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Abstract

Neurons throughout the brain modulate their firing rate lawfully in response to sensory

input. Theories of neural computation posit that these modulations reflect the outcome of a

constrained optimization in which neurons aim to robustly and efficiently represent sen-

sory information. Our understanding of how this optimization varies across different areas

in the brain, however, is still in its infancy. Here, we show that neural sensory responses

transform along the dorsal stream of the visual system in a manner consistent with a tran-

sition from optimizing for information preservation towards optimizing for perceptual dis-

crimination. Focusing on the representation of binocular disparities—the slight differences

in the retinal images of the two eyes—we re-analyze measurements characterizing neuro-

nal tuning curves in brain areas V1, V2, and MT (middle temporal) in the macaque mon-

key. We compare these to measurements of the statistics of binocular disparity typically

encountered during natural behaviors using a Fisher Information framework. The differ-

ences in tuning curve characteristics across areas are consistent with a shift in optimiza-

tion goals: V1 and V2 population-level responses are more consistent with maximizing the

information encoded about naturally occurring binocular disparities, while MT responses

shift towards maximizing the ability to support disparity discrimination. We find that a

change towards tuning curves preferring larger disparities is a key driver of this shift.

These results provide new insight into previously-identified differences between disparity-

selective areas of cortex and suggest these differences play an important role in support-

ing visually-guided behavior. Our findings emphasize the need to consider not just infor-

mation preservation and neural resources, but also relevance to behavior, when

assessing the optimality of neural codes.
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Author summary

The nervous system needs to transform information from the sensory organs into signals

that can be used to guide behavior. Neural activity is noisy and can consume large amount

of energy, so sensory neurons must optimize their information processing so as to limit

energy consumption while maintaining key behaviorally-relevant information. In this

report, we re-examine classically-defined brain areas in the visual processing hierarchy,

and ask whether neurons in these areas vary lawfully in how they represent sensory infor-

mation. Our results suggest that neurons in these brain areas shift from being an optimal

conduit for conveying sensory information towards prioritizing information that supports

key perceptual discriminations during natural tasks.

Introduction

An appealing theory of neural computation is that neurons in early sensory areas respond to

stimuli in a way that maximizes the information carried about the world [1, 2] while neurons

in downstream areas transform this representation to best support specific tasks and computa-

tions [3–7]. A careful test of this theory of sensory transformations requires several elements.

We need to characterize the typical probability distribution of a behaviorally-relevant sensory

variable encountered in the environment. We then need large-scale measurements of neural

responses driven by this sensory variable across multiple brain areas. Lastly, we need a single

mathematical framework that can be applied to sensory representations shaped by different

behavioral or computational objectives. In this report, we use binocular disparity in the pri-

mate visual system as a model and combine the necessary statistical, physiological, and compu-

tational resources to test this theory. Our results provide empirical evidence in support of a

systematic transformation of sensory representations in the brain: from information preserva-

tion at early processing stages to supporting perceptual discrimination performance at later

stages.

Binocular disparity between the retinal images offers an ideal test bed for examining hierar-

chical sensory representations. In animals with forward-facing eyes, non-fixated points in

space tend to fall on disparate retinotopic locations because the eyes are laterally offset from

each other (Fig 1A). Successful integration of information from the two eyes relies on popula-

tions of neurons that are tuned for different binocular disparities–the differences in the retino-

topic location of points imaged in the left and right eyes. While neuronal tuning for binocular

disparity emerges early in the mammalian visual system (V1), populations of neurons tuned

for binocular disparity have also been characterized all along the dorsal and ventral processing

streams [8, 9]. Beyond just supporting binocular integration, the sensing of horizontal binocu-

lar disparities in particular provides one of the most reliable cues to the relative distances of

objects in the environment. As such, this cue supports a variety of perceptual tasks such as fig-

ure/ground segregation, three-dimensional motion perception, and breaking camouflage [10–

12]. The magnitude and direction of horizontal binocular disparity varies lawfully as a function

of how far objects are from the observer as well as where the observer is fixating, and prior

work has shown that these variations result in predictable statistical regularities in the binocu-

lar disparities encountered during natural tasks [13–16]. We hypothesized that early represen-

tations of horizontal binocular disparity maximize the information carried about typical

disparities encountered during natural behavior, while later representations may reallocate

neuronal resources to facilitate discrimination of disparity in support of perceptual tasks.
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Results

Natural distributions of binocular disparity have strong statistical

regularities

To test this sensory transformation hypothesis, we first need an understanding of the distribu-

tion of horizontal binocular disparities that the visual system is tasked with processing (hereaf-

ter simply referred to as disparities). In recent years, there has been a concerted effort to

characterize the visual “diet” of disparities that is typical of natural experience [13–16]. This

prior work suggests several robust statistical properties of typical disparities, most notably that

small disparities (near zero) tend to be much more likely than large disparities in central

vision. This pattern likely arises because objects and surfaces tend to be locally smooth. When

Fig 1. Statistical regularities in binocular disparity can be used to examine how sensory representations transform across

visual brain areas. A. Non-fixated points tend to fall on disparate retinotopic locations because the eyes are laterally offset. The

horizontal difference in these locations is called the horizontal binocular disparity (abbreviated here as simply disparity).

Populations of neurons tuned for different disparities, illustrated in the bottom right, are found throughout the visual system.

B. Disparities encountered in the central visual field (10˚ radius of fixation) tend to be small. Each plot shows the probability

density of disparity obtained from data collected in [13] while human participants either navigated an outdoor environment

(left) or prepared a sandwich (right). Densities are estimated from over 100 million samples of disparity recorded while three

human participants performed these tasks. C. Information theoretic frameworks indicate that optimal sensory representations

can be described by a power law relationship between stimulus probability p (shaded region) and the Fisher Information (FI)
of a neuronal population. Information maximizing population codes (“infomax”) are proportionate to the squared probability,

while discrimination maximizing codes (“discrimax”) are characterized by a compressive nonlinearity. D. The plots on the top

illustrate normalized error functions that minimize the L0 (left) and L2 (right) norms. The plots on the bottom illustrate

example patterns of disparity estimate errors under the respective norms used to optimize the reconstruction of the ground

truth from noisy sensory measurements. For clarity, disparities are sampled from a uniform distribution. The sets of

reconstruction error under the L0 and L2 norms have equal total error penalty. Red lines indicate zero error.

https://doi.org/10.1371/journal.pcbi.1011783.g001

PLOS COMPUTATIONAL BIOLOGY Optimal information representations in the brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011783 January 11, 2024 3 / 24

https://doi.org/10.1371/journal.pcbi.1011783.g001
https://doi.org/10.1371/journal.pcbi.1011783


the eyes fixate on an object, the points nearby are mostly at a similar distance from the

observer and therefore produce modest magnitudes of disparity. Optimal sensory representa-

tions for binocular integration should therefore allocate processing resources differently for

small disparities than for large ones. Using a previously-collected data set in which people

wore a custom-built gaze and scene tracker [13], we calculated the probability distribution of

binocular disparities in the central visual field while people performed two different tasks:

food preparation and navigation (Fig 1B). While the distribution shape differed between the

tasks, we see that both distributions are approximately zero-mean, symmetric, and highly kur-

totic (consistent with previous analyses). The increased prevalence of larger disparities during

food preparation is likely due to the different typical object distances between the tasks: a given

depth interval between two objects maps to a larger disparity if the objects are relatively close

to the observer, as during manual tasks like preparing food.

