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Abstract

The recent advancements in large-scale activity imaging of neuronal ensembles offer valu-

able opportunities to comprehend the process involved in generating brain activity patterns

and understanding how information is transmitted between neurons or neuronal ensembles.

However, existing methodologies for extracting the underlying properties that generate

overall dynamics are still limited. In this study, we applied previously unexplored methodolo-

gies to analyze time-lapse 3D imaging (4D imaging) data of head neurons of the nematode

Caenorhabditis elegans. By combining time-delay embedding with the independent compo-

nent analysis, we successfully decomposed whole-brain activities into a small number of

component dynamics. Through the integration of results from multiple samples, we

extracted common dynamics from neuronal activities that exhibit apparent divergence

across different animals. Notably, while several components show common cooperativity

across samples, some component pairs exhibited distinct relationships between individual

samples. We further developed time series prediction models of synaptic communications.

By combining dimension reduction using the general framework, gradient kernel dimension

reduction, and probabilistic modeling, the overall relationships of neural activities were incor-

porated. By this approach, the stochastic but coordinated dynamics were reproduced in the

simulated whole-brain neural network. We found that noise in the nervous system is crucial

for generating realistic whole-brain dynamics. Furthermore, by evaluating synaptic interac-

tion properties in the models, strong interactions within the core neural circuit, variable sen-

sory transmission and importance of gap junctions were inferred. Virtual optogenetics can

be also performed using the model. These analyses provide a solid foundation for under-

standing information flow in real neural networks.
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Author summary

Brain is a complex network of interconnected neurons that process sensory and other

information through synaptic connections. In this study we measured the activity of all

neurons in the head of a nematode worm, C. elegans, by using a high-speed fluorescent

microscope. Through the application of cutting-edge mathematical methods to the

acquired data, we successfully extracted recurring dynamics of subsets of neurons and

predicted activities of each neuron. Remarkably, the model autonomously generated net-

work dynamics of the whole brain. By carefully analyzing these reconstructions, neuronal

interactions and information flow in the brain could be deduced. Our results present a

methodology for understanding the basic construction of brain dynamics through obser-

vation of brain activity, which are likely applicable to the brain of other animals.

Introduction

Understanding how the brain performs various integrative and instructive functions is a fun-

damental question in neurobiology. The brain’s capacity to execute diverse functions depends

on the transmission of activity across interconnected networks of neurons. This transmission

takes place through chemical and electrical synapses, where signs, efficiency, and dynamic

properties of these synapses determine the activity of recipient neurons. Additionally, the

interactions between multiple presynaptic inputs received by each neuron play a crucial role in

shaping the response of postsynaptic neurons. Therefore, in addition to the intrinsic properties

of constituting neurons, the network’s shape and synaptic properties are the primary determi-

nants of information flow.

While the mammalian cerebral cortex, composed of tens of billions of neurons, exhibits

high complexity, recent technological advancements have begun to reveal connectomes at var-

ious levels, ranging from micro-connectome at synaptic resolution to a macroscopic connec-

tome between different brain regions [1–3]. Concurrently, various techniques such as multi-

unit electrical recording, electroencephalogram (EEG), magnetoencephalography (MEG),

functional magnetic resonance imaging (fMRI) and calcium imaging are actively employed to

monitor neuronal activities [4]. Nevertheless, understanding brain dynamics across structural

layers, from single neurons to functional brain regions and the whole brain, remains challeng-

ing due to the vast number of neurons and the structural complexity of the brain.

In smaller animals, quasi-whole-brain activity measurements at single-cell resolution have

shown promise. One of the most successful subjects are zebrafish larvae; for instance, the brain

of agar-embedded larval animals has been observed during fictive swimming by light-sheet

microscopy, revealing various activity groups and their relationships with behavior [5,6].

Another model animal well-suited for such analyses is the nematode C. elegans. With a small

body length of about 1 mm in young adults, C. elegans allowed for the reconstruction of the

entire nervous system and acquisition of the full connectome data through electron micros-

copy, which includes exactly 302 neurons in adult hermaphrodite [7–9]. "Whole-brain imag-

ing" in C. elegans has shown that global neuronal activities form a manifold in the state space,

where typical behaviors such as forward, backward and turn are represented [10–13]. Further-

more, whole-brain imaging in freely moving animals has identified activities associated with

specific behaviors [14–16], and behaviors were successfully predicted based on whole brain

activities [17,18].

Although these attempts have described the whole-brain states and state transitions, and

found ensemble activities related to sensory input or behavior, the question of how these
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activity patterns are generated has not been directly addressed. This gap in understanding

stems from a lack of methodologies for understanding how network dynamics are assembled

and how network structure and synaptic connections contribute to the observed dynamics.

In this study, we present new approaches for decomposing and reconstructing the dynam-

ics of the whole nervous system based on C. elegans 4D imaging results. These approaches suc-

cessfully extracted common dynamics across animals such as forward-backward core network,

as well as individual differences, especially in the transmission pathways of sensory informa-

tion. Moreover, the roles of individual neurons and chemical and electrical synapses in the

information flow could be estimated by synapse-based models. These findings contribute to

deeper understanding of how neural networks generate observed dynamics in the C. elegans
nervous system.

Results

Correlation among neuronal activities

In this study, we recorded neural activities from C. elegans adult hermaphrodites expressing

the calcium reporter Yellow Cameleon (nuclear localized YC2.60) in all neurons. Each worm

was placed in a narrow channel within a microfluidic device known as an olfactory chip [19]

and stimulated with a periodic switch between two different NaCl concentrations while under

a confocal fluorescence microscope (Fig 1A). The focal plane was scanned up and down to

obtain time-lapse 3D fluorescence images, which is called 4D imaging [20–23]. Overall, we

obtained a total of 24 whole-brain activity movies at a rate of about 4 volumes per second and

corresponding annotation movies (Fig 1B and Materials and Methods).

Fig 2A and S1 Text—File 1 illustrate some noteworthy characteristics in the neuronal activi-

ties obtained by our 4D imaging. First, as the animals received sensory stimuli (changes in

NaCl concentration applied to the nose tip), small groups of neurons displayed responses to

the sensory stimuli. Other groups of neurons exhibited synchronized activation and inactiva-

tion, but their activity patterns did not show clear synchrony with the sensory stimuli and

were considered spontaneous activities. These observations are in line with previous findings

[10].

To further clarify these relationships, we calculated cross-correlations in neuronal activities

for all pairwise neuron combinations (Fig 2B). The size of correlated groups varied consider-

ably between individual samples. However, in many cases, there was at least one major group

of neurons with correlated activity and another correlated group negatively correlated with the

first group. Upon examining the member neurons within these groups, we confirmed that

they correspond to well-known groups of neurons related to reversal and forward movements,

namely, AVA, AVE, and RIM neurons in the first group (called group A here), and RIB, RID,

and RME neurons in the second group (called group B). Additionally, we identified other

groups that showed correlations across samples, including (OLLL, OLLR, OLQDL, OLQDR)

and (I2L, I2R, MCL), as well as the left and right members of BAG, RIA, RMDV and SMDD

classes (Fig 2C).

Common and individual dynamics revealed by time-delay embedding and

independent component analysis

Next, we focused on the overall dynamics of the nervous system as captured by the whole-

brain activity data. In previous studies, principal component analysis (PCA) was utilized for

analyzing the whole-brain activity data of individual samples [10,18]. However, this approach

has some drawbacks.
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Fig 1. Experimental setup for 4D imaging. (A) Left panel shows an overview of the microscope for 4D imaging. The head of the worm was observed by the

spinning-disk confocal microscope with 3 cameras for simultaneous multi-color imaging and with the piezo-positioner for z-scanning. Right panel shows that

the worm was held in the microfluidic olfactory chip and was stimulated periodically. The inset shows the slight movement of the worm in the chip. CSU:
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The first drawback is that the principal component (PC) axes obtained from one sample

cannot be directly matched to those of other samples, hindering meaningful cross-sample

comparison of the dynamics in the PCA space. Secondly, PCA requires orthogonality between

PC axes, which is a mathematical constraint that may lack biological validity and distort the

obtained components. This requirement can be relaxed by using independent component

analysis (ICA) instead of PCA [24]. Lastly, while PCA is useful for decomposing the whole-

confocal scanning unit. (B) An overview of the image analysis pipeline. The worm expressed 5 nuclear-localized fluorescent proteins and 3 colors were

recorded for the annotation movie, and after that 3 colors were recorded for the activity movie. The neuronal nuclei were detected in the high-quality

annotation movie. The nuclei were then annotated by labeling them with the names of their respective neurons. Next, the ROI information of the nuclei in the

annotation movie was transferred to the activity movie. The nuclei were tracked in the activity movie and neural activity was calculated. ROI: region of interest.

https://doi.org/10.1371/journal.pcbi.1011848.g001

Fig 2. Data obtained by 4D imaging. (A) Activity time series of head neurons obtained by 4D imaging. The activity of

each neuron in the scaled fluorescence ratio of YFP over CFP is shown in pseudocolor. The top row shows the salt

concentration applied to the animal’s nose, and remaining rows indicate the neuronal activity profiles. Each row

represents one neuron, whose order was determined by hierarchical clustering based on activity cross-correlations.

Note that only a subset of head neurons, which differ between samples, are shown in each panel, because some neurons

were unobserved (e.g., too dim) or unannotated. (B) Pairwise cross-correlation of head neuron activities obtained by

4D imaging. Red and blue color show positive and negative correlation, respectively. In (A) and (B), examples of four

samples are shown. For all samples, see S1 Text—File 1. (C) Pairwise cross-correlation averaged across samples.

Hierarchical clustering based on p-values was performed to arrange the neurons. Red and blue color show positive and

negative correlations, respectively. Several large and small correlated groups are observed; two showing prominent

negative correlation with each other. Pairs of neurons never co-observed in any sample are filled in black.

https://doi.org/10.1371/journal.pcbi.1011848.g002
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brain dynamics into instantaneous components, it is not suitable for extracting the “temporal

motifs" of neural activities from the time series data. A temporal motif is a latent temporal pat-

tern that appears repeatedly in neural activities.

To address these limitations, time-delay embedding (TDE) methods have been applied to

model complex ecological systems [25] and neural dynamics [26]. Particularly, a method com-

bining TDE with ICA was applied to extract behavioral motifs from a time series of worms’

postures [27]. A similar approach should be useful for extracting neural motifs from whole-

brain activity data.

Here we developed a method called Reconstruction ICA with time-delay embedding

(TDE-RICA) that is applicable to the whole-brain activity data from multiple samples (Fig 3).

RICA, a variant of ICA, introduces penalties for reconstruction costs, ensuring that the cap-

tured components and weights effectively reproduce the original data [28]. S1 Text—File 2

provides an in-depth illustration of how TDE-RICA extracts typical temporal dynamics

(motifs) from time series data.

The presence of unidentified neurons in each sample (as a consequence of the challenges in

perfect neuron identity annotation; [23]) led to the occurrence of missing values in our dataset.

Because RICA by itself cannot handle missing values, we selected 94 neurons of 10 samples,

without any missing values among them, from the entire dataset of 177 neurons from 24 sam-

ples (which include missing values).

To capture the long-time-scale dynamics such as switching of forward and backward com-

mand neurons [10], we set the time-delay for embedding as 300 time steps (approximately 60

s). This corresponds to the duration of the NaCl stimulation period used in the experiment

(approximately 60 s). The whole-brain activity was measured during 6000 time steps (approxi-

mately 1200 s), and the embedded data is represented by a matrix X containing (94 [neurons]

× 300 [delay time steps]) × (5701 [time steps] × 10 [samples]) elements (see Methods and Fig

3). We set the number of components as 14, which was the minimum number required to cap-

ture the neural response to the NaCl stimulation (see Methods). Applying TDE-RICA to the

selected dataset returns the independent components M (M = WTXT, matrix M contains 14

[components] × (94 [neurons] × 300 [delay time steps]) elements) with the corresponding

weight matrix W (containing (5701 [time steps] × 10 [samples]) × 14 [components] elements).

