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Abstract

Unlike proteins, RNAs deposited in the Protein Data Bank do not contain topological knots.

Recently, admittedly, the first trefoil knot and some lasso-type conformations have been

found in experimental RNA structures, but these are still exceptional cases. Meanwhile,

algorithms predicting 3D RNA models have happened to form knotted structures not so

rarely. Interestingly, machine learning-based predictors seem to be more prone to generate

knotted RNA folds than traditional methods. A similar situation is observed for the entangle-

ments of structural elements. In this paper, we analyze all models submitted to the CASP15

competition in the 3D RNA structure prediction category. We show what types of topological

knots and structure element entanglements appear in the submitted models and highlight

what methods are behind the generation of such conformations. We also study the structural

aspect of susceptibility to entanglement. We suggest that predictors take care of an evalua-

tion of RNA models to avoid publishing structures with artifacts, such as unusual entangle-

ments, that result from hallucinations of predictive algorithms.

Author summary

• 3D RNA structure prediction contests such as CASP and RNA-Puzzles lack measures

for topology-wise evaluation of predicted models. Thus, predictors happen to submit

potentially inappropriate conformations, for example, containing entanglements that

are prediction artifacts.

• Automated identification of entanglements in 3D RNA structures is computationally

hard. Distinguishing correct from incorrectly entangled conformations is not trivial and

often requires expert knowledge.

• We analyzed 3D RNA models submitted to CASP15 and found that all entanglements

in these models are artifacts.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011959 June 20, 2024 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gren BA, Antczak M, Zok T, Sulkowska JI,

Szachniuk M (2024) Knotted artifacts in predicted

3D RNA structures. PLoS Comput Biol 20(6):

e1011959. https://doi.org/10.1371/journal.

pcbi.1011959

Editor: Shi-Jie Chen, University of Missouri,

UNITED STATES

Received: March 8, 2024

Accepted: June 1, 2024

Published: June 20, 2024

Copyright: © 2024 Gren et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The RNA models

predicted within CASP15 are available at https://

predictioncenter.org/download_area/CASP15/

predictions/RNA/. RNAspider is accessible at

https://rnaspider.cs.put.poznan.pl/ Other scripts

used to identify and analyse knots and

entanglements are available in the GitHub

repository https://github.com/ilbsm/CASP15_

knotted_artifacts All other data are within the

manuscript and its Supporting information files.

Funding: This work was supported by the National

Science Centre, Poland (https://www.ncn.gov.pl/

https://orcid.org/0000-0001-9971-6807
https://orcid.org/0000-0003-4103-9238
https://orcid.org/0000-0003-2452-0724
https://orcid.org/0000-0002-8724-7908
https://doi.org/10.1371/journal.pcbi.1011959
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011959&domain=pdf&date_stamp=2024-07-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011959&domain=pdf&date_stamp=2024-07-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011959&domain=pdf&date_stamp=2024-07-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011959&domain=pdf&date_stamp=2024-07-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011959&domain=pdf&date_stamp=2024-07-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011959&domain=pdf&date_stamp=2024-07-02
https://doi.org/10.1371/journal.pcbi.1011959
https://doi.org/10.1371/journal.pcbi.1011959
http://creativecommons.org/licenses/by/4.0/
https://predictioncenter.org/download_area/CASP15/predictions/RNA/
https://predictioncenter.org/download_area/CASP15/predictions/RNA/
https://predictioncenter.org/download_area/CASP15/predictions/RNA/
https://rnaspider.cs.put.poznan.pl/
https://github.com/ilbsm/CASP15_knotted_artifacts
https://github.com/ilbsm/CASP15_knotted_artifacts
https://www.ncn.gov.pl/en


• Compared to non-ML, machine learning-based methods are more prone to generating

entanglements that are not present in natural RNAs.

• To increase the reliability of 3D RNA structure prediction, it is necessary to reject

abnormally entangled structures in the modeling stage.

