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Abstract

In embryonic development and organogenesis, cells sharing identical genetic codes acquire

diverse gene expression states in a highly reproducible spatial distribution, crucial for multi-

cellular formation and quantifiable through positional information. To understand the sponta-

neous growth of complexity, we constructed a one-dimensional division-decision model,

simulating the growth of cells with identical genetic networks from a single cell. Our findings

highlight the pivotal role of cell division in providing positional cues, escorting the system

toward states rich in information. Moreover, we pinpointed lateral inhibition as a critical

mechanism translating spatial contacts into gene expression. Our model demonstrates that

the spatial arrangement resulting from cell division, combined with cell lineages, imparts

positional information, specifying multiple cell states with increased complexity—illustrated

through examples in C.elegans. This study constitutes a foundational step in comprehend-

ing developmental intricacies, paving the way for future quantitative formulations to con-

struct synthetic multicellular patterns.

Author summary

Embryonic development shapes our bodies from a single cell, determining the placement

of the head and tail. But how do cells, all sharing the same genetic code, precisely know

what to become? Our mathematical model cracks this code. Envision your information

being provided by your neighbors and your ’mom’—the division lineage. Then, appropri-

ate regulatory networks (such as lateral inhibition, the most effective network motif)

transform this information into diverse yet robust gene expressions. This math model

helps us see the rules behind spontaneously growing complexity, guiding us to create new
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patterns of cells. It’s a big step in understanding how bodies form and opens doors to

building cool new structures.

Introduction

During embryonic development, a single fertilized egg transforms into a complex organism

with diverse cell types arranged in a highly reproducible spatial pattern [1]. Despite being

genetically identical, cells differentiate into distinct cell types with unique functions, and acti-

vate specific gene expressions consistently in certain positions and times, ensuring robustness

of development [2]. On the one hand, the diversity in gene expression is essential for cells to

carry out various functions in the embryo [3,4]; on the other hand, to function appropriately

at each specific stage, cells must robustly enter the designated state [5–7]. Researchers are thus

confronted with the question of what mechanisms enable the diversity and reproducibility of

cell fate patterns during development, and how to assess possible mechanisms.

Over the last 50 years, the concept of positional information has become central to under-

standing the mechanisms that drive embryonic development. Positional information is used to

describe the unique position of cells relative to one or more points in the developing system

[8]. Wolpert postulated that cells acquire positional identities in a coordinate system and sub-

sequently interpret their positions to develop in specific ways [9]. Crick first proposed gradi-

ents of morphogens as one of the main mechanisms for establishing positional information

[10]. Since then, experiments on invertebrate and amphibian limb regeneration have sup-

ported the idea that cells acquire positional identity through the action of morphogens [11,12].

For example, in the newt limb, a membrane molecule called Prod1 is graded from one end to

the other along the proximodistal axis, forming the molecular basis of positional information

[13]. Similarly, during early Drosophila development, the maternal morphogen gradient pro-

vides positional information to direct gene expression patterning [14]. Through a combination

of experiments and analysis, Bialek and his colleagues revealed how the primary morphogen

gradient achieves precision and reproducibility in the early stages of Drosophila embryo pat-

tern formation [15]. In their works, they used the concept of mutual information to quantify

positional information, calculating it as the reduced Shannon entropy of cell states across the

entire system given cells’ positions in the unit of “bit”. The network of four gap genes was

shown to transfer positional information close to the upper bound of physical limit [16]. These

studies focus on systems that extract positional information from established morphogen gra-

dients. However, in a myriad of different organisms, this maternal morphogen-directed mech-

anism is either absent or insufficient during early embryogenesis. Therefore, it is crucial to

explore how a developing system can acquire and amplify positional identity through alterna-

tive means.

Organized multicellularity can emerge spontaneously in organisms with limited or no

external sources of information. For example, in the model organism C. elegans, cell fate tran-

sitions are primarily regulated by cell-cell communication without any known morphogen

gradient [17–19]. In higher mammalians, spontaneous production of signaling waves and

polarization are prominent in directing the embryonic development [20–22]. In these diverse

species where external morphogens are unable to support the entire developmental process,

autonomous polarity (like Par proteins and planar cell polarity) [23–25] and cell-cell signaling

mechanisms (like ligand-bound receptors and Notch signaling) [26,27] appear to be critical. In

these systems, the development process begins with a fertilized egg with zero bit of positional

information. However, as cells divide and differentiate, the positional information of the entire
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system increases without internal gradient sources. Therefore, it is essential to understand

where this information comes from and how the system utilizes it.

Biophysical modeling approaches have long been employed to investigate spontaneous pat-

tern formation. One such approach, Cellular Automata (CA), was proposed by John von Neu-

mann in the early 1950s to imitate the self-replication capability of biological systems [28]. In

this mechanism, a grid of "colored" cells evolves over several discrete time steps according to a

set of rules based on neighboring cells’ states, ultimately forming a specific pattern [29,30].

Another approach, the reaction-diffusion model, was introduced by Alan Turing in 1952,

demonstrating how a reaction between two morphogens diffusing through tissue could result

in self-regulating periodic biological patterns [31]. This mechanism has been used to replicate

many natural patterns, such as zebrafish stripes [32,33] and seashell patterns [34], but experi-

mental demonstrations of this mechanism in vivo are few and far between, and none identify

both diffusible morphogens. The Clock and Wavefront model, proposed by Cooke and Zee-

man in 1976, explains the formation of segments in the growing body axis of vertebrate

embryos by a biological clock ticking at the posterior of the elongation embryo. The length of

a developing segment is dictated by the distance a wavefront advances across the embryonic

axis during a clock cycle [35]. While these mathematical models have merit, they have not yet

been systematically applied to early development, which involves not only the emergence of

patterns but also the reproducible expression of genes at each exact time and place [36]. While

positional information might be used to quantify the diverse but precisely-positioned cell fates,

understanding the process for the spontaneous creation of such information during early

embryogenesis posed an intriguing challenge: how does the genetic code that is identical for all

cells unfold into distinctive and reproducible spatial identities, and what process underlies the

spontaneous creation of positional information during early embryogenesis [37]?

To investigate the underlying mechanisms of spontaneous complexity in embryogenesis,

we developed an agent-based model that simulates the earliest stages of development by incor-

porating both fate decision and cell division. Each agent in the model represents a cell with an

identical genetic network for cell state transition, and cells only communicate through local

contact signaling, rather than diffusible morphogens. By using this division-decision model,

we identified genetic networks that allow the growing system to achieve high positional infor-

mation, beginning with a single zygotic cell. We uncovered lateral inhibition as a basic net-

work motif for such spontaneous information genesis. Through further examination of these

motifs, we were able to formulate how a growing system acquires positional information from

the spatial-proximity and lineage-inheritance of cells, then used events during early develop-

ment of C.elegans as the examples to illustrate these two sources of information. Our analysis

of the noise-resistance and attractor landscape of the screened networks also highlights the

role of cell division in providing positional cues and aiding the system to enter high-informa-

tion states. Taken together, our research establishes a theoretical framework for the spontane-

ous emergence of complexity in early embryogenesis, providing computational insights into

the comprehension and design of autonomous multicellularity.

Results

Lateral inhibition serves as a basic motif for information increase in the

single-gene growing system

We began our investigation by studying the simplest division-decision system, in which a one-

dimensional array is formed by consecutive divisions starting from a single cell. The binary

expression states of a single gene A, gAi ðtÞ ¼ 0 or 1, characterize the state of the i-th cell as
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G!iðtÞ ¼ gAi ðtÞ
� �

. The rules of gene expression updating were described in Eq 2 in the Method

section.

Gene expression at time t + 1 is determined by a step function of the regulation-weighted

summation of gene expressions at time t, with the threshold of the step function set to 0 [38][39]:

gAi ðt þ 1Þ ¼

1; aA;Ai;i gAi ðtÞ þ
P

k¼i� 1;iþ1

aA;Ai;k gAk ðtÞ
� �

> 0

0; aA;Ai;i gAi ðtÞ þ
P

k¼i� 1;iþ1

aA;Ai;k gAk ðtÞ
� �

< 0

gAi ðtÞ; aA;Ai;i gAi ðtÞ þ
P

k¼i� 1;iþ1

aA;Ai;k gAk ðtÞ
� �

¼ 0

ðEq 5Þ

8
>>>>>>>><

>>>>>>>>:

In describing the regulation of gene A within and between cells, the value of aA;Ai;i indicates

the intracellular regulation of gene A towards itself, and the value of aA;Ai� 1;i indicates the intercel-

lular regulation of gene A in the i-th cell towards gene A in its neighboring cells i-1 (1 for acti-

vation, -1 for inhibition, and 0 for no interaction). As no left-or-right information was

imposed on the system, aA;Ai� 1;i is the same as aA;Ai;i� 1 for symmetry. The set aA;Ai;i ; a
A;A
i� 1;i

� �
defines all

interactions in this system and is genetically encoded, therefore, we refer to this set as the

"genetic network."

