). In Fig 1(C), for

CRISPR-M, CRISRP-IP, R-CRISPR and CRISPR-Net, similar results on Precision and Recall

are obtained. In addition, we see that, CRISPR-M outperforms CRISRP-IP, R-CRISPR and

CRISPR-Net in terms of F1 Score and F2 Score. Further, CRISPR-M outperforms the other

three models in terms of the Spearman rank correlation coefficient, which is used to reveal the

correlation between the predicted values and real values. Fig 1D–1F show the experimental

results on dataset CIRCLE_GUIDE. In Fig 1(D), we see that CRISPR-IP performs the worst in

terms of ROC, and similar results are obtained by using CRISRP-M, R-CRISPR and CRISPR--

Net. In Fig 1(E), we see that CRISRP-M performs the best in terms of PRC, and show twofold

increases in PRC compared with CRISRP-IP, R-CRISPR and CRISPR-Net. The difference

between the AUROC and the AUPRC results is due to the class imbalance within the CRISPR

experimental datasets. Successful gene edits (positive instances) are rare events, in contrast to

the vast number of non-edited instances (negative instances). The AUROC metric is less sensi-

tive to imbalanced class distributions, and its calculation relies on the False Positive Rate

(FPR), which may be influenced by the overwhelming number of negative instances. In con-

trast, the AUPRC places a stronger emphasis on the precision-recall trade-off, making it more

suitable for evaluating performance in scenarios of imbalanced class proportions. In other

words, CRISRP-M shows better results in terms of AUPRC, suggesting its effectiveness in
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Fig 1. Comparisons on-target sites containing both mismatches and indels.

https://doi.org/10.1371/journal.pcbi.1011972.g001
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correctly classifying positive instances, which is important in applications of accurately identi-

fying the minority class. In Fig 1(F), we see that CRISRP-M performs the best in terms of Pre-

cision, F1 Score, F2 Score and SRCC, compared with CRISRP-IP, R-CRISPR and

CRISPR-Net.

Overall, in terms of Precision and Recall, these four approaches have similar results of the

LOGOCV on dataset CIRCLE, but CRISPR-IP, R-CRISPR and CRISPR-Net show huge differ-

ence and unbalance of Precision and Recall on dataset CIRCLE_GUIDE. Because the

LOGOCV experiment uses a single CIRCLE dataset for training and validating, and CIRCLE_-

GUIDE consists of datasets from different sources (it takes CIRCLE and GUIDE_I as the train-

ing set and validating set respectively) and GUIDE_I has more unbalanced ratio of positive

and negative examples, making the validation challenging compared with the LOGOCV on

CIRCLE. In addition, CRISPR-M performs best on the metrics of PRC, SRCC, F1 Score and

F2 Score. These results further demonstrate that CRISPR-M has better generalization capabil-

ity for sgRNA off-target effect predictions on-target sites containing mismatches and indels.

Comparisons on mismatches-only sgRNA-target prediction

In this section, we test CRISPR-M on datasets containing mismatches-only samples. Four

datasets, SITE [13], PKD (Protein knockout detection) [20], GUIDE_II [33] and GUIDE_III

[23], are used in the experiments. These four datasets are divided into two groups for 2-fold

cross-validation, one group consisting of the SITE dataset and the other group consisting of

the rest datasets. Three representative methods CRISPR-Net, R-CRISPR and CRISPR-IP for

handling both mismatches and indels are compared with CRISPR-M. Although these three

methods have proven their superiority over earlier methods, three representative approaches

CFDScoring [20], CNN_std [24] and DeepCRISPR [27] for handling mismatches only are also

compared with CRISPR-M for a more general comparison.

Fig 2(A) shows the ROC results of these seven approaches. CRISPR-M (AUROC�0.8463) has

the second highest AUROC, about 1.5% lower than R-CRISPR. As shown in Fig 2(B), CRISPR-M

(AUPRC�0.43) outperforms the other six approaches in terms of PRC (in excess of 6% at least).