Introduction

The birth of the third decade of this century brought a sudden surge of interest in modeling

3D RNA structures. The latter was, among other things, a by-product of the COVID-19 pan-

demic, whose main actor was the RNA virus, and intensive research on the development of

RNA-based vaccines against COVID-19. The second major factor was the spectacular success

brought about by the application of deep neural networks to model protein structures [1]. As a

result, new methods have emerged to predict RNA structures, most of which use machine

learning models in an end-to-end approach or at selected stages of the 3D folding process [2].

Many of them have undergone virgin benchmarking while competing in recent RNA-Puzzles

and CASP15 initiatives, which aim to blindly evaluate predicted 3D RNA models and identify

the best predictive tools. The results of both competitions show that none of the new methods

has made a breakthrough in the quality and accuracy of the prediction of the 3D RNA struc-

ture so far. The latter are evaluated using various measures of distance (DI, GDT-TS, lDDT,

MCQ, RMSD), similarity (INF, TM-score, LCS), and quality (Clash score) [3–8]. No measure

can directly assess the accuracy of the 3D model topology and its compatibility with the topol-

ogy of the target. Consequently, awareness of topological irregularities in 3D RNA predictions

is negligible in the RNA community, and the predicted models happen to contain them. These

anomalies include entanglements that are absent from known experimental structures. We

can consider them locally, taking into account the secondary and tertiary structure of the mol-

ecule (we then speak of entanglements of structural elements), and globally, studying the spa-

tial arrangement of the RNA backbone (we then analyze topological knots).

The entanglement of structural elements occurs when two elements of the RNA structure

are in spatial conflict, that is, one of them punctures the other to form a lasso, interlace

(known as a link in knot theory) [9] (Fig 1A) or genus type (the genus trace represents how

interconnected and densely packed the structure is in three dimensions) [10] (Fig 1E). Ele-

ments such as loops, stems (consisting of dinucleotide steps), and single-stranded fragments

can be involved in entanglements of structure elements (Fig 1B). From the viewpoint of knot

theory, lassos are not knots. Interlaces can be interpreted as Hopf links (the simplest type of

two interlaced loops) defined on loops traced by the phosphodiester and hydrogen bonds; the

first contribute to the formation of the nucleotide chain and the latter to base pairs. The forma-

tion of many types of entanglements of structure elements, like some interlaces (loop & dinu-

cleotide step, dinucleotide step & dinucleotide step) and deep lassos, contradicts the RNA

folding hierarchy and is therefore hardly possible. We do not find them in high-resolution

experimentally determined RNAs [11]. They occur in structures modeled in silico, in which

case they should be regarded as artifacts of computational procedures.

The formation of topological knots in RNA structures has been studied by a few research

teams so far. The authors of [12], although they came across knotted 16S rRNA domains,

argued about the low likelihood of topological knots in large native RNAs and suggested exam-

ining experimental RNA models for knotting before their publication. In this spirit, authors of

[13, 14] created a method to assemble viral RNA genomes that avoided the creation of
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topological defects. Micheletti et al. [15] found three knotted rRNAs solved by cryo-EM, but

due to the absence of knots in high-resolution structures, concluded on some thermodynamic

or kinetic mechanisms that minimize the entanglement of biologically viable structural RNAs.

Yet a little later, the same group suggested that the properties of some of the predicted RNA

secondary structures indicate the potential to form knots [16]. Only recently, a trefoil (31), the

first non-trivial topological knot, was identified in high-resolution experimental RNA struc-

ture [17]. However, this is not sufficient to infer the formation of knots in RNA structures and

their possible influence on the function of the molecule, as we can for proteins [20–24]. In

addition, in the case of proteins, 6 different types of knots (31, 41, 52, 61) have already been

identified [25], including those predicted by AI methods such as 31#31 [26] and 71 [27], whose