Sensory coding theories predict a lawful transition in how these binocular

disparity statistics are reflected in the brain

Optimal coding frameworks provide concrete, testable predictions for how a stimulus proba-

bility distribution should be reflected in neural populations. Specifically, if a population maxi-

mizes the information carried about a sensory variable, we expect the Fisher Information of

the population neural activity (FI; a measure of the precision with which a sensory variable is

encoded) to follow a power law in which FI is proportionate to the stimulus probability

squared (Fig 1C, “infomax”) [17]. Importantly, this relationship requires us to assume that FI
is a reasonable proxy for another information theoretic quantity: the mutual information

between the stimulus and the neuronal representation. Prior work suggests that this assump-

tion holds best when the population-level noise is weak and Gaussian [18]. More generally,

this representation can also be interpreted as a reference prior [19], which assumes the least

possible information about the world, or Jeffrey’s prior, providing invariance across transfor-

mation of sensory units [20].

Under common assumptions on computational limits, this FI/ p2 power law corresponds

to a neural code that minimizes the L0 norm of the stimulus reconstruction error [5, 6, 17, 18].

This means that all error magnitudes are penalized equally and the expected value of these

errors is minimized (i.e., error sparsity is maximized; Fig 1D, left) [5, 6]. Prior work has found

signatures of this power law across a range of early sensory brain areas [3, 21]. However, a

representation with this distribution is not optimal for visual tasks that require discrimination

between different values of a stimulus variable, because error magnitude matters for many dis-

crimination tasks. For example, if one is trying to determine whether their hand can fit in

between two sharp objects separated in depth, a small error may be harmless but a large error

may lead to injury. Thus, for perceptual discrimination, neural codes that minimize some

other error metric like mean squared error are often appropriate (L2 norm; Fig 1D, right). As

such, codes that are optimized for downstream discrimination tasks should reduce the concen-

tration of neural processing resources on high probability events and spread FI more equally

across the stimulus space (Fig 1C, “discrimax”) [5, 18]. The discrimination-maximizing “dis-

crimax” line shown in the Fig 1C corresponds to a specific power law of FI/ p0.5. This objec-

tive (along with objectives that aim to minimize other Lp norm errors like the sum of absolute

errors) results in a consistently more compressive nonlinearity than information maximization

[6, 22]. In neural codes for binocular disparity, we would therefore hypothesize that the popu-

lation FI might be more strongly peaked at zero disparity in early visual areas, and more

equally spread out across a broader range of disparities in later visual areas.
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Neural populations differ as predicted by a transition from information-

preservation towards supporting perceptual discrimination

To test this specific hypothesis, we must characterize a large number of neuronal tuning curves

for binocular disparity across different brain areas, such that we can calculate the population

FI associated with these curves and compare them to the disparity probability distributions in

Fig 1B. Since the precise shape of the disparity probability distribution varies between tasks

(and different resource constraints can change the numerical value of the optimal exponent

for the power law [5, 22]), here we focus on the relative transformation of the FI exponent

between brain areas rather than on its nominal value. To this end, we compiled a data set of

1007 neurons’ binocular disparity responses spanning brain areas V1, V2, and MT of the

macaque monkey, which were collected in the course of previously published studies [23–34].

The mean responses of each neuron as a function of binocular disparity were fit with a contin-

uous 1D Gabor function and the FI associated with each individual neuron’s tuning curve was

calculated from these fits based on the assumption of Poisson spiking (Fig 2A).

For a single neuron, the FI is high when the tuning curve is steep and the spike rate (and

Poisson noise) is low, and the FI is low when the tuning curve is flat and the spike rate is high

(for example, note the alignment between the tuning curve flanks and the FI peaks in Fig 2A).

The total FI of each population was calculated as a sum across neurons, based on the initial

assumption that each neuron responds to stimuli independently (Fig 2B). Qualitatively, we see

that the population FI is most kurtotic in V1 and V2, and least kurtotic in MT, consistent with

the hypothesis that the information-maximizing model is a better description of the early

visual representation (V1 and V2) and the discrimination-maximizing model is a better

description of the downstream representation (MT).

We next directly compared these empirical FI distributions to the two probability distribu-

tions of disparities in the natural environment during food preparation and navigation. Before

doing so, we had to recompute the disparity distributions based on the retinotopic locations of

the neuronal receptive fields (Fig 2C). We did this because even in the central visual field, dis-

parities are distributed somewhat non-uniformly across space. For example, negative (or near)

disparities are more common in the lower visual field than the upper visual field [13]. Since the

receptive field locations of our sample populations tended to fall in the lower visual field, we

resampled the natural disparity distributions based on the specific retinotopic locations of the

neuronal receptive fields in each population using kernel-smoothed density estimates (Fig 2D).

We then calculated the power law that, when applied to the corresponding disparity distribu-

tions, resulted in the best fit to the measured FI of each neuronal population. That is, we found

the value n that most closely satisfied the relationship FI/ pn for V1, V2, and MT. We used

bootstrapping of the populations to estimate variability of the best-fit power law exponent.

Consistent with our hypothesis, we observed a systematic decrease in the best-fit exponents

from the lower-level areas to the higher-level area for both natural tasks (food preparation: Fig

3A left panel; navigation Fig 3B left panel). Note that in both plots, the distributions for V1 and

V2 are largely overlapping. The results of these fits suggest that V1 and V2 are closer to popula-

tions optimized to preserve information about binocular disparity (particularly for the food

preparation task, for which the best fit exponents are 1.5 and 1.6, respectively). The best fit

exponent for MT was lower for both tasks, and therefore less consistent with information maxi-

mization and more consistent with reducing error magnitude. Of course, the differences

between V1/V2 and MT are not as extreme as the infomax and discrimax examples given in

Fig 1, but the relative shift is robust and persistent across both disparity distributions.