In Fig 2(C), we see that DeepCRISPR performs the worst in terms of Accuracy, Precision, Recall,

F1 Score, F2 Score and SRCC. This may be due to the fact that DeepCRISPR is designed for epige-

netic features and is not suitable for the tests on base-sequence-only features. Compared with

these six approaches, CRISPR-M achieves optimal performance on Accuracy, F1 Score, F2 Score

and SRCC. These results further demonstrate that CRISPR-M is not only good at processing

indels, but also has excellent prediction capability on mismatch-only samples.

Comparisons with complex off-target site datasets

To further validate the performance of CRISPR-M, we integrate datasets CIRCLE [14],

GUIDE_I [23], SITE [13], PKD [20], GUIDE_II [32] and GUIDE_III [23] with different char-

acteristics for these experiments. We merge CIRCLE and SITE as the training set, and inte-

grate GUIDE_I, GUIDE_II, GUIDE_III and PKD as the validation set.

As shown in Fig 2(D), the AUROCs of CRISRP-M, R-CRISPR and CRISPR-Net are

approximately equal to 0.994, except for CRISPR-IP which has the lowest AUROC (approxi-

mately 0.9655). In Fig 2(E), we see that CRISPR-IP (AUPRC = 0.46) performs the worst and

CRISPR-M (AUPRC = 0.70) performs the best. This is consistent with the result shown in Fig

2(B), where the AUPRCs of CRISPR-IP and CRISPR-M is 0.12 and 0.43, respectively. The

poor performance of CRISPR-IP may be due to the excessive compressive encoding. Overall,

CRISPR-M outperforms the other approaches, still performs robustly, and shows better adapt-

ability in more complex off-target site datasets.
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Comparisons of encoding schemes

In this section, we test the AUPRC performance of encoding schemes we adopt against the

encoding schemes used in CRISPR-Net and CRISRP-IP, using the CIRCLE dataset for

LOGOCV. Nine encoding schemes are compared: (a) The six-bit manual encoding scheme

Fig 2. Comparisons on mismatches-only sgRNA-target prediction and complex off-target site datasets.

https://doi.org/10.1371/journal.pcbi.1011972.g002
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extends the compression encoding of CRISPR-Net and CRISRP-IP, depicted as "CRISPR-M 6

channel encoding". In particular, we construct the encoding scheme based on ONE-HOT and

the OR operation, by converting the two-bit direction channel into one-bit; (b) the manual

encoding scheme for CRISPR-IP, depicted as "CRISPR-IP"; (c) the manual CRISPR-IP encod-

ing without the PAM channel, depicted as "CRISPR-IP without PAM channel". Note that the

PAM channel is a one-bit encoding proposed by CRISPR-IP to indicate whether the current

base is in the guide sequence region or the PAM sequence region; (d) the manual CRISPR-Net

encoding scheme, depicted as "CRISPR-Net"; (e) manual CRISPR-Net encoding added with a

one-bit PAM channel, depicted as "CRISPR-Net with PAM channel"; (f) "CRISPR-M word

embedding" is the proposed adaptive encoding scheme based on the word embedding; (g)

"CRISPR-M word embedding with PAM channel" is an encoding scheme that distinguishes

between the guide sequence region and the PAM region in the word embedding dictionary

based on encoding scheme (f); (h) "CRISPR-M positional encoding" is an encoding scheme

that adds positional encoding to encoding scheme (f); (i) "CRISPR-M positional encoding

with PAM channel" is an encoding scheme that adds positional encoding to encoding scheme

(g). More details can be found in "Encoding Scheme" of Section “Methods”. As shown in Fig 3

(A), DNNx denotes a neural network composed of x fully connected layers, CNNx denotes a

neural network composed of x convolutional layers and two fully connected layers, LSTM

denotes a neural network composed of one LSTM layer and two fully connected layers, and

GRU denotes a neural network composed of one GRU layer and two fully connected layers.

We also introduce the CRISPR-IP model in the experimental comparisons since it contains

one or two layers for each network module.

Three main issues are evaluated in the experiments: (1) comparisons between a manual

encoding scheme and an adaptive encoding scheme based on the word embedding; (2)

whether adding a one-bit PAM channel to the encoding scheme is benefit to the network

model performance; (3) whether adding positional encoding is a benefit to the network model

performance.