Fig 1. Types of entanglements. (A) Schematic drawings of interlaces (D&D, D&L, L&L) and lassos (D(D), D(L), D(S),

L(D), L(L), L(S)). Loop (L) is represented by a circle, dinucleotide step (D) by a rectangle, and single strand (S) by a

segment. (B) Example structural elements L, D, and S, and entanglements of structure elements—(C) L(S)-type lasso

formed by a 6-nt apical loop and the 5’-end threaded through it, (D) misfolded conformation of two loops forming

L&L-type interlace instead of kissing loops. (E) Diagrams of closed and opened trefoil knot, and two molecules with

trefoils—(F) sRNA RydC (PDB ID: 4V2S:G [18]) and (G) PHD finger-like domain-containing protein 5A (PDB ID:

5ZYA:C [19]).

https://doi.org/10.1371/journal.pcbi.1011959.g001
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structure has been experimentally confirmed while other more complex knots [28] await

confirmation.

Theoretical studies on ideal (ghost) polymers predict that probability of polymer being

unknotted Punknot falls exponentially with increasing length L and the inverse of the Kuhn

length b of the chain: Punknot(L;b) = exp(−αL/b) [29–31], where the Kuhn length b is a quantity

proportional to stiffness, and α is a constant that depends on a theoretical model used. This

behavior is not observed for RNA, as the only known knotted RNA molecule is only 65 nt long

[17]. In addition, no correlation was found between the size of the RNA molecule and its sus-

ceptibility to form entanglements of structural elements [9]. RNAs are brush-like real biopoly-

mers living in a polar, polyelectrolyte environment, and their folding is driven by the

minimization of free energy (theirs and the solvents). Research on the folding of knotted pro-

teins reveals that although the knotted state may enhance protein stability, a topological energy

barrier must first be overcome to reach the native knotted state [32–38]. This topological

energy barrier hinders the formation of knotted proteins. Since methods that predict the native

state of biopolymers do not fold molecules de novo but directly guess these native states, they

have a harder job avoiding states unavailable due to topological energy barriers [39, 40].

In this work, we have analyzed all 3D RNA models predicted in the recent CASP competi-

tion. Using existing computational tools, RNAspider [11] and Topoly [41], we have scanned

these predictions for entanglements of structural elements and topological knots. We have

studied the structural and methodological aspects of susceptibility to entanglement generation

in RNA models. All entanglements found are artifacts of the modeling procedures. Methods

using deep learning entangle RNA chains more often than non-ML algorithms and generate

quite complex topological knots. We believe that predictive methods should automatically

reject models with invalid chain entanglements. This would improve the reliability and quality

of the prediction of the 3D RNA structure.

Materials and methods

Benchmark data

To identify, count, and classify knots and entanglements of structural elements in the 3D RNA

structure models predicted in CASP15, we downloaded the data from the competition website

in September 2023. The CASP15 resources are available at https://predictioncenter.org/

download_area/CASP15/predictions/RNA/ [42]). Data were cleaned of irrelevant metadata

using the clean-casp-headers.awk script and grouped by 12 RNA targets: R1107 (69 nt), R1108

(69 nt), R1116 (157 nt), R1117 (30 nt), R1126 (363 nt), R1128 (238 nt), R1136 (374 nt), R1138

(720 nt), R1149 (124 nt), R1156 (135 nt), R1189 (118 nt) and R1190 (118 nt). The data set con-

tained a total of 62 reference structures (for some targets, there was more than one structure)

and 1,660 models computationally predicted by 41 modeling groups.

