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Abstract

Recent advances in computer vision have led to significant progress in the generation of

realistic image data, with denoising diffusion probabilistic models proving to be a particularly

effective method. In this study, we demonstrate that diffusion models can effectively gener-

ate fully-annotated microscopy image data sets through an unsupervised and intuitive

approach, using rough sketches of desired structures as the starting point. The proposed

pipeline helps to reduce the reliance on manual annotations when training deep learning-

based segmentation approaches and enables the segmentation of diverse datasets without

the need for human annotations. We demonstrate that segmentation models trained with a

small set of synthetic image data reach accuracy levels comparable to those of generalist

models trained with a large and diverse collection of manually annotated image data,

thereby offering a streamlined and specialized application of segmentation models.

Author summary

Modern generative techniques have unlocked the potential to create realistic image data

of high quality, prompting the possibility of substituting real image data in segmentation

training workflows. Our study highlights the capacity of denoising diffusion probabilistic

models to generate high-quality microscopy image data. With adjustments to the genera-

tion process, these models can produce realistic fully-annotated image datasets through

an intuitive and unsupervised approach. The parameters of the generative pipeline

undergo optimization through various evaluations, resulting in synthetic image data that

exhibits high PSNR scores. Our practical experiments encompass multiple scenarios,

including manual annotations, initial segmentations, and simulations as starting points,

demonstrating the versatility of our approach. Importantly, we compare the performance

of segmentation models trained on a limited set of synthetic image data with those trained

on a vast and diverse collection of manually annotated data, demonstrating the potential

of our pipeline to alleviate the reliance on extensive manually annotated datasets. Our

approach lays the groundwork for similar applications, thereby promoting the much-
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needed availability of publicly accessible fully-annotated image datasets and advancing the

goal of annotation-free segmentation.

This is a PLOS Computational Biology Methods paper.

Introduction

Enabling automated segmentation of cells in fluorescence microscopy image data is a crucial

step in supporting biomedical experts in conducting a large variety of experiments [1, 2].

This variety in experimental settings is mirrored to the image data appearances, posing a

challenge for segmentation approaches trained with the generally scarce variety of annotated

image data. To overcome this challenge, costly and tedious human annotations have to be

acquired, causing a bottleneck in realizing the full potential of learning-based approaches

and restricting their application in practice. Annotation efforts are reduced by automated

data augmentation approaches [3–5] and tweaked segmentation pipelines [6, 7], which help

to ease the challenge, but still demand a small set of fully-annotated image data as a basis.

Alternatively, automated simulation approaches replicate desired characteristics of cellular

structures in arbitrary amounts of image data [8–13] and ideally serve as a way to entirely

replace human annotation.

Recently, denoising diffusion probabilistic models (DDPM) [14] have shown great poten-

tial in generating realistic image data [15, 16], while neither requiring annotated training

data, nor adversarial training concepts, as opposed to commonly used generative adversarial

networks (GAN) [9, 10, 13]. GANs often present challenges during training and can be sus-

ceptible to mode collapse, which results in non-convergent training behavior [17]. In con-

trast, DDPMs offer enhanced diversity due to their likelihood-based principle, making them

favorable in terms of data quality. However, for the purpose of generating fully-annotated

datasets suitable for training segmentation methods, generative approaches must be strictly

conditioned. They should have the capability to convert annotation masks into realistic

image data while precisely preserving their structural specifications to maintain the faithful-

ness of the corresponding annotations. This necessitates the modification of the regular

DDPM data generation process.

In this study, we explore the potential of diffusion models for generating microscopy

image data across various organisms. We present a novel pipeline that utilizes DDPMs for

intuitive data generation, employing rough sketches of desired structures as a basis, fol-

lowed by training segmentation algorithms with the generated data (Fig 1a). To evaluate

the pipeline’s effectiveness for different scenarios, we conduct diverse experiments employ-

ing manual annotations, initial erroneous segmentation outputs, or simulated data as the

basis for sketches. The practical applicability of our approach is demonstrated by obtaining

segmentation results without the need for human annotations. These results are then com-

pared with outcomes from generalist segmentation models trained on a large and diverse

dataset of manually annotated images. Furthermore, we provide public access to our code

and the fully-synthetic image datasets, aiming to provide the tools for data generation and

enhance the accessibility of fully-annotated image datasets for the broader research

community.
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Results and discussion

