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Abstract

Household studies provide an efficient means to study transmission of infectious diseases,

enabling estimation of susceptibility and infectivity by person-type. A main inclusion criterion

in such studies is usually the presence of an infected person. This precludes estimation of the

hazards of pathogen introduction into the household. Here we estimate age- and time-depen-

dent household introduction hazards together with within household transmission rates using

data from a prospective household-based study in the Netherlands. A total of 307 households

containing 1,209 persons were included from August 2020 until March 2021. Follow-up of

households took place between August 2020 and August 2021 with maximal follow-up per

household mostly limited to 161 days. Almost 1 out of 5 households (59/307) had evidence of

an introduction of SARS-CoV-2. We estimate introduction hazards and within-household

transmission rates in our study population with penalized splines and stochastic epidemic

models, respectively. The estimated hazard of introduction of SARS-CoV-2 in the households

was lower for children (0-12 years) than for adults (relative hazard: 0.62; 95%CrI: 0.34-1.0).

Estimated introduction hazards peaked in mid October 2020, mid December 2020, and mid

April 2021, preceding peaks in hospital admissions by 1-2 weeks. Best fitting transmission

models included increased infectivity of children relative to adults and adolescents, such that

the estimated child-to-child transmission probability (0.62; 95%CrI: 0.40-0.81) was consider-

ably higher than the adult-to-adult transmission probability (0.12; 95%CrI: 0.057-0.19).

Scenario analyses indicate that vaccination of adults can strongly reduce household infection

attack rates and that adding adolescent vaccination offers limited added benefit.
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Author summary

Households are a main setting for transmission of respiratory viruses. Here, we analyse

data from a prospective household study to estimate the time-dependent hazards of intro-

duction of SARS-CoV-2 into Dutch households as well as the person-to-person transmis-

sion rates within households. The analyses show that introduction hazards vary strongly

over time, consistently preceding peaks in hospital admissions by 1-2 weeks. Estimated

child-to-child transmission rates are much higher than estimates for other transmission

routes. Using the best-fitting model, we simulate household outbreaks with vaccination of

adults, or with vaccination of both adults and adolescents. Our analyses suggest limited

benefit of adding adolescent vaccination to an adult vaccination campaign. We discuss the

implications of these results for the household dynamics and control of SARS-CoV-2.

Introduction

Transmission of SARS-CoV-2 occurs predominantly in indoor settings such as public trans-

portation, workplaces, schools, and households [1–4]. Infection can cause the respiratory and

systemic disease COVID-19, but in general severity and progression of the disease are mild [5,

6]. This has hampered, even despite huge research attempts, to accurately quantify variations

in susceptibility and infectiousness, and how these depend on host characteristics such as age

and sex, type of infecting strain, pre-existing immunity, and vaccination.

Household studies are considered the gold standard for the study of infectious disease

transmission, as they provide a setting in which transmission events can be pinned down to

one or a small number of potential infectors [7–18]. Classical analyses of household data use

statistical regression techniques to estimate the fraction of persons that are infected over the

course of a household outbreak (the secondary attack rate or SAR), stratified by person-type

and household characteristics [19]. For SARS-CoV-2, a meta analysis of 54 studies has revealed

that secondary attack rates are higher when the index case is symptomatically infected, that

transmission to adults occurs more often than to children, that transmission to spouses occurs

more often than to other family contacts, but that there are no significant sex-differences in

attack rates [4]. These studies, while providing valuable information, do not provide estimates

of parameters that have a biological interpretation, and in particular do not provide insight in

the rates of direct person-to-person transmission. As a consequence, they also do not lend

themselves to extrapolation and scenario analyses. In addition, most studies use a reactive

design in which households are included only after an infected person has been detected in the

household (see [20] for an exception). This makes these studies vulnerable to bias, e.g., house-

hold-size biased inclusion and bias toward inclusion of households with more severely infected

index cases. Also, as households are only included after the first infection these studies cannot

estimate the rates at which infections are introduced into the household.

We propose the prospective household-based cohort study as an attractive crossover of the

reactive household study and the prospective cohort study. While classical person-based pro-

spective cohort studies in principle can provide high-quality information on risk factors and

confounding variables, they are also inefficient if the outcome (infection) occurs infrequently

[21]. This inefficiency is remedied by employing a household based inclusion, as it increases

the number of events (i.e. infections). We illustrate this by using data from a prospective

household study carried out in the Netherlands in the first year of the SARS-CoV-2 pandemic.

The study contains a total of 1, 209 persons distributed over 307 households, of which 59 are

infected during the study period. We analyse the data in a Bayesian framework using survival
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analysis for estimation of the hazards of introduction of SARS-CoV-2 into households, and

stochastic SEIR epidemic models for estimation of within household transmission rates. As it

is known that contacts between household members do not occur randomly [22], we stratify

the analyses by person-type (child, adolescent, adult), and select the most likely contact struc-

ture based on statistical evaluation of competing models. We show that precise estimates of the

type-specific introduction rates can be obtained together with the person-to-person transmis-

sion rates, and explore the impact of different vaccination strategies on reducing (1) the role of

households as a multiplier of infection and (2) the probabilities of infection of specific persons

(e.g., adults).

Results

Introduction of SARS-CoV-2 into households

Given the uncertainties at the time on dominant transmission routes of SARS-CoV-2 several

household studies were initiated in the Netherlands in 2020 [2, 3]. Inclusion of households in

our study was fairly uniform from September 2020 until January 2021, and has been decreas-

ing from January 2021 onward (Fig 1). Most households are included for the maximal follow-

up period of 161 days, and SARS-CoV-2 has been introduced and established in almost one

out of five households (59 of 307, 19%).