Methods used for entanglements of structure elements

The RNAspider web server was applied to identify and classify entanglements of structure ele-

ments in 3D RNA structures [11]. The system detects lassos and interlaces and assigns them to

nine subclasses (Fig 1A and 1B)—L&L, L&D, D&D, L(S), L(D), L(L), D(S), D(D), and D(L)—

based on the types of elements involved, i.e., loops, dinucleotide steps (both are closed struc-

tural elements), and single-stranded fragments (open element). It was run with the default set-

tings of the advanced parameters. We then calculated the depth of each identified lasso formed

from the loop L(*), where * stands for S, D, or L. This was done using an additional script

(2_analyze_depth.py [43]), as RNAspider does not cover such functionality. The script was fed

with information on the intersection points that RNAspider provided for every closed
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structure element. The intersection point is determined by 3D coordinates, where the back-

bone or hydrogen bond in a canonical base pair punctures a surface that covers a closed ele-

ment. We considered two cases. In the case of L(S), when a single strand is taken to lasso by

the loop, we computed the depth as the minimum number of its nucleotides towards the 5’

and 3’ ends from the intersection point. In the second case, when a closed element is lassoed (L

(L), L(D)) or when a single strand punctures the loop twice (L(S.)), the lasso is characterized

by two intersection points. Therefore, we computed the depth as the number of nucleotides

between the intersection points. Knowing the depth, we divided the lassos created by the loops

into shallow (depth� 5 nts) and deep (depth > 5 nts). Following our experience with molecu-

lar dynamics, we hypothesize that shallow lassos L(*) can spontaneously disentangle during

structure folding and therefore may not be treated as structure anomalies even though no las-

sos occur in the reference structures. In contrast, we consider interlaces, D(*) lassos, and deep

L(*) lassos as modeling artifacts.

Methods used for topological knots

Topological knots were detected and identified using the Topoly Python package [41]. This

collection of scripts offers features to study the topology of polymers and a generation of artifi-

cial, random polymer chains of a given topology. Here, the coordinates of the sugar-phosphate

backbone atoms (P, O50, C50, C40, C30, O30) were extracted from the 3D structure data. To

identify knots, the Alexander polynomial [44] was calculated using the topoly.
alexander() function, which before calculations closes the chain randomly by projecting

RNA endpoints on the big sphere around the molecule and connecting them (two-point prob-

abilistic closure, 200 closures, explained more in [45, 46]). We treated the structure as knotted

if<50% of the closures were unknots. At first, Topoly identified 84 knotted RNAs. They were

visually inspected to confirm entanglements. For some of them, a direct closure seemed to

make more sense. We discarded 7 of these models since they were unknots after direct closure.

67 predictions failed to process by Topoly due to non-unique atom coordinates (47 models) or

too tangled structure (20 models). Structures in the latter subset were visually inspected and

confirmed to be too densely packed to be correct. We assigned them to a category named TTC

(too tangled to check) and did not include them in further analysis, unlike trefoils (Fig 1C) and

complex knots with known classification.

Results and discussion

In this work, we analyzed entanglements in 3D RNA models submitted to CASP15 following

the pipeline presented in S1 Fig. We took into account the entanglements of structural ele-

ments and topological knots. It is important to emphasize that none of the reference structures,

of which there were 62 models, was entangled from the point of view of the structure elements

or topological knots. In contrast, of the 1,660 predicted models, 160 models have either entan-

glements of structure elements or topological knots, 83 models have only entanglements of

structural elements, 34 models have only topological knots, and 43 models have both (S1

Table). Fig 2A shows a Venn diagram detailing the number of predicted models that contain

given types of entanglements. Note that the existence of topological knots in the 3D RNA

model does not equate to entanglement of the structural elements of the model and vice versa.

In 126 entangled models, we encountered 173 interlaces and 300 lassos (Fig 2B). The latter

group included 67 deep and 33 shallow conformations of the L(*) type. Note that among the

lassos, the L(S) and L(D) types are most abundantly represented in the RNA predictions. Intui-

tion dictates that this is entirely reasonable since forming a lasso around a single or double

helix should be relatively easy. In contrast, pushing a non-single-stranded fragment of a

PLOS COMPUTATIONAL BIOLOGY Knotted artifacts in predicted 3D RNA structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011959 June 20, 2024 5 / 16

https://doi.org/10.1371/journal.pcbi.1011959


structure through a dinucleotide step or a loop through a loop seems quite difficult. Therefore,

these types of entanglements are relatively rare in the models. In 77 RNA models with topolog-

ical knots, we found a predominance of trefoils—they account for more than half of all knots

with assigned classes excluding the TTC subset (Fig 2C). TTC, the second large subgroup, is

made up of 20 models whose knotting is too complex to classify correctly.