The utilized datasets show either cellular membranes or cell nuclei obtained from 2D(+t) and

3D fluorescence microscopy experiments. Among those are a publicly available 3D fluores-

cence microscopy image data set showing the meristem of A. thaliana [18] and corresponding

manually corrected annotation masks. Due to the availability of full annotations, this dataset

was used for optimization experiments and detailed analyses. Further datasets include 3D

nuclei of developing C. elegans [19, 20], 3D nuclei of developing T. castaneum embryos [19], a

multi-channel 3D dataset showing fluorescently labeled cell membranes and nuclei in two dif-

ferent zebrafish embryos [21], 2D mouse stem cells [19, 22], 2D HeLa cells [19, 23] and a 2D+t

dataset showing temporal mitotic progression of HeLa cells [24].

In the concept of denoising diffusion probabilistic models (DDPM), a forward process iter-

atively transforms an image into pure noise by the incremental addition of small portions of

noise to an initial image x0. The generation of realistic image data is performed by a learned

backward process and typically starts from this pure noise state at the last timestep T (Fig 1b).

However, starting from pure noise xT does not allow to generate fully-annotated datasets due

to the lack of control over the generated structures and the absence of corresponding annota-

tions. To address those issues, two adaptions are made to the application of DDPMs. First, the

backward process is initiated at an early timestep tstart < T, ensuring that a significant portion

of structural indications in xt,start is not yet fully obscured by noise and can be preserved

throughout the generation of realistic image data [25]. Second, to allow for an intuitive model-

ling and control over cellular structures within the generated image data, sketches replace real

Fig 1. Pipeline overview. (a) The whole pipeline involves training a diffusion model on real image data and applying it to obtained

structures to generate fully-annotated image datasets, which are then used to train models that segment the real data. (b) During application

of DDPMs, annotations are automatically turned into coarse sketches for a subsequent application of the forward process, to achieve a

realistic generation of the corresponding image data.

https://doi.org/10.1371/journal.pcbi.1011890.g001
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image data as a starting point for the forward process generating xt,start. These sketches provide

indications of cell positions, shapes, and coarse structural characteristics, specifying a brief

outline of the desired scene to be generated. As the learned backward process was solely

trained on real image data, the subsequent application to xt,start results in the generation of cor-

responding realistic image data (Fig 1b). Ultimately, with the known cell outline and position-

ing within the sketches, the pipeline is able to generate realistic fully-annotated image data in a

automated and unsupervised manner. However, in order to maintain high realism during the

backward process, it is crucial for the noisy samples xt,start originating from the sketch domain

M to contain enough noise to exhibit data distributions that closely resemble those originating

from the real image domain I . Simultaneously, it is essential that structural information given

in the sketches is preserved despite the introduction of noise in xt,start. This poses an optimiza-

tion challenge in determining the optimal value for the parameter tstart.

Pipeline optimization

Optimizing the point of initializing the backward process tstart requires balancing the genera-

tion of fine-grained details with the preservation of structural correlation to sketches. To gen-

erate fine details, a substantial noise content from later stages of the forward process is

necessary, but this can compromise the preservation of structural indications, which requires

stopping the forward process as early as possible. The details of this trade-off were evaluated

using a publicly available fully-annotated 3D microscopy image dataset [18], which provides

manually corrected annotations that enabled a precise assessment of various aspects of the pro-

posed pipeline. During examination of this trade-off, we found that applying a Gaussian

smoothing with standard deviation σ to sketches before applying the forward process helped

to prevent unnaturally sharp edges and reach similar data distributions earlier. To analyze the

forward process, both xM
t;start and xI

t;start were generated, and their similarity was measured by

constructing data distribution histograms (Fig 2a) and calculating the Bhattacharyya distance

and Kullback-Leibler divergence as shown in Table 1. Additionally, to assess the learned back-

ward process, all noisy samples were used to generate realistic x̂0, which were quantitatively

evaluated using the peak signal-to-noise ratio (PSNR) for textural authenticity and the zero-

normalized cross-correlation (ZNCC) for structural preservation (Fig 2a). In general, the opti-

mal value of tstart is preferred to be set as early as possible to ensure the maximum structural

correlation between sketches and image data. Additionally, since the generation process is iter-

ative, selecting an earlier tstart directly translates to lower generation times. We empirically

determined tstart = 400 and σ = 1 to offer a good trade-off between generative capabilities and

structural preservation. This is further supported by the observation that structural correlation

is diminishing in regions of low contrast for tstart higher than the determined value (Fig 2b).