However, we observed one notable inconsistency with this interpretation, with respect to

V2 and the food preparation task. The right panels in Fig 3A and 3B show the matches between

PLOS COMPUTATIONAL BIOLOGY Optimal information representations in the brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011783 January 11, 2024 5 / 24

https://doi.org/10.1371/journal.pcbi.1011783


the population FI (solid lines) and the disparity distributions scaled by the single best fit expo-

nents (dashed lines). According to our predictions, for each brain area and each task, these

pairs of distributions should closely overlap. The distributions match closely in all cases except

for the V2 population and the food preparation task. The exponentiated disparity distribution

in this case is quite biased towards near (negative) disparities, and this bias is not present in

the population FI. The reason for the near disparity bias comes down to the distribution of

receptive field locations: the V2 receptive fields are exclusively concentrated in the lower visual

field, and the disparity statistics in the lower visual field are strongly biased towards near dis-

parities during food preparation [13]. For the navigation task, the binocular disparity statistics

Fig 2. We calculated the population Fisher Information (FI) from sets of neurons from areas V1, V2, and MT and

the probability density of disparities sampled to match their receptive field (RF) locations. A. We compiled a data

set of 1007 disparity tuning curves from brain areas V1 (n = 388), V2 (n = 441), and MT (n = 178) of the macaque

monkey. The mean response of each neuron as a function of disparity was fit with a continuous function and the FI
associated with each tuning curve was calculated from these fits, assuming Poisson spiking. B. The population FI is

shown for each brain area, assuming that each neuron responds independently (thick lines). Each curve is normalized

to have the same sum, to facilitate comparing the shapes despite differences in the number of neurons per population.

Thin lines represent the population FI computed from 100 bootstrapped samples from each brain area. C. Small circles

show the locations of the centers of all receptive fields (RFs) of the neurons analyzed in each brain area as a function of

horizontal and vertical eccentricity from fixation. The samples were used to compute kernel-smoothed densities as a

function of visual field location. The shaded gray region indicates a 10˚ radius around fixation. D. On the top, we show

the disparity probability densities collected from the food preparation task weighted based on the kernel-smoothed

spatial sampling of the V1, V2, and MT data RFs. On the bottom, we show the same for the navigation task. The 95%

confidence intervals of the disparity probability distributions across 100 bootstrapped samples are shown with shading,

but the range is smaller than the thickness of the lines.

https://doi.org/10.1371/journal.pcbi.1011783.g002
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are less biased. At present, we do not understand how the visual system might flexibly incorpo-

rate different biases in stimulus statistics when they differ across tasks. However, we speculate

that the notable lower visual field near bias in this food preparation task (in which human par-

ticipants made a sandwich while sitting at a table) may be a bit weaker in the visual experience

of macaque monkeys.

To quantify the exponent differences further, we fit the bootstrapped power law values for

each neuronal population with a Gaussian distribution and measured the effect sizes between

populations (Table 1, top row). The effect sizes, measured as Cohen’s D between pairs of popu-

lations, were large between the earlier areas and MT. As expected from the similarity in their

FI distributions, the effect sizes were small between V1 and V2. Despite the differences in over-

all magnitude across the two tasks, the ratio of the best-fit exponents for the early (V1 and V2)

and later (MT) brain areas were similar (Table 1, bottom row). Thus, the data support the

Fig 3. Neural populations differ as predicted by a transition from information-preservation towards supporting

perceptual discrimination. A. On the left, the distribution of best-fit power law exponents linking population FI to the

disparity probability densities is plotted for each brain area for the food preparation data set. Histogram bars indicate

the 100 bootstrapped samples for each brain area and solid lines indicate Gaussian distribution fits to each set of

samples. On the right, the normalized population FI is plotted for each area (solid lines) along with the disparity

distributions scaled by their respective best-fit power laws (dashed lines). B. As in panel A, but for the navigation task.

https://doi.org/10.1371/journal.pcbi.1011783.g003

Table 1. Comparison of best-fit power law exponents between brain areas. Pairs of areas being compared are indi-

cated at the top of each column. For each task, the upper values indicate the effect sizes (Cohen’s D) between the boot-

strapped exponent distributions. The lower values indicate the ratios of the single best-fit exponents.

statistic V1 vs. V2 V1 vs. MT V2 vs. MT

food nav food nav food nav

effect size 0.1 0.1 3.7 5.3 2.8 6.9

exp. ratio 1.0 1.0 1.3 1.7 1.4 1.7

https://doi.org/10.1371/journal.pcbi.1011783.t001
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notion that the MT population FI reflects a different optimization, but that V1 and V2 may

contain similar information-driven codes.

These differences are robust to assumptions about neuronal noise and

information-limiting correlations

The preceding analysis assumes that each neuron in V1, V2, and MT fires with independent

Poisson variability—that is, that the variance of the spike count is equal to the mean spike

count for each stimulus disparity, measured over a given time interval. However, systematic

violations of Poission spiking statistics have been reported in a number of neuronal popula-

tions [35–37]. If, for example, spike count statistics varied systematically between V1, V2, and

MT in our dataset, our analysis of the differences in population FI may be flawed. In a control

analysis, we thus fit the mean and variance of the spike counts for each neuron in our dataset

and used these fits to determine the variance at each disparity in our analysis (assuming Gauss-

ian-distributed noise). Because the number of repeated measurements was limited, these fits

were quite variable (Table 2), but were consistent with the observations from prior work that

deviations from Poisson spiking tend to be associated with slopes greater than one and inter-

cepts greater than zero [37]. In addition to considering unique individual neuron variability, it

is also highly likely that these populations contain noise correlations that are not reflected in

the current, non-simultaneous, recordings. As such, we also augmented our model to examine

the potential impact of noise correlations. We focused on a particular type of pairwise correla-

tion called “information limiting correlations” [38], since these correlations will have the most

notable effect on the FI contained in large neuronal populations. We modelled three levels of

information-limiting correlations, which collectively reduced the total population FI in each

population by a factor of 1/5, 1/3, and 1/2 (Fig 4A).

Fig 4B shows the resulting shapes of the population FI, for each of these four additional

noise models. The per-neuron fitted independent noise model (leftmost plot) produces FI dis-

tribution shapes quite similar to the Poisson noise model. Interestingly, as information-limit-

ing correlations were increased, we found that the shape of the population FI in each area

tended to broaden. These correlations seemed to have a disproportionate effect on the popula-

tion FI at small disparities, where each population was most informative. However, since this

broadening affected all brain areas, we hypothesized that the ratios between the best-fit powers

may be largely preserved. In Fig 4C, we plot these ratios for each noise model, along with the

ratios associated with the independent Poisson model for comparison (dashed lines). In all

models, the ratio between the best-fit powers of V1 and MT, and V2 and MT, tends to fall in

the range of 1.4-2. The ratio between V1 and V2 stays near 1. Thus, this analysis suggests that

the proposed information theoretic differences between these brain areas are likely robust to

the inclusion of information-limiting correlations that are similar between areas. If there were

strong differences in the correlation structure between brain areas, however, that could reduce

the differences in coding precision shown here.

