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Abstract

Network-based machine learning (ML) has the potential for predicting novel genes associ-

ated with nearly any health and disease context. However, this approach often uses network

information from only the single species under consideration even though networks for most

species are noisy and incomplete. While some recent methods have begun addressing this

shortcoming by using networks from more than one species, they lack one or more key

desirable properties: handling networks from more than two species simultaneously, incor-

porating many-to-many orthology information, or generating a network representation that is

reusable across different types of and newly-defined prediction tasks. Here, we present

GenePlexusZoo, a framework that casts molecular networks from multiple species into a

single reusable feature space for network-based ML. We demonstrate that this multi-spe-

cies network representation improves both gene classification within a single species and

knowledge-transfer across species, even in cases where the inter-species correspondence

is undetectable based on shared orthologous genes. Thus, GenePlexusZoo enables effec-

tively leveraging the high evolutionary molecular, functional, and phenotypic conservation

across species to discover novel genes associated with diverse biological contexts.

Author summary

Our work addresses two major challenges; 1) computationally predicting the role a gene

plays in various diseases, processes and phenotypes, and 2) accurately transferring genetic

information discovered in one species to another. To simultaneously tackle both of these

challenges, we developed the GenePlexusZoo method which builds a gene classification

model by utilizing molecular interaction information from multiple species, seamlessly

handling the complicated mapping of how genes across species are functionally related.

We show that machine learning classifiers that utilize information from multiple species
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outperform those that only consider information from a single species. Additionally, we

show that the GenePelxusZoo method is able to accurately transfer knowledge from one

species to another, even in the cases where no previous connection would have been

detected based solely on shared orthologous genes. Finally, we present an illustrative

example of how GenePlexusZoo can provide novel insights into a complicated genetic-

based disease.

Introduction

Molecular interaction networks serve as genome-scale functional maps that help contextualize

and expand our knowledge about the various roles genes play in health and disease. Specifi-

cally, networks help in ‘gene classification’, the problem of predicting novel genes associated

with a biological context of interest—e.g., pathway, phenotype, or disease—based on a set of

known genes previously identified in multiple low-throughput studies or in single high-

throughput genetic screening or omics experiments. While network-based gene classification

has been shown to be a powerful approach [1–4], the gene/protein networks this approach

relies on are quite noisy and largely incomplete in many individual species including humans.

A potentially powerful way to address the shortcomings of individual networks is to leverage

the high evolutionary molecular, functional, and phenotypic conservation across species by

combining network information from multiple species to improve gene classification within a

single species.

Considering networks from multiple species also provides the opportunity to address

another major biological and biomedical challenge, which is transferring knowledge from

human to model species, or vice versa; a challenge that often causes clinical trials to fail [5–8].

Most current methods for transferring genetic and molecular knowledge across species are

restricted to using one-to-one orthologs, and not those with one-to-many and many-to-many

relationships. Further, deletion of orthologous pairs does not always give rise to the same phe-

notypes in different species [9], reinforcing the functional differences in the “same” genes

between model species and humans [10–12]. While methods are being developed for cross-

species knowledge transfer on the annotation level [13,14], or using expression data [15,16], it

is essential to develop methods that utilize genome-scale network information from multiple

species to build predictive models that capture the global functional context of nearly every

gene (even those uncharacterized) in all the species.

A few different approaches have been proposed to leverage network information across

multiple species. Some of these methods directly find similar functional modules in the net-

works of each species; either through graph alignment [17] or the use of gene families [18].

Methods such as MUNK [19], MUNDO [20], and ETNA [21] cast genes across pairs of species

(e.g., human and mouse) into a joint low dimensional embedding space, anchoring the embed-

ding space together with one-to-one-orthologs. A recent deep learning approach, NetQuilt

[22], trains a neural network model using a multispecies network representation as input and

predicts the full set of gene ontology (GO) biological process [23] terms for each gene. There

also exist many methods that combine information from multiple networks within the same

species—using diffusion states [1], autoencoders [24] or graph convolutional networks [25]—

that could be readily adapted for the use in cross species knowledge transfer. The CAME

method integrates single-cell expression data across pairs of species using graph neural net-

works to improve cell-type assignment and discover shared cell-type-specific function in

homologous gene modules [26]. All of the above mentioned methods lack one or more
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desirable properties: 1) the ability to handle networks from more than two species simulta-

neously, 2) incorporating many-to-many orthology information, or 3) generating a represen-

tation that is reusable across many tasks (i.e., pathway, disease or phenotype prediction),

including new tasks defined by users.

