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Abstract

Recently, novel biotechnologies to quantify RNA modifications became an increasingly pop-

ular choice for researchers who study epitranscriptome. When studying RNA methylations

such as N6-methyladenosine (m6A), researchers need to make several decisions in its

experimental design, especially the sample size and a proper statistical power. Due to the

complexity and high-throughput nature of m6A sequencing measurements, methods for

power calculation and study design are still currently unavailable. In this work, we propose a

statistical power assessment tool, magpie, for power calculation and experimental design

for epitranscriptome studies using m6A sequencing data. Our simulation-based power

assessment tool will borrow information from real pilot data, and inspect various influential

factors including sample size, sequencing depth, effect size, and basal expression ranges.

We integrate two modules in magpie: (i) a flexible and realistic simulator module to synthe-

size m6A sequencing data based on real data; and (ii) a power assessment module to exam-

ine a set of comprehensive evaluation metrics.

Author summary

Sample size and sequencing depth are two essential quantitative factors determined prior

to high throughput sequencing experiments, for statistical power maximization with lim-

ited budget. Due to the complex structure of data from m6A RNA methylation sequenc-

ing, analytical derivations for both quantities remain challenging in experimental designs.

In response to this challenge, we propose a simulation-based statistical framework,

together with a user-friendly R/Bioconductor package magpie, to comprehensively assess

the power of the differential m6A methylation detection at varied sample sizes, effect sizes,

baseline expression levels, and sequencing depths. Using in-silico synthetic data that
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mimic real data well, magpie provides several major evaluation metrics to assist users in

study design and statistical power evaluation.

Introduction

RNA methylation represents another layer of epigenetic regulation in addition to the well-

studied DNA methylation and histone modification. Among different types of RNA methyla-

tion, N6-methyladenosine, i.e. m6A, is the most common form. It has been identified as one of

the post-transcriptional regulatory markers on mRNA, rRNA, tRNA, circRNA, miRNA and

long-noncoding RNA, and plays important roles in regulating pre-RNA splicing, RNA transla-

tion, stability, and degradation [1–3]. The effects of m6A suggest its involvement in multiple

cellular processes such as cell differentiation and reprogramming [4, 5]. Studies also suggest

linkages between the dysregulation of m6A and many human diseases such as cancers and neu-

ral disorders [2, 6, 7].

MeRIP-seq/m6A-seq was developed to characterize transcriptome-wide m6A profiles [8, 9].

This technique typically relies on immunoprecipitation of m6A-containing RNA fragments

(m6A-IP), followed by high-throughput next generation sequencing. These samples are gener-

ally referred to as the IP (immunoprecipitated) samples. In addition to IP samples, cDNA

libraries are also prepared for input control mRNAs to measure the background mRNA abun-

dance. These input controls are essentially the transcriptome from regular RNA-seq. The m6A

methylation level, for each region, is then quantified by the enrichment of IP over input,

roughly the normalized ratio between IP and input control counts. If the m6A enrichment is

significantly high, then the called peak of that region suggests an underlying m6A residue.

MeRIP-seq is becoming a popular and indispensable tool to profile transcriptome-wide m6A,

since the invention of this technique. One feature of MeRIP-seq is that, it immunoprecipitates

each IP sample independently, which can potentially induce technical variabilities. Such tech-

nical artifacts lead to erroneous peak calling of methylated regions. This problem becomes

prominent in studies with small sample sizes [10], which is often the case given the high

expenses associated with the current experimental protocols. As an improved alternative, in

m6A-seq2 [11], a single IP experiment is performed on the pooled RNAs of all samples, where

RNAs from different samples are uniquely barcoded and demultiplexed after sequencing. The

multiplexed profiling procedure by m6A-seq2 is expected to be widely applied to interrogate

the distribution and functional consequences of m6A.