These components were estimated through numerical optimization to effectively represent the

original data (Fig 4A, for all 10 selected samples, see S1 Text—File 3). The estimated indepen-

dent components (M) can be considered motifs of neural activities shared across samples,

while estimated weights (W) represent sample-specific motif occurrences.

To obtain the activity motifs for all neurons, including those with missing values, we

extended the results obtained using TDE-RICA as above with a matrix factorization. This tech-

nique efficiently completed missing values. By using the matrices of motifs and their occur-

rences obtained from the partial dataset without missing values, we expanded the matrix of

motifs to all 177 neurons and the matrix of motif occurrences to all 24 samples (see Fig 3).

This allowed the product of motifs and their occurrences to accurately reproduce the observed

neural activities. Consequently, we obtained the full set of motifs (Mall containing 14 [compo-

nents] × (177 [neurons] × 300 [delay time steps]) elements) and their occurrences (Wall, con-

taining (5701 [time steps] × 24 [samples]) × 14 [components] elements) (S1 Text—File 4).

The motifs and their occurrences obtained by TDE-RICA from the partial dataset were well

preserved and extended through matrix factorization. The analyzed results of the full set of

motifs and occurrences (see S1 Text—File 5) were consistent with those of the motifs and the

occurrences obtained by TDE-RICA from the partial dataset (see S1 Text—File 3). Therefore,

we only describe here the results from the full set of motifs and occurrences.
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The number of time-delay steps for TDE-RICA affect the analyzed results including motifs

and occurrences. We tested the effect of time-delay steps by applying TDE-RICA at different

time-delay steps to simple time series data (S1 Text—File 6). The results show that the number

of time delay steps appropriate for robust results ranges from half to the same of the typical fre-

quency of the original time series. However, these findings are based on simple time series and

do not always hold true for more complex data including the whole-brain neural activity,

which contains multiple typical frequencies. We therefore applied TDE-RICA to the whole-

brain neural activity dataset with different time-delay steps (see S1 Text—File 7). We found

that the obtained motifs and occurrences are somewhat consistent among several different

numbers of time-delay steps. Therefore, we only describe here the results when the number of

time-delay steps is set to 300.

If the sensory neurons directly control the downstream neurons in response to NaCl stimu-

lation, the motifs corresponding to the sensory neurons are expected to include the activity of

downstream neurons as well. We found that the last two out of the 14 motifs (13th and 14th)

had large weights on neurons responding to the sensory stimulation, including ASE and BAG

sensory neurons (Figs 4B and 5A). Other neurons, including downstream interneurons, had

lower weights, suggesting that activities of sensory neurons might only weakly influence the

downstream neurons.

To investigate the effects of sensory stimulation on neural activity, we visualized the

changes in neural activity induced by NaCl stimulation (S1 Text—File 8). Sensory neurons

including ASEL/R and BAGL/R showed significant response to the stimuli on average. Inter-

neurons and motor neurons also responded to the stimuli in some cases, but in others they did

not respond or responded in the opposite direction, showing large individual differences. Such

variability diminishes the average response of the neurons. Even in neurons that responded on

average, the magnitude of the response was small compared to the overall variance. These

trends on average are consistent with the results of TDE-RICA, suggesting that this analysis

successfully extracted common behaviors among individuals as motifs. In addition, consider-

ing that several neurons involved in forward and backward movement showed clear spontane-

ous and synchronous activity, it would be difficult to predict the activity of these neurons

based on sensory input alone.

We also found that the 1st and 2nd motifs had large weights on neurons governing worms’

forward and backward movements, such as interneurons AVA, AIB, RIM, AVB, and RME

motor neurons (Fig 5B). The activities of neurons governing forward (AVB and RME, group

B) and backward movements (AVA, AIB, RIM, group A) were inversely correlated, suggesting

the presence of mutual inhibition mechanisms [29]. Interestingly, the activity of mechanosen-

sory neurons including OLQ and OLL was positively correlated to that of the neurons govern-

ing forward movements in these motifs. This might suggest that when worms move forward in

the microfluidic device, their heads inevitably experience mechanical stimulation from the

device’s wall.

In the 8th motif, the neurons involved in mechanosensation and backward movements dis-

played large negative weights, and those for forward movement had smaller weights (Fig 5C).

This indicates variable and context-dependent relationships between these three groups of

neurons. Notably, in this motif, the thermosensory neurons AFD and their downstream inter-

neurons RIA and RMD exhibited positive correlation with the neurons for backward

Fig 3. Graphical representation of TDE-RICA and matrix factorization procedure. (A and B) Principles of time-delay embedding (TDE) of time-series data

are graphically depicted. (C) Principles of reconstruction independent component analysis (RICA), used for a subset of data with no missing values, are

graphically depicted. (D) Principles of matrix factorization (MF) used for all neurons in all samples, with missing data, are graphically depicted.

https://doi.org/10.1371/journal.pcbi.1011848.g003
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Fig 4. TDE-RICA captures motifs of neural activity. (A) TDE-RICA for neurons commonly observed across samples. (A:

Top left) Original time series data shown as a heat map as Fig 2A. (A: Top right) Motifs of neural activities obtained by

TDE-RICA. Each motif consists of the activity of 94 neurons over 300 time points. The color indicates the relative intensity of

each individual neural activity in each motif. Motifs are common between samples. (A: Bottom left) Motif occurrences

obtained by TDE-RICA. The occurrences differ between samples. (A: Bottom right) Reconstructed time series. The color
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movements [30,31]. In addition, chemo/thermosensory neurons AWC and downstream inter-

neurons AIZ were positively correlated in the 7th motif. These results suggest that these motifs

may have captured the unintended activities of the thermotaxis circuit.

To further explore the relationships between motifs, we analyzed the occurrences of the

motifs by calculating the cross-correlations of the occurrences in each sample and averaging

them across samples (S1 Text—File 9).

We found a prominent cross-correlation between the 13th and 14th motifs that represent

the sensory responses. To compare the neural dynamics between different samples in the latent

space of the motifs, we plotted the occurrences of the 13th motif along with that of the 14th

motif (Fig 5D). The 14th motif always preceded the 13th motif. In the phase diagram, their tra-

jectories formed a circle during the period with sensory stimulation, which degenerated to the

origin during the period without stimulation. These results suggest that the sensory motifs suc-

cessfully represent the presence or absence of stimuli and capture the response to the periodic

stimulus. These trajectories were common between samples, indicating that these sensory

dynamics are common across animals.

Furthermore, we found another prominent cross-correlation between the 1st and the 2nd

motifs that represent the forward and backward movements (Fig 5E). The first motif always

preceded the second motif. In the phase diagram, the trajectories formed distorted circles.

Although these features were common between samples, the shapes of trajectories were differ-

ent. This indicates individual differences in the quantitative dynamics of command interneu-

rons and motor neurons.

Additionally, we identified an interesting relationship between the 8th and 9th motifs.

These motifs were positively correlated in one sample but negatively correlated in another (Fig

5F). These relationships remained consistent throughout the recording of each sample. This

result suggests individual differences in the qualitative relationships of neurons between ani-

mals, despite the general assumption of little individual differences in neural activity in C. ele-
gans due to their uniform genetic background and stereotypic developmental process [9].

The synapse-based model reproduces the overall brain network dynamics

The TDE-RICA successfully decomposed the overall dynamics of the C. elegans nervous sys-

tem into the separate dynamics of neuron subsets, represented by motifs. Our next objective

was to understand the synaptic basis of the dynamics. To achieve this, we utilized the connec-

tome information in the analysis of the observed neuronal activities. As described in the Intro-

duction, the synaptic connections between neuron pairs throughout the nervous system

(connectome) have been fully described. Based on this information, we constructed models in

a bottom-up manner.

In these models, we only considered annotated neurons with non-random time series activ-

ity (time series with considerable autocorrelation). Unlike TDE-RICA, each sample was

treated separately but not combined (see Materials and Methods). First, in a selected sample

(sample j), we selected one neuron as the “target” neuron (neuron i). We then identified neu-

rons that send synaptic inputs to the target neuron via chemical or electrical synaptic connec-

tions (presynaptic neurons or “explanatory neurons” for target i). Our assumption is that the

activity of the target neuron is determined by inputs from presynaptic neurons, and thus, we

treated chemical synapses as directed and electrical synapses as undirected. Time-delay

embedding was applied to the explanatory neurons to predict the target neuron’s activity

range is the same as that of the upper left panel. (B) Fourteen motifs are shown, each consisting of the activity of 177 neurons

over 300 time points. The color indicates the relative intensity of each individual neural activity per motif.

https://doi.org/10.1371/journal.pcbi.1011848.g004
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Fig 5. Temporal motifs of neural activities obtained by TDE-RICA by matrix factorization. (A) Motifs corresponding to

sensory responses. (B) Motifs corresponding to forward and backward movements. (C) Motifs corresponding to the thermotaxis

circuit. (D-F) Common features and individual differences of motif occurrences in the latent space. (D) Left: Occurrence of motif

13 (red) and motif 14 (blue) in sample 16 (upper) and sample 11 (lower). Right: Phase diagram of motif 13 and motif 14 in sample

16 (upper) and sample 11 (lower). (E) Left: Occurrence of motif 1 (red) and motif 2 (blue) in the same samples as D. Right: Phase
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ahead of time (yi,j(t+Δt)) using the past time series of the presynaptic neurons (Fig 6A, see

Methods for details). The target neuron’s own previous activity was also included in the

explanatory variables.

To reveal “important neurons and time points”, we initially applied a dimension reduction

technique called gradient kernel dimension reduction (gKDR) [32,33]. gKDR determines the

K-dimensional subspace (RK) of the space spanned by the explanatory variables (activity pat-

terns of presynaptic neurons). The subspace is defined by a dimension reduction matrix Bi,j,

such that Ui,j(t) = Xi,j(t)Bi,j, where Xi,j(t) represents time-delay embedded activities of explana-

tory neurons (see Methods). gKDR aims to find Bi,j such that Ui,j(t)2RK contains sufficient

information for predicting yi,j(t+Δt) (see Methods for details). An important characteristic of

gKDR is that the estimation of Bi,j can be achieved by solving a convex optimization problem

with a simple eigenvalue calculation. Therefore, once K and other hyperparameters are deter-

mined, the solution is uniquely determined for a given data set, eliminating the risk of getting

trapped at ill-conditioned local minima.

As described in Fig 2, C. elegans’ nervous system comprises several groups of neurons that

exhibit synchronized activities and positive cross-correlations among their members. How-

ever, most of the activity changes of these groups are irregular and non-periodic, except for

responses to regular sensory stimuli that were applied. This characteristic of the neuronal

ensemble corresponds to the stochastic nature of the animals’ behaviors. Thus, while it is

unpredictable “when” a group of neurons are activated, they do it “simultaneously” once they

are activated, driving a robust behavior. To reproduce this pattern, we employed a probabilistic

model called gKDR-GMM, in which the relationship between the K-dimensional explanatory

variables obtained by gKDR and the target variable was described by a joint distribution repre-

sented as a Gaussian mixture model (GMM). Each target neuron i in each sample j had its

GMM model (GMMi,j). For simulation purposes, we determined the conditional distribution

of yi,j(t+Δt) on Ui,j(t), namely P(yi,j(t+Δt)|Ui,j(t)), from the joint probability distribution P(yi,j(t
+Δt), Ui,j(t)) modeled in GMMi,j (Fig 6A).

