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Abstract

Bacteriophages (phages) are viruses that infect bacteria. Many of them produce specific

enzymes called depolymerases to break down external polysaccharide structures. Accurate

annotation and domain identification of these depolymerases are challenging due to their

inherent sequence diversity. Hence, we present DepoScope, a machine learning tool that

combines a fine-tuned ESM-2 model with a convolutional neural network to identify depoly-

merase sequences and their enzymatic domains precisely. To accomplish this, we curated

a dataset from the INPHARED phage genome database, created a polysaccharide-degrad-

ing domain database, and applied sequential filters to construct a high-quality dataset,

which is subsequently used to train DepoScope. Our work is the first approach that com-

bines sequence-level predictions with amino-acid-level predictions for accurate depolymer-

ase detection and functional domain identification. In that way, we believe that DepoScope

can greatly enhance our understanding of phage-host interactions at the level of

depolymerases.

Introduction

Bacteriophages (phages in short) are viruses that can infect and kill bacteria. A subset of these

phages contains polysaccharide-degrading (PD) enzymes in their virion structure, typically

called depolymerases. These play a crucial role in the initial step of the phage replication cycle,

i.e., the recognition of specific host surface receptors [1,2]. In nature, bacteria are often found

within biofilms. These comprise microbial communities that are enclosed in a matrix of poly-

saccharides, proteins, nucleic acids and lipids [3]. Phage depolymerases can degrade exopoly-

saccharides in biofilm matrices, allowing the phage to access secondary receptors [4]. In

addition, depolymerases can disrupt the bacterial capsular polysaccharide (CPS), which is an

important virulence factor in both Gram-positive and Gram-negative species [5] and can also

protect the bacteria from the immune system of its infecting host [6,7]. Despite their impor-

tance, functional annotation of phage depolymerases remains challenging. This is specifically
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due to their high sequence diversity, which is a consequence of the ongoing coevolution

between phages and their bacterial hosts [8,9]. A common approach for bacteria to evade

infection by phages is to limit access to the receptor by modifying, masking, or even removing

the receptor entirely [10,11]. This results in a high diversity of bacterial receptors, which is

matched by a diverse set of phage receptor-binding proteins and depolymerases [12]. For this

reason, depolymerases are typically difficult to identify using alignment-based methods

[13,14]. However, several computational tools and workflows have been developed to facilitate

the detection of phage depolymerases in phage genomes. In 2019, Latka et al. proposed a man-

ual identification process of phage proteins annotated as tail fiber, tail spike or hypothetical

protein using BLASTp, Phyre2, SWISS-MODEL, HMMER and HHPred [15]. The method is

based on homology with enzymatic domains and visual recognition of conserved structural

features. More recently, two automated, machine-learning-based methods have been pro-

posed. DePP is a Random Forest trained on several experimentally validated depolymerases to

discriminate phage depolymerases from other proteins [16]. Similarly, PhageDPO combines a

Support Vector Machine and an artificial neural network to detect phage depolymerases [17].

The PhageDPO model was trained on a set of phage depolymerases that were collected based

on six depolymerase-associated protein domains. However, a limitation of both tools is the

availability of only small or undiversified datasets to train their models (using only a limited

number of depolymerase-associated protein domains or only experimentally validated

sequences). In addition, beyond predicting a binary outcome for a protein sequence, we aim to

precisely identify the functional enzymatic domain in each protein, something none of the cur-

rent tools can do.

Today, recent advancements in protein language models and protein structure prediction

enable us to tackle these outstanding issues in new ways. Protein language models are deep

learning-based models that are pre-trained on a large set of protein sequences in a self-super-

vised way [18]. This means that such models learn to predict which amino acids are present in

the context of other amino acids, enabling them to learn general properties and even structural

features of protein sequences. Moreover, these pre-trained models can be fine-tuned on a spe-

cific prediction task, which implies that what these models learned during pre-training can be

transferred and leveraged for other tasks. Typically, fine-tuning only requires relatively few

data points and allows making predictions at both the amino acid and the protein levels. Evo-

lutionary Scale Modeling 2 (ESM-2) is a state-of-the-art protein language model developed by

Meta AI that is freely available for reuse and for fine-tuning on specific tasks [19,20].