To study the biological implications of m6A, one fundamental task is to identify the Differ-

entially Methylated Regions (DMRs) across different conditions. Although several DMR

detection methods have been developed [12–14] and evaluated [15] in either MeRIP-seq or

m6A-seq2 experiments, the sample size calculation with their associated statistical power

remains an open question due to the complexities of sequencing experiments. Further, due to

the uniqueness in data structure, power analysis tools developed for other types of analyses

such as Differential Expression (DE) gene detection from RNA-seq cannot be applied to

MeRIP-seq and m6A-seq2 experiments. First, data simulated for power assessment in DE gene

detection from RNA-seq are barely equivalent to the input control data alone. No statistical

model is available to generate their matched IP counts. Second, the effect size of methylation

in m6A data analysis is based on the ratios of IP/input, not the input data alone. Therefore, the

count coverage of each gene may affect power and other metrics in a way differing from that

in DE analyses. Additionally, the impact of baseline expression of each gene and sequencing

depth of the whole sample on the power of DMR detection are also unignorable. Therefore, an
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appropriate power analysis tool specifically for epitranscriptome studies is needed, especially

with its increasing popularity. To our best knowledge, no method is currently available.

Here, we propose a comprehensive power evaluation method named magpie (m6A

genome-wide differential analysis power inference). magpie first learns characteristics of real

data, and then synthesizes data that mimics the real data well. In simulations, magpie allows

for the adjustment of sample size, sequencing depth and effect size. It can evaluate the epitran-

scriptome study design using multiple metrics including sensitivity, specificity, precision, false

discovery rate, and more. Building upon these functionalities, magpie fills in the knowledge

gap by providing a comprehensive biostatistical tool for statistical power evaluation, sample

size calculation, and data analysis planning, which are almost always required in general exper-

imental designs. This makes it the first available tool to guide the practical experimental design

by comprehensively investigating the relationship between statistical metrics and associated

factors in m6A differential analysis. magpie is publicly available as an R/Bioconductor package

at https://bioconductor.org/packages/magpie/.

Materials and methods

An overview of magpie
We assess the effect of experimental design on the power of DMR detection purely based on

simulations, where the whole procedure is divided into two components. First, magpie prepro-

cesses .bam files from MeRIP-seq sequencing and obtains read counts in candidate regions

from all samples (Fig 1), where candidates are identified with conditional binomial tests. With

the counts from the identified candidate regions, magpie simulates count matrices for both IP

and Input samples with a Gamma-Poisson model. Parameters involved are estimated from the

candidates to mimic the actual MeRIP-seq data in aspects of marginal distribution read counts,

and the distribution of biological dispersion in methylation levels (Fig 1). With data simulated,

we then evaluate power and error rates on them (Fig 1). The two components, Gamma-Pois-

son simulation and power assessment, are independent so that magpie allows the assessment

on data by different simulation strategies.

Fig 1. Overview of magpie. magpie provides power evaluation for differential m6A methylation analysis. It takes pilot MeRIP-seq data as the input.

Based on the pilot data, it obtains candidate regions, estimates key parameters, and conducts real-data-based simulations for statistical power

evaluation.

https://doi.org/10.1371/journal.pcbi.1011875.g001
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Data generative model

Here we describe how magpie simulates the MeRIP-seq count matrices given existing real

MeRIP-seq data from different conditions. magpie processes .bam files by splitting the tran-

scriptome into bins, aggregating read counts, and testing for significance of IP enrichment

over Input. Using a bump-finding algorithm, significant bins are combined into candidate

regions. magpie then focus on these candidates in simulations, as other regions lack IP enrich-

ment and biological relevance. Suppose there are in total N pairs of IP and Input samples from

all conditions, and M candidate DMRs generated after preprocessing. Let Xij and Yij denote

input and IP counts in candidate DMR i from sample j. We assume that Xij � Poissonðsxj l
x
ijÞ