Fig 1. Lexis diagram of the study population. Lines show households from the date of inclusion in the study to infection of the first household

member (brown dots), completion of the inclusion period without infection (blue dots at time in study of 161 days) or dropout (blue dots with

time in study shorter than 161 days). Date of inclusion of the first household was 24 August 2020, and last date of the study was 29 July 2021.

https://doi.org/10.1371/journal.pcbi.1011832.g001
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Fig 2 shows the per-person hazard of introduction into the household for adults together

with the 7-day smoothed hospital admissions in the Netherlands. It illustrates that per-person

introduction hazards range from approximately 0.0002 per adult per day in February 2021 and

July 2021 to almost 0.001 per adult per day in December 2020. Specifically, there are three

peaks in the introduction hazards, viz. 0.00080 (95%CrI: 0.00039 – 0.0015) per adult per day in

mid-October 2020, 0.0010 (95%CrI: 0.00058 – 0.0017) in mid-December 2020, and 0.00074

(95%CrI: 0.00042 – 0.0014) in early April 2021. These peaks consistently precede peaks in the

number of hospital admissions with SARS-CoV-2 by 1 to 2 weeks. The per-person hazards of

introduction of SARS-CoV-2 for children and adolescents are estimated relative to adults, and

indicate that children (relative hazard 0.62, 95%CrI: 0.34 – 1.0) have a lower introduction rate

into the household than adults, while the introduction hazard of adolescents is similar to that

of adults (relative hazard 0.97, 95%CrI: 0.52 – 1.7).

To explore whether the hazards of introduction can be explained by simpler parametric

functions with small number of parameters we perform a number of sensitivity analyses. For

instance, a scenario which assumes fixed person-specific introduction hazards yield estimates

of the introduction hazards of 0.00030 (0.00018–0.00047) per day for children, 0.00053

(0.00031–0.00086) per day for adolescents, and 0.00052 (0.00039–0.00067) per day for adults.

Hence, this model confirms that the introduction hazard is lower for children than for

Fig 2. Estimates of the household introduction hazard for adults. Shown are the posterior median of the introduction hazard per person

(blue line) with associated 95% credible envelope (gray area). Household introduction hazards of children and adolescents are obtained by

multiplication of the hazard for adults with the relative introduction hazards for children and adolescents. Also presented are the daily

number of hospitalisations (yellow dots). To remove weekday effects the number of hospitalisations are represented by a 7-day moving

average centered around the current day.

https://doi.org/10.1371/journal.pcbi.1011832.g002
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adolescents and adults. However, this fixed-hazard model has low statistical support compared

to the spline model (ΔLOO_IC > 5 and ΔWBIC > 10 in favor of the spline model). Similarly,

low-order polynomial extensions of this model also have low statistical support.

Within-household transmission of SARS-CoV-2

A total of 59 out of 307 households had a detected SARS-CoV-2 introduction over the course

of the study, and in these 59 households 119 of 237 persons had documented SARS-CoV-2

infections. Of these 119 infections, 77 are considered primary or co-primary cases that intro-

duced the infection in the households. Total numbers of children, adolescents, and adults in

these households are 89, 31, and 117, corresponding numbers of primary and co-primary

cases are 21, 8, and 48, and corresponding numbers of household infections are 19, 3, and 20.

A concise overview of the household data is given in Table 1.

The household data are analyzed with a suite of transmission models that vary in the

assumptions on the person-to-person transmission rates. Most models are variations and sim-

ple extensions of so-called proportionate mixing models in which the transmission rate βij
from a j-type infected person to an i-type susceptible person per infectious period can be writ-

ten as bij ¼ f 0i g
0
j , where f 0j denotes the absolute infectiousness of type j, and g 0i the absolute sus-

ceptibility of type i. With three person-types these models have a maximum of 6 parameters.

One parameter is redundant, however, and the proportionate mixing model can be formulated

in terms of the transmission rate among persons of a reference class (β, here taken to be the

adults) and the infectiousness and susceptibility of children (C) and adolescents (A) relative to

the reference (fC, fA, gC, and gA)(Methods, see also [23]). An overview of the scenarios is given

in Table 2. The analyses show that models that do not stratify the population by person-type

(‘no stratification’), or models that assume a separate transmission parameter for each person-

type combination (‘full model’) perform less well than models of intermediate complexity. In

particular, the ‘variable infectivity’ model with an additional parameter for child-to-child

transmission performs best both with regard to LOO_IC and WBIC. In terms of the above

Table 1. Overview of household infection data. Shown are household compositions (columns 1-3), the total number of households with a given compositions (column

4), and the total number of household infections within each group (columns 5-7). Full data are available in the online repository (https://github.com/mvboven/

sars2-households).

Household composition Number of households Household infections

children adolescents adults children adolescents adults

0 1 1 1 0 0 0

1 0 1 1 0 0 0

0 1 2 3 0 0 2

1 0 2 10 1 0 1

0 2 2 2 0 0 0

1 0 3 2 0 0 0

1 1 2 2 0 0 0

1 2 1 1 0 0 0

2 0 2 22 11 0 9

0 3 2 3 0 1 1

1 2 2 2 0 2 0

3 0 2 7 7 0 7

1 3 2 1 0 0 0

2 2 2 1 0 0 0

3 1 2 1 0 0 0

https://doi.org/10.1371/journal.pcbi.1011832.t001
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transmission matrix, this model is parameterised as follows:

ðbijÞi;j2f1;2;3g ¼

zCC b b

bfC bfA b

bfC bfA b

0

B
B
B
@

1

C
C
C
A
;

where zCC denotes the specific child-to-child transmission rate.