Here, we leverage ESM-2 and the conserved structural features of phage depolymerases to

annotate them functionally and characterize their enzymatic domains. We developed a new

machine learning tool called DepoScope consisting of a fine-tuned ESM-2 model, followed by a

set of convolutional and dense neural network layers to both detect depolymerase protein

sequences and precisely identify the location of their enzymatic domains. To accomplish this,

we collected protein sequences from the INPHARED phage genome database that were pro-

cessed and filtered both at the sequence and the structure levels. At the sequence level, we

screened proteins against a custom database of hidden Markov model (HMM) profiles. These

profiles were collected and constructed based on Enzyme Commission (EC) numbers that are

associated with a PD activity, which allowed us to capture a great diversity of depolymerases at

the sequence level. We screened predicted protein structures against a collection of folds repre-

sented in the Carbohydrate-Active Enzymes (CAZy) database with an associated PD activity.

A recently developed tool can classify CAZymes broadly but is not specifically tailored towards

detecting phage depolymerases [21]. In the CAZy database, enzymes can be categorized into

different functional groups spanning glycoside hydrolases, glycosyltransferases, polysaccharide

lyases, carbohydrate esterases, auxiliary activities and carbohydrate-binding modules [22]. Of
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these categories, glycoside hydrolases and polysaccharide lyases have a carbohydrate-degrad-

ing activity. The proteins that passed both screenings were used in a training set for both fine-

tuning ESM-2 models to do token classification (i.e., to predict the location of the depolymer-

ase domain) and to construct a convolutional binary classifier on top of the fine-tuned model.

This novel approach of collecting data comprehensively and leveraging ESM-2 allows us to

identify phage proteins that act as depolymerases and locate the enzymatic domain in these

proteins at a high accuracy.

Design and implementation

Phage sequence data collection. A dataset of phage proteins from the INPHARED phage

genome database was collected in January 2023 [23]. This collection comprised 24,289 entries

of complete phage genome sequences, of which each protein sequence was pre-annotated via

the PHROGS database, a protein resource specifically tailored for phage studies [24]. Protein

sequences were then filtered according to their length, any sequence under 200 amino acids in

length was discarded from the dataset, which is the minimum length above which we expect to

find depolymerase domains [15,25]. A visual overview of the subsequent processing steps is

given in Fig 1.

Generation of a polysaccharide-degrading domains database

To represent the diversity of polysaccharide-degrading enzymes, a comprehensive database of

carbohydrate catalytic domains was created. Domain entries from Interpro were fetched in

February 2023 [26]. These entries were filtered based on their associated EC numbers. More

specifically, those marked with E.C.4.4.2 and E.C.3.2.1, corresponding to carbon-oxygen lyases

acting on polysaccharides and glycosidases, respectively, were selected. Further refinement of

entries was carried out manually to retain only those for which the association with a carbohy-

drate-catalyzing activity was based on bibliographic evidence. The final set included 221 Inter-

pro entries (Tab A in S1 Table).

The protein sequences corresponding to each entry were downloaded using an adjusted

version of the template script from the Interproscan website. If the catalytic domain was found

in an uninterrupted segment of the protein sequence we only extracted that domain. If not, the

entire protein sequence was used. Each set of entry-specific sequences was clustered using the

MMseqs tool [27], applying parameters “—cov-mode 1—seq-id-mode 1—min-seq-id 0.50 -c

0.8”. A multiple sequence alignment (MSA) was generated for each cluster with FAMSA [28],

and these alignments were filtered at 95% identity using the HHfilter command from HH-

suite3 software [29]. Subsequently, HMM profiles were built based on these filtered MSAs.

Lastly, the MSAs and HMM profiles served to construct an HHblits database, completing the

formation of the PD domains database.