and l
x
ij � Gammaðaxij; yiÞ. Similarly, Yij � Poissonðsyjl

y
ijÞ and l

y
ij � Gammaðayij; yiÞ. Here sxj and

syj represent the normalizing factors for input and IP samples, such as the library sizes. l
x
ij and

l
y
ij are normalized poisson rates. axij, a

y
ij, and θi are the shape and scale parameters of corre-

sponding gamma distributions. Given above assumptions, naturally
l
y
ij

lxijþl
y
ij
� Betaðayij; axijÞ. Fur-

ther, denote mij ¼
a
y
ij

axijþa
y
ij
, �ij ¼

1

axijþa
y
ijþ1

, then marginally,

Xijjmij; �ij � NBðð1 � mijÞð�
� 1

ij � 1Þ;
sxj yi

1þsxj yi
Þ;

Yijjmij; �ij � NBðmijð�
� 1

ij � 1Þ;
syj yi

1þsyj yi
Þ

ð1Þ

In above equations, μij and ϕij represent the mean and dispersion of the methylation level

for candidate region i in sample j.
We begin by simulating size factors, for which we directly use the values estimated from

real data:

sxj ¼
X

b

xbj=medianf
X

b

xb1; . . . ;
X

b

xbN;
X

b

yb1; . . . ;
X

b

ybNg;

syj ¼
X

b

ybj=medianf
X

b

xb1; . . . ;
X

b

xbN;
X

b

yb1; . . . ;
X

b

ybNg;

where xbj and ybj are read counts in bin b from the jth Input and IP samples.

Next, for each candidate region i, magpie simulates a baseline methylation level μi or equiv-

alently eai in the structure of logðmijÞ ¼ ai þ ZT
j bi where Zj contains the attributes of sample j,

and βi represents corresponding coefficient. To do that, we randomly sample αi from one

parametric distribution, or from its empirical distribution estimated from real data. Distribu-

tions of â i’s from five MeRIP-seq datasets are presented in Fig D in S1 Appendix.

After simulating the baseline methylation, we simulate b
0

is for all regions. Because we can

hardly know the actual number of DMRs and their degree of differential methylation, specific

settings are adopted based on both reasonable assumptions and empirical observations. First,

magpie sets the proportion of DMRs as 10%, assuming that DM is present in only a small sub-

set of regions in most experiments. Then, for non-DMRs, βi = 0. For DMR i, bi ¼ b̂i if its esti-

mated effect size b̂ i is greater than the 50% quantile of all regions. Otherwise, βi* U(1, 2).

Here, b̂ 0is are directly derived from real pilot data, using the DMR detection method TRESS.

The dispersion has been shown to be substantial across several real datasets, which justifies

the necessity of its modeling (Fig F in S1 Appendix). We can simulate it again from a paramet-

ric distribution or sample from empirical distributions. To ensure the robustness, the empiri-

cal distribution can be estimated by TRESS from raw counts or by Beta-binomial regressions
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from normalized counts. Denote ~Y ij and Tij ¼
~Xij þ

~Y ij as the normalized IP and total counts,

the Beta-Binomial regressions are established as follows:

~Y ijjTij � BinðTij; pijÞ

pijjmij; �i � Betaðmij; �iÞ;

logitðmijÞ ¼ ~ai þ zTj ~bi:

ð2Þ

where μij and ϕi represent the mean and dispersion of methylation level. As noted, for the con-

venience of estimation, above Beta-binomial regressions (as well as TRESS) assume ϕij = ϕi for

all j.
Empirically for the same real dataset, �

0

is estimated by the Negative-binomial model in

TRESS are usually greater than those estimated by Beta-binomial regressions. Without golden

truth, our setting for ϕi relies on a data driven approach. Specifically, by comparing to the real

data, magpie will calculate a KL-divergence for each of the synthetic counts by model in (1).

Those �̂ i resulting in a significantly lower KL divergence between simulated data and real data

will be kept for final data generation. If there is no significant difference in KL-divergence, �̂ i

estimated by NB will be adopted.