Parameter estimates of the preferred model indicate that children are more infectious over-

all than adults and adolescents (relative infectiousness: 2.4, 95%CrI: 1.4 – 5.9), and that child-

to-child transmission has the highest estimated transmission rate (0.97 per infectious period,

95%CrI: 0.51 – 1.7)(Table 3). Using the estimates of Table 3, Fig 3 presents the estimated prob-

abilities of person-to-person transmission. Here the highest estimated transmission probability

is from child-to-child (0.62, 95%CrI: 0.40 – 0.81), followed by transmission from child-to-

adult and child-to-adolescent (0.25, 95%CrI: 0.13 – 0.40), and from adult to all other person-

types (0.12, 95%CrI: 0.057 – 0.19). All other transmission routes have lower estimated trans-

mission probabilities (� 0.10).

Table 2. Comparison of household models using information criteria. Model selection is based on the information

criteria LOO_IC and WBIC. Shown are results for models that do not stratify the population by age (‘no stratification’),

and that stratify the population into children (0-12 years), adolescents (12-17 years), and adults (over 18 years). Strati-

fied transmission models are considered in which susceptibility of different age groups is estimated while infectivity is

assumed to be identical for different age groups (‘variable susceptibility’), in which infectivity is estimated while suscep-

tibility is fixed (‘variable infectivity’), and in which both susceptibility and infectivity are estimated (‘proportionate mix-

ing’). Within the ‘variable infectivity’ model we further consider sub-models with transmission rates for child-to-child,

adolescent-to-adolescent, and adult-to-adult transmission. A saturated model with a separate parameter for each trans-

mission rate is also considered (‘full model’). The number of within-household parameters is indicated by n. All models

assume density-dependent transmission.

Model n LOO_IC WBIC

No stratification 1 143.9 141.7

Variable susceptibility 3 145.4 140.1

Variable infectivity 3 138.1 133.8

with child-to-child transmission 4 135.1 129.0

with adolescent-to-adolescent transmission 4 140.5 135.1

with adult-to-adult transmission 4 139.4 133.7

Proportionate mixing 5 142.0 134.1

Full model 9 142.6 130.9

https://doi.org/10.1371/journal.pcbi.1011832.t002

Table 3. Estimates of within-household transmission parameters. Parameter estimates are shown for the variable

infectivity model with separate child-to-child transmission (cf. Table 2). Estimates are represented by posterior medi-

ans and 2.5% and 97.5% posterior quantiles, and are based on 1,000 samples from the posterior distribution. Notice

that the introduction hazard parameters of children and adolescents are relative to the introduction hazard in adults

(cf. Fig 2).

Parameter Estimate 95%CrI

Transmission rate among adults (β) (per person per infectious period) 0.13 (0.059-0.22)

Infectiousness of children relative to adults (fC) 2.4 (1.4-5.9)

Infectiousness of adolescents relative to adults fA 0.85 (0.076-3.9)

Transmission rate among children (zC) (per person per infectious period) 0.97 (0.51-1.7)

Relative introduction hazard of children compared to adults 0.62 (0.34-1.0)

Relative introduction hazard of adolescents compared to adults 0.97 (0.52-1.7)

https://doi.org/10.1371/journal.pcbi.1011832.t003
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Sensitivity analyses are performed with respect to the distribution of the infectious period

and assumptions on the primary case(s) in the household. As final size distributions are invari-

ant with respect to the mean of the infectious period [24], we focus on how the results are

affected by variation in the infectious period distribution. We consider scenarios with an infec-

tious period of fixed duration, and one with an infectious period with more variation than in

the default scenario. The parameter estimates of the scenario with fixed infectious period are

Fig 3. Estimated person-to-person transmission probabilities. Shown are posterior medians of the infectious

contact probabilities, i.e. the probabilities that a transmission event would have occurred from an infected person over

its infectious period if the contacted person had not already been infected by another person. Infectious contact

probabilities are calculated from the person-to-person transmission rates per infectious period βij and the Laplace

transform of the scaled infectious period distribution: P i infected by jð Þ ¼ 1 � 1þ
bij
a

� �a
, where α = 50 is the shape

parameter of the infectious period probability distribution.

https://doi.org/10.1371/journal.pcbi.1011832.g003

Table 4. Estimates of within-household transmission parameters when coprimary cases are assumed to be infected

within the household. Parameter estimates are shown for the variable infectivity model with separate child-to-child

transmission. See Table 3 for details and comparison with the main analysis.

Parameter Estimate 95%CrI

Transmission rate among adults (β) (per person per infectious period) 0.22 (0.14-0.32)

Infectiousness of children relative to adults (fC) 1.4 (0.57-3.0)

Infectiousness of adolescents relative to adults (fA) 1.5 (0.50-3.5)

Transmission rate among children (zC) (per person per infectious period) 1.1 (0.57-1.8)

Relative introduction hazard of children compared to adults 0.61 (0.34-1.0)

Relative introduction hazard of adolescents compared to adults 1.1 (0.58-2.0)

https://doi.org/10.1371/journal.pcbi.1011832.t004
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very close to those reported in Table 3. The same is true if variation in the infectious period is

increased such that the 95% coverage is 0.61–1.48 (gamma shape and rate parameter both

equal to 20) instead of 0.74–1.30 in the default scenario. Second, we consider a scenario in

which we assume that all cases that had originally been designated as co-primary cases (i.e.

infected from outside of the household) had actually been infected within the household [3].

In this scenario, the precision with which introduction hazards can be estimated is decreased,

while precision of within-household transmission parameter estimates is increased. Notewor-

thy, the overall within-household transmission rate increases, while the three peaks of the

introduction hazard are still noticeable but are decreased in size. Overall patterns of within-

household transmission, including the high estimated child-to-child transmission rates,

remain as in the main analyses. Table 4 shows the results of the within-household analyses

when using the same model as in the main analyses.