In this study, we explore the question of whether a joint representation of molecular net-

works from multiple species can be created so that this representation can be used on-the-fly

for any gene classification task, both to improve predictions within a species and to prioritize

novel genes across species, especially with the capability to seamlessly start with genes in any

one species and prioritize genes in any other. To that end, we present GenePlexusZoo [Fig 1],

a framework that casts molecular network information from multiple species (i.e., human and

five major research organisms) into a single reusable feature space for network-based machine

learning (ML). We report three key results enabled by this framework on modeling cross-spe-

cies gene associations. First, we show that, even when restricting training and prediction on

gene annotations from a single target species, deriving the features of the ML classifier from

multiple species outperforms ML classifiers with features from only the network from the tar-

get species. Second, we examine the case of training with annotations from one species and

then predicting annotations in another species, and show that creating joint representations

using node embedding with degree-weighted random walks allows for better knowledge trans-

fer across species than more naive methods. Lastly, we present several examples of training a

classifier using human disease-associated genes and predicting genes and biologically-

Fig 1. Overview of GenePlexusZoo. GenePlexusZoo is a framework for creating a joint representation of molecular networks from multiple species, which can

in-turn be used for training machine learning (ML) classifiers for gene classification within and across species. The creation of the multi-species network

representation entails: i) connecting gene networks from multiple species (in this study: human, mouse, fish, fly, worm, and yeast) so that pairs of genes

belonging to the same orthologous group are connected across species (cross-species links; resulting in a multi-species network that can contain over 100k

genes) and ii) projecting this network into a joint feature space by creating a low-dimensional embedding for each gene that captures its topological position

and neighborhood. Here, we extensively test the ability of this joint network representation—and several other network-based feature sets containing the genes

of one or more species—in predicting genes associated with numerous functions and phenotypes. Clipart images used to represent the different species were

taken from PhyloPic (https://www.phylopic.org/images).

https://doi.org/10.1371/journal.pcbi.1011773.g001
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meaningful gene sets in research organisms, including multiple cases when the relevant gene

sets (e.g., pathways and phenotypes) in the other species share no common genes (orthologs)

with the human disease. Overall, our work demonstrates that we can create effective joint rep-

resentations of molecular networks from multiple species that can be easily reused for any

within- and cross-species gene classification task. We propose GenePlexusZoo as a general

framework where any previous [19–22], or future approaches for joint network embedding

and learning can be adapted to take the place of our implementation to continue improving

cross-species network-based gene classification.

Methods

Networks

Processing networks. We chose networks from six species—Homo sapiens (human), Mus
musculus (mouse), Danio rerio (fish), Drosophila melanogaster (fly), Caenorhabditis elegans
(worm), and Saccharomyces cerevisiae (yeast)—from two databases, BioGRID [27] and IMP

[28], that offer molecular networks that have genome-wide coverage [Table A in S1 File]. Bio-

GRID is a sparse network consisting of binary edges (0 or 1) between genes based only on

physical interactions between their protein products, whereas IMP is a dense network consist-

ing of weighted edges (ranging continuously between 0 and 1) derived through computational

integration of thousands of high-throughput genomic datasets. For each network, we used the

Entrez IDs supplied by the databases to identify genes and, for each species, we removed any

gene not present in that species “gene_info” file from the NCBI FTP server.