Lastly, we simulate the scale parameter θi in (1). Again, it can be simulated by parametric

distributions, or sampled directly from empirical distributions. For the parametric distribu-

tion, we set its mean as a function of ϕi observed in the previous peak detection method [14].

No matter the strategy employed, the first-round generated y
0

is will be further scaled by the

fold change between real and first-round simulated counts. Such an adjustment again helps to

reduce the disparity between the simulated and real distributions, thereby improving the reli-

ability of the results in follow-up power assessments.

DMR detection

After generating the simulated read counts in candidate DMRs, an existing software developed

for MeRIP-seq is applied to detect DMRs. We implement an interface for calling TRESS and

exomePeak2. Each method reports test statistics, p-values and FDRs for all candidate regions.

These results are then used for the downstream power assessment. Users also have the option

to adopt other DMR detection methods for their own evaluation, by following our simulation

tutorial with detail instructions at https://github.com/dxd429/magieSims. This resource

enables users to conduct their own analyses using the synthetic data generated by our simula-

tion and evaluation framework.

Power assessment measures

We adopted several evaluation metrics in the statistical power assessment for differential anal-

ysis using MeRIP-seq data. These metrics include classic criteria in hypothesis testings such as

the false discovery rate (FDR), power, and precision. We also inspected the false discovery cost

(FDC, defined below) and targeted power [16], aiming to provide a comprehensive statistical

power evaluation.

Because not all DMRs are of biological interest to us, especially those with low effect sizes,

we introduce a cutoff Δ for the effect size β. Only those DMRs with |β|�Δ are considered as

‘targeted DMRs’, which are of biological interest in research. We denote the number of non-

DMRs, non-targeted DMRs, and targeted DMRs as R0, R1, and R2, respectively. Suppose Tr
represents the testing result of region r, where Tr = 1 denotes the discovered DMR, and Tr = 0

otherwise. The confusion matrix in the DMR detection is summarized in Table 1.
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The false discovery rate (FDR) and precision are statistical metrics that jointly provide

insights into the balance between true and false discoveries among the significant features. In

this context, FDR and precision are defined as E P0

P

� �
and E P1þP2

P

� �
, respectively. Statistical

power is defined, naturally, as E P1þP2

R1þR2

h i
. To investigate the power of detecting targeted DMRs

that are biologically interesting with |β|�Δ, targeted power is introduced and defined as E P2

R2

h i
.

To better illustrate the trade-off between false positives and true positives, we propose an addi-

tional metric, False Discovery Cost (FDC), E P0

P2

h i
, which is defined as the expected number of

false positives per targeted true positive. The rationale behind this is straightforward: this cost

is the expected number of false discoveries, per true discovery we are interested in.

Finally, our proposed evaluation framework allows for the examination of aforementioned

metrics using simulations under various combinations of sample size, sequencing depth, input

expression stratum, and FDR threshold. Each user-defined scenario is repeated for 100 times,

and these metrics are computed and averaged to generate empirical estimations.

Implementation

Given a MeRIP-seq dataset in .bam files, various experimental scenarios (such as sample size,

sequencing depth, FDR threshold, etc.), and a chosen differential methylation testing method,

magpie generates evaluation results for each proposed study design. Functions incorporated in

magpie allow users to export these results in an .xlsx file, and to visualize them through line

plots. Users have the option to provide small pilot data, which could include only several chro-

mosomes. We would estimate major parameters from these pilot data, to guide larger-scale

simulations for power evaluation for future experimental designs. Alternatively, when pilot

MeRIP-seq datasets are unavailable or unattainable, the function quickPower can produce

power evaluation results within seconds. This is achieved by directly extracting our in-house

evaluation results based on three public N6-methyladenosine datasets on GEO as the pilot

data [17–19]. Our package also comes with a vignette that provides thorough instructions and

examples of its applications in differential analysis experimental design on

N6-methyladenosine.