Table 2. A constrained least squares algorithm was used to fit a slope and intercept to the relationship between

mean spike rate and spike rate variance for each neuron in each area. Column values indicate the median fits, with

the 25th and 75th percentiles in parentheses. The intercepts were constrained to be greater than zero (hence the lower

quantile being approximately zero for each area).

area slope intercept

V1 1.4 (0.8,2.1) 0.6 (*0,16.6)

V2 1.4 (0.8,2.2) 1.4 (*0,7.8)

MT 1.3 (0.3,2.4) 15.5 (*0,67.9)

https://doi.org/10.1371/journal.pcbi.1011783.t002
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These differences correspond to a broad set of changes in individual tuning

curve characteristics from V1/V2 to MT

We next asked which aspects of the neural responses to disparity could account for the differ-

ences in the FI distributions between V1/V2 and MT. To answer this question, we leveraged

the Gabor fits to each of the tuning curves (Fig 5A). For each of the cortical populations, we

examined the distributions of each of the six best-fit Gabor parameters (Fig 5B). Omnibus

Kruskal-Wallis tests (used because some parameters were not normally distributed) indicated

group-level differences in all of the parameters (Table 3). Follow up pair-wise tests indicated

that the MT neurons generally had higher response offsets, higher response amplitudes, larger

(absolute) envelope means, broader envelopes, and lower disparity frequencies than either V1

or V2 (Table 4). This analysis expands on a previous comparison between V1 and MT [34] by

Fig 4. Differences in the best-fit power law across areas are robust to assumptions about neuronal noise and

information-limiting correlations. A. We introduced four control models to explore how our model of neuronal noise

might affect the conclusions drawn from our main analysis. For each control model, we plot the total FI (the area under the

curve of the population FI distribution). The independent model is computed much like the original Poisson spiking model,

but we fit a per-neuron noise model, summarized in Table 2. The weak, medium, and strong models further contain

information-limiting correlations that reduce the total population FI in each area by a factor of 1/5, 1/3, and 1/2, respectively.

Note that the differences between areas also reflect the different number of neurons in each population that we analyzed. B.

For each of these models, the shape of the normalized population FI (in which each distribution sums to one) is plotted. The

x and y axes, which are omitted for clarity, are identical to Fig 2B. C. For each model, we plot the ratios between all pairs of

best-fit power law exponents for both tasks. For reference, the ratios associated with the best-fit power laws determined from

the independent Poisson noise model are shown as dashed lines.

https://doi.org/10.1371/journal.pcbi.1011783.g004
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including responses from V2 and a larger number of V1 neurons. One possible explanation

for these differences is that they may reflect differences in the retinoptic locations of the recep-

tive fields across the samples from each brain areas, rather than systematic differences between

these brain areas. Our subsampling from the initial larger data set resulted a good match

between the brain areas in terms of eccentricity and vertical position within the visual field,

although the MT data set is more concentrated in the left visual field and the V1/V2 data sets

are more concentrated in the right visual field (see Fig 2C). Since there is no reason to hypoth-

esize that disparity tuning should differ in terms of left or right visual field, we propose that

Fig 5. Tuning curve characteristics differ systematically across areas. A. Decomposing the 1-D Gabor function that was fitted to each neuron’s mean

responses into the Gaussian (left plot) and cosine (right plot) components clarifies what each parameter contributes to the shape of the resulting tuning curve.

The vertical dashed line in the Gaussian plot marks the center of the Gaussian envelope while the cosine plot indicates the 0 phase position. The parameters are

defined as follows: A: Amplitude, r0: vertical response offset, μ: Gaussian envelope mean, σ: Gaussian envelope standard deviation, f: cosine frequency, ϕ: cosine

phase. The cosine f parameter is shown in the bottom right panel as defining one quarter of a period. B. Distributions of best fitting Gabor parameters for each

of the three areas. Thin white bars indicate the 25th and 75th quartile and the thick gray bar indicates the median.

https://doi.org/10.1371/journal.pcbi.1011783.g005

Table 3. Test statistics and significance for Kruskal-Wallis one-way test for differences between distribution medi-

ans comparing the six Gabor parameters across V1, V2, and MT (distributions shown in Fig 5B). For the envelope

mean and the cosine phase, statistics were run on the absolute value. The degrees of freedom for each test is 2. Bolding

indicates a statistically significant difference between the brain areas, with a significance threshold of p< 0.05.

parameter χ2 p-value

r0 187.8 <0.001

A 10.0 0.007

|μ| 16.3 <0.001

σ 208.5 <0.001

f 52.5 <0.001

|ϕ| 7.0 0.030

https://doi.org/10.1371/journal.pcbi.1011783.t003
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these tuning differences most likely reflect differences in the underlying neural representation

across the populations.

An increase in neurons preferring larger disparities in MT is a key factor in

the observed sensory coding transformation

There are clear differences in the distributions of best fit Gabor parameters between the earlier

cortical areas and MT. However, the complex and overlapping effects that these parameters

have on the tuning curve shape make it hard to interpret how each parameter contributes to

the transformation of the population FI shape between the areas. Therefore, we performed a

resampling analysis to see if the changes in any one parameter in particular had a notable

impact on the difference in the FI distributions. Since the FI distributions from V1 and V2

were similar, we focused this analysis on comparing V1 and MT and used the independent

Poisson noise model. The overall approach is outlined in Fig 6A: for one tuning curve parame-

ter at a time (illustrated just for envelope standard deviation), we replaced the set of true V1

values with a new set of values obtained by randomly sampling from the distribution of MT

fits. We then rebuilt each cell’s tuning curve with their new parameter and used these hybrid

cells to calculate a new FI distribution. This process was repeated a total of 100 times for each

of the Gabor parameters individually to assess the variability in the resulting hybrid population

FI distributions. Fig 6B shows the hybrid FI distributions (purple) for each of the parameters

alongside the original V1 and MT population FI distributions (blue and red, respectively). Of

the six parameters, replacing the V1 envelope mean (μ) with those from MT qualitatively

results in the closest match with the true MT population.