Connecting networks across species. Retaining the within-species edges as they were, we

added edges between cross-species gene pairs using orthology information from the eggNOG

database [29], which contains pre-calculated orthologous groups for many species. For every

pair of genes in a given orthologous group that come from different species, an edge was

added between that pair of genes [Fig A in S1 File]. We examined two different ways to weight

these cross-species edges [Fig B in S1 File]: first, giving all cross-species edges the same edge

weight and, second, creating a directed edge with an edge weight that is a function of the

within-species degree of the source node and how many total cross-species edges the source

node has. See the S1 File for more information on the network properties and cross-species

edge construction.

Creating feature representations. Let G = (V, E, W) denote an undirected molecular net-

work, where V is the set of vertices (genes from all species being considered), E is the set of

edges (relationships between genes), and W is the set of edge weights (the strengths of the rela-

tionships). G can be represented as a weighted adjacency matrix Ai,j = Wi,j, where A2R|V|×|V|

and every row in this matrix can be treated as a feature vector for each gene (referred to as

AdjMat in this work).

From G, we also derived a low-dimensional feature set through the process of node embed-

ding. We used PecanPy, an optimized implementation of the node2vec (referred to as N2V in

this work) algorithm [30,31]. At a high-level, node2vec generates a set of random walks from

the network and then uses these walks as input into a neural network that places nodes that

often occur close to each other in the walk close together in a low dimensional embedding

space. In node2vec, the random walks are controlled using two parameters p and q, in which a

high value of q keeps the walk local (a breadth-first search), and a high value of p encourages

outward exploration (a depth-first search). Additionally, the user can control the dimension of

the embedding space (d), as well as the number and length of walks.

We additionally explored two more feature space representations (see S1 File): 1) a network

transformation in which the edges of the network are smoothed using a random walk with
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restart kernel (RWR), and 2) projecting the adjacency matrix representation into a lower-

dimensional space using singular value decomposition (SVD). Various combinations of these

methods and their corresponding hyperparameters were examined in this study (see S1 File).

Gene set collections

Gene set collections for different prediction tasks. To assess the performance of the ML

classifiers, we investigated three different tasks: i) gene function prediction (using annotations

from MyGene.info [32,33] mapped to terms in the Gene Ontology [23], ii) gene phenotype

prediction (using annotations from and terms defined in Monarch [34]), and iii) disease gene

prediction (using annotations from DisGeNet [35] mapped to terms in the Disease Ontology

[36]). For function and phenotype prediction, we were able to generate geneset collections for

all six model species. Disease prediction was evaluated only for humans.

For each task, we created a gene set collection by first converting all annotations to Entrez

gene IDs. For GO and DisGeNet, the annotations were then propagated from the more specific

terms to the more general terms of the Gene and Disease Ontologies, respectively. Next, we fil-

tered the genes to retain only those that were found in a given network and filtered the terms

to only those that had between a specified minimum and maximum number of annotations.

Mouse and human GO gene set collections were further filtered to only include terms in a pre-

viously curated set of specific terms [37]. Final sizes of all geneset collections used in this work

are found in Tables B-D in S1 File.

Deriving non-redundant gene sets. Next, we developed a procedure to take all gene sets

within a collection and reduce them to a set of non-redundant terms. First, in a pairwise fash-

ion, we calculated the set overlap and Jaccard scores of the genes annotated to each term.

Then, we created a sparse term similarity graph by introducing edges between pairs of terms if

the overlap and the Jaccard score were over predefined thresholds, and found connected com-

ponents in this graph. If a connected component only had one term, that term was directly

added to the non-redundant set. In the case where the component contained more than one

term, we picked the term most similar to all others in the component as the representative

term to be included in the non-redundant set.

Evaluation scheme. Instead of splitting genes randomly into the training and testing sets,

we devised a study-bias holdout scheme to evaluate the scenario that is close to the real-world

situation of learning from well-characterized genes to predict novel un(der)-characterized

genes. In this scheme, genes annotated to each term were split into training and testing sets

based on how well-studied they were, with well-studied genes being considered training genes

and more novel genes assigned to the test set. Here, we defined study-bias for each gene as the

number of articles in PubMed in which that gene was referenced in, as determined in the gen-
e2pubmed file (downloaded on 2020-09-23) from the NCBI Gene database [38]. After creating

these gene splits, only terms with at least ten genes in both the training and testing sets were

retained. For each term, negatives were chosen as any gene that had at least one annotation to

another term in the set of all possible training and testing genes, where we considered genes

neutral if they were from gene sets that highly overlapped (Fisher exact test with FDR< 0.05).