Results

Larger sample size benefits DMR detection

Under simulation settings outlined in Simulation Settings in S1 Appendix, we next examine

the relationship between sample size and power in DMR detection, given that determining

sample size is a primary objective in our method. We adopt sample sizes of 2, 3, 5, 7, and 10

per group, and nominal FDR values of 0.05, 0.1, 0.15, and 0.2, both of which are common

choices in MeRIP-seq experiments. Note that we have validated our synthetic data against the

Table 1. The confusion matrix in m6A DMR detection, when taking biological significance into consideration.

Simulated True Testing Result Total

Tr = 0 Tr = 1

Non-DMR N0 P0 R0

Non-targeted DMR (0 < |β|<Δ) N1 P1 R1

Targeted DMR (|β|�Δ) N2 P2 R2

Total N P R

https://doi.org/10.1371/journal.pcbi.1011875.t001
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pilot data, ensuring that our strategy effectively captures the characteristics of real data (Fig G

in S1 Appendix). The empirical results for major metrics are shown in Fig 2. Grouped by sam-

ple size and nominal FDR level, power, targeted power, FDC, and FDR averaged over 100 sim-

ulations are shown in Fig 2A–2D. For a fixed sample size, metrics like power, FDC, and FDR

diminish under lower FDR thresholds. This occurs as lower FDR values lead to greater strin-

gency, which in turn reduces false positives. The power will drop, as expected, when using

stringent FDRs. As sample size increases, these differences become smaller, particularly for sta-

tistical power (Fig 2A). Here, power remains consistently high across all FDR levels with 7 and

10 replicates per group. This highlights the benefit of using a larger sample size that helps

detect DMRs with limited effect sizes, where a type II error would often occur when the sample

size is small. Such trend is observed consistently when using different pilot data (Fig A in S1

Appendix). At the same time, these results give researchers the knowledge to optimize the sam-

ple size based on their budgets. Using Fig 2A as an example, a power around 0.8 is achieved

with 7 samples per group, and sample size of 7 is considered large in current MeRIP-seq stud-

ies. The benefit of expanding the sample size to 10 is marginal, but the associated costs could

be significantly higher.

Fig 2. Statistical power evaluation metrics for DMR detection, at various sample sizes and FDR thresholds. (A) Power versus

sample size, with each line presenting one FDR cutoff. (B)-(D) Similar to (A) but for other metrics: targeted power, FDC, and FDR.

Targeted power and FDC are computed for DMRs with |β|�2. Each point on the line plots is an averaged value over N = 100

simulations based on real MeRIP-seq data.

https://doi.org/10.1371/journal.pcbi.1011875.g002
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Impact of baseline expression values

It is useful for researchers to understand the effects of heterogeneity in baseline expression lev-

els in DMR detection. In MeRIP-seq data, the basal expression level is represented by input

control read counts, thus we stratify power metrics by input control ranges. Six strata are

obtained based on following quantiles of mean input counts: stratum 1 (0%-10%), stratum 2

(10%-30%), stratum 3 (30%-50%), stratum 4 (50%-70%), stratum 5 (70%-90%), and stratum 6

(90%-100%). At a nominal FDR of 0.05, the average targeted power and FDC for the six strata

are shown in Fig 3A and 3B. Overall, reduced targeted power is observed in the lower strata, a

trend that is more evident when sample sizes are small. This is expected, as true differences in

low-expressed regions are often obscured by noise, making DMRs harder to detect. A limited

sample size further exacerbates this issue. This suggests the potential benefits of increasing the

sequencing depth, particularly when biological replicates are limited and more samples are

hard to obtain. Here, relatively low strata will enjoy the benefit of more drastic power improve-

ment. Interestingly, higher FDCs are reported in the upper strata, suggesting that more false

positives are detected per true discovery in these highly expressed regions. However, this trend

diminishes with increasing sample size. Given that these metrics were computed across various

simulation scenarios, we further explore the variability of the results, using visualizations

within a specific stratum and sample size in Fig 3C–3F. With elevated sample sizes, there is

reduced variability in both targeted power and FDC (Fig 3C and 3D). This is not surprising

since it is more likely to capture the true dispersion with more replicates, leading to more con-

sistent power estimates. However, this trend is not observed across the strata at a fixed sample