An additional benefit of synthetic data is indicated by the fact that slight inaccuracies of man-

ual annotations were not present in simulated data, enabling the creation of error-free image-

mask pairs even in presence of annotation errors. Moreover, feature representations of syn-

thetic and real image data were shown to be similar for those settings (S1 Fig). All following

experiments were conducted using the optimized settings.

Correcting segmentation errors

While manually annotated structures were used during the optimization of the parameters to

test the generative aspects of the pipeline without the influence of structural differences, using

manually annotated data does not represent a practical scenario for generating fully-annotated

image datasets. To assess different strategies for automation of the generative process, rough

segmentations were employed as sources to obtain sketches for various organisms and cell

PLOS COMPUTATIONAL BIOLOGY DDPM for generation of annotated image datasets

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011890 February 20, 2024 4 / 16

https://doi.org/10.1371/journal.pcbi.1011890


types. Publicly available generalist segmentation approaches [26, 27] and publicly available sil-

ver truth annotations [19] were used to obtain rough representations of cell shapes for nuclei

in 3D C. elegans [19, 20], 3D D. rerio [21], 2 mouse stem cells [19, 22], 2D HeLa cells [19, 23,

24] and for cellular membranes in 3D D. rerio [21]. Image quality was assessed in regions

where annotations were available using the PSNR as a metric, with mean scores ranging

between 19.58 dB and 29.97 dB across all data sets (S2 and S3 Figs). Although the annotations

may contain errors that could affect the reported quality scores, they do not have an impact on

the application of the proposed pipeline, since the generated image data is directly correlated

to the structures present in the annotations.

Simulations for annotation-free segmentation

Relying on segmentations for collecting realistic structures can limit the scalability of the pipe-

line, as it is constrained by the availability of accurate generalist segmentation approaches. On

Fig 2. Pipeline optimization. (a) Noisy data created by the forward process from either real images or sketches needs

to be sufficiently similar to allow for the generation of realistic image data in the backward process, assessed by

histograms. For the backward process, peak signal-to-noise ratio (PSNR) and zero-normalized cross-correlation

(ZNCC) are used as metrics, to assess the realism of image data generated from different starting points tstart and

sketch blurring factors σ. (b) Overlays of generated image data (red) and annotation masks (green) show how

structural correlation is diminishing with increasing tstart in regions of low contrast, while manual annotation

inaccuracies even present in regions of high contrast do not appear in simulated data.

https://doi.org/10.1371/journal.pcbi.1011890.g002
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the other hand, simulations present a more complex scenario but offer greater potential for

generalizability and scalability. The main challenge lies in finding a simulation technique that

can accurately reproduce the structural features visible in real image data, to help closing the

domain gap between real and synthetic image data. Despite these challenges, conducting

experiments with simulation approaches allows for exploring the full potential and limits of

the pipeline. As directly assessing the realism of the image data generated from simulated

sketches was challenging due to the absence of corresponding real image data, we followed a

more practical way of evaluation. Instead, we focused on determining the usability of the gen-

erated data as training data by training the Cellpose approach [28] from scratch, followed by

its application to real image data. By using the accuracy of the segmentation results as a proxy,

the realism of the generated data is indirectly assessed. Additionally, segmentation results were

compared to those obtained by the publicly available pretrained Cellpose model, which served

as a baseline and a reference for models trained on a large, diverse and manually annotated

image dataset. Simulations were obtained for five different datasets including cellular mem-

branes in 3D A. thaliana, and nuclei in 3D C. elegans [19, 20], 3D T. castaneum [19], 2D

mouse stem cells [19, 22] and 2D HeLa cells [19, 23] (Fig 3a). The results presented in Fig 3b

and S8 Fig demonstrate that both models perform comparably well for each dataset, despite

the fact that the models trained solely on synthetic image data were trained on a small dataset

including only 200 generated samples. We intentionally chose a small synthetic dataset, such