Target-focused analysis

In this part of our experiment, we focused on the structural aspect of the structure entangle-

ment problem. We asked whether, among the RNA targets in CASP15, we could distinguish

structures that show a greater /lower susceptibility to entanglement during computer model-

ing. Answering this question required analyzing the predicted models clustered by target (see

Fig 3 and Table 1).

The target structures were divided by the CASP assessors into natural (8 targets) and syn-

thetic (4 targets). The former cluster distinguished between easy (R1117), medium (R1107,

R1108), and difficult (R1116, R1149, R1156, R1189, R1190) targets. Non-natural ones included

R1126, R1128, R1136, and R1138. Assignment of a target to particular group indicates the

ease/difficulty of its structure prediction due to the similarity to known experimental

Fig 2. (A) Models with various entanglement types in numbers. (B) Entanglements of structure elements and (C)

topological knots in RNA predictions by type. Column labels in (B) and (C) show the total number of entanglements

of a given type across all predictions.

https://doi.org/10.1371/journal.pcbi.1011959.g002
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structures [8]. In general, 33% (41) of the entangled structures are predictions of natural RNA

targets, and 67% (85) are models from the non-natural cluster.

Based on the analysis of entanglements of structural elements (Fig 3A), we can say that the

probability of entangled predictions for natural RNAs equals 0.03, while for non-natural tar-

gets it is 0.15, which is 5x higher. If we look at the sets of predictions per target, we can see that

the entangled structures represent 8–20% for the synthetic targets. In contrast, in the sets of

models for natural targets, the percentage of entangled predictions is 0.74–2.76%. The excep-

tions here are R1107 (12.98%) and R1116 (6.90%), the former of which is a moderately difficult

structure with a pseudoknot, and the latter is classified as difficult.

The diagram prepared for the topological knots (Fig 3B) has similar characteristics as in the

case of entangled structure elements. The highest number of knotted models is found for the

targets for which we observe the most entanglements of structural elements. The study reveals

that the knotting probability is 0.01 for natural structures and 0.12 (10x higher) for non-natu-

ral ones. All knotted predictions of natural structures are trefoils (31, simplest non-trivial

knot). For non-natural structures, only more complex knots appear, moreover, they make up

the majority of knotted structures.

Some predictions contain more than one entanglement. Table 1 presents a distribution of

various types of entanglements across predictions for natural and synthetic targets. For

Fig 3. Distribution of entangled 3D RNA structure predictions by target. Target structures are grouped by difficulty

[8]. Results are displayed separately for (A) entanglements of structure elements (lassos and interlaces) and (B)

topological knots.

https://doi.org/10.1371/journal.pcbi.1011959.g003

Table 1. Entanglements in RNA predictions by target.

Predictions for #Models #Interlaces #Lassos #Trefoils #Other knots #TTC

natural targets 1,095 17 62 14 0 0

synthetic targets 565 156 232 26 37 20

total number 1,660 173 294 40 37 20

https://doi.org/10.1371/journal.pcbi.1011959.t001
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simplicity, topological knots were divided into trefoils (the simplest non-trivial knot) and

other knots (more complicated ones). The rightmost column represents unclassified knots

from non-physically dense structures (TTC—too tangled to check knot type).