Screening the proteins against the HHM profile database and subsequent

filtering

MSAs for each sequence were generated from the initial set of proteins in the INPHARED

database using MMseqs in conjunction with the UniRef90 database [30]. The clustered

sequences were subsequently realigned using Clustal Omega [31], and these final MSAs were

screened against the PD domains database using the HHblits command from the HH-suite3

software. Proteins with a bit score higher than 20 with at least 30 aligned positions on their

sequence were considered a positive hit. This approach enabled the detection of remote

homologies within our MSAs, a valuable asset given the often-high sequence divergence but

structural conservation of depolymerase domains.
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Sequential processing steps were implemented to reduce the protein count while preserving

as much diversity as possible. First, the protein sequences were clustered using CD-HIT [32] at

an identity threshold of 95% and an alignment coverage of 80%. The representative of each

cluster (i.e., the longest sequence) was kept, narrowing the dataset from 11,513 to 6,816 pro-

teins. Secondly, sequence embeddings were computed with ESM-2 [20] and clustered using

affinity propagation [33], employing parameters “damping = 0.90, preference = None”, yield-

ing 389 clusters. Finally, we defined a list of annotations consistent with depolymerase activity

(Tab B in S1 Table). For each annotation, we included up to five proteins per cluster in the

final dataset. This process resulted in a collection of 1,926 proteins.

Screening the protein 3D structures against the polysaccharide-degrading

fold database

The 3D structures of the collection of 1,926 proteins were predicted using ESMFold [20]. A

database of domain folds associated with a PD activity (PD fold database) was generated based

Fig 1. Overview of the data collection and preprocessing steps at the sequence and the structure level. (a) Data collection involved collecting raw sequences

from INPHARED and InterPro carbohydrate catalytic domains. Protein sequences were processed into multiple sequence alignments (MSAs), while the sequences

related to the InterPro domains were used to construct profile Hidden Markov Models (HMMs). Then, HHBlits was used to scan the constructed HMMs against

the MSAs, followed by additional clustering and affinity propagation to increase the quality of the collected protein sequence data. (b) The remaining proteins were

further filtered at the structure level using ESMFold, FoldSeek and the CAZy database to get to a final training dataset that included sequences with the folds n-

bladed β-propeller, right-handed β-helix and triple helix. Icons attributions: Font Awesome Free 5.2.0 by @fontawesome (CC by 4.0); Database by Delapouite (CC

by 3.0). No changes were made to the icons.

https://doi.org/10.1371/journal.pcbi.1011831.g001
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on the folds found in the glycoside hydrolase and the polysaccharides lyases families defined

by CAZy (Tab C in S1 Table). The folds that were screened against included α/α toroid, right-

handed β-helix, TIM β/α-barrel, n-bladed β-propeller (with n > 3), Flavodoxin-like, and the

α/β hydrolase folds (Fig 2).

The predicted structures of the 1,926 proteins were screened against this PD fold database

using FoldSeek [34]. For each iteration, a hit was considered significant if the associated proba-

bility exceeded 0.5. For the right-handed β-helix, hits with a probability that the match is a true

positive match greater than 0.2 were considered positive due to the greater divergence of the

right-handed β-helix. Finally, a manual screening for proteins with a triple helix domain was

done. Triple-helix domains frequently require the assistance of intramolecular chaperones for

Fig 2. Identified polysaccharides-degrading folds in the set of proteins from the INPHARED database. Four different types of PD folds were identified with (a)

the right-handed β-helix, (b) the n-bladed β-propeller, (c) TIM β/α-barrel and (d) the α/α toroid. The PD fold is colored in red, while the remaining part of the

protein was left in gold.

https://doi.org/10.1371/journal.pcbi.1011831.g002
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their accurate and stable folding [35,36]. This reliance highlights the intrinsic instability char-

acteristic of these domains, often manifesting as structural disorder [37,38]. This instability

engages in a multifaceted interplay with additional variables, such as the pre-chaperone activ-

ity disorder in the 3D conformation and the predictive capabilities of sequence-based models

to accurately determine the protein’s 3D structure. These complexities introduce challenges to

searching for reliable structural similarities between those folds.

Delineation of depolymerase domains

The 3D structure predictions of the proteins that demonstrated a significant hit with the PD

fold database were used to identify corresponding (so-called) protein units: stable segments

within a protein that fall between secondary structures and domains in terms of their complex-

ity. These were determined with SWORD2, which analyzes the spatial relationships between

α-carbon atoms and optimizes for structural autonomy within these segments [39]. Every pro-

tein unit identified was subsequently screened against the PD fold database to locate the best

match. The delineation of the PD folds was inferred from the best match. These processes

resulted in a final dataset of 602 right-handed β-helix, 96 n-bladed β-propeller and 146 triple-

helix depolymerase proteins for which the catalytic domain was precisely determined. As an

exploratory step, feature representations of the delineated PD folds were computed with ESM-

2 and plotted using t-SNE (S1 Fig).