Table 1. Forward process evaluation. Bhattacharyya distance DB and Kullback-Leibler divergence DKL calculated for

noisy samples generated by the forward process for different timesteps tstart. Sketches were used as a basis for the for-

ward process, which were initially smoothed by Gaussian filtering with standard deviation σ. Highlighted values are

obtained for data generated with the empirically determined optimal settings.

tstart σ DB DKL

100 0 0.1261 0.3969

1 0.0750 0.2398

2 0.1274 0.4323

3 0.1757 0.6214

200 0 0.0718 0.2276

1 0.0402 0.1331

2 0.0668 0.2366

3 0.0911 0.3323

400 0 0.0103 0.0371

1 0.0041 0.0153

2 0.0099 0.0380

3 0.0141 0.0546

600 0 0.0004 0.0016

1 0.0001 0.0004

2 0.0006 0.0022

3 0.0010 0.0040

800 0 0.0000 0.0001

1 0.0000 0.0002

2 0.0001 0.0003

3 0.0001 0.0004

1000 0 0.0001 0.0003

1 0.0001 0.0005

2 0.0001 0.0004

3 0.0000 0.0001

https://doi.org/10.1371/journal.pcbi.1011890.t001
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that the results represent the quality rather than the diversity of the generated samples. With

sparse ground truth data available for evaluation, a Wilcoxon rank-sum test [29] was con-

ducted to identify potential differences in segmentation accuracy between the models. With

the largest p-value reaching 0.0002 for the dataset showing mouse stem cells, the test confirmed

that the performance of both models on all datasets is comparable. It is noteworthy that the

model trained on synthetic data achieved comparable scores without the need for any human-

generated annotations, surpassing the requirement for a large collection of annotated image

data as in the generalist model. This capability enables the potential application of

Fig 3. Application Examples. (a) Real image samples and fully-synthetic image samples generated by the diffusion

model using simulated structures. (b) The Cellpose segmentation approach [28] is trained on synthetic datasets and

applied to real image data to generate results (red overlay) without requiring human-generated annotations.

Intersection-over-Union (IoU) scores obtained for a publicly available generalist model trained on a large collection of

manually annotated image data (blue) and the model trained on synthetic data (orange) are shown as violin plots with

indications of median values (black bar). All datasets are publicly available from [10, 18, 19, 21, 24].

https://doi.org/10.1371/journal.pcbi.1011890.g003
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segmentation models to entirely different datasets and structures, where generalist segmenta-

tion models would typically encounter challenges or limitations. To support those outcomes,

the 3D Cellpose extension [27] was trained from scratch on real and synthetic image data from

the same organism, presenting progress in narrowing the gap between real and synthetic

domains, especially when compared to previous GAN-based methods [10] (S5 Fig). However,

this demonstrates further room for improvement of the proposed approach, as the domain

gap is still evident and the near perfect accuracy for an IoU threshold of 0.5 indicates the

absence of highly challenging regions. Contrarily, this can be interpreted as evidence for the

completeness of annotations provided for this data set, demonstrating one strength of gener-

ated datasets. Further experimental outcomes indicate that within a training configuration uti-

lizing real image data, as much as 70–80% of the real image samples can be substituted by

synthetic image samples while maintaining segmentation accuracy (S6 Fig).

However, there is one limitation to this approach, as the noise introduced during the for-

ward process makes it challenging to produce very dark cells, with the structural information

potentially getting lost in the added noise. Consequently, dimly illuminated regions pose diffi-

culties for accurate segmentation, since the models trained on synthetic data may not be fully-

equipped to handle all challenges posed by real data. This is supported by the decreased seg-

mentation accuracy observed in datasets that provide manual annotations specifically for

dimly illuminated regions (S7 Fig). Despite this limitation, the obtained segmentation scores

demonstrate the capability of training specialized models that achieve state-of-the-art segmen-

tation results in a fully-automated manner with data generated by an intuitive and unsuper-

vised approach. Moreover, beyond those limitations, the presented approach offers substantial

intuitive strength, enabling the generation of varied background illuminations and complex

scenes featuring overlapping cells, both straightforwardly achieved through indications pro-

vided within the sketches (S4 Fig).