To evaluate the correspondence between the household infection data and posterior predic-

tions we perform posterior predictive checks for the most common household composition

consisting of two adults and two children (cf. Table 1) using parameter estimates of the pre-

ferred model (Table 3). Of the 22 households with two adults and two children, we focus on

the 18 households with a single primary introduction. SARS-CoV-2 is introduced into the

household by a child in 4 households and by an adult in 18 households. Fig 4 shows the

observed fraction of households with a given number of secondary infections (black dots, lines

represent 95% binomial confidence ranges) with the corresponding posterior probabilities

Fig 4. Posterior predictive checks in common households of size four, containing two adults and two children (cf. Table 1). Shown are

the fractions of the households with a given number of secondary infections (black dots) with exact binomial confidence ranges (lines)

stratified by primary case (child or adult), together with the corresponding posterior probabilities of secondary cases.

https://doi.org/10.1371/journal.pcbi.1011832.g004
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(violin plots). Notice that the binomial confidence ranges are quite wide, owing to the small

number of households with a given outcome. Overall, the posterior medians of the infection

probabilities are within the binomial confidence ranges, and in the 18 households with an

adult primary introduction also close to the observed fractions with a given outcome. For

other household compositions the numbers are even smaller and comparisons of outcome

data with posterior predictions are consequently less informative.

The impact of vaccination on household transmission

The above preparations enable quantification of the role of households as a multiplier of infec-

tion. We focus on the secondary attack rate (SAR) and the probability that a focal adult in the

household is infected. Table 5 shows the results for various household compositions and vacci-

nation scenarios. Specifically, we consider two vaccination scenarios, one in which all adults in

the household are vaccinated, and another one in which both adolescents and adults are vacci-

nated. In both cases we assume a leaky vaccine that is highly effective in preventing infection

(VES = 0.9) but does not reduce infectiousness (VEI = 0). Additionally, we base all ensuing

analyses on the transmission model with highest statistical support (Table 2). Due to the high

estimated infectiousness of children, estimated SARs are invariably higher if a child is the pri-

mary case rather than an adolescent or adult. Differences in outbreak size can be substantial,

especially in larger households. For instance, in households of six persons the estimated SAR is

0.50 if the child is the primary case, but less than 0.25 if it is the adolescent or adult. Notewor-

thy, estimates are less precise in households with one or more adolescents due to the relatively

small number of adolescents in our study.

For the estimated parameters, vaccination with an effective but slightly leaky vaccine has

the potential to strongly reduce the size of the household outbreaks (Table 5). For instance, in

households consisting of a single child and a single adult, the SAR is 0.25 if the child is the pri-

mary case and no vaccination is applied, but just 0.029 if the adult has been vaccinated. In

larger households, sizeable reductions can also be achieved, depending on the primary case.

Focusing again on households of six persons, the SAR is reduced from 0.50 to 0.31 if a child is

Table 5. Estimated secondary attack rates without and with vaccination. The vaccine is assumed to be 90% effective (VES = 0.9) in preventing infection but not effective

reducing infectiousness (VEI = 0). Shown are inferred secondary attack rates (SARs) for various household compositions. Estimates are represented by posterior medians

and 2.5% and 97.5% posterior quantiles. Households consist of either a child and an adult (rows 1-2), an adolescent and an adult (rows 3-4), two children and two adults

(rows 5-6), two adolescents and two adults (rows 7-8), or two children, two adolescents, and two adults (rows 9-11), thus including the most common household composi-

tions with children and adolescents in the Netherlands (rows 1-8). For each household composition, SARs are calculated for all possible primary cases. Vaccination scenar-

ios are considered in which adults are vaccinated, or in which both adults and adolescents are vaccinated. NA: households do not contain an adolescent. Estimates are

based on 1,000 samples from the posterior distribution.

Household composition (numbers) Primary case Vaccination scenario

children adolescents adults No vaccination Adults Adults and adolescents

1 0 1 child 0.25 (0.13-0.40) 0.029 (0.014-0.050) 0.029 (0.014-0.050)

1 0 1 adult 0.12 (0.057-0.19) 0.12 (0.057-0.19) NA

0 1 1 adolescent 0.10 (0.011-0.30) 0.011 (0.001-0.035) 0.011 (0.001-0.035)

0 1 1 adult 0.12 (0.057-0.19) 0.12 (0.057-0.19) 0.12 (0.057-0.19)

2 0 2 child 0.48 (0.33-0.62) 0.24 (0.16-0.31) NA

2 0 2 adult 0.20 (0.097-0.31) 0.13 (0.065-0.21) NA

0 2 2 adolescent 0.13 (0.014-0.37) 0.043 (0.0048-0.13) 0.011 (0.0012-0.036)

0 2 2 adult 0.14 (0.068-0.24) 0.093 (0.045-0.15) 0.013 (0.0060-0.022)

2 2 2 child 0.50 (0.32-0.67) 0.31 (0.21-0.42) 0.16 (0.11-0.21)

2 2 2 adolescent 0.21 (0.024-0.54) 0.11 (0.012-0.31) 0.078 (0.0086-0.20)

2 2 2 adult 0.24 (0.12-0.38) 0.18 (0.092-0.28) 0.089 (0.045-0.14)

https://doi.org/10.1371/journal.pcbi.1011832.t005
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the primary case, from 0.21 to 0.11 if the primary case is an adolescent, and from 0.24 to 0.18 if

the primary case is an adult. Adding vaccination of adolescents does further decrease house-

hold outbreak size in households in which an adolescent is present. However, due to the

smaller rates of transmission to and from adolescents (Fig 3) the added benefit of adolescent

vaccination is smaller compared to adult vaccination.