For one dimensional system, there are nine possible genetic networks (Figs 1B and S2A).

As the gene expression is binary, the maximum positional information in this single-gene sys-

tem is 1.0 bit. We simulated all nine genetic networks starting from a single cell to assess the

maximum positional information achievable by the stable states. In each generation, the state

of each cell was updated twenty times before simultaneous division of all cells in that

generation.

We discovered that only one genetic network, O1, could achieve maximum positional

information of 1.0 bit, for the initial cell state G!
1
tinitialð Þ ¼ gA

1
tinitialð Þ ¼ 1

�
). In contrast, the

other eight genetic networks remained at 0.0 bit throughout division and decision (Fig 1C). In

addition, all genetic networks maintained 0.0 bit positional information throughout develop-

ment if the initial cell state is G!
1
tinitialð Þ ¼ gA

1
tinitialð Þ ¼ 0

� �
. The O1 genetic network comprises

one intracellular self-activation and one intercellular inhibition (Fig 1D), and an example of

the gene expression pattern during system growth governed by the O1 was shown in Fig 1E.

The development pattern of the system regulated by network O1 consists of three updates in

each generation due to the fact that the system can reach stable states via three updates of gene

expression in each generation. This self-activation/cross-cell-inhibition connection resembles

the lateral inhibition regularly reported in multiple biological patterns [27,40,41], which

prompted us to examine the mechanism of information genesis in greater depth.

We observed that the increase in information content in the O1-directed development is

due to the update of the contact matrix C induced by cell division. The positional information

increases from 0.0 bit to 1.0 bit at step 8, in the 4-cell stage. As shown in Fig 1E, from genera-

tion 2 to generation 3, cell 2 and cell 3 divides into cell 4, 5 and cell 6, 7, respectively. These

four daughter cells inherit cell states from cell 2 and cell 3, with gene A in the ON state for all

four of them. Meanwhile, the action of a division changes the contact relationship between

cells: cells 4 and 7 only have one neighbor with gene A ON, whereas cells 5 and 6 have two

neighbors with gene A ON (Fig 1F). The contacting state (CS) differentiates four cells at step 7

into two groups (i.e., those contacting one gA = 1 cell, vs. those contacting two gA = 1 cells),

providing the system with potential information of 1.0 bit. At step 8, regulated by the rules of

genetic network O1, the cells contacting two neighbors with high A expressions are strongly
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Fig 1. One-dimensional division-decision growing model and its maximum information pattern in the single-gene system. (a). A

diagram illustrating our one-dimensional division-decision growing model. In our model, cells with the identical genome divide and

differentiate from a single cell state to produce a multicellular system with several cell states. Distinct colors are used to indicate

different cell states. (b). Possible intracellular and intercellular interactions in the single-gene system. There are nine possible types of

genetic networks. The black arrow represents the possible interaction relationship, like an activation, an inhibition or an absence of

interaction. Solid and dotted lines represent intracellular and intercellular interaction relationships, respectively. (c). A distribution

diagram of the maximum positional information in the single-gene system. (d). The exclusive genetic network which controls

maximum positional information pattern formation in the single-gene system. (e). The pattern of gene expression varies over time in a

single-gene system regulated by the genetic network O1. At step 8, the system obtains 1.0 bit positional information. The time-course

of positional information is calculated and shown in the right of the pattern. The binarized gene A expression level determines the cell

state. Green circles represent gene A expressed while yellow circles represent gene A unexpressed. (f). Explanation of increased

positional information in the single-gene system. The maximum positional information 1.0 bit is created by the new space network

resulted from cell division. Cell 4, cell 5, cell 6, and cell 7 inherit cell states from their mothers when cell 2 and cell 3 divide. The
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inhibited and turn off their gene A expressions. Therefore, cells 5 and 6 update their gene A

expression states from ON to OFF. This transition results in four cells with two distinct cell

states, so that the system’s positional information reaches 1.0 bit. In other words, the genetic

network O1 transforms 1.0 bit of potential information at step 7 into 1.0 bit positional infor-

mation at step 8 (Fig 1F). In contrast, the other eight genetic networks could not efficiently

transfer potential information into the system’s actual positional information (S2A Fig). Usu-

ally, the process by which genetic networks convert potential information into positional

information has some degeneracy. Multiple inputs in concatenated matrix [S,C�S] might result

in the same output in gene expression states S (Fig 1G). For example, as shown in Fig 1E, from

generation 3 to generation 4, the neighbors of cells 10 and 11 are in distinct states. Yet, the

degeneracy prevented the genetic network from updating these two cells into two distinct cell

states. Genetic networks exhibiting a smaller degree of degeneracy are more capable of con-

verting information.

In addition to Eq 5, we also attempted to control gene expression using additional gene reg-

ulatory logics and updating functions [42–44]. We found another genetic network, O2 (Eq S1

and S3 Fig), of the similar topology with O1, has the same performance as O1 (details in S1

Appendix).

Taken together, in the single-gene system, the results above demonstrate that cell division

can change the spatial contacting state of a system, offering potential information that can be

transformed into positional information with the appropriate genetic network (Fig 1G).

Spatial contact and cell lineage amplify potential information in a two-gene

division-decision system

Next, we investigated the principles of information amplification in two-gene systems. With

two genes A and B with binary ON and OFF states, a cell’s state can be expressed as

G!iðtÞ ¼ gAi ðtÞ; g
B
i ðtÞ

� �
, and there are four possible states for each cell: none expressed

gAi ðtÞ ¼ 0; gBi ðtÞ ¼ 0
� �

, both expressed gAi ðtÞ ¼ 1; gBi ðtÞ ¼ 1
� �

, and only one gene expressed

gAi ðtÞ ¼ 1; gBi ðtÞ ¼ 0; or gAi ðtÞ ¼ 0; gBi ðtÞ ¼ 1
� �

. We used Eq 5 to update the gene expression

of the cell. As mentioned in Method, the number of possible intracellular and intercellular reg-

ulatory networks (i.e., genetic networks) composed by two genes is 6561 (Fig 2A). Starting

from four distinct initial states in a single cell, we simulated all 6561 genetic networks in the

division-decision system, and recorded the maximal positional information each network

could reach (Fig 2B).

With binary gene activities, the maximum positional information in the two-gene system is

2.0 bit. Our simulations revealed that only two genetic networks, named T1 and T1’, are capa-

ble of driving systems to reach this maximal positional information at stable states (Figs 2C,

2D and S4) (S2 Appendix). Since systems can reach stable states via four updates of gene

expression in each generation, development patterns of systems regulated by network T1 and

T1’ consist of four updates in each generation. Network T1 comprises four regulatory edges:

intracellular self-activation of gene A, lateral inhibition between A genes across contacting

expression state matrix (S) and the cell-contacting state matrix (CS) comprised the concatenated matrix ([S,C�S]), which changed after

cell division. The new concatenated matrix contains 1.0 bit potential information which could potentially distinguish different two cell

states. With the time moving forward, updated cell states according to the genetic network O1 in (d), cell 5 and cell 6 acquires new cell

states. At same time, positional information in 4-cell stage increases to 1.0 bit. (g). A diagram illustrating the mechanics of information

growth in division-decision systems. The cell contacting matrix (C), together with the current cell expression states (S), form the

potential information source manifested in the concatenated matrix ([S,C�S]). Appropriate genetic networks convert the potential

information contained in the concatenated matrix ([S,C�S]) into the updated expression states (S), resulting in an increase in the

positional information. Cell division may change the cell contacting matrix (C), which therefore increases the potential information.

https://doi.org/10.1371/journal.pcbi.1011882.g001
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Fig 2. Maximum positional information pattern formation in the two-gene system. (a). Possible intracellular and

intercellular interactions in the two-gene system. The number of possible genetic networks is 6561. The black arrow

represents the possible interaction relationship, like an activation, an inhibition or an absence of interaction. Solid and

dotted lines represent intracellular and intercellular interaction relationships, respectively. (b). The distribution

diagram of the number of genetic networks corresponding to different maximum positional information under four

different initial cell states. (c). The exclusive genetic network (T1) in the two-gene system that regulates maximum

positional information pattern formation in a stable state. (d). The expression pattern of two genes throughout time

and space. This pattern formation regulated by the genetic network T1 in (c). At step 14, system reaches 2.0 bit

positional information. (e). Mechanisms for increasing positional information from 1.0 bit to 2.0 bit. When cells 4 to 7

divide, cells 8 to 15 inherit cell states from their mothers. At this time, the potential information in the concatenated

matrix ([S,C�S]) is 2.0 bit. With the time moving forward, updated cell states according to the genetic network T1 in

(c), cell 8, cell 11, cell 12 and cell 15 alter their states. At step 14, positional information increased from 1.0 bit to 2.0 bit.