For issue (1), as shown in Fig 3(A), for the CRISPR-IP model, the adaptive encoding

schemes (f), (g), (h) and (i) outperform the manual encoding schemes (a), (b) and (c). The

encoding schemes (f), (g), (h) and (i) outperform manual encoding schemes (a), (b), (c), (d)

and (e) for the fully connected models and convolutional models, and the performance differ-

ence is even larger than the CRISPR-IP model and the recurrent layer-based models. The

CRISPR-IP model and the recurrent layer-based models have more powerful learning capabil-

ity than the fully connected models and convolutional models, which reduces the performance

difference between manual and adaptive encoding schemes. Therefore, we adopt the adaptive

encoding scheme based on the word embedding.

For issue (2), four groups of control encoding schemes with and without PAM channels,

which are {encoding schemes (b) and (c)}, {encoding schemes (d) and (e)}, {encoding schemes

(f) and (g)}, {encoding schemes (h) and (i)}, are evaluated in the experiments. As shown in Fig

3(A), there is no obvious performance difference between two encoding schemes within each

control group. At this point, we find that the PAM channel has little influence in network

model performance. The reason is that neural networks have the ability of recognizing loca-

tions. On the contrary, adding the PAM channel needs more consumption in space and time

of training the model. Therefore, we adopt the encoding scheme without the PAM channel for

model training.

For issue (3), two groups of control encoding schemes with and without positional encod-

ing, which are {encoding schemes (f) and (h)} and {encoding schemes (g) and (i)}, are evalu-

ated in the experiments. As shown in Fig 3(A), for the first group, the encoding scheme (h)

with positional encoding performs worse than that of the encoding scheme (f) in CNN3, but
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better than (or equal to) that of the encoding scheme (f) in the rest network models. For the

second group, the encoding scheme (i) with positional encoding performs obviously outper-

forms encoding scheme (g) in DNN5, and has similar performance with encoding scheme (g)

in the rest network models. Therefore, we adopt the encoding scheme with the positional

encoding for model training.

In summary, we adopt the adaptive encoding scheme based on the word embedding and

the positional encoding without the PAM channel (i.e., encoding scheme (i)) for model

training.

Comparisons with epigenetic features

In this section, we compare the performance of CRISPR-M with previous representative

approach DeepCRISPR, applying epigenetic features (CTCF, DNase, H3K4me3 and RRBS

[27]) and sequence features to predict sgRNA off-target effect. We test the performance of

DeepCRISPR, CRISPR-M with sequence features only (depicted as CRISPR-M without epige-

netic features), and CRISPR-M with sequence and epigenetic features (depicted as CRISPR-M

with epigenetic features), using dataset K562 [27] and dataset HEK293T [27]. As shown in Fig

3B–3E, CRISPR-M with epigenetic features shows better performance than CRISPR-M

Fig 3. Comparisons of encoding schemes and epigenetic features.

https://doi.org/10.1371/journal.pcbi.1011972.g003
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without epigenetic features, and both of them outperforms DeepCRISPR, in terms of ROC

and PRC. This further demonstrates that CRISPR-M has good extensibility and adding epige-

netic features could improve sgRNA off-target effect predictions.

Impact of random seed on AUPRC results and ablation experiments

In this section, we examine the influence of random seed selection on the results of the

AUPRC. In Fig 4(A) and 4(B), we assess the AUPRC results based on different random seeds,

running on the CIRCLE_GUIDE dataset and the Mismatches-only dataset. The horizontal

axis of Fig 4(A) and 4(B) are random seed values, and the vertical axis represents the corre-

sponding AUPRC values. We observe that the AUPRC results of CRISPR-M are generally bet-

ter than other methods when using different random seeds. Fig 4(C) shows the variance curves

of average AUPRC results, where the horizontal axis is the number of AUPRC results used for

calculating the averages, and the vertical axis is the corresponding variance of the averages. We

observe the variance curve becomes stable at 10 trials. Since the results are qualitatively similar

after 10 trials, for simplicity, we also choose the average of 10 trial results for comparisons in

previous experimental sections. Fig 4(D) and 4(E) illustrate the distribution of average

AUPRC values of tested methods. We observe that the results of tested methods are stabilized

within a narrow range, and CRISPR-M still performs better than other approaches, which is

consistent with the experimental results in previous sections.