Second, we explore how adding adolescent vaccination might further reduce the probability

of infection of a specific adult. This is especially relevant as adults have an intrinsically higher

risk of severe disease, especially if the adult is immunocompromised or immunosuppressed

[25, 26]. We focus on a number of illustrative scenarios for various household compositions

and vaccination scenarios. The analyses show that the estimated probability of infection of the

adult is high in the absence of vaccination, especially if a child is the primary infection in the

household (Fig 5A), but can be strongly reduced by adult vaccination (Fig 5B). However, add-

ing adolescent vaccination does not noticeably reduce the probability of adult infection fur-

ther, as transmission is already strongly reduced and adults are already protected directly by

vaccination (Fig 5C).

Finally, to investigate the robustness of the above vaccination scenarios with respect to the

assumed vaccine efficacy we perform scenario analyses with increased vaccine efficacy against

infectiousness (VEI = 0.5 instead of VEI = 0). Table 6 shows that in this case the SARs only

exceeds 10% in households of size 4 or more when the child is the primary case. In fact, the

SAR is highest in a household of size 6 when a child is the primary case. Interestingly, for this

particular household composition the impact of vaccination does not noticeably depend on

the ability to reduce infectiousness after vaccination, as most infections in these households

are caused by the highly infectious children (cf Table 5 with Table 6).

Discussion

We have shown that precise estimates of SARS-CoV-2 household introduction hazards as well

as within-household transmission rates can be obtained in a modestly sized study. This has

been possible by virtue of the prospective set-up in which households are included before the

first infection in the household has been observed. The prospective design has the added bene-

fit compared to reactive household studies that there is lower risk of bias, in particular bias

Fig 5. Estimates of the probability of infection of an adult for different household compositions, primary infection (child, adolescent, adult), and

vaccination strategies. (A) no vaccination, (B) vaccination of adults, and (c) vaccination of adults and adolescents (C). Plots represent the posterior

distribution (1,000 samples), and black dots indicate posterior medians. Vaccine efficacy for susceptibility is VES = 0.9. Notice the difference in scale on the

y-axis between (A) and (B)-(C).

https://doi.org/10.1371/journal.pcbi.1011832.g005
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caused by preferential inclusion of larger households (as it is more likely that an infection is

introduced in a larger than in a smaller household) and by preferential inclusion of households

with severe infections (as these are more likely noticed) [4, 27]. To make this design work

logistically, we have employed a so-called passive-active follow-up strategy in which house-

holds are semi-passively followed during the at-risk period with an app, and in which more

intensive follow-up is performed upon notification of acute respiratory symptoms in the

household [3].

With regard to the introduction hazards we have taken an agnostic approach in which haz-

ards are optimally informed by the data, i.e. without assuming a specific underlying popula-

tion-level transmission model. This was done on purpose, as the early SARS-CoV-2 pandemic

has been strongly affected by lock-downs and behavioral responses, and is not easily described

by simple transmission models [28–30]. With regard to within-household transmission, how-

ever, we fit a stochastic transmission model to the data. The within-household analyses provide

estimates of age-stratified transmission rates, and in particular yield estimates of intrinsic

transmissibility between children, adolescents, and adults in a population with low vaccination

coverage and low pre-existing cumulative infection attack rates (� 10–20%, [31]). Our analy-

ses have revealed that, compared with adolescents and adults, children were not the main

source of introduction of SARS-CoV-2 into households, that adolescents played a minor role

propagating the infection in the household, that children were the dominant transmission

source in the household (see also [2, 18, 27]), and in general that quantitative estimates of

introduction hazards can be obtained. In fact, we are not aware of other studies providing such

estimates that are optimally informed by the data. In our analyses, the estimated introduction

hazards range from� 0.0001 per child per day in epidemic troughs to� 0.001 per adolescent/

adult per day in epidemic upswings. Timing of the peaks and troughs relative to hospital

admissions in the Netherlands (Fig 2) suggest that this approach has produced reliable results.

While we are convinced that within the confines of our data we have selected the transmis-

sion model that is in a statistical sense optimal among the models considered, we also acknowl-

edge a number of weaknesses and alternatives. First, throughout we have assumed a so-called

density-dependent transmission model in which each individual in the household makes a

fixed number of contacts with each of the other household members per unit of time. This was

Table 6. Estimated secondary attack rates without and with vaccination. The vaccine is assumed to be 90% effective (VES = 0.9) in preventing infection and moderately

effective reducing infectiousness (VEI = 0.5). Shown are inferred secondary attack rates (SARs) for various household compositions. Estimates are represented by posterior

medians and 2.5% and 97.5% posterior quantiles. See Table 5 for details, and results without vaccination and with vaccination with a vaccine that does not reduce

infectiousness.

Household composition (numbers) Primary case Vaccination scenario

children adolescents adults Adults Adults and adolescents

1 0 1 child 0.029 (0.014-0.050) 0.029 (0.014-0.050)

1 0 1 adult 0.061 (0.029-0.10) NA

0 1 1 adolescent 0.011 (0.0012-0.035) 0.0054 (0.0006-0.017)

0 1 1 adult 0.061 (0.029-0.10) 0.0063 (0.0029-0.0.011)

2 0 2 child 0.24 (0.16-0.31) NA

2 0 2 adult 0.068 (0.033-0.11) NA

0 2 2 adolescent 0.042 (0.0047-0.13) 0.0055 (0.0006-0.018)

0 2 2 adult 0.047 (0.023-0.081) 0.0064 (0.0030-0.011)

2 2 2 child 0.31 (0.21-0.42) 0.16 (0.11-0.21)

2 2 2 adolescent 0.023 (0.0024-0.062) 0.0080 (0.0009-0.023)

2 2 2 adult 0.096 (0.047-0.16) 0.046 (0.023-0.075)

https://doi.org/10.1371/journal.pcbi.1011832.t006
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done for convenience, as it enables direct translation of the estimated transmission parameters

to conditional infection probabilities irrespective of household size, but also because this

model provides a slightly better fit to the data than a frequency-dependent transmission

model. However, our data contains just 59 infected households, and has limited variation in

the size of infected households (3-6 persons). Therefore, alternative contact scenarios cannot

yet be discarded (see also [22]). Reassuringly, estimates of person-to-person transmission

probabilities are very close under the density- and frequency-dependent contact models for

the most common household composition of 1-4 persons.