(f). Transition linkages across four cell states under the regulation of genetic network T1. The number and color of the
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cells, activation of gene B by gene A across contacting cells, and lateral inhibition between B

genes across contacting cells (Fig 2C). The network T1’ can be generated by swapping the A

and B genes in the network T1 (S4A Fig). When the initial cell states are G!
1
tinitialð Þ ¼

gA
1
tinitialð Þ ¼ 1; gB

1
tinitialð Þ ¼ 0

� �
or G!

1
tinitialð Þ ¼ gA

1
tinitialð Þ ¼ 1; gB

1
tinitialð Þ ¼ 1

� �
, systems regulated

by network T1 reach multicellular stable states with 2.0 bit of positional information (Figs 2C,

2D and S4B). While when the initial cell states are G!
1
tinitialð Þ ¼ gA

1
tinitialð Þ ¼ 0; gB

1
tinitialð Þ ¼ 1Þ

�

or G!
1
tinitialð Þ ¼ gA

1
tinitialð Þ ¼ 1; gB

1
tinitialð Þ ¼ 1

� �
, systems regulated by network T1’ reach multi-

cellular stable states with 2.0 bit positional information (S4A and S4C Fig). Due to the symme-

try between networks T1 and T1’, the ensuing analysis will only focus on network T1. Under

the regulation of network T1, the positional information undergoes two leaps during the sys-

tem’s growth: the first leap occurs at step 10, as the system divides from the 2-cell stage into the

4-cell stage, increasing from 0.0 bit to 1.0 bit; the second leap occurs at step 14, as the system

divides from the 4-cell stage into the 8-cell stage, increasing from 1.0 bit to 2.0 bit (Fig 2D).

We continued to investigate the mechanism behind the increase in information within the

two-gene system. The first leap of information is similar to that of network O1. During the

transition from generation 2 to generation 3, cells 2 and 3 divide into four identical cells (4 to

7), which exhibit the BLUE gene expression state ([A = 1,B = 1]). However, due to the number

of neighboring cells, the four cells can be split into two categories. Specifically, cells 4 and 7

each contact one neighbor with high gene A, whereas cells 5 and 6 contact two neighbors with

high gene A. By inhibiting gene A via lateral inhibition, cells 5 and 6 convert the potential

information of 1.0 bit from the contacting state into positional information in the gene expres-

sion states (RED state, [A = 0,B = 1]).

The second leap of information is influenced not only by the contacting state CS but also by

the current gene expression state S. From generation 3 to 4, cells 4 to 7 give birth to cells 8 to

15. Cells 8, 9, 14, and 15 inherit their mother cells’ GREEN state (GREEN state, [A = 1,B = 0]),

while cells 10 to 13 inherit the RED state (RED state, [A = 0,B = 1]). Immediately after division

at step 13, the concatenated matrix ([S,CS]) is shown in Fig 2: Cells 8 and 9 share the same cell

state (GREEN) but have different neighboring states (GREEN vs. GREEN and RED). On the

other hand, cells 9 and 10 share identical neighboring states (GREEN and RED), but their cell

states differ (GREEN vs. RED). As a result of these differences in neighboring and expression

states, the eight rows of the concatenated matrix ([S,CS]) can be divided into four distinct clas-

ses with a potential information of 2.0 bit. Under the regulation of T1, at step 14, the states of

cells 8, 15, 11, and 12 transition into BLUE and YELLOW. As a result, the system exhibits four

distinct cell states with a positional information of 2.0 bit. This transition from two to four

states demonstrates how the system converts the combined cell and neighboring states ([S,

CS]) into updated positional information. As the differences between cells 9 and 10 are inher-

ited from mother cells, this source of information come from cell lineage.

circles next to the line indicate the number and state of the cell’s neighbors, and an arrow points from the initial state

of the cell to the final state of the cell. The similar cell state transition that took place in (d) is shown by circles with a

gray background. (g). The relationship between maximum positional information and the proportion of times a

regulatory motif occurs. The proportion of self-inhibition and direct-lateral-activation motif occurrence are negatively

correlated with the maximum positional information. While the proportion of direct-lateral-inhibition motif

occurrence is positively connected with the maximum positional information. (h). According to the maximum

positional information achievable in the development system directed by genetic networks, networks with the same

maximum positional information are grouped together. The first column represents the maximum positional

information value for each genetic network group. The second column indicates the number of genetic networks in

each group. The third column represents the ratio of direct lateral inhibition motif present in the group. The fourth

column represents the ratio of indirect lateral inhibition motif present in the group. The fifth column represents the

proportion of networks in the group that do not exhibit lateral inhibition motif.

https://doi.org/10.1371/journal.pcbi.1011882.g002
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From the perspective of transition linkages across cell states [45], we observe that physical

clustering of cells in the same state plays a crucial role in the emergence of new cell states dur-

ing the development process in Fig 2D. As shown in Fig 2F, a BLUE cell ([A = 1,B = 1]) transi-

tions to a RED state ([A = 0,B = 1]) when it encounters two neighboring cells with the same

BLUE state, which occurs between steps 9 and 10 in Fig 2D. Similarly, a RED ([A = 0,B = 1])

cell transitions to a YELLOW state ([A = 0,B = 0]) when it contacts two cells in RED, which

happens between steps 13 and 14. This cascade of new state emergence is facilitated by cell

division, in which cells with identical states proliferate to promote the formation of the next

new state.

In the two-gene system, we also simulated the growth of systems with different gene regula-

tory logics and updating functions. Using Eq S1 (S3A Fig), we discovered three genetic net-

works (T2, T3, and T4) that enabled controlled systems to attain multicellular stable states

with 2.0 bit positional information (S5 Fig, See S1 Appendix for details).

The lateral inhibition motif is central for the increase of positional

information in the two-gene growing system

Among the 6561 genetic networks we examined, their capacity for increasing positional infor-

mation during the division-decision process varied. To explore this, we investigated relation-

ships with specific gene regulatory motifs, including direct positive feedback, mutual

inhibition, negative feedback, and coherent and incoherent feedforward loops [39,46]. Focus-

ing on six intracellular regulatory motifs and four intercellular regulatory motifs (S6A Fig), we

considered only two initial cell states for simplicity. We grouped the genetic networks with the

same maximum positional information after running for 5 generations. For each group of

genetic networks, we calculated the “motif ratio” by dividing the number of each motif’s occur-

rences by the total number of genetic networks in the group. We found two types of strong

correlations between motif ratio and the maximum positional information (Figs 2G, S6B and

S6C). Intercellular direct lateral inhibition positively correlated with maximum positional

information, while intracellular self-inhibition and intercellular direct lateral activation nega-

tively correlated (Figs 2G, S6B and S6C). Analyzing genetic networks categorized by their max-

imum positional information, we observed that direct or indirect lateral inhibition motifs were

predominant in networks achieving positional information larger than 1.0 bit (Figs 2H and

S6D). These results highlight the crucial role of intercellular lateral inhibition in generating

high positional information patterns.