To examine these matches further, we calculated the Jensen-Shannon (JS) divergence

between the FI of each of the hybrid populations and the true MT population (Fig 6C). This

information theoretic measure reflects the dissimilarity between two distributions, such that a

low value indicates that two distribution are similar and a high value indicates that two distri-

butions are dissimilar. We observed that the median JS divergence associated with resampling

the envelope mean (μ) was a factor of 4.0-7.6 lower than the medians for the other parameter

resamplings—that is, it was the most similar to the true MT distribution (green shading). We

performed two control analyses to examine the generality of these results, which are described

in the Methods. A limitation of this approach is that it does not consider correlations between

parameters. For example, a closer match between the MT and the hybrid populations may be

achieved if we matched both the envelope mean and width. However, focusing on single

parameters allows us to gain a simple intuition about how the known differences in MT

Table 4. Test statistics and significance for two-tailed Wilcoxon rank sum test for differences between medians, used for pair-wise follow up tests on the Kruskal-

Wallis tests from Table 3. Pairs of distributions tested are indicated at the top of each column. Test statistics (z), effect sizes (r), and p-values (p) are provided for each

pair. For the envelope mean and the cosine phase, statistics were run on the absolute value. Bolding indicates a statistically significant differences between the brain areas,

with a significance threshold of p< 0.05.

parameter V1 vs. V2 V1 vs. MT V2 vs. MT

z r p z r p z r p
r0 8.0 0.28 <0.001 -6.9 0.29 <0.001 -13.3 0.53 <0.001

A -0.2 0.01 0.845 -2.9 0.12 0.004 -2.9 0.12 0.004

|μ| -1.3 0.05 0.193 -3.9 0.17 <0.001 -3.2 0.13 0.002

σ -4.9 0.17 <0.001 -13.6 0.57 <0.001 -11.8 0.47 <0.001

f 2.8 0.10 0.005 6.8 0.29 <0.001 5.7 0.23 <0.001

|ϕ| 2.5 0.09 0.013 -0.02 0.00 0.986 -1.8 0.07 0.076

https://doi.org/10.1371/journal.pcbi.1011783.t004
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disparity tuning affect the distribution of information therein. We conclude that an increase in

neurons preferring larger disparities may be a key driver of the observed sensory information

transformation from V1 and V2 to MT.

Discussion

Here we have taken a theoretical prediction about changes in population-level neuronal infor-

mation along the sensory processing hierarchy and put it to an empirical test. The results are

consistent with the prediction that sensory transformations can be understood as the result of

a constrained optimization, in which the goal changes sensibly from early to later sensory

areas.

While we focused on how different encoding objectives might affect the power law relation-

ship between stimulus probability and population FI, the optimal population FI can be influ-

enced by other factors as well, such as resource constraints [22]. We assumed that visual brain

areas in the same species are subject to the same constraints, which seems reasonable given the

overall similar anatomy and physiology of these areas. However, adaptation studies that

dynamically shift stimulus statistics without affecting constraints may be able to determine

whether or not this assumption holds [39]. Similarly, system noise influences the form of FI,
both for individual neurons and the population as a whole (see [40]). The noise analysis of our

data suggests that, at least in the current data set, the results are robust to different simulated

noise properties and noise correlations. However, a systematic characterization of neuronal

noise properties and noise correlations along the sensory processing hierarchy may ultimately

Fig 6. An increase in neurons preferring larger disparities in MT is a key factor in the observed sensory coding

transformation. A. We investigated which of the six Gabor parameters best explained the difference in the population

FI between V1 and MT by replacing one parameter at a time from V1 with randomly sampled values pulled from the

distribution of best-fitting parameters from the MT population. We repeated this process to create 100 new hybrid

populations for each of the 6 parameters. B. The median and interquartile range of the population FI distributions

from the 6 hybrid populations (purple) are plotted against the true V1 (blue) and MT (red) population FI (same in

each of the 6 subplots). C. Jensen-Shannon (JS) divergence between the hybrid population FI distributions and the true

MT population FI distribution are plotted for each swapped parameter. Lower values reflect a closer match between

the two distributions. Gray circles show the JS divergence between the population FI for each of the 100 hybrid

bootstrapped populations; black circles and errorbars show the median and interquartile range across all bootstraps.

https://doi.org/10.1371/journal.pcbi.1011783.g006
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reveal that sensory transformations are affected by differing noise properties across brain areas

as well. For example, effects of spatial attention on response variability have been shown to

change from earlier to later stages of visual processing [41, 42]. Evidence suggests that atten-

tion-related response changes may also produce neuronal correlations that are amplified as

signals move downstream, which can be measured as increasing deviations from Poisson spik-

ing statistics [37]. While our analysis of the spiking properties of V1, V2, and MT neurons in

response to disparities did not reveal systematic changes in the best-fit slope between each neu-

ron’s spike rate mean and variance, we did see that the overall spike rate in MT was notably

higher on average than in V1 and V2 (Table 2). Advances in our ability to model how different

coordinated processes between neurons translate to spiking statistics and correlations will help

us ultimately understand how processes like attention and arousal affect sensory information

[43]. Similarly, we hope that the promising empirical results like those presented here will

motivate further collection of simultaneous population-wide activity for examining how infor-

mation changes within hierarchical sensory representations.

In this study, we used binocular integration as a model system for sensory transformations

more generally. But our results also shed light on specific open questions regarding the neural

underpinning of binocular integration and disparity processing. Previous work has noted that

the shape of disparity tuning curves appears to change systematically across brain areas, but

the reason for these changes is unknown [34, 44, 45]. For example, previous work suggested

that MT tuning curves tend to have odd symmetry and broader tuning, whereas in V1, the tun-

ing curves are more even symmetric with a narrower range of preferred disparities [34]. Here,

we did not see evidence for a clear difference in even/odd symmetry, but we did observe a mul-

tifaceted set of differences in the distributions of tuning curve shapes. Some of the difference

in shape (e.g., width) may be a side effect of pooling neurons with different orientation prefer-

ences to generate direction selectivity for patterns [46]. However, a priori, it is not necessarily

the case that tuning curves get broader along the sensory processing hierarchy. For example,

the tuning curve characteristics in V2 were quite similar to V1. Our information theoretic

analysis suggests these differences in tuning curve shape may also have direct utility: they shift

the position of a neuron’s peak FI to larger disparities while maintaining a population peak

near zero. Over the entire population, this effectively makes the FI distribution more broad,

thus preserving disparity discrimination at higher disparity pedestals while allocating (rela-

tively) fewer resources to small disparities. Given that each area of the brain is subject to

resource limitations and input-output noise, redistributing visual information so as to more

closely match the aspects of visually-guided behavior supported by each area seems to make

sense. It would be interesting, for example, to examine the FI-based sensory representation of

disparity in a ventral stream area such as V4, where it has been proposed that disparity repre-

sentations support detection of fine 3D structural elements [44].

Of note, we do not want to suggest that a shift from information-maximizing towards dis-

crimination-maximizing representations should be the sole difference in how V1, V2, and MT

represent visual information. For example, it is well-established that MT encodes binocular

disparity in a way that is more correlated with perception than V1 does: V1 neurons invert

their disparity tuning curves with anticorrelated stereoimages [8] and are affected by vergence

and absolute disparity [47, 48], whereas V2 [49, 50] and MT [51] at least partially discard false

stereo matches and encode relative disparity. It is also important to consider other sensory var-

iables represented in these areas. A recent study used an information theoretic framework to

examine the link between the encoding of speed in MT and perceptual biases in speed estima-

tion [52]. They found that the population FI for stimulus speed in MT can be related to speed

perception via an FI/ p2 power law. Our estimates of the power law in MT for binocular dis-

parity diverge from this idealized “infomax” representation of speed. However, it is not
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necessary that every sensory variable encoded within a population is represented at the same

level–it is entirely possible that the same brain area could contain an information-maximizing

representation of one sensory variable and a discrimination-maximizing representation of

another. The information-theoretic framework provides an additional window into how neu-

ral representations build and interact along sensory processing streams that can complement

other assessments of neural function.