The gKDR-GMM model, in fact, consists of a collection of these multiple models (Bi,j and

GMMi,j, i = 1, 2, . . ., Mj; Mj depicts the number of observed neurons in sample j), each describ-

ing the synaptic input to target neuron i. The meta-model comprising Mj models characterizes

the dynamics of the entire nervous system of animal j, as it represents the activation rule of all

neurons in the system. The model was then run for simulation purposes (herein called free-

run simulation). Whole nervous system simulation was performed simply by iteratively pre-

dicting the activity of yi,j(t+Δt) from activity data of presynaptic neurons up to time t. This pro-

cess was repeated for i = 1 to Mj (across all target neurons) to generate X∗
i;jðt þ DtÞ (* denotes

estimated values) and the whole process was repeated to proceed through time (t+Δt, t+2Δt,
. . ..). Optimal hyperparameters for the gKDR-GMM model were determined by a grid search

(See Experimental Methods, S1 Text—File 10).

Fig 6B shows some simulation examples by the gKDR-GMM model; all results are pre-

sented in S1 Text—File 11A-C. Two independent simulation repeats are displayed, which led

to different results in each trial, highlighting the probabilistic nature of the gKDR-GMM

model. Nevertheless, the overall ensemble patterns were well reproduced across simulations.

During the hyperparameter search, we noticed that when we selected presynaptic neurons

based on direct chemical or electrical connections to the target neuron (called direct links), the

reproduction of network dynamics did not perform very well. This was expected since

diagram of motif 1 (red) and motif 2 (blue) in the same samples as D. (F) Left: Occurrence of motif 8 (red) and motif 9 (blue) in the

same samples as D. Right: Phase diagram of motif 8 (red) and motif 9 (blue) in the same samples as D.

https://doi.org/10.1371/journal.pcbi.1011848.g005
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Fig 6. Network modeling with gKDR-GMM. (A) Overview of the gKDR-GMM model. The model learns to predict the target neuron

activity (y(t+Δt)) from the previous activity of presynaptic neurons (X) (blue lines represent physical connections). To this end, gKDR

reduces the dimension of presynaptic activities X and generates K-dimensional values U representing X, ensuring that sufficient

information for predicting y is included in U. GMM models the joint probability of (U, y) as a weighted sum of Gaussian distributions

fitted to real data. The conditional probability of y is determined from the GMM model and used for prediction. See Methods and S1
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approximately half of the neurons were missing from our data because of the difficulty in

either observation or annotation (the maximum number of annotated non-random neurons

was 110 out of ~190 head neurons). Consequently, we explored another option where missing

presynaptic neurons were replaced by neurons with an additional step of synaptic connections,

i. e., presynaptic neurons for the missing neuron that was presynaptic to the target (called indi-

rect links). Since this approach (indirect links) provided better results (S1 Text—File 10), we

proceeded with the analysis based on the indirect links model, though our codes still support

modeling with direct links.

Next, we assessed the model’s reproduction capability in free-run simulations. While the

results of free-run simulations may be different in each trial as described earlier, we anticipated

that the relationships between real neurons would be preserved across simulation trials and

that sensory information would be properly transmitted in the model nervous system. There-

fore, we evaluated the cross-correlation of activity between neurons after free-run simulation

by the model. An example of the correlation matrix is shown in Fig 6C and all results are pre-

sented in S1 Text—File 11A-C. To compare correlation matrices calculated from real activities

and simulated activities, Fig 7A shows a scatter plot, real vs. simulated, of correlation coeffi-

cients between all pairs of neurons. Separate plots for each sample are presented in S1 Text—

File 12. The correlations among groups of neurons observed in real data were largely preserved

in the simulation, although the absolute value of correlation was lower in some neuron pairs.

Considerable differences in the model performances between samples were also noted (Fig

7B).

Furthermore, we investigated the temporal relationships between neurons by evaluating the

time-lagged cross-correlation of all pairwise combinations of neurons. Figs 7C and 7D, and S1

Text—Files 13 and 14 demonstrate that the optimal time-lags showing the largest correlation

between each pair were maintained in the simulation for most samples (results of statistical

tests are indicated in S1 Text—File 13). Further, we performed TDE-RICA using the same

motif matrix to compare the dynamic relationship of major groups (S1 Text—File 15). The

prominent relationship between motifs 13 and 14 was maintained in most samples and the

observed behavior between motifs 8 and 9 shown in Fig 5F was also well-reproduced in the

free-run simulation. Moreover, since the animals were stimulated by periodic changes in salt

concentrations during 4D imaging, we assessed the periodic signals in each neuron by period

average of the time series data and Fourier analysis (Fig 7E and 7F, and S1 Text—File 16). Fig

7E indicates that the periodicity of sensory stimulus is propagated over many neurons in the

nervous system, as noted earlier (S1 Text—File 8); this characteristic was successfully repro-

duced in the free-run simulation by gKDR-GMM (Fig 7E and S1 Text—File 16).

These results demonstrate that our gKDR-GMM method effectively reproduces major neu-

ron dynamics in a probabilistic manner. However, we note that this holds true for some but

not all 4D imaging samples. Upon surveying all results, it appears that there must be distinct

groups of correlated neurons for the dynamics to be accurately reproduced. In cases where

most neurons exhibited globally correlated (epilepsy-like) activity changes (for example sam-

ple 6, 19, 20 in S1 Text—File 11B), the ensemble dynamics were difficult to reproduce. We

speculate that such simultaneous activation of a vast majority of neurons may be caused by

Text—File 23 for details. (B) Neural activities obtained from free run simulation by gKDR-GMM. The time span depicted as “real” is

actual activity data, identical to Fig 2A whereas the time span depicted as “Repeat 1/2” displays simulation results. The results of two

simulation runs are shown following the same order of neurons as Fig 2A. (C) Cross-correlation of neural activities. The left panel

shows the cross-correlation of actual activities as in Fig 2B, shown for comparison. The middle and right panels are cross-correlations

of the simulation results in (B). Red and blue color show positive and negative correlations, respectively. See S1 Text—File 11A-C for

results of all samples.

https://doi.org/10.1371/journal.pcbi.1011848.g006
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extrasynaptic signaling, such as those by monoamine neurotransmitters or neuropeptides as

observed recently [16].

Noise-driven probabilistic behavior is essential for reproducing C. elegans
brain activity

In the gKDR-GMM model, we intentionally incorporated the probabilistic nature of neural

activity dynamics. However, it is important to compare the model behavior with the determin-

istic behavior of dynamic systems. This can be achieved by using a predicted time series of the

conditional expectations E(yi,j(t+Δt)|Ui,j(t))), which we will refer to as the deterministic

predictor.

Fig 8A and S1 Text—File 17A present an example of long-term free-run simulation with

the deterministic predictor (middle row). In this case, the neuronal activities either became

constant or changed slowly and did not mimic real activity profiles, and the correlation matrix

did not resemble that of real activities (Fig 8B and S1 Text—File 17B). Removing the periodic

sensory stimuli further degenerated the simulated activities, as it eliminated the activities syn-

chronized to sensory input (middle row, right). Therefore, at least in our model settings, the

deterministic predictors are unable to reproduce realistic activity patterns of the real neural

network.

We hypothesized that the intrinsic noise in neurons might be a major source of the

dynamic activity of interconnected neurons. To test this hypothesis, we introduced Gaussian

white noise with constant size (i. i. d. noise) to the deterministic prediction. Surprisingly, this

addition resulted in the emergence of stochastic synchronized activities, closely resembling

those observed in real animals (Figs 8A and 8B, and S1 Text—Files 17A and 17B, bottom row).

These results highlight the significance of considering the stochastic activities of each neuron

when constructing a model to simulate the network properties of real animals.

Robustness of the gKDR-GMM models and common characteristics of

neural interactions

The gKDR-GMM model includes a considerable number of parameters (K x presynaptic neu-

ron number x embedding steps for Bi,j, and mean and covariance for each Gaussian compo-

nent of GMMi,j, for each neuron). Consequently, multiple sub-optimal solutions could be

obtained for the time series data, leading to the question of which part of the model is reliable.

To address this, we first evaluated the prediction capability of the model by conducting cross-

validation. Time series data for each sample was split into three parts, and the gKDR-GMM

model was trained with one of the three parts. The trained model was then used for prediction

on the remaining two parts. Note that the cross validation will succeed only when neuronal

interactions are stationary across sub-divisions of total recording time.

Fig 7. Comparison of real and simulation results. (A) For comparison of real data and simulated data, cross correlation between activities of

neuron pairs are plotted for real (x axis) and simulated (y axis) activities for all pairs of neurons in each sample. Different samples are plotted in

different colors. Plot for each animal can be seen in S1 Text—File 12. (B) Correlation coefficients of the real vs simulated relationship in (A) are

plotted for each sample. Results of different models (K = 3, 4, 5) are also shown. (C) Lagged cross-correlation of all combinations of neurons.

The lags with the best absolute cross-correlation are depicted color coded. Magenta and green indicate positive and negative lags, respectively.

(D) Example of time series plot of a pair of neurons, AVA and RIM, showing a lagged correlation in most samples. (E) Periodicity of neural

activities. Top row shows the salt stimulus (concentration range, 50–25 mM), which has a regular periodicity. Each of the real and simulation

results as Fig 6B (K = 3, 4, 5 for simulation) was split into salt stimulus periods, overlaid and averaged to visualize the periodicity of the activity

of each neuron. For visualization purposes, the period averages are shown repeated twice. (F) Fourier power of real AVAL/R activity (circles)

and gKDR-GMM simulation results (crosses) with different model parameters A: K = 3, B: K = 4, C: K = 5. Only some of the samples show large

periodic components.

https://doi.org/10.1371/journal.pcbi.1011848.g007
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Since gKDR-GMM is a probabilistic model, we scored the log-likelihood (log(L)) of the tar-

get neuron’s real activity yi,j(t+Δt) (S1 Text—File 18A; all combinations of the training part

and the testing part were evaluated). We then performed bootstrap tests to evaluate the contri-

bution of presynaptic neurons to the prediction of target neuron activities. To do this, the pre-

synaptic neuron data Xi,j were randomly permuted along the time axis, and prediction results

were obtained using the permuted Xi,j. The distribution of log(L) for 100 repeated random per-

mutation represents the null hypothesis, which assumes presynaptic neuron data do not lead

to better prediction. S1 Text—Files 18B and 18C show that in more than half (58.6%) of all

models, target neuron activity is significantly better predicted, indicating that gKDR-GMM

properly models the mapping between the inputs from presynaptic neurons and the target

neuron activities. Considering the possibility of non-stationarity of neuronal interactions

across recording time, we can select and utilize one of the three models that were successful in

the cross validation, which likely represents stationary interactions (see below).

How does the neural network integrity, particularly the correlation of activities among neu-

rons, emerge from our model? Our gKDR-GMM model includes estimates of synaptic trans-

mission’s nature, representing a complex relationship between multiple presynaptic neurons

at previous time points and the target neuron activity as a probabilistic distribution composed

of multiple Gaussian distributions. To simplify the estimation of synaptic weights, we calcu-

lated the average of the gradient, @E(yi)/@xh. For this measure, a positive value indicates excit-

atory transmission, where the more active the h input is, the more active the target neuron i is

expected to be at the next time step. Conversely, a negative gradient indicates the inhibitory

transmission where the relationship is reversed. For clarity, we refer to this calculated gradient

as the “synaptic weight”.