Materials and methods

Denoising diffusion probabilistic models

The concept of denoising diffusion probabilistic models (DDPM) used in the proposed pipe-

line employs a gradual noising process q, which is defined as a Markovian chain iteratively

adding a small portion of noise to an image x0 until reaching pure noise xT by following a

cosine-based schedule βt [30]:

qðxt j xt� 1Þ ¼ N ðxt;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � bt

p
xt� 1; btIÞ; with t 2 ð0;TÞ: ð1Þ

For the data generation procedure, a corresponding backward process is defined in which a

neural network is trained to iteratively reverse the forward process. Therefore, at every stage of

the backward process, the model is tasked to predict the noise component �θ introduced into

x0 to transform it into xt. Subsequently, this prediction guides the acquisition of the preceding

sample xt−1 by

xt� 1 ¼
1
ffiffiffiffi
at
p xt �

1 � atffiffiffiffiffiffiffiffiffiffiffiffi
1 � at

p �yðxt; tÞ

 !

þ ~btz; ð2Þ

where z � N ð0; IÞ is of the same size as xt [14]. Repeated in an iterative fashion, this leads to

the generation of realistic image data x̂0 from xT.
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Network design

The underlying network architecture is a U-Net [31, 32] with pixel-shuffle upsampling [33] in

the decoder path, and an additional conditional input in all blocks providing sinusoidal

embeddings of the timepoint t [14]. For all experiments, a maximum number of T = 1000 dif-

fusion steps is used and the network is trained for 5000 epochs.

Datasets

The utilized datasets show either cellular membranes or cell nuclei obtained from 2D(+t) and

3D fluorescence microscopy experiments. For all datasets, annotation masks are either

obtained from manual annotations, automatically obtained unrefined segmentation or simula-

tion approaches, to demonstrate use cases with various conditions. Multiple sophisticated

approaches for automated simulation of cellular structures have already been proposed, rang-

ing from physics-based methods [34], statistical shape-models [10, 11] and spherical harmon-

ics [10, 35], to deep learning-based methods [12, 36, 37]. For simplicity, this work focuses on

simulation approaches utilizing basic geometrical functions to create cellular structures. Gen-

erally, in cases where simulation approaches are used to generate cell nuclei, a foreground

region is generated to roughly represent an organism outline or a region of interest, which is

filled with cell nuclei at random locations. Each nucleus shape R at position (xcenter, ycenter,

zcenter) is simulated as an ellipsoid with radius rnuclei and directional scaling factors (sx, sy, sz)
following

Rellipsoidðx; y; zÞ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x � xcenter
sx � rnuclei

�2

þ

�
y � ycenter
sy � rnuclei

�2

þ

�
z � zcenter
sz � rnuclei

�2
s

� 1: ð3Þ

In case of 2D data, the z-dimension is omitted. Additionally, each nucleus is randomly rotated

by angle α 2 (0, 2π) around arbitrary axes and distorted to obtain more irregular shapes.

Details for each data set are explained in the following paragraphs.

Arabidopsis thaliana (3D). A publicly available 3D fluorescence microscopy image data

set showing the meristem of A. thaliana [18], including manually corrected annotation masks.

Additionally, simulated annotation masks based on statistical shape models published in [10]

are utilized for further experiments. The size of the synthetic image data averages to (511, 495,

221) voxel to mimic the image resolution of the real data set (we refer to [10] for more details).

Since the real microscopy image data shows declining signal intensity towards the organism

center, sketches are generated by linearly decreasing the simulated intensity signal towards the

organism center accordingly. The availability of manually corrected and simulated annotation

masks allows to use this data set for detailed experiments of the presented methods.

Caenorhabditis elegans (3D). A data set containing 3D image stacks of developing C.
elegans [19, 20]. Low-quality automatically obtained silver truth annotations for all images

and very sparse manually obtained ground truth annotations for a small selection of image

slices are additionally provided. Annotations are simulated by outlining the foreground

region as an ellipsoid located at the image center and filling the determined area with a vari-

able amount of nuclei. The nuclei radii rnuclei dynamically decrease inversely proportional to

the amount of nuclei in the region. To simulate cell morphology after mitosis, a random

selection of 10% of cells are shrunken along two axis to form a more cylindrical shape.