Lastly, our work also highlights the fact that the statistics of sensory input can be task

dependent, because the disparity statistics were quite different for the two tasks that we consid-

ered (food preparation and navigation). This task-dependence can pose a problem for assess-

ing the encoding optimality of neural populations on the basis of task-free natural stimulus

statistics derived from generic datasets, for example, of natural images and sounds [3, 4].

Inter-species differences in sensory statistics also pose a challenge. The statistics associated

with natural experiences and tasks may be easier to measure in some species than others, how-

ever, differences in the ecological niches and behaviors can dramatically affect the patterns of

sensory experience [53]. Here, we show that generalizations that are robust across tasks, and

potentially across species, can be made by focusing on relative differences between brain areas.

With the information theoretic analyses like those presented here, we gain a more princi-

pled understanding of the link between the hierarchy of cortical areas carrying sensory infor-

mation and the complexity of behaviors that rely on that information. New computational

frameworks that can be applied to dynamic populations of neurons, trial-by-trial variations,

and spike-count correlations between neurons will contribute to the next steps in characteriz-

ing hierarchical transformations of sensory signals.

Methods

Definition of horizontal binocular disparity

We define horizontal binocular disparity (d) as follows:

d ¼ bL � bR; ð1Þ

where βL and βR denote the horizontal angular eccentricity of an image projected to the left

and right retinas, relative to the fovea. We represent eccentricity and binocular disparity in

units of visual degrees, with negative disparity values indicating points that are closer in depth

than the fixation point (crossed disparities) and positive values indicating points that are far-

ther in depth than the fixation point (uncrossed disparities).

Natural scene statistics of binocular disparity

Measurements of binocular disparity during natural tasks were re-analyzed from a previously

collected dataset, in order to estimate the natural probability distributions of disparity (p(d),

abbreviated as simply p in the main sections) [13]. In brief, three adult human subjects per-

formed either outdoor navigation or food preparation tasks while wearing a custom-designed

headset consisting of a pair of stereocameras and eye trackers. Still images were sampled from

the stereocamera video footage, transformed into head-centered 3D scene geometry using an

automated stereoscopic depth estimation algorithm, and finally converted into binocular dis-

parity maps in retina-centered coordinates using the eye-tracking data. Analyses were limited

to data within a 10˚ radius of the point of fixation and constituted 8670 disparity maps for the

navigation task and 9551 disparity maps for the sandwich taking task (over 100 million dispar-

ity samples per task).
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While the original natural disparity measurements were sampled within a 10˚ radius of fixa-

tion, the neural data sets we wanted to compare them to contained neurons with receptive

fields that were restricted largely to one hemifield (Fig 2C). Given the differences in binocular

disparity statistics between the upper and lower hemifields and the expected increase in preva-

lence of larger disparities with increasing eccentricity [13], these biases on receptive field loca-

tion likely influence the probability distribution of disparities that each neuronal population

encodes. Thus, we resampled disparities based on the retinotopic locations of the receptive

field centers. To do so, we calculated kernel-smoothed probability density distributions for

each of the cortical areas using a 2D Gaussian kernel and used these distributions to subsample

from the original disparities in space. We then computed the overall probability density across

51 disparities linearly spaced between -2˚ and +2˚ (Fig 2D). To ensure the reliability of this

subsampling procedure, we used bootstrapping to estimate the variability of the resulting dis-

tributions for each task. Over 100 iterations, we sampled a random set of 100 disparity maps

with replacement and recomputed the disparity distributions. In practice, the bootstrapped

95% confidence intervals were smaller than the line width in Fig 2D.

Neural recordings

Neural recordings from areas V1, V2, and MT were re-analyzed from multiple previous stud-

ies. All recordings come from awake fixating macaque monkeys and reflect measured action

potentials (spikes) of isolated neurons. The tuning curves measured in V1 and V2 come from

multiple studies using highly similar methods measured over the course of a decade in the

same laboratory [23–33]. The MT tuning curves were obtained in a single study with slightly

different experimental methods [34].

In all cases, the stimuli used to measure response rate (spikes per second) as a function of

binocular disparity were random dot stereograms (RDS) with each dot subtending approxi-

mately 0.1˚. The methods for the stimuli and data collection for the V1 and V2 data are

described in [24, 27]. Briefly, responses from V1 and V2 were collected using RDS stimuli with

no coherent motion, presented on a Wheatstone mirror haploscope for 400-500ms at a display

refresh rates ranging from 72-100Hz. Responses from MT were collected using RDS stimuli

with 100% coherent motion tailored to each cell’s preferred direction, speed, and size [34]. For

each of the MT recording sessions, stereoscopic stimuli were presented for 1500ms on a single

monitor with liquid crystal shutter glasses at a refresh rate of 50Hz for each eye (cross-talk was

measured to be<3%). For comparability with the V1 and V2 data, here we analyze the MT

responses just from the first 500 ms of each trial. The stimuli in the MT recording sessions

were also presented against a non-overlapping background of stationary dots at zero disparity

to anchor vergence (this vergence lock was located outside of the neuronal receptive fields in

all cases).

Recordings from each area were likewise similar. In brief, after the receptive field of each

neuron was localized, the stimulus was adjusted to the optimal size (and velocity for MT) and

the responses to different magnitudes and directions of binocular disparity were recorded. For

the MT recordings, the majority of tuning curves were mapped using stimuli with disparities

that ranged from −1.6˚ to 1.6˚ in steps of 0.4˚, however for a few neurons larger disparities

were used. For the V1 and V2 recordings, the stimulus disparity ranges were variable across

neurons, with steps ranging from 0.029˚ to 1.2˚. Responses from MT and V2 neurons were

collected solely with single electrodes, while responses from V1 were collected mostly from

single electrodes and a few from multicontact probes [32]. The receptive fields of neurons in

V1 and V2 were largely restricted to the lower visual field due to cortical topography and the

positioning of the implanted recording cylinders. In the MT data set, most recording cylinders
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were placed above the right hemisphere, so the receptive fields are largely limited to the left

visual field. Horizontal and vertical eccentricity of the stimuli and receptive field positions

were calculated by taking the arctangent of the distance on the screen from the fixation point

and the viewing distance.