Fig 3. Targeted power and FDC stratified by mean input values for DMRs with |β|≥2. Six strata are defined based on input count data

quantiles: stratum 1 (0%, 10%), stratum 2 (10%, 30%), stratum 3 (30%, 50%), stratum 4 (50%, 70%), stratum 5 (70%, 90%), and stratum 6 (90%,

100%). A nominal FDR value of 0.05 is used to define significance. (A), (B) Mean targeted power and FDC along strata. Each line represents

one sample size choice. (C), (D) Targeted power and FDC distributions in stratum 3, separated by sample size. (E), (F) Targeted power and

FDC distributions with 5 replicates per group, stratified by mean input count values. N = 100 simulations are conducted.

https://doi.org/10.1371/journal.pcbi.1011875.g003
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size, suggesting the benefit of increasing sample size over sequencing depth for more reliable

inferences. Under a fixed sample size (Fig 3E and 3F), an upward trend is observed across the

strata for both targeted power and FDC. This trend aligns with the observations in Fig 3A and

3B, though some variability is evident. A heatmap panel is also available to illustrate the strati-

fied results (Fig C in S1 Appendix).

Consistency among major DMR calling methods

It is worth noting that the targeted power and FDC presented in the Results section are com-

puted for DMRs with odds ratios (OR) exceeding Δ = 2, using TRESS. To evaluate the fluctua-

tions of these two metrics across various effect sizes (OR), sample sizes and DMR detection

methods, we also consider Δ values of 1.5, 2, 4, 6, 8, and 10, for TRESS, exomePeak2, and

RADAR. In Fig 4, the targeted power and FDC are plotted against the sample size and are

grouped by odds ratio thresholds. At all sample sizes, there is an increased targeted power (Fig

4A, 4C and 4E) and a higher FDC to identify DMRs with a larger odds ratio. Specifically, for

FDC (Fig 4B, 4D and 4F), substantially higher values are observed among DMRs with excep-

tionally large odds ratios (Δ = 8, 10). This indicates that detecting DMRs with these large ORs

might lead to a significant increase in false positives. These patterns hold true for TRESS, exo-

mePeak2, RADAR. While all three methods show improvements in targeted power with

added replicates across all odds ratio thresholds, a discrepancy is noted for FDC that it tends to

increase with larger sample sizes when using exomePeak2 and RADAR. This discrepancy,

however, is not universally observed when applying our proposed framework to different pilot

data sets (Fig B in S1 Appendix). Further examinations have been conducted to explore the

choices of OR on the balance between sensitivity and specificity, as well as the trade-off

between precision and recall (Fig E in S1 Appendix). These findings highlight the importance

of utilizing the users’ designated DMR detection methods during power calculation to ensure

accurate estimations.

Fig 4. Comparing power evaluation results between major DMR detection methods TRESS (A)-(B) and

exomePeak2 (C)-(D). Targeted power and FDC are shown at various Odds Ratios (OR, representing effect size) and

sample sizes. A nominal FDR value of 0.05 is used to define significance. Points on the line plots are averaged over

N = 100 simulations.

https://doi.org/10.1371/journal.pcbi.1011875.g004
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Impact of sequencing depth

As shown previously, sequencing depth is another critical factor in MeRIP-seq study design.