Sketches are formed by randomly choosing nuclei illumination. The shape of the simulated

image is set to (512, 708, 35) voxel in correspondence to the real image resolution, and nuclei

parameters are empirically set to ðsx; sy; szÞ ¼ ð1;Uð0:5; 1Þ; 0:09Þ, with U being a uniform

distribution.
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Tribolium castaneum (3D). A 3D data set showing nuclei of developing T. castaneum
embryos [19]. Low-quality automatically obtained silver truth annotations for all images and

very sparse manually obtained ground truth annotations for a small selection of image slices

are additionally provided. Annotations are simulated by outlining the foreground region as a

sphere located at the image center and nuclei are densely positioned at the outer boundary of

the foreground region. Similar to the real data set, a cartographic projection is used to trans-

form the 3D space into multiple stacked 2D projections of the organism surface. Therefore,

the image space is considered in spherical coordinates (r, θ, ϕ) originating at the image center

and for a total of 13 subsequent fixed radii r the spherical surface is mapped to a 2D space (x,

y) = (θ, ϕ), causing the poles to appear stretched. Nuclei illumination is randomly chosen to

form the final sketch. The shape of the simulated image is set to (2450, 1700, 13) voxel in corre-

spondence to the real image resolution, and nuclei parameters are empirically set to rnuclei 2

(5, 6) and (sx, sy, sz) = (1, 1, 1).

Danio rerio (3D). A multi-channel 3D data set showing fluorescently labeled cell mem-

branes and nuclei in two different zebrafish embryos [21]. Corresponding automatically

obtained annotations published in [10] are used as a basis to create sketches. To impose a

realistic intensity variance within the sketches, signal intensity linearly decays along the z

direction. All images have a spatial size of (512, 512, z) voxel, while z is in the range of 104 to

120.

Mouse stem cells (2D). A 2D data set showing Mouse stem cells [19, 22]. Low-quality

automatically obtained silver truth annotations for all images and very sparse manually

obtained ground truth annotations for a small selection of images are additionally provided.

For simulation of annotations, the whole image region is considered as region of interest and

cells are placed at random positions, while avoiding overlaps. To introduce more irregular

nuclei shapes, each nuclei is altered using a deformable transformation modeled with B-splines

[38]. To form the final sketch, nuclei illumination is randomly chosen and barely illuminated

nucleoli are simulated by randomly placing 0–2 small dark circles within each nuclei. The

shape of the simulated image is set to (1024, 1024) pixel in correspondence to the real image

resolution, and nuclei parameters are empirically set to rnuclei 2 (30, 45) and

ðsx; syÞ ¼ ðUð0:75; 1Þ; 1Þ, with U being a uniform distribution.

HeLa cells (2D). A 2D data set showing HeLa cells [19, 23]. Low-quality automatically

obtained silver truth annotations for all images and very sparse manually obtained ground

truth annotations for a small selection of images are additionally provided. Annotations are

simulated by constructing regions of interest as randomly placed and overlapping circular

regions within the image. The resulting foreground region is filled with nuclei that are addi-

tionally altered using a deformable transformation modeled based on B-splines [38]. Nuclei

illumination is randomly chosen to form the final sketch. The shape of the simulated image is

set to (700, 1100) pixel in correspondence to the real image resolution, and nuclei parameters

are empirically set to rnuclei 2 (10, 20) and ðsx; syÞ ¼ ðUð0:5; 1Þ; 1Þ, with U being a uniform

distribution.

HeLa cells (2D+t). A 2D+t data set showing temporal mitotic progression of HeLa cells

[24]. Each frame is centered on one single cell, which is tracked and manually annotated for a

total of 90 frames each. For processing with the proposed pipeline, the temporal image stack is

treated as a regular 3D image stack with a size of (96, 96, 90) voxel. Sketches are created by

homogeneously setting the intensity of each annotated cell to the mean intensity identified

within the annotated region of each respective real image frame.