In the following, we perform ablation experiments to demonstrate the effects of each mod-

ule. In particular, by removing three parts of the CRISPR-M model (i.e., the CNN module, the

RNN module and the fully connected module), we build three ablation models: "Ablation

model 1", "Ablation model 2", and "Ablation model 3", where "Ablation model 3" retains a

dense layer as the output layer. The experimental results are shown in Fig 4(F) and 4(G). The

AUROC values show minor differences among the models, and the ablation models exhibit a

decreased performance in AUPRC values compared with CRISPR-M, demonstrating the effec-

tiveness of each module in CRISPR-M.

Visual analysis of CRISPR-M on the off-target effect prediction

In this section, we adopt CRISPR-M trained with datasets CIRCLE and SITE to visually ana-

lyze the influence of number and position of mismatches and indels, GC content and melting

temperature, in terms of sgRNA off-target effect. To visualize the influence of the factors

above, we randomly generate 10,000 on-target sequences and set PAM sequences to "AGG" for

simplicity. For each on-target sequence, we replace one of the twenty-three base sites at a time

with another three bases or an indel, constructing 92 off-target sequences associated with the

on-target sequence.

We use CRISPR-M to output the difference of predicted values (the predicted value of pair

of on- and off-target sequences minus that of on- and on-target sequences), depicted as substi-

tution score, which is used to represent the influence of different base mismatches or an indel

on the off-target effect. Fig 5A–5F show the average substitution scores of the 10,000 generated

on-target sequences with mismatches or indels at different target sequence positions, where

the horizontal axis represents the positions of the target sites and the vertical axis records the

average substitution scores (lower score means less possibility of off-target). Fig 5G–5I show

the dot plots of the average substitution scores associated with the GC content, melting tem-

perature and mismatch numbers, respectively.

In Fig 5(A), we observe three valleys from 1 to 7, from 8 to 13, and from 14 to 20 in horizon-

tal axis. The closer these three valleys approach to the PAM region, the deeper they are (i.e.,

the less possibility of off-target). These results are consistent with previous studies. In
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Fig 4. Impact of random seed on AUPRC results, and results of ablation experiments.

https://doi.org/10.1371/journal.pcbi.1011972.g004
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particular, previous studies [36] illustrate that mismatches in seven to nine positions near the

PAM region could result in the less possibility of off-target at a target site. In addition, previous

studies [37,38,39,40] illustrate that mismatches in ten to thirteen positions near the PAM

region are determinants of the specificity of CRISPR cleavage. Moreover, previous studies

[41,42,43] illustrate that the seven positions distal to the PAM region have a low effect on the

off-target effect. These results further validate that CRISPR-M could effectively capture

features.

Fig 5B–5F show substitution scores caused by a base mismatch or an indel at target

sequence positions. In Fig 5(C) and 5(E), the substitution scores decrease greatly when the

mismatch occurs at the second position of the PAM region (see horizontal axis 22 in the fig-

ures, the corresponding mismatch base pairs are "GC" and "GT" respectively), because a

Fig 5. Visual analysis of CRISPR-M. (a) The average substitution scores for the base substitution at each location. (b-

f) The substitution scores for the substitution regarding A, C, G, T and an indel. (g-i) The dot plots of the average

substitution scores associated with the GC content, melting temperature and mismatch numbers.

https://doi.org/10.1371/journal.pcbi.1011972.g005

PLOS COMPUTATIONAL BIOLOGY CRISPR-M: Predicting sgRNA off-target effect

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011972 March 14, 2024 13 / 20

https://doi.org/10.1371/journal.pcbi.1011972.g005
https://doi.org/10.1371/journal.pcbi.1011972


CRISPR system using "NGG" as the PAM sequence has a low possibility of off-target at the off-

target site. As shown in Fig 5(B), when the mismatch base pair occurring at horizontal axis 22

is "GA", the substitution score decreases slightly, meaning that the off-target site could be still

active. Because "NAG" can be also used as a PAM sequence, CRISPR-M is more tolerant of

"GA" than that of "GC" and "GT" at horizontal axis 22. These results are consistent with the

previous study [44]. The substitution scores at horizontal axis 22 and 23 in Fig 5(B) are higher

than those in Fig 5(C) and 5(E), and the tolerance of the PAM region to adenine has been dem-

onstrated in previous study of CRISPR systems [45]. In Fig 5(F), we observe that the CRISPR

system is very intolerant of indels, i.e., there is a small possibility of activating off-target sites

containing indels.