In actual biological processes, various embryonic development stages are initially guided by

specific positional cues. In mimicking such initial asymmetry, we also examined the relation-

ship between positional information and regulatory motifs in a one-dimensional multicellular

model with one cell fixed at the left end of the system. The fixed cell is not allowed to divide

nor change cell state, imposing an asymmetry on the system analogous to the P cell linages in

C.elegans development (S7A Fig). After evaluating all possible two-gene networks, we identi-

fied two capable of producing a four-striped pattern at the 9-cell stage, and fourteen capable of

three distinct stripes (S7D Fig). Under a screened genetic network T5 (S7B Fig), the division-

decision system produced a unique pattern of four stripes at the 9-cell stage (S7C Fig). While

motif ratios showed no significant correlation with stripe number (S7E Fig), positional infor-

mation negatively correlated with intercellular direct lateral activation and positively corre-

lated with intercellular direct lateral inhibition motif ratios (S7F Fig). Moreover, all networks

achieving positional information higher than 1.0 bit at the 9-cell stable state featured direct or

indirect lateral inhibition motifs (S7G Fig). These findings underscore the pivotal role of lateral

inhibition in amplifying positional information during development.
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Stable multicellular states with high positional information are ensured via

cell division and pedigree

For accurate dynamic models in reality, a reasonable basin size is crucial for stable states at a

biological level. The basin size represents the total initial cell states evolving into a stable state

under specific genetic network regulation. For instance, in network T1, with two cells, there

are 16 initial states, and only 10 represent stable multicellular states, suggesting a mean basin

size of 1.6. Increasing the cell number to four results in 256 initial states, with a mean basin

size of 3.9 (S8A and S8B Fig). Calculations for basin size and positional information at differ-

ent cell numbers (regulated by T1) revealed a rapid increase in the largest basin size, reaching

30 for 4-cell states and 1275 for 8-cell states (Fig 3A and 3B). The high-information state,

evolving through division-decision, shows a decreasing basin size ratio relative to the largest

basin: 11 at the 4-cell stage and 71 at the 8-cell stage (Fig 3A and 3B). Basin size and positional

information recordings for 4-cell and 8-cell stable states demonstrated that higher positional

information correlated with smaller basin sizes (Fig 3C and 3D). Therefore, if the number of

cells in the system remains constant, randomized initial states tend to evolve into a state with a

large basin size, keeping positional information low. However, as the system grows from a sin-

gle cell, early stages provide a larger basin ratio for the high-information state, "escorting" the

system into its small basin through division. The pedigree procedure’s cell division prevents

the system from evolving into a stable state with limited positional information by eliminating

numerous unstable starting states (Fig 3E).

Noisy cell state decision involves erroneous gene expression updates with a certain proba-

bility (Fig 3F), while differences in cell cycle length contribute to a divergence in the timing of

cell divisions, leading to an asynchronous division pattern among cells within the same genera-

tion (Fig 3G). We simulate the division-decision system 10,000 times under these two distinct

conditions for various genetic networks. Identifying the standard multicellular stable state cor-

responding to the maximum positional information (2.0 bit) in a noise-free and synchronous

environment, we assess how likely systems can reach this state under conditions characterized

by stochastic perturbations or asynchrony in cell division. The "accuracy" of the system, deter-

mined by the fraction of simulations reaching the standard state given gene expression vari-

ability and cell cycle length diversity, decreases for both forms. However, the impact differs

slightly: in the case of the first condition, accuracy decreases as the cell cycle length increases,

suggesting more mistakes with longer cell cycles. Conversely, for the second condition, where

cell division is asynchronous, longer cell cycles enhance accuracy as they provide cells more

time to rectify aberrant states. This pattern holds for other screened genetic networks using Eq

S1, and T1-regulated systems exhibit better resistance to both conditions than other genetic

networks (S8C and S8D Fig).

The principle of increased positional information is applicable to

continuous models

In our exploration of increasing positional information, we initially employed a basic Boolean

model for gene expression updates. However, concerns about potential artificial outcomes

prompted us to replace the Boolean model with an ordinary differential equation in this sec-

tion [47,48]. This substitution aims to assess the continued applicability of the principle of

increased positional information within a continuous model.

In the single-gene system, based on the network O1 (Fig 1D) and O2 (S3B Fig), we con-

structed different ordinary differential equations, by adopting AND or OR logics in combina-

tory regulations (Fig 4A and 4B, See Eqs S2-S3 in S1 Appendix). When the system reached the

4-cell stage (generation 3), we observed that the stable expression levels of gene A were
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Fig 3. Basin size and stability of multicellular stable states. (a). The basin size of 4-cell stable states and the

distribution diagram of the corresponding number of stable states under the regulation of genetic network T1. The red

dotted box and red arrow denote the position of the 4-cell stable state formed by the growing system regulated by the

genetic network T1. (b). In logarithmic coordinates, the basin size of 8-cell stable states and the distribution diagram of

the corresponding number of stable states under the regulation of genetic network T1. The red arrow denotes the

position of the 8-cell stable state formed by the growing system regulated by the genetic network T1. (c). Basin size and

positional information corresponding to distinct 4-cell stable states under the regulation of genetic network T1. (d). In

logarithmic coordinates, basin size and positional information corresponding to distinct 8-cell stable states under the

regulation of genetic network T1. (e). Under the regulation of genetic network T1, multicellular stable states

corresponding to various basin sizes were displayed in each generation in the schematic diagram. The areas of the

smaller, colored circles represent the basin sizes of the distinct multicellular stable states, while the large gray circle

represents the cumulative basin size of all stable states for each generation. And the circle’s color corresponds to the

positional information of the multicellular stable state. Red lines indicate stable states that appeared in the one-
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different across cells, indicating the increase of the positional information in the system and

the embellishment of differential cell states (Fig 4A and 4B). Gene A expression, influenced by

neighboring cells, led to varied stable states in cells with differing degrees of inhibition, consis-

tent with Boolean model findings (S9A and S9C Fig). Moreover, transforming gene A’s intra-

cellular self-activation to constitutive expression aligned with the Boolean model’s network O2

(Figs 4C, S3B and Eq S4). Despite lacking self-activation, the system still exhibited spontaneous

pattern formation, highlighting the significance of the lateral inhibition motif (Fig 4B and 4C,

see S1 Appendix for detail).

Analyzing three genetic networks under continuous expressions revealed that noise resis-

tance varied (S1 Appendix). In generation 3, the system regulated by constitutive expression

showed the highest noise resistance. In network O1, when intracellular self-activation and

intercellular lateral inhibition are integrated through an AND-gate instead of an OR-gate, the

pattern generated is more noise-resistant (Fig 4D). All networks experienced decreased noise

resistance in generation 4 (S9F Fig).

We also applied the continuous model to simulate the two-gene growing system. By scan-

ning the parameter space for network T1, we found that the stable expression pattern of genes

A and B in generation 4 would match that of the Boolean model in the continuous model if

gene A was AND-gate and gene B was AND-gate or OR-gate (S1 Appendix). The simulation

results in pattern formation are consistent with the Boolean model (Figs 4E and S10). How-

ever, the continuous adaptation of the T1 model did not mirror the bi-stability pattern exhib-

ited by gene B in the Boolean model, unless an intracellular self-activation was introduced (see

S1 Appendix). This modified network, referred to as T6, showcased even more distinctive cell

states in generation 4 (see S11D Fig). Nevertheless, when it comes to noise resistance, T1 dem-

onstrated superior performance compared to T6 (Fig 4F).

Mechanisms of the embryo increase its positional information in the early

development of C.elegans
We sought to investigate the applicability of our concise mathematical framework to biological

phenomena, particularly in relation to the development of C. elegans. This organism has long

been recognized as a model for studying developmental processes due to its highly predictable

lineage specifications that occur independently of external cues. To assess the accuracy of our

framework, we utilized published experimental data from studies investigating cell-cell contact

relationships and gene expression patterns during the early stages of C. elegans embryo devel-

opment [18,49–53]. Using this available data, we digitalized the cellular states by binarizing

their gene expressions, then performed calculations to determine the positional information

and potential information at different time points during C. elegans embryo development,

starting from the fertilized egg up until the 200-cell stage (Fig 5A, See S1 Appendix for details).

Remarkably, our calculations revealed that the embryo possesses more than 5.0 bits of posi-

tional information by the time it reaches the 200-cell stage (See S1 Appendix for details). Nota-

bly, the positional information exhibits a clear and incremental trend, closely following the

increases in potential information as development progresses (Fig 5A). This evident and

dimensional division-decision growing system under the regulation of genetic network T1. (f). To make the cell state

update with a certain probability of mistake, noise is introduced to the growing system. The noise that occurred during

cell state update is depicted on the left panel. And the relationship between the probability of cell state update mistakes

and pattern accuracy at various cell cycle lengths was illustrated in the right panel. (g). The left panel illustrates a

representative instance of asynchronous cell division, while the right panel delineates the relationship between the

standard deviation (σ) of cell cycle lengths and the accuracy of patterning under conditions of asynchronous division.

https://doi.org/10.1371/journal.pcbi.1011882.g003
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Fig 4. The spatiotemporal expression patterns of genes in the continuous model and the noise resistance of

particular patterns. (a). The AND-gate regulatory function of the genetic network O1 in the continuous model and the

spatiotemporal expression pattern of gene A simulated by this function. (b). The OR-gate regulatory function of the

genetic network O1 in the continuous model and the spatiotemporal expression pattern of gene A simulated by this

function. (c). The OR-gate regulatory function of the genetic network O2 in the continuous model and the

spatiotemporal expression pattern of gene A simulated by this function. (d). Resistance to noise (λ) of patterns

generated in generation 3 under various regulatory settings in single-gene systems. (e). The spatiotemporal expression

patterns regulated by the genetic network T1 in the continuous model, and corresponding equations which regulate

this pattern formation. (f). Resistance to noise (λ) of patterns generated in generation 4 under various regulatory

settings in two-gene systems.

https://doi.org/10.1371/journal.pcbi.1011882.g004
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Fig 5. Examples of positional information increase during C.elegans embryonic development. (a). Positional

information and potential information are estimated at each step of the development of the C.elegans embryo, from the

fertilized egg to the 200-cell stage. The cell state is defined by the binarized gene expression profiles. Different states are

marked by different colors, and named by the lower case of the first cell entering this state. (b). ABa cell transitions

from the old cell state “ab” to the new cell state “aba” because it is not in contact with P2 cell during the 4-cell stage. (c).