There were slight differences in experimental protocols between the laboratories (i.e., shut-

ter glasses vs. mirror haploscope, coherent motion vs. incoherent motion), but these differ-

ences are unlikely to cause the differences in the FI distributions estimated from the data. For

example, Palanca and DeAngelis (2003) compared disparity tuning in MT for moving and sta-

tionary dots, and the disparity tuning curves were very similar (although responses were gen-

erally weaker for stationary dots) [54]. Indeed, motion and disparity are independently

encoded in MT [55]. Since MT receives disparity and motion signals from V1 and V2, it is

likely that disparity and motion are also coded independently in lower visual areas. As such,

the difference in motion energy between the stimuli used by the two laboratories is unlikely to

produce consistent biases in disparity tuning. Most neurons in V1 and MT also do not show a

dependence of disparity selectivity on interocular delay, instead showing an inverse relation-

ship between response gain and interocular delay; those that do show disparity-delay insepara-

bility do not exhibit large tuning shifts over the display intervals used in either of the data sets

[27, 56].

Tuning curve analysis

A subset of the neural recordings described in the previous section were selected for analysis

according to set of inclusion criteria. First, we only included neurons with an average of� 3

repeats per stimulus disparity. We then selected neurons for which a significant amount of the

trial-by-trial variance in responses was explained by the disparity of the stimulus (one-way

ANOVA at a significance level of p < 0.01). For the V1 and V2 recordings, the range of stimu-

lus disparities presented was variable, so to ensure sufficient data to obtain a reliable fit to the

tuning curves we only analyzed neurons with a range of at least 1˚ between the nearest and the

farthest disparity tested.

In each study, stimulus disparity was recorded in screen coordinates rather than retinal

coordinates. For example, a point with the same horizontal coordinate on screen for both eyes

was coded as having zero disparity. However, in retinal coordinates, the locus of points with

zero disparity is a circle that contains the fixation point and the optical center of the two eyes.

Therefore, a point with the same horizontal coordinates on a planar screen will have an

uncrossed (far) retinal disparity. In order to match up the neural recordings to the retinal dis-

parities measured in the scene statistics analysis, we therefore applied a correction factor. In

brief, the retinal eccentricity of each on-screen stimulus in the left and right eye was deter-

mined based on the screen distance, the horizontal screen coordinates in the left and right eye,

and an assumed interocular separation of 30mm. These retinal eccentricities were used to cal-

culate the angular disparity on the retinas, which was used in the subsequent analyses. Since

the calculation of retinal disparity is sensitive to eccentric fixation points, we limited our analy-

sis to neurons in which the responses were measured while the animal was fixating straight

ahead.

For each of these neurons, we then fit a continuous tuning curve to the mean responses as a

function of the stimulus retinal disparity h(d). Tuning curves were parameterized as a

6-parameter Gabor function (Fig 5A):

hðdÞ ¼ r0 þ A exp
ðd � mÞ2

2s2

� �

cosð2pf ðd � mÞ þ �Þ: ð2Þ
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Best-fitting parameters for each neuron were determined using constrained non-linear optimi-

zation in MATLAB (Mathworks, Inc.), minimizing the mean squared error (fmincon). To pre-

vent fits that deviated substantially from the observed range of spike rates, data were up-

sampled by a factor of 2 using linear interpolation prior to fitting. Bounds for parameters were

as follows: 0< r0 < 500, 0< A< 500, −1.75 < μ< 1.75, 0< σ< 5, 0< f< 4.5, −2π< ϕ< 2π.

Fits that resulted in a minimum spike rate of less than 0.05 spikes per second or with a fre-

quency (f) of less than 0.25 were strongly penalized (by multiplying the current error by 107),

to avoid instability in the calculation of Fisher Information and the interpretation of the fitted

parameters, respectively. The optimization was initialized at 200 randomly selected starting

points and optimized according to an interior point algorithm. The parameters with the lowest

error across all initializations were taken as the final fit. A subset of neurons (less than 30,

mostly in MT) were identified with poor fits on manual inspection, so fitting routines were re-

run for these neurons with minor adjustments to the parameter ranges.

We then further subsampled the neuronal populations to ensure that each neuron included

in our analysis was well-fit with a Gabor tuning function (we select only neurons with R2�

0.75), had RF centers within the defined region of the disparity image set (i.e.,� 10˚ eccentric-

ity), and had RF centers within the same general subregion of the visual field. To enforce the

final criterion, we determined the largest vertical and horizontal components of the RF centers

from the V1/V2 data sets to define a rectangular bounding box and then selected only MT

cells with RF centers within this region. This was enforced because the full MT data set con-

tained a larger number of cells with RF centers in the upper visual field, which could poten-

tially bias the disparity preferences of the sample [13]. The final cell counts from each sample

were 388, 441, and 178 from V1, V2, and MT, respectively.

To investigate differences between the resulting parameter distributions (Fig 5B), we first

performed a Kruskal-Wallis omnibus test to ask if there were any significant differences in

median values between the three areas. Since we were primarily interested in differences in dis-

tribution breadth, we first took the absolute value of the signed parameters (μ and ϕ) to test

only difference in the median magnitudes of these values. We then followed up with a set of

Wilcoxon rank sum tests between each of the pairs of areas. Following the method described

in [57], we computed the effect size (r) for each rank sum test as the ratio of the z test statistic

to the square root of the total number of samples. The results of these tests are presented in

Tables 3 and 4.

Fisher Information

The Fisher Information as a function of disparity for an individual neuron (y) with tuning

curve h(d) can be written as:

FIyðdÞ ¼
h02ðdÞ
s2
hðdÞ

; ð3Þ

where h0(d) denotes the first derivative of the tuning curve and s2
hðdÞ denotes a function

describing the variance of the neuron’s spike rate as a function of the stimulus disparity.

Based on the simplifying assumption that the spiking for each neuron measured within a

given time window is Poisson-distributed, in our main analysis we calculated the Fisher Infor-

mation of neuron y (FIPy(d)) as described by [17, 58]:

FIPyðdÞ ¼
h02ðdÞ
hðdÞ

: ð4Þ

Further assuming that each neuron’s spike rate is also conditionally independent, the Fisher
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Information associated with the whole population (FIP(d)) is:

FIPðdÞ ¼
X

y
FIPyðdÞ: ð5Þ

This quantity, along with all other population-level Fisher Information quantities, is referred

to as just FI in the main sections.

Thus, we evaluated the tuning curve of each neuron over the same 51 disparities used to

compute the natural disparity distributions, computed FIPy(d) (Fig 2A), and summed together

all neurons in a given area (Fig 2B). The Gabor fits occasionally resulted in small negative tun-

ing curve values, so to facilitate stable calculations we replaced these with very small positive

numbers. Specifically, any tuning curve values below the 5th percentile across all spike rates

within the population were set equal to that percentile prior to summing the population

(replacing with zero would result in infinite information). To compare the distribution shape

across areas, we normalized each population distribution to sum to one.