Fig 5(G) shows the predicted results of sgRNA off-target effect in terms of GC content using

CRISPR-M, where higher predicted values indicate more off-targeting possibility. We observe

that higher GC content results in more stable hybridisation of RNA and DNA, and lower GC

content leads to less off-target possibility. The fitted curve in Fig 5(G) shows that the predicted

values of sgRNA off-target effect increase, with the increases of GC content. This is consistent

with previous findings [46,47]. Fig 5(H) shows the predicted results of sgRNA off-target effect in

terms of melting temperature between the sgRNA and the off-target site using CRISPR-M,

where higher predicted values also indicate more off-targeting possibility. The fitted curve in Fig

5(H) illustrates that the predicted values of sgRNA off-target effect increase, with the increases of

melting temperature. This is also consistent with previous findings [20,34,35,48,49]. Fig 5(I)

shows the substitution scores substitution scores in terms of number of mismatches using

CRISPR-M. The fitted curve in Fig 5(I) shows that the substitution scores decrease, with the

increases of number of mismatches, which is consistent with the previous findings [11].

In summary, the visualization results above validate that CRISPR-M could effectively capture

features, and these results are consistent with the expected properties that a CRISPR system

should have, and also validate existing findings derived from previous gene editing studies.

Discussion

In this paper, we present CRISPR-M, a multi-view deep learning approach to predict the

sgRNA off-target effects for target sites containing indels and mismatches. Our main contribu-

tions are as follows. We firstly propose a multi-view learning strategy for the prediction of

sgRNA off-target effects, i.e., encoding on- and off-target sequence pairs, on-target sequences

and off-target sequences as three input features for model training. Then, we propose an adap-

tive encoding scheme based on the word embedding and the positional encoding. Next, we

propose a multi-branch deep learning model based on multiple network structures towards

the multi-view strategy and adaptive encoding scheme. Experimental results demonstrate that

CRISPR-M outperforms previous sgRNA off-target effect prediction approaches, and has

good generalization capability, when handling mismatches and indels. In addition, we perform

comparisons from perspectives of encoding scheme and epigenetic features. CRISPR-M shows

the effectiveness and advantages of its encoding scheme, and achieves promising results in

handling both sequence and epigenetic features. Finally, we perform a visual analysis of

CRISPR-M to verify its validity by evaluating the influence of number and position of mis-

matches and indels, GC content and melting temperature, in terms of sgRNA off-target effect.

Methods

CRISPR-M contains convolutional layers, recurrent layers, attention layers, fully connected

layers, regularization strategies and the word embedding and positional encoding layers. The

overview structure of CRISRP-M is shown in Fig 6.
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Fig 6. Overview of CRISPR-M.

https://doi.org/10.1371/journal.pcbi.1011972.g006
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Multi-view learning and encoding schemes

As shown in the Input part of Fig 6, we encode the on- and off-target sequence pairs, the on-

target sequences, and the off-target sequences as three input features, representing three per-

spectives: the association between the on- and off-target sequences, the features of the on-tar-

get sequences, and the features of the off-target sequences. We integrate these features above

and form a multi-view learning scheme regarding sgRNA off-target effect predictions.

In the following, we introduce the adaptive encoding scheme of CRISPR-M, based on word

embedding and positional encoding.

Compared with the one-hot encoding scheme, the word embedding encoding allows for

the encoding of discrete information in a distributed representation way and could adaptively

adjusts the distance between discrete information, such as the distance among the four bases

in the Euclidean space. Specifically, we design a dictionary, as shown in the Word Embedding

Dictionary module in Fig 6, for converting bases and base pairs into the word indexes for the

word embedding. To accommodate the indel information in our encoding scheme, another

1-nt beside the 20-nt target sequence and the 3-nt PAM sequence is added to form a 24-nt

base sequence or base pair sequence. As shown in Fig 6, a 24-nt base pair sequence is entered

into the embedding layer, after it has been encoded as a word index vector. The encoding for-

mula in the embedding layer is as follows.