Model construction and evaluation

DepoScope is built as a stacked model architecture with two parts (Fig 3). The first part is a

fine-tuned ESM-2 model for a token classification and the second part is a pair of two convolu-

tional layers and two forward neural layers for a binary classification task. Both modules have

been trained sequentially, first considering the token classification task followed by the binary

classification.

For training and evaluation, a set of protein sequences that do not match any of the

described PD domains above were added to the dataset as ‘negative’ sequence instances for the

model. We specifically chose to collect other proteins that are involved in catalytic activity and

structural proteins without catalytic activity, as those proteins would be potentially hard for

the model to correctly classify as negatives (Tab D in S1 Table). The full training dataset was

split into three parts: 70% for the token classification task, 20% for the binary classification

task and 10% for the evaluation of both tasks.

In this study, the pretrained ESM-2 models (esm2_t6_8M_UR50D, esm2_t12_35-

M_UR50D, esm2_t30_150M_UR50D configurations) were used to construct fine-tuned mod-

els for a token classification task. Each amino acid of a given sequence was classified into a

class corresponding to the different PD domain folds that the model is being trained on. The

model was fine-tuned using the Python libraries Transformers and Pytorch and optimized the

model hyperparameters via Bayesian search with the Optuna package [40].

In addition, a second deep learning model on top of the ESM-2 fine-tuned token classifica-

tion model was trained for a binary classification task (prediction score threshold of 0.5). Two

convolutional layers identify relevant patterns in the list of labels assigned to each amino acid.

These patterns are then processed by two forward neural network layers that output a predic-

tion score reflecting how likely the protein sequence is a depolymerase. The final outputs of

DepoScope are the list of labels for each amino acid and the probability associated with the

input sequence being a depolymerase. In order to validate the ability of the model to general-

ize, the Group Shuffle Split method was used to split the data. Specifically, the sequences were

clustered with CD-HIT before training using a range of clustering values (0.25, 0.30, 0.35, 0.40,
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0.45, 0.65, 0.70, 0.75, 0.80, 0.85). No significant impact on the performances was observed,

indicating an ability to generalize on unseen data (Tab E in S1 Table).

Benchmarking against available tools

The DepoScope machine learning model was benchmarked for binary classification against

two available tools for depolymerase detection: DePP and PhageDPO [16,17]. The source code

of both tools was downloaded from their respective repositories on GitHub or Galaxy, and we

ran both tools locally in an iPython notebook. As an evaluation dataset, the depolymerase data-

set included in Pires et al. (2016) was chosen, which was also used by the authors of DePP for

benchmarking [25]. More specifically, the protein sequences (> 200 amino acids) of all 142

phage genomes in the Pires dataset were collected. To mitigate biases, sequences present in the

training dataset of either of the tools were not considered. We asked each tool (including

DepoScope) to make predictions for each of the protein sequences across all phage genomes.

Based on these predictions, together with the true labels of each sequence (as given by Pires

et al. [25]), the recall (TP / [TP + FN]), precision (TP / [TP + FP]), F1 score ([precision + recall]

/ [2 * precision * recall]), specificity (TN / [TN + FP]) and Matthews Correlation Coefficient

(MCC; [TN*TP-FN*FP] / sqrt[(TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)]) were computed to

compare the three tools across a range of performance metrics.

Results

Dataset construction and processing

We initially collected 554,981 proteins from the INPHARED database (consisting of complete

phage genomes) that were longer than 200 amino acids. These proteins were further processed

Fig 3. DepoScope model architecture. DepoScope consists of a combination of two deep learning models that perform token classification

and binary classification, respectively. The token classification model is a fine-tuned ESM-2 model that receives protein sequences as input,

which are transformed into tokens (one for each amino acid). For each token, the model learns to classify it as being part of a PD domain or

not in the finetuning process, with four distinct labels: “none”, “right-handed β-helix”, “n-bladed β-propeller” and “triple helix”. The outputs

of this first model additionally serve as inputs to the second model, which is a combination of two convolutional layers and a dense layer that

produce a binary output, which reflects the prediction for the entire sequence of whether or not the protein is a depolymerase.