Fig 8. Free-run simulation by deterministic prediction with or without added noise. (A) The left side in each panel

(0–1250 time points) shows the real data. The simulated results follow the zero-activity portion (1250–2500 time

points) used as initial conditions for free run simulation. “w/ stim” indicates that periodic salt sensory input was added

during the simulation while “w/o stim” indicates omission of the sensory input. “probabilistic” indicates regular

gKDR-GMM (Fig 6) while “deterministic” represents prediction by expectation value (which is unique) for GMM. “det

+ noise” represents deterministic prediction with random independent noise added. (B) Cross correlation of the data

obtained in (A). Color codes are as in Figs 2B and 6C.

https://doi.org/10.1371/journal.pcbi.1011848.g008
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In our gKDR modeling, we selected every five time points to reduce the data size (see Mate-

rials and Methods). As a result, we had a choice of five different phases of data point selection,

starting from t = 1, 2,, or 5. Due to significant noise in our data, these different phases could

lead to considerably different models. To extract robust synaptic weights among the models,

we tested gKDR-GMM models constructed with five different phases and three different K val-

ues (K = 3, 4, 5; K being gKDR dimension) by cross validation, as mentioned above. We

selected only the models that passed the cross validation test and attempted to extract consis-

tent synaptic weights among the different models generated for the sample.

Fig 9A and S1 Text—File 19A display the synaptic weights estimated by all qualified models.

The results demonstrate that for certain neuron pairs, the estimation is highly consistent across

different models, suggesting that these synaptic weights need to be non-zero to be consistent

with the observed neuronal activities. Based on these observations, we estimated the statistical

consistency across models as shown in Fig 9B and S1 Text—File 19B. In these figures dark red

and blue indicate strongly consistent positive and negative synaptic weights, respectively.

Members of the same class, such as left and right members (designated as XXXL and XXXR,

XXX being a class name) often showed similar weights, consistent with overall left-right sym-

metry of the neurons and their interconnections.

We further aimed to extract synaptic communications that are conserved among different

samples. In this direction, Fig 9C and S1 Text—File 19D present all estimated synaptic weights

from each tripartite time span of each sample. Similar to Fig 9B above, Fig 9D and S1 Text—

File 19E assess the consistency of synaptic weights, this time across samples.

One prominent feature of the whole brain dynamics is the presence of backward (group A)

and forward (group B) groups, and how these correlated/anticorrelated activities are generated

is an important and open question, with only reciprocal inhibition so far suggested [29]. By

close examination of the results in Fig 9A–9D (and S1 Text—Files 19A, 19B, 19D, and 19E;

also Fig 10A described later), it is found that there are highly consistent networks of positive

synaptic communications among AIB, AVA, AVE and RIM classes of neurons. In terms of the

group B neurons, communications are less consistent, which may correspond to the different

sizes of the correlated clusters among different samples (Fig 2B). Among these, RIB had consis-

tent negative synaptic weights to AVA and AVE. The opposite communications were less

prominent, but strong in some samples. None of other B type neurons such as AVB, RID and

RIS showed consistent weights across samples, but can have strong communications with A

type neurons in some samples. Also, RMD, head motor neurons, and URY, non-ciliated sen-

sory neurons receive consistent positive inputs from the A type neurons.

As described earlier, the gKDR-GMM models are based on time-delay embedding, which

means that the gradient @E(yi)/@xj representing synaptic weight has a time-lag dimension,

which was not fully described in the previous section. The lag dependency of synaptic weights

was graphically presented in S1 Text—Files 19C and 19F. For neurons that exhibited sensory-

related activities, the weights reflected the periodicity of sensory stimuli applied during the

experiments. In many other neurons, the weight rapidly decayed to zero at a short time lag,

indicating that the presynaptic activity immediately preceding time t (lag 0) affected the activ-

ity of the postsynaptic target neuron at time t+Δt. There were, however, also neuron pairs in

which the decay is slower or even the weight remained either positive or negative throughout

the whole span of the lag. A prominent example is the neurons in the core backward command

circuit (group A). Synaptic weights between AVA and RIM showed a fast decay, while AIB to

RIM weight was more extended (Fig 9H), suggesting a longer decay time in the synaptic com-

munication. This is consistent with the prior knowledge that AIB conveys sensory input to

slowly bias the probability of reversal [34].
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Fig 9. Estimation of synaptic weights from gKDR-GMM models. (A) Estimated synaptic weights from different

models. Each box shows model-estimated synaptic weights from the neuron on the y axis to the neuron on the x axis.

In each box, model-estimated weights are shown in 15 x 3 cells as summarized on the right, where 15 rows are results

from models using different K for gKDR using offset 0–4 of the data, and 3 columns show results from three parts of

split time series. Models that did not show significance in bootstrap cross validation tests at p< 0.01 are filled in black.

(B) Consistency across 15 models in each box in (A) were tested by Wilcoxon’s rank-sum test and p values are shown

in color codes. Darkness of the color shows –log10(p), while red colors show positive mean weights and blue colors

show negative mean weights. (A) and (B) show part of the table for sample 1 as examples. Full figures are shown in S1
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Having obtained an estimate of functional connectivity, we examined the contribution of

gap junctions and chemical synapses to the communications. As depicted in Fig 9E–9G, the

functional network exhibited greater similarity to the gap junction network. To provide a

more quantitative analysis, Fig 9I–9L display the estimated consistency and mean synaptic

weights for each of the chemical and electrical synaptic contacts. These figures clearly indicate

that gap junctions tend to generate stronger and more consistent positive connection weights,

whereas chemical synapses contribute to weaker but consistent positive and negative synaptic

weights. Thus, while previous electron microscopy reconstruction identified the structural

connectome in this organism, our model advanced further and estimated functional synaptic

communications based on the whole-brain activity imaging data.

As described earlier, we applied periodic sensory stimuli of salt concentration changes to

the animals, and the activity of downstream neurons, including those of the group A and B

command interneurons, included weak periodic components corresponding to the sensory sti-

muli (S1 Text—File 8). These periodic components were often reproduced by the

gKDR-GMM models (Fig 7E and S1 Text—File 16). To see how sensory signal is transmitted

to command interneurons, synaptic weights between these neurons, as well as primary inter-

neurons that receive direct synaptic inputs from sensory neurons, were estimated. In Fig 10A,

red/blue colors indicate the mean synaptic weight, while green color indicate coefficient of var-

iation (CV) of synaptic weights among samples. Therefore, pure red and blue indicate consis-

tently positive and negative connections, respectively, while green color indicates connections

that switch between positive and negative in different animals. There are consistent positive

weights among group A neurons, and consistent negative inputs from RIB are received by

these neurons, as described earlier. On the other hand, communication from salt sensing neu-

rons to command neurons, as well as primary interneurons are highly variable (S1 Text—File

20). These results strongly indicate that sensory information is transmitted in a variety of

routes among different samples, which may reflect behavioral variability and plasticity.

Virtual optogenetics to assess propagation of neural activities through the

network

Another application of the gKDR-GMM model is virtual optogenetics. Because transmission

of neural activities is modeled by gKDR-GMM, we can artificially activate a selected neuron

and simulate the activity of all other neurons thereafter. For this experiment, we only used the

data from samples 13 to 24, in which salt stimuli were not applied in the first half of the record-

ing (unstimulated period). Because the gKDR-GMM model predicts neural activity based on

previous activities of presynaptic neurons, the simulated activity profiles depend on the initial

conditions. In this test, we used the unstimulated period of actual recordings as initial condi-

tions to mimic actual optogenetics experiments in real animals.

Text—Files 19A and 19B. (C) Estimated synaptic weights from different samples. In this figure, estimated weights from

15 models in each box of (A) are averaged, and shown in 24 x 3 arrangement, as depicted on the right. (D) Consistency

across 24 samples in each box in (C) were tested by Wilcoxon’s rank-sum test and p values are shown in color codes as

in (B). Darkness of the color shows –log10(p), while red colors show positive mean weights and blue colors show

negative mean weights. (C) and (D) show part of the table as examples. Full figures are shown in S1 Text—Files 19D

and 19E. In (A)-(D), the order of neurons is the same as that in Fig 2C. Group A and B neurons are shown in magenta

and cyan, respectively. (E) Mean synaptic weights from all samples are shown as graph representation. Only the

weights that showed consistency at FDR< 0.005 in (D) among direct synaptic connections are shown. (F, G) Graph

representation of chemical synapses (F) and gap junctions (G) are shown between neurons shown in (E). (H) Mean

(line) and standard deviation (light blue shade, across samples) of estimated synaptic weights at each lag between the

neuron classes indicated. (I-L) Mean synaptic weights vs. consistency (-log(p) in (D)) were plotted for each of chemical

synapses and gap junctions; for pairs of neurons with only chemical (I), only electrical (J) or both synapses (K), and for

all pairs of neurons (L). In (L), gap junctions are shown in red dots and chemical synapses are shown in blue circles.

https://doi.org/10.1371/journal.pcbi.1011848.g009
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Fig 10. Estimation of signal flow in the neural network. (A) Estimation of synaptic weights across samples. Salt

sensory neuron classes ASE, BAG, AWC, and ASH, primary interneurons and command interneurons of groups A

and B as well as some other neurons are shown. Blue and red colors indicate mean synaptic weights (positive and

negative), green color indicate coefficient of variation. Thickness of the connections reflect numbers of samples

contributing to each estimation. Only direct synaptic connections are shown. (B) Examples of virtual optogenetics.

Simulation was performed using the gKDR-GMM model obtained from the neural activity data of sample 14, with a

hyperparameter K = 3 in this example. AVEL neuron (left) or AVER neuron (right) was artificially activated at five

three different time points (depicted stimulation time 1 to 5) in the real activity time course of sample 14, which were

aligned at time point 80 in the x axis. Real imaging data are shown for time points 0–80, and using them as initial
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In the example shown in Fig 10B, AVEL or AVER neuron was activated at five different

time points in the unstimulated period of actual recording of sample 14, and the effect on

AVAR activity is depicted. As a control, the same neurons were clamped at activity 0 (“AVEL/

R control”). Each test was repeated 10 times. As previously shown in Fig 2 and S1 Text—File 1,

there is a brain-wide spontaneous activity even without applied sensory stimulations. We

therefore subtracted each neuron’s control activity from that after optogenetic activation, to

reveal the response of each neuron to the artificial activation (Fig 10B, bottom). The effect con-

siderably differed depending on stimulation time, strongly arguing that network states affect

signal propagation. For example, in Fig 10B stimulation time 3 and 5, AVAR is inactive before

stimulation and spontaneously activated thereafter, and AVE stimulation accelerates the acti-

vation. At stimulation time 4, AVE stimulation temporarily delays spontaneous inactivation,

while at other time points activation of AVE has no systematic effect. Quantification results of

these experiments are provided in S1 Text—Files 21A and 21B.

Randi et al. [35] recently reported systematic optogenetic stimulation and whole-brain cal-

cium imaging experiments to assess signal propagation in the C. elegans nervous system,

which can be considered the real-world counterpart of our in silico experiments in Fig 10B and

S1 Text—File 21. Unlike modeling approaches, however, a control experiment cannot be

paired with each experiment, because network states continuously change and it is impossible

to observe experimental response and control response at the same time. Randi et al. therefore

averaged the results and employed statistical approaches (Fig 2A in [35]). We note that overall,

negative responses are rare in their results; the reason for which is unknown. For the reasons

above, to compare our simulation results with their experimental results, we focused on neu-

ron pairs to which sufficient numbers of trials were performed in both studies and compared

the mean responses of each set of results. We took only neuron pairs for which we have data

from eight or more samples (two thirds of all). Among these pairs, we further selected neuron

pairs for which Randi et al. performed at least 10, 15, 20 or 25 tests. The Pearson’s correlation

coefficients of mean responses in the two experiments were 0.250, 0.342, 0.433 and 0.486,

respectively, for neuron pairs selected by these criteria (Fig 10C, n = 246, 100, 56 and 31 neu-

ron pairs, respectively). Therefore, results of the two approaches are correlated positively pro-

vided that sufficient numbers of experimental results were obtained. We therefore conclude

that our gKDR-GMM modeling based solely on whole-brain calcium imaging observations

can be used for estimating the signal propagation in the network.