Finally, let us add that the largest number of entangled 3D models (both from the point of

view of topological knots and entangled structure elements) was identified in the predictions

for the three largest targets, R1138 (720 nts), R1136 (374 nts), and R1126 (363 nts), all of which

are synthetic. However, note that, as shown in [9], no simple relationship has yet been

observed between the entanglements of structural elements and the size of the structure. Given

that topological knots more complex than trefoil are found only in the predictions of synthetic

targets, it seems that the large number of entanglements and their complexity are a result of

the specificity of the non-natural target rather than the structure size.

Method-focused analysis

Next, we analyzed 3D RNA models by prediction group and examined the problem of struc-

ture entanglement from the point of view of the method. We checked how many nontrivial

topologies, distinguishing between topological knots, lassos, and interlaces, appear in the mod-

els generated by a given prediction method (Fig 4). Of the 41 groups, 16 submitted only unen-

tangled models (a total of 510 predictions, which makes 30% of all predictions). The

remaining 25 groups predicted 1,150 models, of which 126 (10%) include entanglements of

structure elements, and 78 (6%) are knotted from the topological point of view.

We divided the predictive methods into traditional and ML-based according to the infor-

mation provided in the CASP15 book of abstracts [47]. Groups that applied machine learning

predicted more models on average than groups using traditional methods—17/41 groups

(41%) used ML and predicted 814/1,660 models (49%); 24/41 groups (59%) used traditional

approaches and submitted 846/1,660 models (51%). Among 814 RNA models generated by

machine learning-based methods, 132 included entangled structure elements, and 67 had a

topological knot (34 were trefoils). For comparison, in the set of 846 RNA predictions by tradi-

tional algorithms, we found only 33 with entangled structure elements, and 10 with a knot (6

were trefoils). It follows that ML methods are 4x more prone to generate models containing

entanglements of structural elements and 7x more prone to predict a knotted model than tra-

ditional algorithms. In particular, ML methods generated 6x more trefoils and 8x more com-

plex knots than non-ML approaches. Moreover, all 20 structures, which were too tangled to

check their knot type (TTC), were also predicted by ML methods. The distribution of the

entanglement types is presented in Table 2.

Finally, recall that CASP accepts submissions from two categories of participants, web serv-

ers, and human groups. Predictions from the former category are fully automatic and must be

submitted within 72 hours of publishing the target sequence. Human groups have 3 weeks to

make predictions and can utilize any method to support the modeling process, including labo-

ratory experiments to refine their models. With this in mind, we checked whether topological

knots and entanglements of structure elements are more often in the web server than in

human predictions. Among the 41 participants, there were 9 web servers. They submitted a

total of 423 models, including 29 (0.07%) with entanglements. 32 human groups predicted

1,237 models, of which 97 (0.08%) were entangled. The number of entanglements of each type

in the models submitted by both categories of participants is shown in Table 2. Based on these

data, the thesis that automated predictions are more likely to get entangled than those submit-

ted by experts cannot be confirmed.
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Fig 4. Distribution of entangled 3D RNA structure predictions by method. Modeling groups (classified as

traditional or ML-based) are listed due to their ranking in CASP15 with the best one at the top. Results are shown

separately for (A) entanglements of structure elements (lassos and interlaces) and (B) topological knots.

https://doi.org/10.1371/journal.pcbi.1011959.g004
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Example predictions with artifacts

First, let us present the 3D RNA prediction that contains a lasso and was generated using the

machine learning-based method. The R1107TS416_2 model was submitted by the TS416

group (AIchemy_RNA). It targeted the natural 69-nt-long RNA structure of the human

CPEB3 HDV-like ribozyme (PDB ID: 7QR4) [48] (target ID: R1107). The native structure con-

tains a pseudoknot formed between the dangling 5’-end (residues 1–6) and the three-way junc-

tion (residues 31–36). The R1107TS416_2 model is not an ideal reconstruction of the target

either from the point of view of secondary structure (S2 Fig) (INFall = 0.77) or the 3D topology