https://doi.org/10.1371/journal.pcbi.1011831.g003
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in multiple steps. A total of 11,513 proteins presented a significant hit against a custom PD

domain database (comprising sequences across 221 InterPro entries). Their 3D structure pre-

dictions were scanned against the PD fold database. A set of 984 proteins presented a signifi-

cant hit with a fold from the PD fold database (Fig 1a). Most of the detected folds were right-

handed β-helices (844 times, 85.8%) and n-bladed β-propellers (119 times, 12.1%). Addition-

ally, 11 hits (1.1%) and 10 hits (1.0%) were identified as α/α toroid and TIM β/α-barrel folds,

respectively (Fig 2). We were then able to pinpoint the exact location of the PD domain in 602

of the proteins harboring a right-handed β-helix and 96 out of those carrying an n-bladed β-

propeller.

We annotated 146 triple helix domains manually and added these to the training set (Tab F

in S1 Table). In summary, the training of our models included the right-handed β-helix, the n-

bladed β-propeller and the triple helix folds. The TIM β/α-barrel and α/α toroid folds were

eventually not included in the training process of the model due to the low number of identi-

fied instances. For every filtered protein sequence, each amino acid was labeled according to

whether it was part of a depolymerase domain and with the type of fold, resulting in four

labels: “none”, “right-handed β-helix”, “n-bladed β-propeller” and “triple helix”.

Finally, negative sequences were added to the training dataset. In total, 1,409 proteins were

collected that matched the annotations of interest and these were added to the training dataset

as negative instances. As the number of sequences in the positive and negative classes do not

differ substantially, we have not considered artificially balancing the training dataset.

Training the model

The three different ESM-2 model configurations for finetuning were compared based on their

performances on the evaluation dataset and their computational requirements. As expected,

the ESM-2 30L had the highest MCC score of 0.903, followed by ESM-2 12L and ESM-2 6L

with MCC scores of 0.898 and 0.884, respectively (Table 1). The fine-tuned ESM-2 models

most often confused one of the PD domain tokens with the negative label token (not with

other PD domain tokens) while maintaining the level of confusion relatively low (Fig 4). For

the binary classification task, DepoScope reaches an MCC score of 0.987, 0.975 and 0.958 for

the ESM-2 30L, ESM-2 12L and ESM-2 6L configurations, respectively (Table 1). The ESM-2

12L mode configuration was kept as the final model because of the balance between the mem-

ory requirement and the model efficiency.

Benchmark

To further evaluate DepoScope, we benchmarked it against two recently developed depolymer-

ase detection tools, DePP and PhageDPO, on the phage depolymerase dataset published by

Pires et al. (2016, Tab G in S1 Table) [25]. We computed six performance metrics (at a

Table 1. Performances of the fine-tuned models ESM-2 6L, ESM-2 12L and ESM-2 30L for the token classification task on the evaluation dataset (best results anno-

tated in bold).

Task Model size precision recall accuracy f1 MCC Running time (sec / 100 k amino acids scanned) Memory consumption (KB)

Token classification ESM-2 6L 95.4% 95.4% 95.4% 95.4% 0.884 - -

ESM-2 12L 96.0% 96.0% 96.0% 96.0% 0.898 - -

ESM-2 30L 96.1% 96.1% 96.1% 96.1% 0.903 - -

Binary classification ESM-2 6L 99.5% 95.6% 98.0% 97.5% 0.958 32.4 331.34

ESM-2 12L 100% 97.1% 98.8% 98.5% 0.975 89.7 600.11

ESM-2 30L 100% 98.5% 99.4% 99.3% 0.987 229.5 1769.26

https://doi.org/10.1371/journal.pcbi.1011831.t001
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prediction threshold of 0.5 when relevant): precision (P), recall (R), accuracy, F1 score, MCC

and the PR area-under-the-curve (Table 2). DepoScope outperforms both other tools on all

metrics except for recall. Moreover, reaching an MCC of 0.455, DepoScope was more than

twice as performant compared to the other tools, reaching MCC scores of 0.131 and 0.178 for

DePP and PhageDPO, respectively.