At the 12-cell stage, cell ABarp inherited the cell state "aba" and changed to "abarp" upon contact with C cell. Although

the cell ABpra is also in contact with the C cell, its inherited cell state is "ab", so its cell state does not change.

https://doi.org/10.1371/journal.pcbi.1011882.g005
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consistent rise in positional information throughout development, without external sources,

demands mechanistic explanations.

During the incipient stages of C. elegans embryo development, evidence suggests that neigh-

boring cells provide cells with potential information (Fig 5B). Also, the significance of asymmet-

ric cell divisions cannot be ignored, particularly in how cell polarity established prior to

division. Our model integrates these elements by accounting for the inherent cell polarity and

examining the influence of intercellular interactions on fate determination post-division. Specif-

ically, at the 4-cell stage, cells ABa and ABp, progenies of progenitor cell AB, inherit the same

"ab" cell state and equally express the Notch receptor. The anteroposterior disposition of ABa

and ABp is contingent upon the polarity that progenitor cell AB establishes before division.

Concurrently, the caudal cell P2 expresses the Delta ligand. Prior to the signaling event, the

four-cell system exhibits three cell states, representing 1.5 bit of positional information. Mean-

while, cell P2 interacts with cell ABp, but not with cell ABa. Therefore, in a concatenated matrix

that includes the states of each cell and their neighboring cells, there is 2.0 bit of potential infor-

mation. During the signaling event, the Notch-Delta signal pathway prevents cell ABp from

activating a specific set of genes associated with the "aba" state. As a result of lacking contact

with cell P2, cell ABa transitions from the "ab" cell state to the "aba" cell state. Subsequently, all

four cells demonstrate different gene expression states, resulting in the embryo possessing 2.0

bit of positional information. Hence, the spatial contact between cells conveys potential infor-

mation regarding this event. This also underscores the interplay between intrinsic asymmetric

divisions and extrinsic contact-mediated signaling in the developmental process.

In the 12-cell stage of C. elegans development, a noteworthy example involves the cells

ABala, ABalp, ABara, and ABarp, all inheriting the common cell state "aba" from the ABal cell.

The subsequent divergence in cell fate arises from the distinct interactions each cell has: ABalp

interacts with MS, while ABarp interacts with the cell C. Consequently, ABalp adopts the

"abalp" cell state, while ABarp transitions into the "abarp" cell state (depicted in Fig 5C). This

process exemplifies the acquisition of positional information by the difference in neighboring

cell states.

Simultaneously, another fate specification demonstrates how lineage inheritance contrib-

utes to the system’s acquisition of positional information. Descendants from ABar, including

cells ABpla, ABplp, ABpra, and ABprp, all share the "ab" cell state due to their lineage connec-

tion with ABar. While cells inheriting the "aba" cell state transform into the "abarp" cell state

upon contacting cell C, as exemplified by ABarp, those inheriting the "ab" state remain

unchanged even in contact with cell C, such as cell ABpra (Fig 5C). In this scenario, the posi-

tional information distinguishing ABarp and ABpra arises not only from the state of neighbor-

ing cells but also from the inherent state of the cells themselves, inherited through their

maternal lineages.

Discussion

How cells “know” their fates has long been a mystery in the field of embryonic development.

To form a viable multicellular organism, organisms not only need to spontaneously generate

patterns with complex local order, but also need to reproducibly form the same pattern in each

embryogenesis process with little or even no external clues. In this study, we employ a one-

dimensional division-decision model to investigate the mechanism by which a growing system

acquires and amplifies positional information. Under this framework, the mechanism of infor-

mation growth becomes clear. The cellular contacts C, together with the current expression

states S, form the potential information source manifested in the concatenated matrix [S,C�S].

Diversity in expression states and the number and state of nearby cells jointly promote the
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variety of the concatenated matrix, resulting in a higher potential information than the posi-

tional information currently contained in S. Appropriate genetic networks translate the poten-

tial information contained in the concatenated matrix ([S,C�S]) into the updated expression

states, resulting in an increase in the positional information. These findings provide a novel

and intuitive framework for understanding the genesis of information, and offer new insights

into the process of embryonic development.

Our investigation emphasizes the critical importance of system growth in the spontaneous

emergence of complexity in embryonic development. Cell division plays a vital role in this pro-

cess by having multifold effects on the system. Firstly, cell growth increases the number of cells

in the system, providing the basic material for development. Secondly, each division preserves

"histories" of the system via pedigreed inheritance from mother to daughter cells, enabling

cells to make different fate decisions in response to the same external signals. Furthermore,

cell division alters the spatial contact of the daughter cells and provides the system with addi-

tional spatial clues, such as border and inside. For example, in our one-dimensional division-

decision system, the first information leap occurs at the start of the 4-cell stage, where the divi-

sion from 2 cells into 4 cells begins to set the difference in neighboring states. Such distinctions

in "border" and "inside" spontaneously emerge as the system grows, allowing appropriate

genetic networks to perform "edge detection," which is one strategy in synthetic biology to

establish the initial heterogeneity of cellular states [54,55].

The importance of cell division in pattern formation has been noticed by previous research-

ers. S. Kondo and Rihito Asai discovered as early as 1995 that the strip patterns of Poma-
canthus vary as the skin grows [56]. David G. Mı́guez et al. and Christopher Konow et al.

found that in a system with continuous growth in one direction or radial direction, the orien-

tation of stripes is associated with the growth velocity at the system boundary [57,58]. E. Cram-

pin et al. examined pattern formation under various growth settings and demonstrated that

the pattern’s robustness was affected by the forms of growth [59,60]. However, when basin size

is taken into consideration, we observed that cell division acts as a "funnel" to escort the system

into high-information states. These high-information states themselves are highly unlikely in a

system with a constant size due to their small basin size. In future research, exploring the role

of cell division and system growth in other developmental processes and organisms would be a

fascinating direction to pursue.

Appropriate genetic networks convert the potential information into explicit spatial infor-

mation, realizing a cascade of information amplification. Our study has identified lateral inhi-

bition as the basic network motif for this spontaneous information genesis under local

signaling. In biological systems, lateral inhibition has been suggested to play a crucial role in

pattern formation by establishing boundaries between different regions of the developing

organism [61–63]. For instance, it is well established that the Notch signaling system performs

lateral inhibition and is critical for early development [64,65]. In the salt-and-pepper pattern,

lateral inhibition of the Delta and Notch genes in the Notch signaling pathway mediates the

establishment of a boundary between neighboring cells [66]. In such a salt-and-pepper system,

each cell tends to have a different cell state than its neighbors [27,67]. The Delta and Notch

regulatory network can be simplified to our previously screened genetic network O1 in the sin-

gle-gene system. Besides the ligand Delta, the ligand Jagged of one cell also interacts with the

Notch receptor of its neighboring cell, causing the Notch Intracellular Domain (NICD) to be

released. However, the released Notch Intracellular Domain represses Delta while activating

Jagged. As a result, the intercellular inhibition network can be established by Notch and Delta,

whereas the intercellular activation network can be produced by Notch and Jagged. Previous

research found that increasing Delta production resulted in the formation of alternative cell

states pattern, while increasing Jagged production caused all cells to have the identical cell state
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[40,68]. These results are consistent with our findings that intercellular lateral inhibition regu-

lates cells to have different cell states, thereby increasing the system’s positional information,

while intercellular lateral activation regulates all cells to reach the same cell state, thereby

decreasing the system’s positional information.