To examine the robustness of the estimated population FIP(d), we repeated this analysis by

bootstrapping samples of 200 neurons (sampled with replacement) 100 times for each area.

The sample size of 200 was selected so that we could approximately match sample sizes across

all three populations.

Alternative noise models

To examine how closely the neurons in our samples adhered to the assumption of Poisson

spiking, we also fit the individual variance/mean relationship for each neuron. For each neu-

ron, we first computed the response mean and variance for all stimuli that had at least 3

repeats, assuming that the response distribution was approximately Gaussian. We then used

the constrained least squares solver in Matlab (lsqlin) to find the best-fit slope (a) and intercept

(b) for estimating the response variance as a function of the response mean:

s2
hðdÞ ¼ aðhðdÞÞ þ b; ð6Þ

subject to the constraint that b was greater than zero (i.e., the variance for a zero mean

response could not be negative). The distribution of fit parameters are reported in Table 2 for

each brain area. Using this equation, we could then recompute the population Fisher Informa-

tion using the more general form (Eq 3) and summing over the population (Fig 4B, left-most

plot). Small values in the denominator were replaced as described in the previous section.

To incorporate pairwise noise correlations (i.e., non-independence), we followed the

approach described in Moreno-Bote et al. (2014) [38]. First, we can generalize the calculation

of population Fisher Information at each disparity as follows:

FICðdÞ ¼ h0ðdÞTSðdÞ� 1h0ðdÞ: ð7Þ

Here, the bolded h0(d) indicates a vector of the first derivatives of all the tuning curves at dis-

parity d, S(d) is a covariance matrix, and the subscript C indicates that the Fisher Information

includes covariance. This is a simplified approximation of the full Fisher Information for cor-

related neuronal populations, which, for example, assumes Gaussian variability and omits a

second trace term; this approach has been previously described in more detail and adopted in

[38, 59–62].

Correlations in neural populations can take many forms. For example, neurons that are in

close spatial proximity or that have similar tuning properties tend to be more highly correlated

[63, 64]. However, these “limited-range” correlations generally do not limit population infor-

mation for diverse populations [38, 65], and we confirmed this in simulations using our neural
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populations (not shown). Thus, we focused on simulating so-called information-limiting cor-

relations [38], in which the covariance terms for each disparity are determined by the products

of the tuning curve derivatives:

SðdÞ ¼ S0ðdÞ þ ah
0
ðdÞh0ðdÞT: ð8Þ

In this equation, α indicates a scale factor determining the strength of the covariances, and

S0(d) denotes a base covariance matrix that these information-limiting relationships are

applied to. In practice, we first calculated the off-diagonal information-limiting covariances

and then replaced the matrix diagonal with the original response variance of each neuron to

avoid modifying the original variances. We performed a grid search to determine the α values

for each area that caused a reduction of 1/5, 1/3, and 1/2 in the total population Fisher Infor-

mation, as measured via the area under the curve (Fig 4A) and examined the effects on the

shape of the normalized Fisher Information (Fig 4B). That is, each brain area had a customized

set of scale factors. We converted the resulting covariance matrices to correlation values and

confirmed that even the strong information-limiting relationships did not tend to create atypi-

cally-high pairwise correlations (e.g., most of the correlations in the strong condition fell

within a range of -0.2 to 0.2).

Comparison between Fisher Information and disparity statistics

We used a grid search to determine the power law exponent that minimized the difference

between each population FI and the sampled binocular disparity probability distributions.

Power laws were applied to the disparity distributions and then differences were calculated as

the mean absolute error between the two distributions sampled at 51 evenly spaced binocular

disparities between −2˚ and +2˚. To summarize the effect size between brain areas, for each of

the noise models we computed the ratios of the best-fit power laws between V1 and MT, V2

and MT, and V1 and V2 (Fig 4C). For the independent Poission model, we also repeated this

minimization for each of the 100 bootstrapped samples and fit the resulting distributions with

a Gaussian distribution using maximum likelihood estimation, which allowed us to character-

ize the effect size in terms of Cohen’s D between each pair of brain areas (Fig 3).

Gabor parameter resampling between cortical areas

To identify which aspect of disparity tuning could best explain the differences in the FI distri-

butions between populations, we conducted a resampling approach in which we replaced the

best-fitting Gabor parameters individually for each parameter (r0, A, μ, σ, f, ϕ) from the set of

cells in V1 with parameters sampled from the distribution of fits from the set of cells in MT

(diagrammed in Fig 6A). We used the independent Poisson FI model for this analysis, and

since the population FI distributions from V1 and V2 were quite similar, we restricted the

analysis to V1 and MT. For each parameter, we first discarded the best-fit values from the V1

population. We then randomly sampled from a kernel-smoothed probability density derived

from the set of best-fits to MT neurons and assigned new values to the parameter of interest

for the V1 population, creating a hybrid population of Gabor tuning curves. As done previ-

ously, we then calculated the single cell FI distributions given this new set of tuning curves and

summed their values to get the population FI (omitting negative values). We repeated this pro-

cess 100 times to obtain the median and interquartile range for the hybrid populations. This

process was then repeated for each of the Gabor parameters individually (Fig 6B). To quantita-

tively determine which resampled parameter produced an FI distribution that was closest to

the empirical MT distribution, we computed the Jensen-Shannon (JS) divergence between

each of the bootstrapped hybrid FI distributions and the empirical MT distribution (Fig 6C).
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We performed two control analyses to examine the generality of these results. First, we

wanted to ensure that our focus on comparing population FI shape similarity instead of com-

paring the similarity in area under the curve (AUC) did not lead us to a false conclusion

about the influence of each parameter. Therefore, we repeated our analysis without normal-

izing each bootstrap by the AUC and instead normalized solely by the number of cells in the

bootstrapped sample. Overall, the results again show a notable FI similarity between the

hybrid μ parameter populations and the true MT FI distribution (Fig 7A, top right plot),

although the hybrid population created by resampling the frequency parameter also has an

FI distribution shape similar to the shape of the true MT population. To ensure that the

results of our resampling approach were due to resampling from the MT parameter distribu-

tions in particular and not due to simply shuffling the best fit V1 parameters, we also

repeated our analysis by resampling the V1 parameter distribution from itself instead of

from MT (i.e., we shuffled the parameters between V1 cells with replacement), and compar-

ing this shuffled V1 population to MT (Fig 7B). Even when considering these control resam-

plings, the median JSD associated with applying the MT μ to the V1 population was still a

factor of at least 2.4 lower than any others. These control analyses suggest that the specific

changes in the distribution of preferred disparities in MT contributes to the change in FI dis-

tribution between V1 and MT.
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