This difference is largely explained by DepoScope’s ability to minimize false positive (FP)

predictions, having a total of 123 FPs versus 2103 and 966 for DePP and PhageDPO, respec-

tively. The recall was highest for DePP with 91.6%, while DepoScope and PhageDPO reached a

recall of 69% and 74.7%, respectively. Conversely, DePP and PhageDPO achieve precisions of

3.5% and 6%, respectively, while DepoScope maintains a precision of 32%. Overall, DepoScope

achieves a PR AUC of 42.3%, compared to 10.2% and 27.8% for DePP and PhageDPO, respec-

tively. Most of the false negative predictions for DepoScope corresponded to the triple helix

fold (18 out of 26), followed by α/β hydrolase (4 out of 26), the TIM β/α-barrel (2 out of 26)

and the n-bladed β-propeller (2 out of 26). The performance of DepoScope was further

assessed by analyzing the FP predictions. For each of the 123 FPs, the 3D structure was pre-

dicted using ESMFold and then scanned against the PD fold database. Out of the 123 FPs, 78

had a significant hit against the PD fold database, with 41 right-handed β-helix and 37 n-

bladed β-propeller. Manual investigations of the 45 remaining FPs revealed 32 proteins har-

boring a PD fold. These findings suggest that Pires et al. [25] have missed some depolymerases

Fig 4. Confusion matrices of the token classification task for the T6, T12 and T30 configurations of the fine-tuned ESM-2 model. Four labels were predicted

by the models with “none”, “right-handed β-helix”, “bladed β-propeller” and “triple helix”.

https://doi.org/10.1371/journal.pcbi.1011831.g004

Table 2. Benchmark results for the three tested models.

Models precision recall specificity accuracy F1 MCC PR AUC

DePP 3.5% 91.6% 60.9% 61.4% 6.7% 0.131 10.2%

PhageDPO 6.0% 74.7% 82.0% 81.9% 11.2% 0.178 27.8%

DepoScope 32.0% 69.0% 98.0% 97.2% 43.4% 0.455 42.3%

DepoScope FP adjusted 81.4% 69.0% 99.8% 99.3% 74.5% 0.744 51.6%

https://doi.org/10.1371/journal.pcbi.1011831.t002
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in the phage genomes (Tab H in S1 Table and S1 Data). For the remaining 13 FPs, no indica-

tions were found that point to depolymerase activity. Those 13 FPs were annotated as hypo-

thetical or structural proteins such as tail protein, tail fiber protein, tail sheath and baseplate

proteins. When only considering the remaining 13 proteins as FPs, the MCC of DepoScope

increases to 0.744 (referred to as Deposcope FP adjusted).

Availability and future directions

We developed DepoScope, a language-model-based tool that can both detect depolymerase

protein sequences and accurately identify the amino acids involved in their enzymatic

domains. We firmly believe that open research is valuable for the field to keep moving forward

swiftly. For this reason, we provide full access to our code, models and datasets on GitHub

(https://github.com/dimiboeckaerts/DepoScope) and Zenodo (https://doi.org/10.5281/

zenodo.10957073).

Our work goes beyond the current state-of-the-art in depolymerase annotation by

approaching data collection and processing in a novel and comprehensive way, followed by

leveraging the protein language model ESM-2 [20]. Today, various protein language models

(including ESM-2) are open-source and can be easily fine-tuned and adapted for down-

stream predictive tasks. Moreover, protein language models are an area of active develop-

ment, which can result in future improvements of DepoScope as well. Specifically, our tool

can be refined at three different stages: the pretraining data collection, the pretraining model

architecture and the fine-tuning data. This is different from classical machine learning mod-

els, which do not leverage a pretrained model and can only be improved in terms of feature

engineering (equivalent to improving the model architecture of deep learning models) or

training data. In addition, the transformer-based architecture of such models naturally

allows for predictions at the level of individual tokens (here, amino acids). Such an approach

has been used previously for predicting protein secondary structure [19,41], and here we use

it for amino acid level annotation. We believe that predictions at this level can give a refined

look at what exactly is being predicted by the model, especially when predictions are further

investigated using 3D structure predictions. Consequently, such detailed predictions can

improve and simplify depolymerase engineering workflows, which typically require multiple

manual analysis steps [2]. On the contrary, making amino acid level predictions brings forth

the additional challenge of establishing reliable labels at the level of individual amino acids,

which is not straightforward given the limited number of experimentally verified depolymer-

ase protein structures. Here, we overcame this challenge by implementing an elaborate data

processing pipeline that included (1) the SWORD2 algorithm for delineating protein units,

(2) a set of specific PD folds from the CAZy database and (3) the FoldSeek tool to screen

matching protein domains of interest. However, we believe that this processing pipeline can

be further improved (e.g., by making more explicit use of experimentally determined struc-

tures and manually delineating their domains).