(RMSD = 7.81Å, TM-score = 0.392). The model contains the L(S)-type lasso formed between

the 26-nt-long hairpin closed by a pseudoknotted base pair 0:6–0:31 and a 34-nt-long single

strand (0:36–0:69) (Fig 5A). Both of these structure elements also exist in the native structure,

although in the latter a single strand bypasses the loop. In the predicted model, the intersection

of the area inside the loop is between residues 0:A62 and 0:U63 of the puncture strand. The

single strand passes quite a distance from the chain that forms the loop. Therefore, we did not

observe clashed atoms in this part of the structure; in general, the Clash score is low and equals

14.02. According to the threshold adopted for shallow lassos, the entanglement found belongs

to the deep category; its depth equals 6 nucleotides.

The other example, R1136TS110_4 model, was submitted by the TS110 group (DF_RNA).

It is an ML-driven prediction of the synthetic construct, which is the 3D structure of a bro-

colli-pepper aptamer FRET tile in the ligand-bound state (PDB ID: 7ZJ4) [49] (target ID:

R1136). The reference structure consists of 374 nucleotides and has a non-trivial topology with

kissing-loop interactions between two hairpins (0:50-0:60+0:142–0:152; 0:75–0:85+0:121-

0:131). The secondary structure of the predicted model (S2 Fig) is quite well reconstructed

(INFall = 0.82), while the 3D fold clearly deviates from the native (RMSD = 44.35Å, TM-

score = 0.304). Clash score = 49.78. The model contains six entanglements of structural ele-

ments—two D(D), two D&D, one D&L, and one D(L) (Fig 5B), formed between two 10-nt-

long hairpin loops (0:142-0:152; 0:50-0:60) and seven dinucleotide steps (0:119-0:120+0:132–

0:133; 0:159–0:160+0:216–0:217; 0:160–0:161+0:215–0:216; 0:335–0:336+0:345–0:346; 0:49–

0:50+0:60–0:61; 0:336–0:337+0:344–0:345; 0:293–0:294+0:299-0:300). They are not only arti-

facts of modeling but also incorrect conformations hardly possible to form while RNA folding.

The next example presents different topological knots in the 3D RNA models predicted for

the largest RNA target of CASP15, that is, R1138 (720 nts). The native structure (synthetic con-

struct) is a young conformer of a 6-helix bundle of RNA with clasp (PDB IDs: 7PTK, 7PTL)

[50]. As shown in Fig 6A, it does not contain topological knots. Model R1138TS227_2 (Fig 6B)

was generated by a traditional (non-ML) approach used by the TS227 group (GinobiFold).

RMSD = 48.23Å and TM-score = 0.204 indicate a significant deviation of its 3D topology from

the target structure, while the secondary structure is quite well-reproduced (INFall = 0.82).

Interestingly, clashes are almost non-existent (Clash score = 0.30). This model is knotted and

Table 2. Entanglements in RNA predictions by method.

Predicted by #Models #Interlaces #Lassos #Trefoils #Other knots #TTC

traditional methods 846 62 103 6 4 0

ML-based methods 814 111 191 34 33 20

servers 423 47 66 7 10 8

human predictors 1,237 126 228 33 27 12

total number 1,660 173 294 40 37 20

https://doi.org/10.1371/journal.pcbi.1011959.t002
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forms a trefoil (31), the simplest non-trivial knot. On the other hand, the R1138TS054_3

model was predicted using the machine learning-based method by the TS054 group (Ultra-

Fold). Its ratings are similar to the previous example (RMSD = 39.73Å, TM-score = 0.186,

INFall = 0.85, and Clash score = 4.81), however, this structure forms a more complicated 72

knot. This clearly shows that existing evaluation measures are not correlated with the complex-

ity of the structure entanglement.