Cervical cells (2D). A 2D data set consisting of a total of 945 cervical cytology images

[39], showing cytoplasm and nuclei of overlapping cells. The images are split into two different
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sets with 900 and 45 samples each and with an increasing amount of cell overlap. For the

experiments conducted in this work, the larger split was used for training and the smaller split

was used for testing. Sketches were created by homogeneously setting the intensity of each

annotated cytoplasm and nuclei region to the mean intensity identified within the annotated

region of each respective real image. Furthermore, overlapping regions were darkened by 10%

per additional cell involved in the overlap to impose realistic image features.

Metrics

For evaluation of synthetic image quality different metrics were used, which are listed and

described in the following. X describes the set of all n pixel or voxel positions within the image

data and P(x) is considered as discrete intensity distribution of an image x.

• Bhattacharyya Distance:

DB ¼ � ln
�
P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PðxI
t Þ � PðxM

t Þ
p

�

: ð4Þ

• Kullback-Leibler Divergence:

DKL ¼
P

PðxI
t Þlog

PðxI
t Þ

PðxM
t Þ

� �

; ð5Þ

with I representing the image domain and M representing the mask domain.

• Peak Signal-to-Noise Ratio (PSNR):

PSNR ¼ 20 � log
10

1
ffiffiffiffiffiffiffiffiffiffi
MSE
p

� �

; ð6Þ

with

MSE ¼
1

n

X

x2X
ðx0 � x̂0Þ

2
: ð7Þ

• Zero-Normalized Cross-Correlation (ZNCC):

ZNCC ¼
1

n

X

x2X

xM
0;x � mM
ffiffiffiffiffiffiffi
sM
p �

xI
0;x � mI
ffiffiffiffiffi
sI
p

 !

; ð8Þ

with σ representing the intensity variance and μ representing the mean intensity of data

from the image domain I and the mask domain M respectively.

• Intersection over Union (IoU):

IoU ¼
j ypred \ ygt j

j ypred [ ygt j
; ð9Þ

with ypred representing the predicted segmentation mask and ygt representing the ground

truth segmentation mask.
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Conclusion

Overall, the consistently high PSNR values for the synthetic image data and the segmentation

results comparable to state-of-the-art approaches trained with large annotated datasets empha-

size the realism of the generated data and demonstrate its practical usability. The presented

pipeline tackles the issue of manual annotation demands in segmentation applications and

proposes a shift towards identifying setups for acquiring sketches of cellular structures. This

objective is usually more universal, simpler to address, and not influenced by the unique illu-

mination and noise attributes of particular datasets. If effective methods for these sketches can

be established, corresponding data can be synthesized and utilized as error-free training mate-

rial for subsequent approaches, leading to fully-unsupervised and automated applications. We

demonstrated that the generation of these sketches can be achieved through simulation

approaches or by utilizing publicly available generalist segmentation methods. Inaccuracies or

errors of those initial segmentations were eliminated in the generative process, leading to the

acquisition of realistic error-free training data. Consequently, the application of deep learning-

based segmentation approaches became more accessible for datasets with limited and absent

annotations. To further contribute towards the goal of reaching annotation-free segmentation

pipelines, all fully-annotated fully-synthetic image datasets are publicly available at https://osf.

io/dnp65/, and code for training and application is available at https://github.com/stegmaierj/

DiffusionModelsForImageSynthesis.

Supporting information

S1 Fig. Latent feature representation. 2D feature representations obtained with t-SNE from

the latent representation of an autoencoder for real 3D Arabidopsis thaliana image data [18]

and corresponding synthetic data generated from sketches of manual annotations. Addition-

ally, feature representations obtained for raw sketches serve as a reference. Since this data set

contains large-scale image data, each image stack is partitioned into patches to reduce compu-

tational demand. During application, a feature representation for each single patch is obtained

and averaged to derive an overall feature description of the entire image stack. Results indicate

that the diffusion model learns the average distribution of real image data, since latent repre-

sentations of synthetic data is enclosed by representations obtained for real image data. Sketch

representations form a more distinct cluster, further promoting the realism of synthetic image

data.