From a broader perspective, it is apparent that the typical way in which researchers func-

tionally annotate proteins is changing nowadays. Traditional methods, such as using align-

ment to detect homology or using profile HMMs as quantitative representations of functional

domains, are being complemented or replaced entirely with deep-learning-based models for

annotation. A notable example is the work by Bileshi et al. [42], in which they use an ensemble

of convolutional neural networks to annotate protein domains, which, combined with existing

methods, led to a significant expansion of the Pfam database. We believe that sophisticated

deep learning methods are indeed proving to be excellent complementary tools for protein

functional annotation and will continue to be in the future. However, this does not diminish
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the importance of experimental verification of protein function and manual curation of pro-

tein sequence data and annotations.

Compared to other tools for depolymerase annotation, DepoScope is more performant

across every computed metric except for recall. The reasons for this result are the limited num-

ber of data points (DePP) or the limited diversity in the underlying folds to collect data with

(PhageDPO). Both DePP and PhageDPO result in many false positive predictions on the

benchmark dataset by Pires et al. [25]. The authors of DePP mitigate this by using a ranking

approach. We argue that this is not a particularly useful output format because it prevents

making a single annotation prediction for each protein separately and hence necessitates com-

paring prediction scores across multiple proteins. In addition, our method also results in some

false positive predictions, according to Pires. However, looking at the 3D structures of these

proteins revealed that many of them match against PD domain folds in our training set, which

could indicate that some depolymerases were missed by Pires et al. in analyzing their phage

genomes [25].

DepoScope has been trained to predict the presence of a selection of folds, including the β-

helix and the n-bladed β-propeller. Those conformations were the most prevalent in the folds

detected by our method, with the β-helix being by far the most abundant one. The potential

biochemical advantages of the β-helix could explain this unequal distribution. Firstly, the sta-

bility of this conformation has been widely described [43]. This could permit the phage to

actively infect hosts in different ecosystems. Secondly, the nature of the β-helix allows for a

vast diversity in its length and sequence [44]. These features could benefit the phage in the face

of the evolutionary arms race with the bacteria. The capsule is subject to rapid changes or

swaps that put evolutionary pressures on the phage to adapt [8].

Several uncommon folds have been observed in the collected phage proteins with a PD

fold. To our knowledge, some of these folds have never been studied in the realm of viruses,

specifically in phages. Further investigation on the depolymerase activity in phages carrying

those folds could provide valuable insights into the activity and ecology of phages. Some of

those folds might hold interesting properties. Previous studies reported a substrate specific-

ity depending on the pH, which implies important ecological and technological implica-

tions [45].

Our tool succeeded at being highly performant in predicting the β-helix and the n-bladed

β-propeller in the phage genomes presented by Pires et al. [25], but not as much in predicting

the triple helix, which consisted most of the false negatives. We see two reasons that could

explain these errors. Firstly, the level of disorder in the triple helix domain (before trimeriza-

tion), which only decreases after the activity of the chaperone [35,36]. This high level of disor-

der can potentially make the pattern more complex and hampers proper prediction based only

on the sequence. Theoretically, this could be bypassed by adding more divergent sequences in

the training data and/or using a bigger pre-trained ESM-2 model, which can understand more

complex relationships between amino acids, resulting in a higher sensitivity for more complex

patterns. Secondly, the depolymerase activity in those proteins can be harder to assess. Indeed,

in most cases, the depolymerase activity has been deduced from the presence of the chaperone

domain, which could potentially lead to false positives.

In conclusion, our study fundamentally rethinks the traditional understanding of depoly-

merases by offering a more accurate identification, including delineating the enzymatic

domain. We suggest that depolymerases should be defined as phage proteins with an enzy-

matic PD domain with a specific fold known for their ability to degrade polysaccharides.

These insights have broader implications, promising to enhance functional annotations in

phages and potentially in other organisms facing complex annotation challenges.
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