Discussion

In this study, we performed calcium imaging of the C. elegans head region using the calcium

probe Yellow Cameleon 2.60 expressed in all neuronal nuclei. Through 3D segmentation,

tracking and annotation, we successfully obtained a comprehensive “whole-brain” neural

values, simulation was started at time point 80 with all neurons observed in sample 14. Simulation was performed 10

times each, and resulting activity of neurons AVEL/AVER (row 2) and AVAR (rows 3 and 4) are shown in

pseudocolor. In row 4, AVEL/AVER was not stimulated but instead set to zero, as a control. Top row shows the

average of all results in each of rows 2–4. The difference between activated and control is shown in row 5. Results of all

neuron pairs are shown summarized in S1 Text—Files 21A and 21B. (C) Our results of virtual optogenetics simulation

as shown in (B) were compared with the real optogenetic experiments reported by [35]. Because of the high degree of

variability of the network states and its effect on signal propagation as shown in (B), only results with sufficient

numbers of experiments were compared. Considering the sample-to-sample variability in our gKDR-GMM model,

only neuron pairs that were observed in at least eight samples were included. For the data from [35], only neuron pairs

that were tested at least 5, 10, 15 and 20 times, as depicted above each panel, were included. For neuron pairs that

satisfy both of the above, extent of activation or inactivation of the observed neuron after activation of the stimulated

neuron was plotted for our results (x axis) vs by [35] (y axis). See Materials and Methods for quantification.

https://doi.org/10.1371/journal.pcbi.1011848.g010
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activity dataset comprising 24 samples, which included neural activity data with neuronal

identity labels. To the best of our knowledge, this represents the most extensive annotated neu-

ral activity dataset for C. elegans hermaphrodites reported to date. For the analysis of this data-

set, we developed and applied two analytical methods, namely, TDE-RICA and gKDR-GMM.

TDE-RICA demonstrated its effectiveness in decomposing network dynamics into motifs

involving specific subsets of neurons, thereby facilitating a more profound functional dissec-

tion of neural activity patterns. On the other hand, gKDR-GMM allowed us to estimate synap-

tic strength and time constants, which provided a model for understanding how core

networks generate correlated activities and are regulated by sensory inputs. Moreover,

gKDR-GMM revealed the critical role of noise in realistic neural networks and enabled realis-

tic simulation of whole-brain activities including virtual optogenetics experiments.

Although our recording was performed in animals restrained in the same chamber and

similarly stimulated by the chemoattractant NaCl, there were considerable differences in activ-

ity patterns among individual samples. We currently do not know whether these differences

stem from individual variations in connectome structure that occur during embryonic or

post-embryonic development, as reported in previous studies [9], or they are due to different

prior experiences resulting from subtle variations in environmental stimuli. Alternatively, the

difference may not reflect individual variations but might be a consequence of fluctuation over

time of the network dynamics, similar to dwelling and roaming observed in the locomotion

behavior of C. elegans [16,36]. In addition, a part of the difference could be attributed to the

fact that only a fraction of all neurons was annotated in our dataset, though obvious differences

exist even among commonly observed neurons.

To overcome the limitations of aforementioned partial annotation and inter-sample vari-

ability, and extract the activity profiles common among different samples, we employed inde-

pendent component analysis (ICA). ICA is commonly used for signal separation, but when

combined with time-delayed embedding, it allowed us to extract common dynamic patterns

from the entire brain network. Additionally, by utilizing matrix factorization, we could com-

pensate for the missing data and extract global patterns. The results revealed multiple sets of

neurons engaged in major dynamic patterns, including sensory response dynamics (motifs 13

and 14) and spontaneous motor dynamics (motifs 1 and 2). Although the TDE-RICA method

successfully extracted stimulus-dependent and spontaneous motor signals as separate compo-

nents, it could not clarify how stimulus-dependent signal affects motor signals. This coarse-

grained approach might be more suitable for examining global dynamics across all individuals,

rather than analyzing subtle stimulus-dependent signals.

We then estimated the synaptic weights along the physical network structure of C. elegans’
nervous system, where we aimed to construct data-driven phenomenological models rather

than physical models. Instead of employing a differential equation approach, which requires

assuming specific transmission functions, we utilized time-delay embedding and nonlinear

regression models. Using nonlinear models is crucial for reproducing neuronal events, since

synaptic transmission is intrinsically nonlinear. Given that there are on average 10–20 presyn-

aptic neurons (S1 Text—File 22), the dimensionality of the explanatory variables is quite large.

Therefore, selecting a proper dimensionality reduction method is crucial. Commonly used

dimensionality reduction methods such as PCA [10], ICA, kernel PCA, t-SNE [37,38], UMAP,

etc. fail to represent the relationship between explanatory variables (activity of presynaptic

neurons in our case) and response variables (postsynaptic neuron activity ahead of time). This

could result in removal or underweighting of variables (neurons and time points) that strongly

influence the response of the target neuron. Therefore, we preferred dimensionality reduction

that considers the response. Examples of linear approaches for this purpose are canonical cor-

relation analysis (CCA) [39] and partial least square (PLS) [40,41] among others. These
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methods seek a low dimensional projection (U) of explanatory variables (X), so that U has a

high correlation coefficient or high covariance with the response variable, y. However, as men-

tioned earlier, the relationship between X and y is likely nonlinear. Hence we chose kernel

dimensionality reduction (KDR), which is based on the kernel method and does not assume

linearity.

Through gKDR-based dimensionality reduction and probabilistic regression by GMM, we

were able to reasonably reproduce the overall dynamics of the C. elegans brain. However, we

need to be cautious that the set of synaptic weights is not necessarily the only solution that

reflects the actual synaptic weights in the real animals. To address this concern, we evaluated

multiple models generated from different time spans of the data with different time point

selections, as well as different values of the modeling parameter K (dimension reduction size).

This comprehensive approach allowed us to differentiate between robust and variable aspects

of the results, with the former providing valuable insights into how the network dynamics is

shaped.

A remarkable finding from our modeling approach is that a probabilistic model is essential

for reproducing realistic network activity of C. elegans, exemplified by the coordinated but sto-

chastic activation-inactivation of command neurons. A deterministic model obtained by the

same gKDR approach generated only decaying activities. This observation and further simula-

tion led us to propose that noise, or time-independent stochastic activities, intrinsic to the ner-

vous system is driving the network dynamics. Electrophysiologists often observe spontaneous

and irregular activities of neurons. Even in C. elegans which does not show Na+-based action

potentials, stochastic activities are often observed, especially in interneurons (for example

[42]). Irregular activities are observed even in isolated neurons ([43]). Thus such kinds of

small irregularities in multiple neurons likely sum up to cause stochastic state transitions in

the neural network dynamics.

The advantage of the synapse-based model is its ability to identify crucial neurons and syn-

apses that are important for specific aspects of the whole-brain dynamics. Our analysis of the

estimated synaptic weights suggested a general rule that the correlation of the activity in a pair

of neurons is not necessarily formed by the neurons themselves, but each neuron is influenced

by inputs from a group of neurons, which cause correlated activities. Because we restrained C.

elegans in a microfluidic chip and applied sensory stimuli, naturalistic behaviors cannot be

observed. However, neuronal commands such as forward-backward commands can be read

out from neural activities. In natural environments, C. elegans shows chemotaxis to various

chemicals including salt. Chemotaxis is achieved by several types of behavioral responses,

including klinokinesis. In klinokinesis, probability of reversal is increased for around ten sec-

onds after a salt concentration decrease [34], which contributes to gradual migration towards

salt, because migration away from the salt leads to increased reversal followed by turning. Our

4D imaging results indicated that while backward neurons (group A neurons) are spontane-

ously activated in a coordinated fashion, it shows a weak correlation with sensory inputs,

which is consistent with previous observations [34]. Our analysis of periodicity (Fig 4B and S1

Text—File 8) and synaptic weight prediction (Fig 10A, and S1 Text—Files 19 and 20) provide

insights into how sensory stimulus is transmitted to backward command neurons: sensory

transmission operates as a distributed system, where information from sensory neurons is

transmitted not through a single specific path, but through multiple paths, which collectively

drives the sensory-driven control of behavior. In addition, the paths are variable between indi-

vidual animals (Fig 10A and S1 Text—File 20), which is also a remarkable finding obtained in

this study.

For the core neural network of C. elegans, group A neurons governing backward movement

and group B neurons governing forward movement, our estimation of synaptic contact
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revealed that almost all-to-all communications between AIB, AVA, AVE and RIM neurons

drive the group A dynamics, while RIB neuron plays a key role in generating anti-correlation

between groups A and B. RIB is known to be GABAergic and assumed to be inhibitory, and

while it is likely that RIB is in turn negatively regulated by group A neurons, further investiga-

tion is needed to clarify this pathway.

In the analysis of massive brain activity data, various analytical methods are utilized such as

cross correlation, as a measure of functional connectivity between brain areas [44,45], and

Granger causality [46]. However, these methods are merely descriptive of the relationships

between neurons or brain areas, and their results cannot be utilized for long-term prediction

or simulation. Therefore, there is a pressing need for new methods that incorporate causal

structures of the data and offer predictive capacity. Our approach exemplifies one such

endeavor. This methodology could be employed for large brains, for which connectome data is

increasingly being obtained [2] as well as increasingly detailed activity data from wide-field

calcium imaging, fMRI, EEG and MEG [4]. While our current analyses were applied to con-

nectome data of C. elegans, the same method could potentially be adapted to analyze neuronal

activity data in cases where no connectome information is available, by assuming all-to-all

connections.

Materials and methods

Strains and culture

Animals were raised at 20˚C under standard conditions on nematode growth medium (NGM)

plates with E. coli OP50. For 4D imaging, the following strain was used [23]: JN3038 qjIs11[glr-
1p::svnls2::TagBFPsyn, ser-2(prom2)p::svnls2::TagBFPsyn]; peIs3042[eat-4p::svnls2::TagRFP675-
syn, lin-44p::GFP]; peIs2100[H20p::nls4::mCherry]; qjIs14[H20p::nls::YC2.60]. Transgenic

strains were generated by germ-line transformations in which we co-injected the gene of inter-

est with a visible transformation marker (lin-44p::gfp etc.) into the animals. The transgene was

then integrated into a chromosome by UV irradiation.

Microscopic setup

The microscope system was developed as previously described [23]. Briefly, the system consists

of a spinning-disk confocal microscope and three cameras (one CMOS camera and two

EM-CCD cameras). A piezo actuator is attached to the objective lens of the confocal micro-

scope to enable high-speed 3D imaging. The CMOS camera is used to capture images for cell

detection and tracking, and the two EM-CCD cameras are used to measure neuronal activity

(Yellow Cameleon imaging).