(PDF)

S2 Fig. Quantitative results of synthetic data. PSNR values presented as boxplots, calculated

between real image data and synthetic image data generated from corresponding silver truth

and segmentation masks. Those silver truth segmentations are generated with automated

approaches and validated to be reliable for training purposes. Whiskers range from the 5th to

the 95th quantile, median values are indicated as orange line while mean values are depicted as

green triangle and boxes represent the interquartile range. The involved datasets are 3D Cae-
norhabditis elegans (CE) [19], 2D Mouse Stem Cells (GOWT1) [19], 2D HeLa Cells (HeLa)

[19], 3D Nuclei and Membranes of Danio rerio (DRNuc,DRMem) [21], 2D+t mitotic progres-

sion in Mouse Stem Cells (HeLa+t) [24] and 2D overlapping cervical cancer cells (Cerv) [39].

Using corresponding sketches and the optimized settings of tstart = 400 and σ = 1, the backward

process was used to replicate corresponding image samples and PSNR values were calculated

to assess similarity between synthetic and real versions. The Danio rerio multi-channel data

and the temporal HeLa data present special cases, which demonstrate limitations of the
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proposed approach.

(PDF)

S3 Fig. Qualitative results of synthetic data. Examples of real image data and corresponding

synthetic image data generated from corresponding silver truth and segmentation masks. The

involved data sets are publicly available in [10, 19, 20, 22–24]. In case of the temporal HeLa

data set, the 2D+t image stacks were treated as regular 3D images to allow for the generation of

temporally consistent textures within the cellular and background regions. This was motivated

by observations from previous experiments showing that a frame by frame generation of the

temporal data is feasible but prone to the generation of slight textural inconsistencies that we

were not yet able to prevent otherwise.

(PDF)

S4 Fig. Special cases of generated image data. Examples of real image data and correspond-

ing synthetic image data generated from corresponding annotations of overlapping cells [39]

(top). Moreover, examples of varying background illumination in C. elegans [19, 20] was gen-

erated by adding indications within the sketches (bottom). This demonstrates the intuitive

strength of the proposed approach, as more complex scenes of overlapping cells can be realisti-

cally generated and position-dependent texture characteristics can be straightforwardly

imposed and controlled.

(PDF)

S5 Fig. Segmentation accuracy on real and synthetic image data. 3D Cellpose [27] segmen-

tation models are trained on synthetic image data and real image data respectively, using the

3D Arabidopsis thaliana data set [18]. Both models are tested on real and synthetic image

data. A model trained on GAN-generated image data is tested on real image data for a com-

parison between diffusion-based and GAN-based approaches. IoU scores are calculated for

each cell in the image data and an IoU threshold provides the basis to formulate an accuracy

as the ratio of precise segmentations to the total quantity of cells. It should be noted that no

augmentation or dedicated pipeline tweaking was used during the training of the segmenta-

tion approaches, in order to obtain results that purely reflect the capabilities of the synthetic

data.

(PDF)

S6 Fig. Segmentation accuracy for different ratios of real and synthetic image data. To

present an analysis from a practical point of view, 3D Cellpose [27] segmentation models are

trained on datasets containing a mix of synthetic and real image data from the 3D Arabidopsis
thaliana data set [18]. The total quantity of training images was kept consistent throughout all

experiments and all models are tested on real image data with the segmentation accuracy

being reported by the IoU metric. Whiskers of the boxplots range from the 5th to the 95th

quantile, median values are indicated as orange line while mean values are depicted as green

triangle and boxes represent the interquartile range.

(PDF)

S7 Fig. Segmentation accuracy on further datasets. Solid lines show results obtained for seg-

mentation models solely trained on synthetic data evaluated on the sparse manually annotated

ground truth. Dotted lines show determined accuracies when considering the silver truth

annotations as predictions (not provided for T. castaneum), and comparing results against the

ground truth. Data splits, ground truth and silver truth were provided by the Cell Tracking

Challenge [19]. Note that manual annotation are only provided for a small fraction of cells visi-

ble within the image data, and annotated cells often focus the most challenging regions, which
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are typically difficult to generate.

(PDF)

S8 Fig. Qualitative examples of segmentation results. Examples of sparse ground truth anno-

tations (top) and corresponding segmentations obtained by models solely trained on fully-syn-

thetic image data generated from simulated sketches (bottom). The datasets and ground truth

annotations are provided by the Cell Tracking Challenge [19]. Note that the annotations have

never been used for training and are merely depicted for qualitative comparison. No data aug-

mentation was applied.

(PDF)
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