There is still much to be explored within our basic mathematical framework. The current

framework considers that cell-cell signaling in space and inheritance of mother-cell states over

time provide potential information, which serves as the foundation for cells to differentially

update their gene expressions. However, it is also known that a cell’s expression state can influ-

ence its movement, division orientation, and cell cycle duration, thereby forming a feedback

loop of information amplification [69–71]. Furthermore, the mechanisms by which gene

expression status affects division and location are also encoded in the genome [24,72]. Thus,

future investigations should focus on how potential information originates from an all-cell-

identical genome encoding, to fully understand the spontaneous emergence of complexity

during embryonic development.

On the other hand, our current findings indicate that noise-induced fluctuations in gene

expression levels can trigger state transitions in cells, reducing the positional information in

multicellular stable states within the one-dimensional systems. From this perspective, since

multicellular stable states with high positional information have smaller basin sizes, noise can

cause the system to escape these states and develop towards others with lower positional infor-

mation, which is disadvantageous for the system. However, previous studies have confirmed

that noise can have not only negative effects on biological systems but also positive ones. For

instance, during embryonic development, gene expression noise can enhance the robustness

of organization by promoting cellular plasticity, allowing the embryo to correct organizational

errors induced by dynamic cellular movements [73]. Moreover, noise in hoxb1a/krox20
expression has been shown to promote the sharpening of boundaries between adjacent seg-

ments [74]. Therefore, in future research, we are also interested in exploring the potential ben-

eficial effects of noise on positional information.

In conclusion, our research contributes a valuable quantitative framework for understand-

ing the spontaneous emergence of complexity during early embryogenesis, which has implica-

tions not only in developmental biology but also in the field of synthetic biology. Our

framework serves as a solid foundation and offers promising avenues for future research. It

provides a valuable tool for quantitative analysis and optimization in the design of self-devel-

oping multicellular systems, both in fundamental research and industrial applications [75–78].

By establishing a quantifiable framework for understanding how complexity grows, research-

ers can define optimization functions for rational design. Firstly, it allows for computational

exploration of "optimal" state-decision networks that maximize the transfer of potential infor-

mation to positional information, taking into account lineage and spatial proximity relation-

ships. Secondly, given a specific state-decision network, computational derivation of spatial

arrangements capable of generating complex patterns becomes possible. Therefore, our frame-

work serves as a blueprint for the rational design of complex patterns in synthetic biology,

facilitating a deeper understanding of the mechanisms underlying the spontaneous generation

of complexity.

While our research offers an initial step towards understanding the spontaneous growth of

complexity during embryogenesis, it is important to recognize its limitations. One of these

limitations is that our mathematical model only considers cell distribution in one dimension.

In the real world, embryogenesis occurs in two or three dimensions, where the position of cells

in space could have a greater impact on the system’s positional information [17,26,79]. Due to

the one-dimensionality of the system, for instance, there are only three conceivable neighbor

configurations: no neighbors, one neighbor, and two neighbors. As a consequence, cells in the
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system may only be able to recognize the system’s edges and central region. The spatial

arrangement of cells in a two-dimensional or three-dimensional system, however, may provide

more potential information to the system because the number of neighbors of a cell can be sig-

nificantly increased in these dimensions and there are numerous options for how to arrange

the nearest neighbors. Future research should consider expanding the current model to

include more dimensions to better understand the principles of gaining positional informa-

tion. Another limitation of our model is that it only includes local signaling between nearest

neighbor cells, while in biological systems, long-range regulation based on diffusible molecules

is also important [80–82]. To account for this, future research should consider the effect of

combined short- and long-range regulations on the system’s positional information. Addition-

ally, in our simulation, we focused on the scenario in which cells divide after reaching a stable

state. However, in reality, cells do not always reach stable states within one cell cycle, and

same-generational cells do not always divide simultaneously [53,83–85]. Further research

should investigate the relationship between the duration of the cell cycle and the time it takes

for cells to reach a stable state, the order in which cells divide within a generation, and how

these factors impact pattern formation.

Method

Dynamical model for the one-dimensional division-decision system

Through gene-regulatory networks and cell-cell signaling, genes within a cell or between

neighboring cells can activate or inhibit each other. These interactions between genes are

genetically encoded, and we refer to each set of interactions as a "genetic network."

We developed a one-dimensional multicellular model in which all cells were derived from a

single ancestor cell and shared identical genetic codes for cell state decisions (Fig 1A). The

gene expression profiles of each cell were influenced by the states of its neighboring cells. Addi-

tionally, cell division occurred over time, and daughter cells inherited the expression states of

their mothers. The system was designed to simulate the emergence of spatial patterns in one-

dimensional space as the system grows.

This dynamical model is based on the Markov process, and the following rules are used to

change the gene states and cell arrays:

1. Update of the gene expression states by the genetic network. Genes and cells can

interact with or regulate each other, i.e., activation, inhibition, etc. in many different ways,

which can be encoded genetically. We define each set of interactions of genes and cells a

“genetic network”.

The state of the i-th cell at time t was characterized by its gene expression profile G!iðtÞ ¼
g1
i ðtÞ; g

2
i ðtÞ; . . . ; gni ðtÞ

� �
(n denotes the number of genes in the cell). G!i could be composed by

one or multiple genes, depending on the model assumptions. Changes in G!iðtÞ were deter-

mined by the intracellular interactions quantified by the genetic network, as well as the inter-

cellular interactions with neighboring cells (cell i+1 and i-1) quantified by the cell-cell

signaling based on the identical genetic network:

G!iðt þ 1Þ ¼ f G!iðtÞ;G
!

neighborsðtÞ
� �

ðEq 1Þ

In the first step, for simplicity, gene activity was set to binary form (1 for ON and 0 for OFF

states), and the effect of genes on the dynamics takes the form of weighted summation.
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Specifically, Eq 1 turns into the following form:

gpi ðt þ 1Þ

¼ f
Xn

q¼1

ap;qi;i g
q
i ðtÞ;

Xn

q¼1

ap;qi;i� 1g
q
i� 1ðtÞ;

Xn

q¼1

ap;qi;iþ1g
q
iþ1ðtÞ

 !
ðEq 2Þ

(i = 1, 2, . . ., m; p = 1, 2, . . ., n)

In Eq 2, m denotes the number of cells; n indicates the number of genes involved in deter-

mining cell state and cell-cell signaling. The parameter ap;qi;i weights the regulation from the q-

th gene in the i-th cell to the p-th gene in the i-th same cell. This regulation, which depends on

the genetic network, could be an activation interaction (ap;qi;i >0), an inhibition interaction

ap;qi;i < 0
�

), or an absence of interaction between the q and p genes (ap;qi;i ¼ 0)[38]. The first term

in the right side of the bracket (
P

n
q¼1

ap;qi;i g
q
i ðtÞ) depicts how genes within the i-th cell regulate

each other, and ap;qi;i represents the genetic network within a cell. The second and third terms in

the right side of the bracket depicts how the left (i—1) and right (i + 1) neighbors influence the

gene expressions in cell i, and ap;qi;i� 1(or ap;qi;iþ1) represents cell-cell signaling based on the genetic

network between adjacent cells. Together, the genetic network (ap;qi;i and ap;qi;i�1) is identical for

all cells, and controls the dynamics of G!iðtÞ.
The status of the whole system composed of m cells, S, is composed by the expression states

of all cells: S ¼

G!
1

. . .

G!m

0

B
B
@

1

C
C
A, in the form of a m × n matrix. Without a morphogen gradient, only

cells in direct contact can signal to each other, and we use the m ×m cell-contacting matrix C
to represent this adjacency relationship. The signaling effect directly perceived by each cell, is

the product of the expression states and the contact relationship, C�S. Therefore, by Eqs 1 and

2, the updating of the system status by cell state changes can be abbreviated as:

Sðt þ 1Þ ¼ FðA � ½SðtÞ;CðtÞ � SðtÞ�Þ ðEq 3Þ

In this equation, A represents the ap;qi;i and ap;qi;i�1. It is an abstraction of the genetic network

that is identical for all cells in the system. The concatenated input matrix, [S,C�S], combines

the expression profiles of each cell with their contact relationships, from which each cell can

updates its expression state.

2. Update of the system size by cell division. As growth continued, cells in the system

divided once every cell cycle length (termed a “generation”), inheriting the states of their

mother cells. For example, after one generation, the initial cell (i = 1), was divided into two

daughter cells (i = 2, i = 3), and each daughter cell inherited the mother cell’s current gene

expression profile: G!
2
tdivisionð Þ ¼ G!

3
tdivisionð Þ ¼ G!