Ve ¼ Vi �M ð9Þ

Here, Vi (“One-hot encoded matrix” in Fig 6) denotes the vector of word indexes encoded

by using the one-hot encoding associated with the serial number in the dictionary. Assume

that the size of the dictionary is sa, the shape of Vi is [24, sa]. Suppose that the word embedding

length is lb, the shape of the embedding layer parameter matrix M (“Embedding parameter

matrix” in Fig 6) is [sa, lb], and the shape of the word vector matrix Ve (output from the embed-

ding layer) is [24, lb]. In addition, since different positions of target sites have different influ-

ence on off-target effects, we have included positional encoding. The formula used for the

positional encoding is as follows:

PEðpos;iÞ ¼
sinðpos=10000i=dÞ; i mod 2 ¼ 0

cosðpos=10000i=dÞ; i mod 2 ¼ 1
ð10Þ

(

Here, pos denotes the position of the base or base pair in the target sequence, i denotes the

dimension in the base or base pair word vector, and d denotes the maximum dimension of the

word vector. For a 24-nt sequence with a word vector length of lb, there are 24 pos values, and

there are lb values for i and d is equal to word vector length lb. Formula 10 gives each value in

the word vector matrix Ve a unique position. The entire encoding process is completed by

inputting the word vector matrix Ve into the positional encoding layer and outputting it after

adding the positional encoding. The corresponding encoding formula is as follows.

V ¼ Ve þ Vp ð11Þ

Here, Vp is the position matrix of the same shape as Ve, calculated from Formula 10. V is

the matrix of the final encoding output. So far, we obtain an encoding containing location

information that can be adaptive to the distance between discrete information.

Model architecture

Firstly, the word embedding dictionary encodes the on- and off-target sequence pair, the on-

target sequence and the off-target sequence as three inputs to the embedding module. These
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three inputs are encoded in the word embedding and positional encoding layers. Subsequently,

each input associate with a branch. At the beginning of each branch, a self-attention layer is

used to reinforce the features of each input, facilitating feature extractions of subsequent con-

volutional layers. The self-attention layer uses multi-head attention as follows.

Attention Q;K;Vð Þ ¼ softmax
QKT

ffiffiffiffiffi
dk

p

 !

V ð12Þ

headi ¼ AttentionðQWQ
i ;KW

K
i ;VW

V
i Þ ð13Þ

MultiHeadAttentionðQ;K;VÞ ¼ Concatðhead1; . . . ; headhÞW
O ð14Þ

Q, K and V denote the queries and keys in the dimension dk and the values in the dimension

dv, respectively. KT is the transpose matrix of K. Softmax function is used to transform matrix

product into probability. WQ
i ; WK

i ; W
V
i and WO in Formula 13 represent the parameter

matrix corresponding to Q, K, V and matrix generated from concatenated heads. Concat func-

tion is used to concatenate the matrixes corresponding to multiple heads. Formula 14 repre-

sents a multi-head attention consisting of multiple weighted attentions.

Next, we design convolutional layers behind the attention layers for feature extractions. The

number of filters per convolutional layer is set to 32 or 64. For each sample, the size of the vec-

tor output from the attention layer is [24, lb]. We reshape the output of the attention layer

before the convolution layer as [24, lb, 1]. In each branch, one or two convolutional layers out-

put a tensor of shape [24, 1, fn] (fn denotes the number of filters) after extracting the features.

This tensor is reshaped into [24, fn] and fed into a bi-directional recurrent layer with a cell

number which is equal to 32. As shown in Fig 6, the outputs of the recurrent layers of three

branches are flattened and concatenated together, resulting in a single prediction output

through three fully-connected layers whose cell numbers are 256, 64 and 1 respectively. The

detailed model architecture and parameters can be viewed in our GitHub repository.

In the training process, we set Adam [50] as the optimizer, Accuracy, AUROC (Area under

ROC curve) and AURPC (Area under PRC) as the model evaluation metrics, and the binary

cross-entropy as the loss function. The corresponding formula is as follows:

BCE ¼ �
1

n

Xn

i
yi � log ŷi þ 1 � yið Þ � log 1 � ŷið Þ ð15Þ

Here, n denotes the length of the output result, i is each bit of the output value, and yi and ŷi
denote the real and predicted values respectively.
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