Second, we have assumed that if initial cases in the household are found at the same day,

that these cases represent co-primary cases. If one or more of these co-primary cases would

actually have been infected in the household, then including this information in the analyses

increases within-household transmission rates while decreasing introduction hazards (see

Results). In general, it will be very difficult to determine which person or persons have been

the primary case or primary cases if onsets of symptoms are on the same day or only a few

days apart. This inability to pinpoint the primary case is common to all household-based stud-

ies, and is a weakness that is not easily remedied. Fortunately, in sensitivity analyses our results

appeared qualitatively robust to such trade-offs between introduction and transmission rates

when more or fewer infections are assumed to represent primary case(s).

A third point of concern is that temporal information is used to estimate the introduction

hazard but that only limited temporal information is used in the within-household analyses. In

fact, temporal information only affects the probability that an additional infection will be

introduced from outside the household. We have assumed that household outbreaks have a

duration that is equal to the outbreak durations as defined in our earlier study [3]. In these

analyses most household outbreaks had a duration of 2 to 5 weeks (median: 26 days, range 13-

126 days). Fortunately, the parameters seemed to be hardly affected by assumptions on the

duration of the household outbreaks, as the estimated introduction hazard is very small com-

pared to the within-household transmission rates (> 2 orders difference). For instance, setting

the outbreak duration to either 14 or 28 days for all households hardly affected the results.

More problematic, though, might be the implicit assumption that the introduction hazard may

vary over time and by person-type, but does not depend on whether other household members

have recently been infected outside the household. This can be unrealistic if household mem-

bers share contacts outside of the household. Incorporation of such correlations in the intro-

duction hazard is a major direction of future model development and applications.

A fourth and final point is the assumption that we are able to perfectly determine who has

and who has not been infected. In other words, we assume perfect specificity and sensitivity of

the testing chain, viz. the combination of both the tests and testing procedures. It is known

that especially in reactive household studies these assumptions may not be met, and that, for

instance, results can be affected if sampling is not sufficiently dense [2]. Our study differs fun-

damentally from those reactive studies in the prospective app-based setup, and intensive fol-

low-up upon the detection of a household infection [3]. Still, it is conceivable that some

misclassifications may have occurred. This applies in particular to the sensitivity of the testing

procedures and recognition of primary cases in the household. This is due to the fact that

some asymptomatic infections may have been missed, resulting in an underestimation of the

introduction hazards. Such missed households would probably mostly occur in case that there

would be a single primary case, as the probability of household detection increases with num-

bers of infections. This, in turn, could potentially have led to lower estimated within-house-

hold transmission rates. In all, however, we believe that our study has small probability of

misspecification, and certainly much smaller than in other household studies [4].
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Our findings demonstrate that prospective household-based studies hold considerable

promise to study the interplay between vaccination- and infection-induced immunity on the

household introduction hazard, the susceptibility to (re-)infection, and the infectiousness once

infected in terms of biologically interpretable parameters. In addition, analysing such data

using transmission models has the added advantage over traditional statistical analyses [2, 27,

32] that transmission model-based estimates can feed into impact analyses of interventions.

Methods

Ethics statement

This prospective cohort study was conducted in the Netherlands and was reviewed and

approved by the Medical Ethical Committee Utrecht, The Netherlands (reference number 17-

069/M), the Medical Ethical Committee of the Vrije Universiteit Medical Centre (VUmc), the

Netherlands (reference number A2012.901), and the Medical Ethical Committee of Erasmus

Medical Centre, the Netherlands (reference number MEC-2020-0609). Written informed con-

sent was obtained from all participating household members and/or their legal representatives.

Study design and data collection

The Cokids household-based study into the causes of acute respiratory infections (ARIs) in

households with underage children was conducted between August 2020 and August 2021.

Enrollment was focused on the period between August 2020 and February 2021. Eligible

households were selected from three existing Dutch birth cohort studies, and all had at least

one child aged 0-17 years. Details of the study design are presented elsewhere [3]. Here we

briefly mention the salient aspects of the study relevant to our analyses. First, the study con-

tained a core study with follow-up of a maximum of 161 days, and an extended study with fol-

low-up period until July 2021. Since follow-up criteria are different between the core and

extended follow-up, and could potentially lead to bias, we here only include the basic follow-

up period for estimation of the introduction hazards. We did, however, include the 4 house-

holds with extended follow-up in the analyses of within-household transmission. Additionally,

there were 4 households of size 2 in the core study that provided information on the introduc-

tion of SARS-CoV-2 into the household but not on within-household transmission as both

persons were labelled as primary cases. There was only 1 vaccinated person in the data used

for our analyses.

All participants were checked daily, using an app developed specifically for the study, for

the occurrence of respiratory symptoms and fever. In addition, all participants were screened

for a panel of respiratory viruses at a 4-6 week intervals, irrespective of symptoms. At new

onset of respiratory symptoms or a SARS-CoV-2 positive test result, a household outbreak

study was initiated, which included daily symptom recording, repeated PCR testing of nose-

throat swabs, saliva, and fecal samples, and SARS-CoV-2 antibody testing using paired dried

blood spots in all household members. Hence, an outbreak study with intensified follow-up of

the household was initiated when (1) a household member developed new-onset respiratory

symptoms or fever, or (2) a SARS-CoV-2 positive result was received on a screening test, or (3)

a positive test result was received from an external testing site. Based on symptoms, the first

case or cases in the household were marked as primary or coprimary infections. Details of the

follow-up procedures are given elsewhere [3].