1
tdivisionð Þ. One of the two newly generated cells

occupied the original mother cell’s position, while the other randomly selected a position to

the left or right of its sibling cell, then other existing cells on the left or right side would be

shifted to far positions. If there were no cells on the left or right, this direction would be occu-

pied preferentially. Therefore, as cells divide, the states of cell-contact signaling would change.

The cell contact matrix C updates after every cell division. Each generation consists of multiple

updates of the gene expression states, as determined by Eq 2, to ensure the system reaches a

stable steady-state or stable oscillation under the current number of cells. To ensure that cells

in each generation reached stable states during genetic networks screening procedure, gene

expression in each generation was updated 20 times throughout the simulation. To prevent the
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system from introducing extra information, we also assumed that all cells of the same genera-

tion divide simultaneously.

Enumeration of single-gene and two-gene networks

We enumerated genetic networks consisting of one and two genes. In the single-gene network,

the state of a cell was determined by only one gene within the cell: G!iðtÞ ¼ g1
i ðtÞ

� �
. We consid-

ered all possible one-gene regulations, including all possible intracellular and intercellular

interactions, as described by each of its two edges (Fig 1B). There is one edge in the intracellu-

lar interaction and one edge between genes in neighboring cells. In this binary model, each of

these edges can be an activation interaction (1), an inhibition interaction (-1), or an absence of

interaction (0) between the two genes. There are therefore 32 = 9 possible types of genetic net-

works (S2A Fig). Based on the aforementioned division-decision model, we simulated this

dynamic system starting from a single cell under all possible one-gene networks.

In the two-gene system, the state of one cell was determined by the expression profile of

two genes in the cell: G!iðtÞ ¼ g1
i ðtÞ; g

2
i ðtÞ

� �
. We also considered all possible two-gene networks

(Fig 2A). There are eight edges among four genes in two adjacent cells, and each edge can indi-

cate an activation (1), inhibition (-1), or absence (0) of interaction between the two genes it is

associated with. These forms 38 = 6561 possible genetic networks. Similarly, we simulated this

two-gene division-decision system under all possible genetic networks.

Evaluation of the reproducible diversity by positional information

At each step of the system’s growth, we calculated the positional information corresponding to

the current cell states G!iðtÞ ¼ g1
i ðtÞ; g

2
i ðtÞ; . . . ; gni ðtÞ

� �
(i = 1, 2, . . ., m; m represents the current

number of cells in the system). Positional information (PI(state,position)), defined as the

reduced uncertainty of gene expression states given the cellular position, quantifies both diver-

sity and reproducibility [16].

PIðstate; positionÞ ¼ HðstateÞ � Hðstate j positionÞ ðEq 4Þ

In Eq 4, "state" refers to the gene expression profile of the cell, denoted by

G!iðtÞ ¼ g1
i ðtÞ; g

2
i ðtÞ; . . . ; gni ðtÞ

� �
, while "position" refers to the spatial location of the cell. H

(state) term represents the diversity of cell states in the system. Shannon entropy is used to

measure the uncertainty or randomness of a probability distribution. In this case, H(state) is

calculated based on the states of m cells, where each cell has a gene expression profile denoted

by G!iðtÞ ¼ g1
i ðtÞ; g

2
i ðtÞ; . . . ; gni ðtÞ

� �
. H(state|position) term represents the conditional entropy

of the gene expression states given the cellular position. Conditional entropy measures the

remaining uncertainty of a random variable (cell state) given the knowledge of another ran-

dom variable (position). In this context, H(state|position) captures how much uncertainty in

cell states can be reduced by knowing the spatial location of the cells. By subtracting H(state|
position) from H(state), we obtain the positional information (PI) for the current system. PI
(state, position) quantifies the reduced uncertainty or increased information about cell states

when considering the cellular position. It represents both the diversity and reproducibility

aspects of the system.

S1A Fig depicts two scenarios of calculating positional information for a simple one-dimen-

sional system with 24 cells, each having 4 potential states. To measure the uncertainty for the

two systems we assess the frequency of each state and calculate the total entropy (H(state) =

2.00 bit for the left system and 1.98 bit for the right systems). In the left system, since the gene

expression levels within cells are rigidly governed by regulatory rules without any variance
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from internal or external noise, cell states are entirely determined by their positions, resulting

in a conditional entropy of 0 bit. Conversely, the right system incorporates variability through

both regulatory rules and stochastic influences, manifesting in reduced consistency of cell

states at identical positions and a non-zero conditional entropy of 0.68 bit. The positional

information for each system is then determined by subtracting the conditional entropy from

the total entropy. Consequently, the first system has 2.0 bit of positional information, while the

second system has 1.32 bit.

By considering the positional information, we can quantify how much uncertainty in cell

states is reduced given the cellular position. This reduction in uncertainty indicates that certain

states are more reproducible or restricted to specific spatial locations, leading to an increase in

positional information.

In addition to positional information, we also defined the concept of “potential informa-

tion”. At each step of the system update, the concatenated input matrix [S,C�S] in Eq 3 provides

each cell with the cell-specific input for cell state decisions. Therefore, the mutual information

between [S,C�S] and cellular position is defined as “potential information”, as it offers potential

differences between cells. This potential information needs to be processed by the identical

genetic network A to finally update the expression profiles.

Supporting information

S1 Appendix. Detailed description of the division-decision model and the experimental

data set.

(DOCX)

S2 Appendix. Table about the genetic networks of C.elegans with positional information.

(XLSX)

S3 Appendix. Table about the booleanization of C.elegans gene expressions.

(XLSX)

S4 Appendix. Table about the cell contact relationships in C.elegans.
(XLSX)

S5 Appendix. Related code and data for this manuscript.

(ZIP)

S1 Fig. An example of how positional information is calculated. (a). Shannon entropy of cell

states minus conditional entropy of cell states equals positional information. The conditional

entropy is low (left table) if the cell state (cell states are displayed in different colors) is defined

according to the position in several samples; if the cell state is still uncertain when the position

is given, the conditional entropy is large (right table).

(TIF)

S2 Fig. Multicellular stable states of four cells regulated by nine genetic networks. (a). Start-

ing with high levels of gene A expression in neighboring four cells, systems can achieve numer-

ous multicellular stable states under the regulation of different genetic networks when the

number of cells in the system is kept constant at four

(TIF)

S3 Fig. The modified gene expression update function regulates the generation of maxi-

mum positional information patterns in the single-gene system. (a). Modified gene expres-

sion update function. This modified function determines the gene expression state in the next

time step based on the sum of all associated gene expression states in the current time step plus
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one. (b). The genetic network which controls maximum positional information pattern forma-

tion in the single-gene system. (c). The pattern of gene expression varies over time in a single-

gene system regulated by the genetic network O2. At step 8, the system obtains 1.0 bit posi-

tional information. The time-course of positional information is calculated and shown in the

right of the pattern. The binarized gene A expression level determines the cell state. Green cir-

cles represent gene A expressed while yellow circles represent gene A unexpressed. (d). The

relationship between positional information and time in the growing system regulated by the

genetic network O2. (e). Mechanisms of increased positional information in the single-gene

system. The maximum positional information 1.0 bit is created by the new space network

resulted from cell division. Cell 4, cell 5, cell 6, and cell 7 inherit cell states from their mothers

when cell 2 and cell 3 divide. The expression state matrix (S) and the cell-contacting state

matrix (CS) comprised the concatenated matrix ([S,C�S]), which changed after cell division.

The new concatenated matrix contains 1.0 bit potential information which could potentially

distinguish different two cell states. With the time moving forward, updated cell states accord-

ing to the genetic network O2 in (b), cell 5 and cell 6 acquires new cell states. At same time,

positional information in 4-cell stage increases to 1.0 bit.

(TIF)

S4 Fig. Under distinct starting cell state settings, networks T1 and T1’ regulate the spatial

and temporal pattern of two genes’ expression. (a). Genetic network T1’ in the two-gene sys-

tem that regulates maximum positional information pattern formation in a stable state starting

with the cell state G!
1
tinitialð Þ ¼ gA

1
tinitialð Þ ¼ 0; gB

1
tinitialð Þ ¼ 1

� �
. At step 14, system reaches 2.0 bit

positional information. (b). Genetic network T1 in the two-gene system that regulates maxi-

mum positional information pattern formation in a stable state starting with the cell state

G!
1
tinitialð Þ ¼ gA

1
tinitialð Þ ¼ 1; gB

1
tinitialð Þ ¼ 1

� �
. At step 14, system reaches 2.0 bit positional infor-

mation. (c). Genetic network T1’ in the two-gene system that regulates maximum positional

information pattern formation in a stable state starting with the cell state

G!
1
tinitialð Þ ¼ gA

1
tinitialð Þ ¼ 1; gB

1
tinitialð Þ ¼ 1

� �
. At step 14, system reaches 2.0 bit positional infor-

mation.