Image acquisition

The detailed microscope settings for imaging were previously described [23]. Animals were

raised on standard NGM plates until young adults, and further incubated overnight on pre-

imaging NGM plates with 50 mM of NaCl. Osmolarity of pre-imaging plates was adjusted to

350 mOsm with glycerol. Animals were introduced into a PDMS microfluidic chamber and

stimulated with a change in salt concentration from 50 mM to 25 mM or from 25 mM to 50

mM every 30 seconds (the period was 60 seconds). We used a modified version of the olfactory

chip [19] for the microfluidic device. The stimuli were delivered to the animals by switching

the imaging solutions (25 mM potassium phosphate (pH 6.0), 1 mM CaCl2, 1 mM MgSO4,

0.02% gelatin, NaCl at the indicated concentration and glycerol to adjust their osmolarity to

350 mOsm).
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For the 3D images for neuronal annotation (called annotation movie), 50 slices per volume

were taken to cover the entire body of animals (0.72–1.00 μm / slice). The size of each image is

1024*150 pixels. A total of 8 volumes were taken, and the best one was used for neuronal anno-

tation. To acquire images for measuring neural activity (called activity movie), 22 slices per

volume were taken for the same area (1.62–2.29 μm / slice). The size of each image is 256*64

pixels. A total of 6,000 volumes were taken at a rate of about 4 volumes per second (about 25

minutes in total).

Cell detection, annotation and tracking

All the nuclei in a volume in the 3D images for neuronal annotation (called the annotation

movie) were detected by our image analysis pipeline roiedit3D [21] and corrected manually.

We detected 201.9 ± 15.5 (mean ± standard deviation) nuclei on average from 24 samples.

The cells were annotated with neuronal identity based on the expression patterns of cell-

specific promoters as previously described [23]. We annotated 146.8 ± 23.1 (mean ± standard

deviation) cells on average.

For cell tracking, our cell tracking pipeline CAT was used. CAT selects the volume most

similar to the volume in which the cells were identified from the activity movie. The volume in

the annotation movie was registered to the volume in the activity movie by B-spline transform

implemented in elastix [47]. The ROI information including position, size, and annotation of

nuclei was copied from the annotation movie to the activity movie. CAT also constructs a

shortest path tree, where the volumes of the activity movie correspond to the nodes of the tree,

and the similarities between the volumes correspond to the edges of the tree. The volumes con-

nected by the edge were registered by the B-spline transform, and ROI information was cop-

ied. CAT run on the Shirokane3 and Shriokane5 supercomputing systems of the Human

Genome Center (the University of Tokyo), and processed an activity movie within about 8 hr.

The tracking results were checked and corrected manually by using roiedit3d. The fluores-

cence intensities of CFP, YFP, and mCherry were obtained by least square fitting of the tri-var-

iate Gaussian mixtures, which correspond to the tracked ROIs, to the nuclei in the volume

[21]. If the worm moved outside the field of view, the error periods were removed from the

dataset.

Pre-treatment

To remove noise, a median filter with a 5-point window was applied to the time series of CFP

and YFP intensities. If the filtered CFP intensity is smaller than 1/10 of the median of the fil-

tered time series of CFP, the time point was regarded as an outlier. CFP and YFP intensities at

the outliers were set as NaN (missing), and were completed by a median filter with a 4-point

window. The missing values can be completed if the missing values are sparsely distributed.

The outlier neurons were removed from the dataset if the number of time points of the outlier

is larger than 400 or any missing values remained in the completed time series. We also

removed non-neuronal cells including hypodermal cells. The ratio of YFP over CFP was calcu-

lated, and the linear trend of the ratio was removed to compensate for the photobleaching. The

time series of the ratio was subtracted by its mean and divided by its standard deviation for

scaling. The scaled ratio of YFP over CFP was regarded as the neural activity. The obtained

whole-brain activity dataset contains the neural activity of 139.6 ± 24.9 (mean ± standard devi-

ation) cells on average from 24 samples, and covers a total of 177 out of 196 cells in the head

region of animals. For gKDR, noisy neurons were removed from the analyses. Specifically,

only neurons with autocorrelation of greater than 0.3 at a lag of 20 time points were included

and those that did not meet this criteria were considered missing.
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Time-delay embedding and Reconstruction ICA (TDE-RICA)

Let xi,j(t) be an activity of neuron i (from 1 to 177) of sample j (from 1 to 24) at time point t
(from 1 to 6000). The embedding of neuron i in sample j at time point t, Xi,j(t), is Xi,j(t) =
[xi,j(t-(k-1)τ), xi,j(t-(k-2)τ),. . . ., xi,j(t)]2R1×k, where k = 300 and τ = 1. We choose these values

arbitrarily so that the motifs obtained by the following analysis can capture the large-scale

dynamics of neural activities. The embedded time series of neuron i in sample j is

Xi;j ¼ ½Xi;j
>ððk � 1Þtþ 1Þ;Xi;j

>ððk � 1Þtþ 2Þ; . . . ;Xi;j
>ð6000Þ� 2 R300�5701.

We used Reconstruction ICA [28] implemented in Matlab so that the captured components

and weights can reproduce the original data. Because the RICA cannot handle missing values,

94 neurons of 10 samples (with no missing values) were selected from the whole dataset of 177

neurons of 24 samples (with missing values).

The embedded time series of the 94 selected neurons in sample j is X;j ¼

½X1;j
>;X2;j

>; . . . ;X94;j
>�
>
2 Rð94�300Þ�5701; and the whole embedded time series of selected neu-

rons in the 10 selected samples is X ¼ ½X;1;X;2; . . . ;X;10� 2 Rð94�300Þ�ð5701�10Þ:

The cost function of Reconstruction ICA consists of the terms of the reconstruction cost

and the independence (non-Gaussianity). Reconstruction ICA searches a matrix W that mini-

mize the cost function ljjWW>X> � X>jj2
2
þ jjgðW>X>Þjj

1
¼ ljjWM � X>jj2

2
þ jjgðMÞjj

1
; by

using the L-BFGS optimization method implemented in Matlab, where λ is the weight for the

reconstruction penalty, ||�|| is the entrywise norm, and g is the entrywise contrast function

g xð Þ ¼ 1

2
log cosh 2xð Þð Þ:M is the independent components M=WTXT2Rn×(94×300), and is

regarded as the motifs of the neural activities. W is the weight matrix W2R(5701×10)×n, and is

regarded as the occurrences of the motifs. n is the number of components. We repeated this

Reconstruction ICA with different n and visually inspected the results. Then we set n as 14,

which was the minimum number to capture the neural response to the sodium chloride

stimulation.

For completing the missing values, the matrix factorization was combined with TDE-RICA.

Matrix factorization does not take into account M=WTXT and searches M and W that

minimizes the reconstruction cost jjWM � X>jj2
2
: Therefore matrix factorization can be

applied even if X contains missing values. Here we extend the matrices included in the

reconstruction cost. Xall is the embedded time series of all 177 neurons in all 24 samples

Xall2R(177×300)×(5701×24). Mall is the extended matrix of motifs Mall = [M, Mnew]2Rn×(177×300).

Wall is the extended matrix of occurrences Wall = [W, Wnew]2R(5701×24)×n. Then we search

Mnew and Wnew to minimize the extended reconstruction cost jjWallMall � Xall;>jj
2

2
by using the

L-BFGS optimization method implemented in Matlab.

Synapse-based regression models

gKDR. To construct a model that reproduces the dynamics of the whole neural network,

we adopted several approaches that model synaptic inputs to each neuron. First, we collect the

presynaptic-postsynaptic relationships in the physical network. Connectivity data was adopted

from the electron microscopy reconstruction data [7] which had been digitized by Oshio et al.

(http://ims.dse.ibaraki.ac.jp/ccep/) [48]. Chemical synapses were treated as directional and gap

junctions were treated as bidirectional synapses. In our 4D imaging data for each sample, there

are many missing neurons, because 1) part of the nervous system can be obscure or too packed

to obtain clear-cut signals for each neuron, 2) some neurons are difficult to name, for example

because the positional relationship with surrounding neurons is atypical. Therefore, in one

option, we included neurons directly connected to the target neuron (called “direct links”) to
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make the models, and in another option, we included neurons connected to the target neurons

via two synapses in case the directly connected neuron was not observed (called “indirect

links”). For the sake of simplicity, the neurons thus collected are denoted as “presynaptic neu-

rons” for a given target neuron, even if the neurons are two synapses away in the case of

employing indirect links.

To model dynamic relationships between the activity time-series of presynaptic neurons and

that of target neurons, we generated regression models using time-delay embedding (S1 Text—

File 23A). As for TDE-RICA, xi,j(t) depicts the activity of neuron i at time t in sample j. Each

neuron was set as a target neuron one by one. For example, assume that neuron i is set as a tar-

get neuron (i = 1, 2, . . ., Mj; Mj is the number of neurons in sample j data set). Activity of target

neuron i, yi,j(t+Δt)�xi,j(t+Δt), is predicted by activities of presynaptic neurons. Here, similar to

TDE-RICA, time-delay embedding was adopted to utilize the past time series of the presynaptic

neurons to predict target neuron activity. Namely, yi,j(t+Δt) is predicted from Xi,j(t) =

½Xoi;j;1 ;j
ðtÞ;Xoi;j;2 ;j

ðtÞ; . . . ;Xoi;j;Mi;j ;j
ðtÞ�, where Xm,j(t) stands for a row vector representing time-

delay-embedded activity of neuron m, ½xm;jðt � ðk0 � 1Þt0Þ; xm;jðt � ðk0 � 2Þt0Þ; . . . ; xm;jðtÞ�.
Oi;j ¼ foi;j;1;oi;j;2; . . . ;oi;j;Mi;j

g is a set of indices of neurons presynaptic to target i, Mi,j being

total number of neurons presynaptic to neuron i (Fig 6A and S1 Text—File 23B). Note that pre-

vious activity of the target neuron itself, Xi;jðtÞ ¼ ½xi;jðt � ðk0 � 1Þt0Þ; xi;jðt � ðk0 �
2Þt0Þ; . . . ; xi;jðtÞ� was also included in the explanatory vectors Xi,j(t) (2 RMi;jþ1).

Mean number of presynaptic neurons was 6.8 and 21.1, respectively, for direct links and

indirect links (S1 Text—File 22). This causes a widely recognized challenge of the curse of

dimensionality. Considering that synaptic transmission is an intrinsically nonlinear process,

we employed the gradient kernel dimension reduction (gKDR) (32) for dimension reduction.

The basic principle of KDR is explained in S1 Text—File 23. We shall model a function

yi,j = fi,j(Xi,j)’gi,j(Uij) (here yi,j, Xi,j and Ui,j are considered random variables and yi,j(t), Xi,j(t)
and Ui,j(t) are samples from them), as a reasonably simple model, which is achieved by select-

ing a low dimensional subspace of explanatory variables as Ui,j(t) = Xi,j(t)Bi,j, BT
i;jBi;j ¼ IK :

Bi;j 2 RðMi;jþ1Þ�K is selected aiming at making Ui,j(2R1×K) sufficiently informative for predicting

yi,j. More precisely, gKDR evaluates statistical independence between Xi,j(t) and yi,j(t+Δt) con-

ditioned on Ui,j(t), using reproducing kernel Hilbert space (RKHS), and maximizes it. It

thereby finds a subspace including Ui,j(t) that is most informative for estimating yi,j. In the toy

example in S1 Text—File 23, the value of y is shown in pseudo-colors. Although y is a function

of x1, x2 and x3, y depends only on the values of u1 and u2 and is independent of u3 (an axis per-

pendicular to u1 and u2). Therefore, gKDR selects a B that maps (x1, x2, x3) to (u1, u2). The

dimension of the subspace, K, needs to be pre-determined and in this work K was optimized

by a grid search as well as other hyperparameters k’, τ’ and Δt as described in the main text.

gKDR was performed by Matlab codes distributed by Kenji Fukumizu on his web site

(https://www.ism.ac.jp/~fukumizu/index_j.html).