Hospital admission data have been retrieved from the National Institute for Public Health

and the Environment’s open data (https://data.rivm.nl/covid-19). To remove weekday effects

we present these data as a centered 7-day moving average.
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Transmission model

Our analyses are based on a multi-type susceptible-exposed-infectious-recovered (SEIR) trans-

mission model. In this model individuals are classified as susceptible to infection (S), infected

but not yet infectious (E), infected and infectious (I), or recovered and immune (R). Through-

out we stratify the population by age as follows: children (under 12 years), adolescents (12-18

years), and adults (18 years and older). This stratification corresponds well with age at which

children transition from primary to secondary school, and from secondary school to subse-

quent education in the Netherlands [2, 3].

The within-household analyses use the number of infections that have occurred at the end

of the household outbreaks [8, 11, 24, 33]. Statistical methodology based on such final size data

is well-developed, and these methods have advantages over analyses that use all temporal infor-

mation. First, the number of infections in the household can usually be determined with high

certainty, while the timing of transitions between classes is often uncertain. Second, final size

analyses are invariant with respect to the latent period, i.e. the time that individual spend in

the exposed (E) class [33]. Hence we may, without loss of generality, focus on a simplified sus-

ceptible-infectious-recovered (SIR) type model with no latent period. Third, final size data do

not allow estimation of parameters with respect to calendar time, but only relative to other

model parameters. This enables simplification of the model by reducing the number of param-

eters. Specifically, we can assume, again without loss of generality, that the mean of the infec-

tious period is fixed at length 1 time unit, and set the basic reproduction number equal to the

contact rate parameter in a reference class. Here, we assume that adults are the reference class.

Variation in the infectious periods can affect the outcomes, however, and we assume that the

infectious period is gamma distributed [33]. Here we assume that the 95% coverage of the

infectious period ranges from 0.74 to 1.30, i.e. approximately 6-10 days when the mean infec-

tious period is 8 days. This seems within reasonable range [34, 35]. We supplement the default

analyses with a scenario in which the infectious period is fixed at 1 time unit (i.e. delta-distrib-

uted), and with a scenario with increased variation in the infectious period such that the 95%

coverage of the infectious period distribution ranges from 0.61 to 1.48 of the mean.

Further, with respect to the number of contacts in households of different sizes we focus on

two extremes, viz a density-dependent contact model in our default scenario, and a frequency-

dependent contact model as alternative [23]. In the density-dependent model each household

member makes an identical expected number of contacts with each of the other household
members per unit of time, while in the frequency-dependent transmission model each house-

hold member makes an identical number of contacts per unit of time. Hence, in the fre-

quency-dependent model household members in larger households make fewer contacts with

each of the other household members compared with individuals in smaller households.

The final size distribution

The statistical methods rely on the fact that we can compute the probability distribution of the

final outbreak size of a given household. Let a, n and j 2 Zd
�0

represent the number of primary

household cases, initially uninfected members and the number of secondary infections, respec-

tively. Here d is the number of types (in our analysis d = 3 age classes). Given fixed a and n, we

want to calculate the probabilities Qj of the final size 0� j� n. The probabilities Qj depend on

a number of parameters. First, we require the transmission rate matrix b 2 Rd�d
�0

, in which the

element βμν denotes the transmission rate from an individual of type ν to type μ. Next, let b
denote the vector of probabilities of escape from external infection, i.e., 1 − bμ is the probability

that an individual of type μ gets infected during the household outbreak by someone from
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outside the household if the person had not already been infected otherwise. Finally, the dura-

tion of each infection is independent and identically distributed (iid) random variable Ti. The

probabilities Qj are expressed in terms of the Laplace transform of Ti, given by �ðxÞ ¼ E½e� xTi �.
In our analysis Ti � Gammaða; a� 1Þ, such that E½Ti� ¼ 1 time unit, and ϕ(x) = (1 − x/α)−α. For

integer vectors m and ℓ and a real vector x, we write xm ¼
Qd

i¼1
xmi
i and m

‘

� �
¼
Qd

i¼1

mi
‘i

� �
. For

the scalar function ϕ, we write ϕ(x) to denote the vector (ϕ(x1), . . ., ϕ(xd))0. With these defini-

tions and notation in place, the final size probability Qj is given by Qj ¼ Pj
n
j

� �
where Pj satis-

fies the recursive equation

X

0�k�j

Pk
j
k

� �

�ðb
0
ðn � jÞÞaþkbn� j

¼ 1 :
ð1Þ

Although formal derivations of Eq (1) can be found elsewhere [24, 33], here we give an intui-

tive derivation using elementary methods. In particular, our analyses do not make use of a

Wald identity. We present the method for d = 1 (i.e. no age stratification), but the arguments

easily generalize to d> 1.

We write m : ℓ to denote the set of indices m, m + 1, . . ., ℓ, which is empty when m> ℓ.
First, we enumerate the non-primary members of the household as 1 : n, and we split them

into two groups: 1 : j and j + 1 : n. If we condition on how many members in the first group get

infected, then we can easily calculate the probability that none of the second group get infected.