(TIF)

S5 Fig. The modified gene expression update function regulates the generation of maxi-

mum positional information patterns in the two-gene system. The diagram of transition

linkages among four cell states, the relationship between positional information and time, and

the time-space pattern of gene expression are depicted under the regulation of the genetic net-

work T2 (a), T3 (b) and T4 (c), respectively.

(TIF)

S6 Fig. Motif features in the two-gene system with two different initial cell states. (a). Sche-

matic diagram of intracellular and intercellular regulatory motifs. (b). With the initial cell

state: gA
1
tstartð Þ ¼ 1; gB

1
tstartð Þ ¼ 0, relationships between maximal positional information and

the proportion of times the corresponding regulatory motif occurs. The proportion of intracel-

lular self-inhibition and intercellular direct-lateral-activation motifs occurrence are negatively

correlated with the maximum positional information. While the proportion of intercellular

direct-lateral-inhibition motifs occurrence is positively connected with the maximum posi-

tional information. (c). With the initial cell state: gA
1
tstartð Þ ¼ 1; gB

1
tstartð Þ ¼ 1, relationships

between maximal positional information and the proportion of times the corresponding regu-

latory motif occurs. The proportion of intracellular self-inhibition and intercellular direct-lat-

eral-activation motifs occurrence are negatively correlated with the maximum positional

information. While the proportion of intercellular direct-lateral-inhibition motif occurrence is
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positively connected with the maximum positional information. (d). With the initial cell state:

gA
1
tstartð Þ ¼ 1; gB

1
tstartð Þ ¼ 1, the proportion of occurrence of direct lateral inhibition, indirect

lateral inhibition, and no lateral inhibition under various higher than 1.0 bit maximum posi-

tional information.

(TIF)

S7 Fig. A modified model in which one endpoint has a fixed special cell that does not

divide or go through cell state updates. (a). The modified model with a fixed special cell is

depicted in this diagram. The cell that is fixed at one end does not divide, and the state of the

cell remains the same. With the exception of the fixed cell, all other cells have the ability to

divide and update their states. Various colors are used to indicate different cell states. (b). An

example of the genetic network (T5) that regulates four blocks pattern formation at the 9-cell

stage. (c). The time-space pattern of gene expression that is regulated by the genetic network

T5 in (b). The system divides four discrete blocks with various cell states at the 9-cell stable

state. (d). With the initial cell state: gA
1
tstartð Þ ¼ 1; gB

1
tstartð Þ ¼ 1: and fixed cell state: gAfixedðtÞ ¼

1; gBfixedðtÞ ¼ 1; the proportion of occurrence of direct lateral inhibition, indirect lateral inhibi-

tion, and no lateral inhibition under various block numbers. (e). The distribution of motif

ratios associated with different block numbers with the initial cell state: gA
1
tstartð Þ ¼

1; gB
1
tstartð Þ ¼ 1 and fixed cell state: gAfixedðtÞ ¼ 1; gBfixedðtÞ ¼ 1. (f). Relationships between maxi-

mal positional information and the proportion of times the corresponding regulatory motif

occurs with the initial cell state: gA
1
tstartð Þ ¼ 1; gB

1
tstartð Þ ¼ 1 and fixed cell state:

gAfixedðtÞ ¼ 1; gBfixedðtÞ ¼ 1. The proportion of intercellular direct-lateral-activation motif occur-

rence is negatively correlated with the maximum positional information. While the proportion

of intercellular direct-lateral-inhibition motif occurrence is positively connected with the max-

imum positional information. (g). The fraction of occurrence of direct lateral inhibition, indi-

rect lateral inhibition, and no lateral inhibition under varied higher than 1.0 bit maximum

positional information with the initial cell state: gA
1
tstartð Þ ¼ 1; gB

1
tstartð Þ ¼ 1 and fixed cell state:

gAfixedðtÞ ¼ 1; gBfixedðtÞ ¼ 1.

(TIF)

S8 Fig. Impact of state update perturbations and asynchronous cell division on the stability

of multicellular states. (a). When there are only two cells in the system, there are 16 possible

initial multicellular states, but only 10 are stable under the regulation of the genetic network

T1. The basin size for a stable state is the number of initial multicellular states that converge to

it. (b). In a fixed system with four cells, there are 256 possible initial multicellular states, how-

ever only 66 of these multicellular states are stable under the regulation of the genetic network

T1. (c). When cell cycle length equals seven, the relationship between the probability of cell

state update mistakes and pattern accuracy under the regulation of different genetic networks.

(d). When the average cell cycle length equals seven, the relationship between the standard

deviation (σ) of cell cycle length and pattern accuracy under the regulation of different genetic

networks.

(TIF)

S9 Fig. Phase portraits in the single-gene system. (a). The phase portrait of gene A corre-

sponding to Eq S2. Colored dashed lines represent zero-solution lines for various external

parameters. (b). When the expression of gene A is controlled by Eq S2, the relationship

between gene A’s fixed points and the expression level of gene A in neighboring cells. (c). The

phase portrait of gene A corresponding to Eq S3. Colored dashed lines represent zero-solution

lines for various external parameters. (d). When the expression of gene A is controlled by Eq
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S3, the relationship between gene A’s stable states and the expression level of gene A in neigh-

boring cells. (e). When the expression of gene A is controlled by Eq S4, the relationship

between gene A’s stable states and the expression level of gene A in neighboring cells. (f). Resis-

tance to noise of patterns generated in generation 4 under various regulatory settings in single-

gene systems.

(TIF)

S10 Fig. Phase portraits in the two-gene system corresponding to the genetic network T1.

(a). When the expression of gene A in the genetic network T1 is described by Eq S2, the rela-

tionship between gene A’s stable states and the expression level of gene A in neighboring cells.

(b). When the expression of gene B in the genetic network T1 is described by Eq S12, the intra-

cellular gene B’s stable state value corresponds to two genes in neighboring cells with different

expressions. (c). The spatiotemporal expression patterns regulated by the genetic network T1,

and corresponding equations which regulate this pattern formation. (d). When the expression

of gene A in the genetic network T1 is described by Eq S2, the relationship between gene A’s

stable states and the expression level of gene A in neighboring cells. (e). When the expression

of gene B in the genetic network T1 is described by Eq S13, the intracellular gene B’s stable

state value corresponds to two genes in neighboring cells with different expressions.

(TIF)

S11 Fig. Phase portraits in the two-gene system corresponding to the genetic network T6.

(a). Phase portrait of gene B in the Boolean model corresponding to the genetic network T1.

When gene B’s initial expression level is low, the influence of various variables on its stable

state. Different colors represent different stable state values of gene B. (b). Phase portrait of

gene B in the Boolean model corresponding to the genetic network T1. When gene B’s initial

expression level is high, the influence of various variables on its stable state. Different colors

represent different stable state values of gene B. (c). Eq S16 may regulate the expression of gene

B, resulting in a bistable phase portrait of gene B under a set of particular parameters. Colored

dashed lines represent zero-solution lines for various external parameters. (d). The spatiotem-

poral expression patterns regulated by the genetic network T6, and corresponding equations

which regulate this pattern formation. (e). When the expression of gene A in the genetic net-

work T6 is described by Eq S2, the relationship between gene A’s stable states and the expres-

sion level of gene A in neighboring cells. (f). The phase portrait of gene B corresponding to Eq

S16. Colored dashed lines represent zero-solution lines for various external parameters. (g).

When the expression of gene B in the genetic network T6 is described by Eq S16, the intracel-

lular gene B’s stable state value corresponds to two genes in neighboring cells with different

expressions

(TIF)

S11 Fig. Validation of Booleanization by lineage specifiers. (a). Expression level of lineage

specifier tbx-38 separates the two sublineages in the AB to ABa and ABp division. Colors indi-

cate the expression levels of transcription factor tbx-38 in the descendant lineage of ABa (blue)

and ABp (green). (b). Heat map for distance between pairs of cells on the booleanized

40-dimensional gene-expression space. (c). Heat map for distance between pairs of cells on the

continues 195-dimensional gene-expression space. 186 cells are arranged by their orders on

the lineage tree at time 140. (d). Correlation between the distance between cells calculated

using a Boolean form of gene expression profile (y-axis) and the distance between cells mea-

sured by a continuous form of gene expression profile (x-axis).

(TIF)
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