Sensory input. As described above, we stimulated the animals with regular changes of

salt concentrations while 4D imaging. In the gKDR-GMM model, salt sensor neurons were

defined as ASEL/R, AWCL/R, BAGL/R and ASHL/R. ASEL and ASER are known to be

salt-sensing neurons that are most important for salt chemotaxis. AWC and BAG were

included because they are ciliated sensory neurons and consistently showed prominent

activities synchronized to salt stimulus. ASH neurons were included because they have

been shown to sense salt and occasionally showed salt response in our data set [49]. In the

model, for these neurons, salt concentration was simply treated as an additional presynap-

tic neuron.
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gKDR-GMM. Determination of the dimension reduction matrix Bi,j was achieved by

gKDR as described in the previous section. In the case of gKDR-GMM, the mapping function

gi,j(Ui,j) is considered a probabilistic distribution. Here, rather than considering gi,j(Ui,j) itself,

the joint probability of Zi,j = (Ui,j(t), yi,j(t+Δt)) was modeled by using a Gaussian mixture

model. Namely, ðZijÞ �
Pk

q¼1
fpi;j;qNðZijjmi;j;qSi;j;qÞg;

Pk

q¼1
pi;j;q ¼ 1: pi;j;q; mi;j;q;Si;j;q were deter-

mined by using {Zi,j(t)} from the training data. The optimal number of Gaussians (κ) was also

searched for and as a result we employed two Gaussians as described in the main text. The

fitgmm function of Matlab was used. Prediction by the gKDR-GMM was performed by ran-

dom extraction from the conditional distribution P(yi,j(t+Δt)|Ui,j(t)).
In our current implementation, processing 1000 time points required approximately 50–70

gigabytes of memory, and the computation time was roughly proportional to O(n2m), where n
is the number of time points, and m is the number of variables, which is proportional to the

number of presynaptic neurons. To provide an example, it took about 0.61 seconds per presyn-

aptic neuron to develop a gKDR-GMM model for one target neuron or around 10–20 minutes

for one animal using a high-performance 3110 TFLOPS supercomputer.

gKDR-GP. Another popular nonlinear approach for probabilistic regression is Gaussian

process. To see whether Gaussian process can be substituted for GMM, we also tested

gKDR-GP, gKDR followed by Gaussian process. In this case, determination of the dimension

reduction matrix Bi,j was the same as above. Probabilistic distribution yi,j(t+Δt)*gi,j(Ui,j(t))
was modeled using Gaussian process. The fitrgp function of Matlab was used for this model-

ing. The results are shown in S1 Text—Files 10I-K and 24A-C.

Cross validation and simulation based on the models. Prediction capacity of the

gKDR-GMM model was evaluated by cross validation. Each time series data were evenly split

into three parts, gKDR-GMM model was generated by one part, and by using the model, pre-

diction was performed for each thirds of the data including the reserved two parts. Prediction

was performed by using Xi,j(t) corresponding to the activities of presynaptic neurons up to

time t, to predict the activity of the target neuron y*i,j(t+Δt) ahead of time as a probability dis-

tribution; which was then compared to the real activity of the target neuron yi,j(t+Δt). Then

mean log likelihood of the occurrence of target neuron’s real activity P(yi,j(t+Δt)|Ui,j(t)) was

scored as above.

To see how gKDR-GMM model represents synaptic interactions, bootstrap test was per-

formed as follows. The same cross validation was performed except that the presynaptic activ-

ity data were randomly permuted, keeping the activity of the target neuron itself unchanged.

This was repeated 100 times, and the distribution of mean log likelihood as above was approxi-

mated by normal distribution and the one-sided p-value of the log likelihood of non-permuted

data was estimated.

Estimation of synaptic weights. To obtain a simplified estimate of synaptic weights, we

took an average of the gradient, @E(yi)/@xh. for the gKDR-GMM model. @E(yi)/@ug can be

obtained by simple calculation of conditioned distribution of each Gaussian in GMM, and

@EðyiÞ=@xh ¼
PK

g¼1
ð@EðyiÞ=@ug@ug=@xhÞ. These values calculated for all x(t) for the training

data were averaged. @E(yi)/@xh obtained for each lag k were averaged with weight factor of

0.8k. This value was used as a “synaptic weight”.

Consistency of synaptic weight estimation was performed by employing the idea of ensem-

ble learning. gKDR-GMM models were generated with different Ks of K = 3, 4 and 5 using

time series data with offsets of 0 to 4 as described below, and each time series were split into

three. Therefore three models are made from three parts, for each offset. As a sum, 45 models

were made for each target neuron in each sample. Of these, only those models that showed

p< 0.01 for cross validation bootstrap test with both retained thirds of time series were used
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as qualified. Synaptic weight estimation was calculated with each model as above for all quali-

fied models. Then consistency of the weights were estimated by performing Wicoxon’s rank

sum test, to compare weight vector and a negative of the same vector. Based on these p values,

FDR< 0.005 was used as criteria for consistent weights by the Benjamini-Hochberg method.

Free-run simulation. For simulation (also called free-run simulation), y∗i;jðt þ DtÞ ¼
x∗i;jðt þ DtÞ was predicted from Xi,j(t), and the prediction was repeated for all i’s, which allows

for embedding to generate X∗
i;jðt þ DtÞ and X∗

i;jðt þ DtÞ for all i, then X∗
i;jðt þ 2DtÞ was pre-

dicted from X∗
i;jðt þ DtÞ and this process was repeated using newly predicted values for further

prediction.

Virtual optogenetics. To estimate the signal propagation through the neural network

according to the gKDR-GMM model, virtual optogenetic stimulation was performed. For this

test, only imaging data from samples 13 to 24 were used, where sensory stimuli by NaCl were

not applied in the first half of the calcium imaging.

Activity of virtually stimulated neuron was set as a double-exponential function:

y ¼ Af� expð� t=t1Þ þ expð� t=t2Þg

where y is activity of the stimulated neuron, t is time from initiation of stimulation, A was

determined so that max(y) = 2, and τ1 = 3, τ2 = 20 were determined so that the time course

profile mimics typical calcium responses of optogenetically activated C. elegans neurons. As a

control experiment, activity of the same neuron was fixed to zero.

To mimic real optogenetic experiments, real activity profile of all observed neurons of the

sample was used as initial values. Stimulation was initiated at several different time, separated

by 400 time points, in the interval without NaCl input described above. After this time point,

optogenetic stimulation or control stimulation was determined as above, and activity of all

other neurons were determined as free-run simulation in the previous section. This simulation

was repeated 10 times for each stimulation time.

To quantify the results, activity of each neuron during 80 simulation time steps (corre-

sponding to approximately 80 s) after the initiation of optogenetic stimulation was averaged,

and the resulting value for 10 repeats and different stimulation time points were all averaged.

Finally, the values thus obtained from control simulation were subtracted from those from

stimulated simulation.

For comparison with the results of [35], publicly shared codes and data accompanying the

paper were downloaded from https://osf.io/e2syt/ and https://github.com/leiferlab/

pumpprobe. Numerical data corresponding to the hue in Fig 2A and the number of valid

observations in [35] was obtained by a modification of funatlas_plot_intensity_map.py and

heat_raster_plot.py, respectively, provided at the GitHub site above.

Hyperparameters. Hyperparameter search was done by scoring similarity of correlation

matrix of free-run simulation results to that of real data. Free-run simulation with a length of

2000 steps was repeated five times for each set of hyperparameters. Correlations of activity

between neurons were represented by correlation matrices, and we scored similarity by calcu-

lating mean squared error of correlation matrices of real and simulation results. Although the

data length is typically 6000 time points, data for every five time points were used for gKDR

analyses because for gKDR, an inverse of n×n matrix needs to be calculated, n being the data

number, and using n = 6000 data points is impractical. For this reason, we have an option of

selecting five phases of the data, starting from t = 1 (offset = 0), 2 (offset = 1) through 5 (off-

set = 4). Most of the analyses were done for offset 0, while the tests of consistency between dif-

ferent models or different samples were done using the data from all offsets.
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Optimal hyperparameters for the gKDR-GMM model were searched for (S1 Text—File 10).

First, presynaptic neurons were chosen as those that send direct chemical synaptic output to

or have a gap junction with the target neuron (called direct links). However the reproduction

of ensemble neural dynamics was not very good. This was expected because, as noted earlier,

we cannot observe and annotate all neurons in the head of C. elegans, and typically, half of the

neurons are missing from the data as described above (maximal number of annotated non-

random neurons was 110 out of ~190 head neurons). Therefore, in another option, only for

missing presynaptic neurons, neurons with another step of synaptic connections were

included, namely presynaptic neurons for the missing neuron that was presynaptic to the tar-

get (called indirect links). The results of modeling including indirect links were generally bet-

ter (S1 Text—File 10C-H; average numbers of “presynaptic” neurons in the connectome data,

for direct link option and indirect link option were 15.1, 6.8 and 21.1, respectively; S1 Text—

File 22). Next, embedding ranks and time steps was searched for and k’ = 30 and τ’ = 10 was

adopted (approximately 60 secs of time span was used for prediction of yi,j(t+Δt), S1 Text—

File 10A and 10B). The total span of embedding is about the same as TDE-RICA, with wider

spacing for gKDR. For K, namely the reduced number of dimensions after gKDR, the results

were improved by increasing the dimension up to K = 3 or 4 but did not improve further (S1

Text—File 10C-E). Therefore, K = 3 to 5 was adopted. Because slightly different results were

obtained with different K, we hereafter created models with these different values. The number

of Gaussians were also varied and two Gaussians (κ = 2) showed the best performance in gen-

eral, which we used hereafter (S1 Text—File 10F-H). The total span of embedding is about the

same as TDE-RICA, with wider spacing for gKDR.
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10. Kato S, Kaplan HS, Schrödel T, Skora S, Lindsay TH, Yemini E, et al. Global Brain Dynamics Embed

the Motor Command Sequence of Caenorhabditis elegans. Cell. 2015; 163: 656–669. https://doi.org/

10.1016/j.cell.2015.09.034 PMID: 26478179

11. Nichols ALA, Eichler T, Latham R, Zimmer M. A global brain state underlies C. elegans sleep behavior.

Science. 2017; 356: eaam6851. https://doi.org/10.1126/science.aam6851 PMID: 28642382

12. Skora S, Mende F, Zimmer M. Energy Scarcity Promotes a Brain-wide Sleep State Modulated by Insulin

Signaling in C. elegans. Cell Rep. 2018; 22: 953–966. https://doi.org/10.1016/J.CELREP.2017.12.091

PMID: 29386137

13. Uzel K, Kato S, Zimmer M. A set of hub neurons and non-local connectivity features support global

brain dynamics in C. elegans. Curr Biol. 2022; 32: 3443–3459.e8. https://doi.org/10.1016/J.CUB.2022.