Suppose that k individuals of 1 : j get infected, then this conditional probability equals

Ck;j ¼ E½e� bðn� jÞðT1þ���þTaþkÞbn� j� ; ð2Þ

where T1, . . ., Ta+k are the gamma-distributed lengths of the infectious periods of the a pri-

mary cases and k infected members in group 1 : j. The infectious periods of infected

members can overlap, in which case we assume the transmission hazard is additive. With

probability bn−j, no one in group j + 1 : n gets infected due to external contacts. The lengths Ti

are unknown, and therefore we take the expectation to integrate them out. As the Ti are i.i.d.,

we get Ck,j = ϕ(β(n − j))a+kbn−j. Next, let Pk denote the probability that exactly individuals 1 : k
are infected. If k� j, then we can interpret Pk as the probability that 1 : k of the first group 1 : j
are infected, and none of j + 1 : n are infected. Moreover, the product Jk;j ¼ Pk �

j
k

� �
is equal to

the joint probability that k arbitrary members of group 1 : j are infected (as opposed to exactly

members in 1 : k), and none of j + 1 : n. Finally, let Uk,j denote the unconditional probability

that k members of 1 : j are infected (regardless of what happens to j + 1 : n), then we find using

the definition of conditional probability that Pk, and Uk,j are related by

Uk;j ¼
Jk;j
Ck;j
¼

Pk
j
k

� �

�ðbðn � jÞÞaþkbn� j
:

ð3Þ

Using the law of total probability, we find that
Pj

k¼0
Uk;j ¼ 1, and hence we find the recursive

Eq (1) for Pk, which includes the edge case P0 = ϕ(βn)abn, and therefore allows us to compute

Pj. Since the household division 1 : j and j + 1 : n was arbitrary, we can now compute the final

size probability Qj ¼ Pj
n
j

� �
.
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Hazard of external infection

To estimate the hazard of external infection we use semi-parametric penalized splines [36]. A

related but simpler approach in which a fixed introduction probabilities are estimated for pre-

defined periods is given in House et al [20].

In our framework, the spline p(t) is defined as a linear combination of cubic basis

splines pðtÞ ¼
PK

k¼0
wkBkðtÞ, with 50 equidistant knots such that K = 52. To penalize large

deviations of p(t), the weights w are equipped with a random-walk prior as follows. We choose

w0 � N ð� 7:5; 2:5Þ and define the other weights cumulatively as wk ¼ w0 þ s
Pk

‘¼1
z‘, where

z‘ � N ð0; 10Þ. The diffusion parameter σ determines the smoothness of the spline and is

given a weakly-informative prior σ2 * InvGamma(1, 0.0005). For the adult age class, we then

define the hazard of infection h3(t) = exp(p(t)). The hazards for the other age classes are pro-

portional to the adult hazard, i.e. h1(t) = r1h3(t) for children and h2(t) = r2h3(t) for adolescents,

where r1, r2 > 0 are the relative hazards (Table 3).

Likelihood function

With the ingredients specified above, we can formulate the likelihood L(t, a, n, j) of observing

a household infected at time t with a primary infected persons, n non-primary persons, and j
persons infected over the course of the household outbreak:

Lðt; a; n; jÞ ¼ hðtÞ0a exp �
Z t

0

hðsÞ0ðaþ nÞds
� �

Qj ; ð4Þ

which is the product of the likelihood that the index cases are infected at time t, and the proba-

bility of final size j. This probability Qj depends on n and a, but also on t, because the probabil-

ity of escape b depends on the external infection hazard h as follows: b ¼ expð�
R tþDt
t hðsÞdsÞ,

where Δt is either set at 14 or 28 (days), or is defined as the household-specific period that an

infected household is monitored. For households that were not infected during the study

period, the final size is unobserved and the introduction time is right-censored. Therefore, the

likelihood is given by

Lðt; nÞ ¼ exp �
Z t

0

hðsÞ0nds
� �

; ð5Þ

where t is time that the household dropped out of the study and n is the household composi-

tion. In our inferential analyses, we approximate the cumulative hazards with sums
R t2
t1
hðsÞds �

Pt2� 1

s¼t1
hðsÞds.

Inference and model selection

We estimate the parameters in a Bayesian framework using Hamiltonian Monte Carlo. Except

for the weakly-informative weights of the penalized spline (see above), none of the other

parameters are given explicit prior distributions. Hence, these parameters have (improper)

uniform prior distributions on their domains, making each possible parameter value equally

likely a priori. To reduce correlations between parameters and facilitate mixing, we parameter-

ize the proportionate mixing model and simplifications thereof in terms of absolute infectivi-

ties fi and absolute susceptibilities gi (i = 1, 2, 3), such that the transmission rates are given by

βi,j = gifj, and in particular the transmission rate in the reference class (i = 3, adults) is given by

β� β3,3 = g3f3. Using this formulation the relative infectivities and susceptibilities of the other
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person-types (Table 3) are given by
fi
f3

and
gi
g3

(i = 1, 2). Since one parameter is redundant, we

have further taken g3� 1 without loss of generality.

All analyses are performed using Stan (version 2.29.0) and R (version 4.2.2) using the

CmdStanR package (version 0.4.0) as interface between R and Stan [37]. We run 10 Hamilto-

nian Monte Carlo (HMC) chains in parallel and base the analyses on 1,000 samples from 10

chains, where we have applied 1/10 thinning. In all model runs effective number of samples

generally ranges from 900-1,100, while the convergence criterion R̂ ranges from 0.99-1.01. In

all analyses we observe strong contraction of all parameter posterior distributions relative to

the prior distributions, indicating that all parameters can be estimated from the data. Data,

scripts, and figures are available in the online repository at https://github.com/mvboven/

sars2-households (doi.org/10.5281/zenodo.10534386).

Model selection is based on information criteria for singular statistical models [38, 39]. Spe-

cifically, we use the leave-one-out information criterion (LOO_IC) from the loo package (ver-

sion 2.4.1) to gauge relative predictive performance, and calculate the widely applicable

Bayesian information criterion (WBIC) using a run of the model at the appropriate sampling

temperature to select the most likely data generating process. As estimation of the introduction

hazards is already optimized for predictive performance, we have used LOO_IC and WBIC

only for the within-household analyses in model runs that exclude external infection during

the household outbreaks.
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