Building upon our analysis of sequencing coverage strata, here we examine another aspect of

sequencing depth by introducing a “depth factor”. This is a relative ratio to reflect the effect to

enlarge or down-sample the sequencing coverage of the pilot data. As illustrated in Fig 5A, the

targeted power rises with increased sequencing depth in all sample sizes. The incremental gain

from increasing sequencing depth diminishes at high depths or large sample sizes, but benefits

the small sample size the most. In Fig 5B for FDC, a similar pattern is observed as in the strati-

fied analysis: FDCs increase with sequencing depth, but stabilize in scenarios with larger sam-

ple sizes. We also provide an integrated visualization in Fig 5C, presenting targeted power and

FDC in the same panel, aiding users in understanding the tradeoffs between them. Researchers

could consult similar figures, generated by magpie using their own pilot data, to select a cus-

tomized increase in sequencing depth to achieve the desired power.

Discussions

Sample size and power evaluation are pivotal and routine tasks in experimental design using

sequencing data. Here we present the first tool to address the immediate needs of sample size

calculation and power estimation for DMR detection in MeRIP-seq experiments. Tradition-

ally, sample size calculation or power evaluation in hypothesis testings depends on inputs such

Fig 5. Sequencing depth affects targeted power and FDC for DMRs with |β|≥2. The ‘depth factor’ is the relative

ratio of the new dataset’s library size over that from the original dataset. It reflects the impact of enlarging or down-

sampling the sequencing depth of pilot data. (A), (B) Targeted power and FDC under different sequencing depths,

grouped by sample size. (C) Joint visualization of the mean targeted power and FDC, over various sequencing depths

and sample sizes. N = 100 simulations are conducted. The average sequencing depths of ‘Input’ and ‘IP’ from the pilot

data are 3.51X and 0.54X, respectively.

https://doi.org/10.1371/journal.pcbi.1011875.g005
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as the effect size, variance from pilot studies, and the significance level. In contrast, for MeRIP-

seq experiments with transcriptome-wide data, these scalar parameters must be considered as

distributions. In addition, the distributions of sequencing depth and input control level can

also significantly influence the statistical power, as we have shown in the results. We thus pro-

pose a statistically rigorous approach to address all these challenges, and draw information

from pilot real data for simulation and empirical power evaluation.

We have a flexible simulation framework that allows switching models to mimic the real

data well. In sequencing studies, data from varied tissues or cell types can exhibit unique

expression and RNA methylation distributions across features (i.e. genes or regions). To

address this, our tool allows users to provide pilot data analogous to their intended studies,

serving as the basis for the estimated and adopted parameters in downstream simulations. To

ensure that the simulated data accurately reflects actual data characteristics, magpie can adopt

both negative-binomial and beta-binomial models and choose the one that aligns with the real

data distributions best.

Both increased sequencing coverage and a larger sample size can significantly enhance the

statistical power, as demonstrated in Results. Given that the total sequencing reads are often

predetermined before experiments, researchers can benefit from our tool to optimize the bal-

ance between sequencing depth and sample size, to ensure the best possible experimental

design in differential RNA methylation studies.

In our stratified analysis, significantly lower power is observed in regions of low input lev-

els. This suggests the potential of refining the filtering strategy. While excluding low-expressed

strata certainly means losing some true positives among these regions, it boosts the power to

detect DMRs that are highly expressed, which are often of greater biological interest. Our pro-

posed tool magpie can offer a foresight into the overall power gain, should the researchers

want to weigh the tradeoffs before initiating their data analyses.

Our proposed approach captures real data characteristics, simulates data under various

experimental settings, and produces common power evaluation metrices. This statistical

framework has been implemented into a user-friendly R/Bioconductor package magpie. The

package allows users to save power evaluation results as an Excel file and visualize their rela-

tionship with aforementioned factors with line plots. Recognizing that users might not have

their own pilot MeRIP-seq data, we also develop a “quickPower” function. This function can

generate comprehensive power evaluation outputs in seconds, by retrieving pre-calculated

results from three published studies. magpie is available at https://bioconductor.org/packages/

magpie/.

Supporting information

S1 Appendix. Simulation settings and additional results.

(PDF)
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