06.039 PMID: 35809568

14. Nguyen JP, Shipley FB, Linder AN, Plummer GS, Liu M, Setru SU, et al. Whole-brain calcium imaging

with cellular resolution in freely behaving Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2016; 113:

E1074–E1081. https://doi.org/10.1073/pnas.1507110112 PMID: 26712014

PLOS COMPUTATIONAL BIOLOGY Ensemble dynamics and information flow deduction from whole-brain imaging data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011848 March 15, 2024 32 / 34

https://doi.org/10.1016/j.cell.2015.06.054
https://doi.org/10.1016/j.cell.2015.06.054
http://www.ncbi.nlm.nih.gov/pubmed/26232230
https://doi.org/10.1038/nature13186
http://www.ncbi.nlm.nih.gov/pubmed/24695228
https://doi.org/10.1016/j.neuroimage.2021.118543
https://doi.org/10.1016/j.neuroimage.2021.118543
http://www.ncbi.nlm.nih.gov/pubmed/34508893
https://doi.org/10.1038/nn.4497
http://www.ncbi.nlm.nih.gov/pubmed/28230845
https://doi.org/10.1038/nature11057
http://www.ncbi.nlm.nih.gov/pubmed/22622571
https://doi.org/10.1016/j.cell.2016.10.019
https://doi.org/10.1016/j.cell.2016.10.019
http://www.ncbi.nlm.nih.gov/pubmed/27814522
https://doi.org/10.1098/rstb.1986.0056
http://www.ncbi.nlm.nih.gov/pubmed/22462104
https://doi.org/10.1038/s41586-019-1352-7
https://doi.org/10.1038/s41586-019-1352-7
http://www.ncbi.nlm.nih.gov/pubmed/31270481
https://doi.org/10.1038/s41586-021-03778-8
https://doi.org/10.1038/s41586-021-03778-8
http://www.ncbi.nlm.nih.gov/pubmed/34349261
https://doi.org/10.1016/j.cell.2015.09.034
https://doi.org/10.1016/j.cell.2015.09.034
http://www.ncbi.nlm.nih.gov/pubmed/26478179
https://doi.org/10.1126/science.aam6851
http://www.ncbi.nlm.nih.gov/pubmed/28642382
https://doi.org/10.1016/J.CELREP.2017.12.091
http://www.ncbi.nlm.nih.gov/pubmed/29386137
https://doi.org/10.1016/J.CUB.2022.06.039
https://doi.org/10.1016/J.CUB.2022.06.039
http://www.ncbi.nlm.nih.gov/pubmed/35809568
https://doi.org/10.1073/pnas.1507110112
http://www.ncbi.nlm.nih.gov/pubmed/26712014
https://doi.org/10.1371/journal.pcbi.1011848


15. Venkatachalam V, Ji N, Wang X, Clark C, Mitchell JK, Klein M, et al. Pan-neuronal imaging in roaming

Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2016; 113: E1082–8. https://doi.org/10.1073/pnas.

1507109113 PMID: 26711989

16. Dag U, Nwabudike I, Kang D, Gomes MA, Kim J, Atanas AA, et al. Dissecting the functional organiza-

tion of the C. elegans serotonergic system at whole-brain scale. Cell. 2023. https://doi.org/10.1016/j.

cell.2023.04.023 PMID: 37192620

17. Susoy V, Hung W, Witvliet D, Whitener JE, Wu M, Park CF, et al. Natural sensory context drives diverse

brain-wide activity during C. elegans mating. Cell. 2021; 184: 5122–5137.e17. https://doi.org/10.1016/j.

cell.2021.08.024 PMID: 34534446

18. Hallinen KM, Dempsey R, Scholz M, Yu X, Linder A, Randi F, et al. Decoding locomotion from popula-

tion neural activity in moving C. elegans. Elife. 2021;10. https://doi.org/10.7554/eLife.66135 PMID:

34323218

19. Chronis N, Zimmer M, Bargmann CI. Microfluidics for in vivo imaging of neuronal and behavioral activity

in Caenorhabditis elegans. Nat Methods. 2007; 4: 727–731. https://doi.org/10.1038/nmeth1075 PMID:

17704783

20. Tokunaga T, Hirose O, Kawaguchi S, Toyoshima Y, Teramoto T, Ikebata H, et al. Automated detection

and tracking of many cells by using 4D live-cell imaging data. Bioinformatics. 2014;30. https://doi.org/

10.1093/bioinformatics/btu271 PMID: 24932004

21. Toyoshima Y, Tokunaga T, Hirose O, Kanamori M, Teramoto T, Jang MS, et al. Accurate Automatic

Detection of Densely Distributed Cell Nuclei in 3D Space. Packer A, editor. PLoS Comput Biol. 2016;

12: e1004970. https://doi.org/10.1371/journal.pcbi.1004970 PMID: 27271939

22. Hirose O, Kawaguchi S, Tokunaga T, Toyoshima Y, Teramoto T, Kuge S, et al. SPF-CellTracker: Track-

ing Multiple Cells with Strongly-Correlated Moves Using a Spatial Particle Filter. IEEE/ACM Trans Com-

put Biol Bioinform. 2018; 15: 1822–1831. https://doi.org/10.1109/TCBB.2017.2782255 PMID:

29990224

23. Toyoshima Y, Wu S, Kanamori M, Sato H, Jang MS, Oe S, et al. Neuron ID dataset facilitates neuronal

annotation for whole-brain activity imaging of C. elegans. BMC Biol. 2020; 18: 30. https://doi.org/10.

1186/s12915-020-0745-2 PMID: 32188430

24. Gyenes B, Brown AEX. Deriving Shape-Based Features for C. elegans Locomotion Using Dimensional-

ity Reduction Methods. Front Behav Neurosci. 2016; 10: 1–9. https://doi.org/10.3389/fnbeh.2016.

00159 PMID: 27582697

25. Sugihara G, May RM. Nonlinear forecasting as a way of distinguishing chaos from measurement error

in time series. Nature. 1990; 344: 734–741. https://doi.org/10.1038/344734a0 PMID: 2330029

26. Tajima S, Yanagawa T, Fujii N, Toyoizumi T. Untangling Brain-Wide Dynamics in Consciousness by

Cross-Embedding. Honey CJ, editor. PLoS Comput Biol. 2015; 11: e1004537. https://doi.org/10.1371/

journal.pcbi.1004537 PMID: 26584045

27. Ahamed T, Costa AC, Stephens GJ. Capturing the continuous complexity of behaviour in Caenorhabdi-

tis elegans. Nat Phys. 2021; 17: 275–283. https://doi.org/10.1038/s41567-020-01036-8

28. Le Q, Karpenko A, Ngiam J, Ng A. ICA with reconstruction cost for efficient overcomplete feature learn-

ing. Nips. 2011; 1–9. Available: http://papers.nips.cc/paper/4467-ica-with-reconstruction-cost-for-

efficient-overcomplete-feature-learning

29. Kawano T, Po MD, Gao S, Leung G, Ryu WS, Zhen M. An imbalancing act: gap junctions reduce the

backward motor circuit activity to bias C. elegans for forward locomotion. Neuron. 2011; 72: 572–586.

https://doi.org/10.1016/j.neuron.2011.09.005 PMID: 22099460

30. Mori I, Ohshima Y. Neural regulation of thermotaxis in C. elegans. Nature. 1995; 376: 344–348.

31. Ohnishi N, Kuhara A, Nakamura F, Okochi Y, Mori I. Bidirectional regulation of thermotaxis by gluta-

mate transmissions in Caenorhabditis elegans. EMBO J. 2011; 30: 1376–1388. https://doi.org/10.1038/

emboj.2011.13 PMID: 21304490

32. Fukumizu K, Bach FR, Jordan MI. Dimensionality Reduction for Supervised Learning with Reproducing

Kernel Hilbert Spaces. J Mach Learn Res. 2004; 5: 73–99.

33. Fukumizu K, Leng C. Gradient-based kernel dimension reduction for regression. J Am Stat Assoc.

2014; 109: 359–370. https://doi.org/10.1080/01621459.2013.838167

34. Sato H, Kunitomo H, Fei X, Hashimoto K, Iino Y. Glutamate signaling from a single sensory neuron

mediates experience-dependent bidirectional behavior in Caenorhabditis elegans. Cell Rep. 2021; 35:

109177. https://doi.org/10.1016/j.celrep.2021.109177 PMID: 34038738

35. Randi Francesco, Sharma Anuj K., Dvali Sophie, and Leifer Andrew M. 2022. “Neural Signal Propaga-

tion Atlas of C. Elegans.” arXiv [q-bio.NC]. arXiv. https://doi.org/10.48550/ARXIV.2208.04790.

PLOS COMPUTATIONAL BIOLOGY Ensemble dynamics and information flow deduction from whole-brain imaging data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011848 March 15, 2024 33 / 34

https://doi.org/10.1073/pnas.1507109113
https://doi.org/10.1073/pnas.1507109113
http://www.ncbi.nlm.nih.gov/pubmed/26711989
https://doi.org/10.1016/j.cell.2023.04.023
https://doi.org/10.1016/j.cell.2023.04.023
http://www.ncbi.nlm.nih.gov/pubmed/37192620
https://doi.org/10.1016/j.cell.2021.08.024
https://doi.org/10.1016/j.cell.2021.08.024
http://www.ncbi.nlm.nih.gov/pubmed/34534446
https://doi.org/10.7554/eLife.66135
http://www.ncbi.nlm.nih.gov/pubmed/34323218
https://doi.org/10.1038/nmeth1075
http://www.ncbi.nlm.nih.gov/pubmed/17704783
https://doi.org/10.1093/bioinformatics/btu271
https://doi.org/10.1093/bioinformatics/btu271
http://www.ncbi.nlm.nih.gov/pubmed/24932004
https://doi.org/10.1371/journal.pcbi.1004970
http://www.ncbi.nlm.nih.gov/pubmed/27271939
https://doi.org/10.1109/TCBB.2017.2782255
http://www.ncbi.nlm.nih.gov/pubmed/29990224
https://doi.org/10.1186/s12915-020-0745-2
https://doi.org/10.1186/s12915-020-0745-2
http://www.ncbi.nlm.nih.gov/pubmed/32188430
https://doi.org/10.3389/fnbeh.2016.00159
https://doi.org/10.3389/fnbeh.2016.00159
http://www.ncbi.nlm.nih.gov/pubmed/27582697
https://doi.org/10.1038/344734a0
http://www.ncbi.nlm.nih.gov/pubmed/2330029
https://doi.org/10.1371/journal.pcbi.1004537
https://doi.org/10.1371/journal.pcbi.1004537
http://www.ncbi.nlm.nih.gov/pubmed/26584045
https://doi.org/10.1038/s41567-020-01036-8
http://papers.nips.cc/paper/4467-ica-with-reconstruction-cost-for-efficient-overcomplete-feature-learning
http://papers.nips.cc/paper/4467-ica-with-reconstruction-cost-for-efficient-overcomplete-feature-learning
https://doi.org/10.1016/j.neuron.2011.09.005
http://www.ncbi.nlm.nih.gov/pubmed/22099460
https://doi.org/10.1038/emboj.2011.13
https://doi.org/10.1038/emboj.2011.13
http://www.ncbi.nlm.nih.gov/pubmed/21304490
https://doi.org/10.1080/01621459.2013.838167
https://doi.org/10.1016/j.celrep.2021.109177
http://www.ncbi.nlm.nih.gov/pubmed/34038738
https://doi.org/10.48550/ARXIV.2208.04790
https://doi.org/10.1371/journal.pcbi.1011848


36. Ji N, Madan GK, Fabre GI, Dayan A, Baker CM, Kramer TS, et al. A neural circuit for flexible control of

persistent behavioral states. Elife. 2021; 10: 1–32. https://doi.org/10.7554/eLife.62889 PMID:

34792019

37. van der Maaten L, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res. 2008; 9: 2579–2605.

Available: http://jmlr.org/papers/v9/vandermaaten08a.html

38. Lin Q, Manley J, Helmreich M, Schlumm F, Li JM, Robson DN, et al. Cerebellar Neurodynamics Predict

Decision Timing and Outcome on the Single-Trial Level. Cell. 2020; 180: 536–551.e17. https://doi.org/

10.1016/j.cell.2019.12.018 PMID: 31955849

39. Fung WK, He X, Liu L, Shi P. DIMENSION REDUCTION BASED ON CANONICAL CORRELATION.

Stat Sin. 2002; 12: 1093–1113. Available: https://www.jstor.org/stable/24307017
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