Conclusion

An analysis of the 1,660 3D RNA models predicted within CASP15 showed that predictive

methods using machine learning are four times more likely than traditional tools to generate

structures with entanglements, which are artifacts of the computational process. We hypothe-

size that the generation of entanglements may be due to the algorithm prioritization of more

compact structures. The predictions submitted by web servers and human groups contain the

same percentages of entangled models. The implication is that predictors do not use any, either

Fig 5. Two models with entangled structural elements predicted by ML-based methods and diagrams showing

included entanglements. (A) The R1107TS416_2 model (69 nt) with a lasso. (B) The R1136TS110_4 model (375 nt)

with highlighted three interlaces forming the 31 knot. Hydrogen bonds closing an entangled loop are marked with

dotted lines. Secondary structures of both models are shown in S2 Fig.

https://doi.org/10.1371/journal.pcbi.1011959.g005

PLOS COMPUTATIONAL BIOLOGY Knotted artifacts in predicted 3D RNA structures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011959 June 20, 2024 11 / 16

https://doi.org/10.1371/journal.pcbi.1011959.g005
https://doi.org/10.1371/journal.pcbi.1011959


automatic or non-automatic, verification of their models for topological anomalies. The char-

acteristics of the modeled structure also appear to affect the probability of entanglement. In

the set of all predictions, the largest number of entangled models was generated for large tar-

gets of synthetic RNA molecules. The probability of entanglement in this subset was signifi-

cantly higher than for natural structures. We believe that enriching prediction methods with

procedures to validate the topology would increase the accuracy of 3D RNA structure predic-

tion. Currently, such validation can be easily done with the RNAspider and Topoly packages

applied in the presented work. However, in the future, other ways of measuring topological

defects could be designed, such as a loss function that would identify incorrect entanglements

and fix them. This is not a straightforward task. Well-established methods for the recognition

of knotted closed chain topologies are knot invariants such as Alexander, Jones, and HOM-

FLY-PT polynomials [44, 51–53]. All of them are computed using skein relations, which have

exponential time complexity dependent on the number of crossings on a polymer projection.

The exception is the in-point calculation of the Alexander polynomial that uses a determinant

of the Alexander matrix and runs with a polynomial-time complexity. However, RNA struc-

tures are mainly open chains. For such cases, the Jones polynomial for knotoids [54–56] can

be used, the value of which continuously changes with the coordinates of the chain. The

Fig 6. 3D models predicted for the same target containing various topological knots and schematics of the latter.

(A) Target structure R1138 (mature, 720 nt). (B) The R1138TS227_2 model generated by traditional method. (C) The

R1138TS054_3 model predicted by ML-based method. Secondary structures of all three models are shown in S3 Fig.

https://doi.org/10.1371/journal.pcbi.1011959.g006
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alternative is to close the chain and use methods designed for closed chains [57]. Chain closure

allows safe use of the KMT chain reduction algorithm [58] and greatly reduces the complexity

of the chain to analyze. However, note that different chain closures can result in different

knots. Due to the time of gradient computation, none of the above methods seems suitable to

be applied as a loss function for predictive algorithms. More suitable candidates for a loss func-

tion might be machine learning models trained specifically for knot recognition [59–61].
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S1 Table. Entangled RNA 3D models predicted in CASP15.
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S1 Fig. Computational pipeline used to identify and analyze entangled 3D RNA models in

CASP15 submissions.
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S2 Fig. Secondary structures of two models with entangled structure elements predicted by

ML-based methods. (A) The R1107TS416_2 model (69 nt) with a lasso. (B) The

R1136TS110_4 model (375 nt) with two D&D entanglements (D1 interlaced with D10 and D2

interlaced with D20) and one D&L entanglement (D3 interlaced with L3). Colors match those
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S3 Fig. Secondary structures of models predicted for the same target containing various

topological knots. (A) Target structure R1138 (mature, 720 nt). (B) The R1138TS227_2 model

generated by a traditional method. (C) The R1138TS054_3 model predicted by an ML-based

method. Colors match those applied in Fig 6.
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