In our previous work [4], we evaluated the GenePlexus approach on study-bias holdout as well

as temporal holdout and 5-fold cross validation. However, due to the increased training time

for the cross-species classifiers in this study (it can take up to 500 GBs of RAM and over 24

hours to train models for a single feature set–gene set collection–hyperparameter combina-

tion), we restricted ourselves to only study-bias holdout.

Matched non-redundant gene sets across species. To evaluate GenePlexusZoo on its

ability to transfer knowledge across species, we created gene set collections that contained only
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matched terms across species. Due to an insufficient number of matched terms in Monarch

phenotypes, this was only possible for the GO biological processes, where matched terms were

generated pairwise between humans and each of the other model species. These gene sets were

constructed by first converting genes to Entrez IDs and propagating the annotations from the

more specific terms to more general terms in GO. The GO term annotations were then subset

to the genes in the given network and only terms with at least ten training and testing genes

were retained, based on the study-bias validation split. Gene annotations from both species

were combined for each term and, using the procedure described above (based on a term simi-

larity graph), we derived a non-redundant set of terms.

Full gene set collections. For evaluation schemes where it is important to find the most

relevant biological context, we use the full gene set collections instead of the non-redundant

sets described above. For these analyses, we simply created gene set collections by converting

gene annotations into Entrez IDs, propagating the annotations through the ontology (not

done for Monarch), subsetting to the given network, and retaining terms with a given mini-

mum-to-maximum number of annotations.

Network-based gene classifiers

GenePlexus uses supervised-learning (SL) for network-based gene classification by using each

gene’s network neighborhoods as feature vectors, along with gene labels, in a classification

algorithm. Here, we used logistic regression with L2 regularization with a strength of 1 as

implemented by the scikit-learn [39] function sklearn.linear_model.LogisticRegression. For a

more detailed explanation of how GenePlexus uses the SL classifier see [4,40,41]. Previous

works in our group have extensively benchmarked the GenePlexus method using different

shallow learning models [4] as well as graph neural networks [42].

Evaluation metrics. In this study, we present results in terms of a modified area under the

precision-recall curve. As each gene set can have a different number of positive examples (and,

hence, different positive-to-negative proportions), to make classifier performance comparable

across gene sets, we normalized the standard auPRC by the prior and log transform the ratio.

Specifically, the metric presented throughout this study, log2(auPRC/prior), is given by the fol-

lowing set of equations:

auPRC ¼
X

n
ðRecalln � Recalln� 1ÞPrecisionn

Precision ¼ TP=ðTP þ FPÞ

Recall ¼ TP=ðTP þ FNÞ

prior ¼
P

P þ N
¼

TP þ FN
ðTP þ FNÞ þ ðFP þ TNÞ

where TP is true positives, FN is false negatives, FP is false positives, TN is true negatives, P
and N being the number of positive and negative ground truth labels, respectively, and n is the

nth threshold, where the number of thresholds is equal to the number of unique prediction

probabilities from the classifier.

For unit changes in recall, the auPRC is a function of only the precision at various thresh-

olds. If the classifier is random, the expected precision (fraction of all positive predictions that

are true positives) at any threshold is a constant and is equal to the fraction of all labeled exam-

ples that are positives, i.e., the prior. Stated differently, if x% of all labeled genes are positives,

then we also expect the same x% of a random subset of genes to be positives. Taking these two
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facts into account, the expected auPRC of a random classifier equals the prior. Thus,

log2(auPRC/prior) allows for the following interpretation: the number of 2-fold increases of

the auPRC of the real classifier over the auPRC of a random classifier (in other words, the

auPRC we would get by random chance; e.g., a value of 1 indicates a 2-fold increase, a value of

2 indicates a 4-fold increase, etc.).

Precision-based metrics such as the auPRC are more suitable than the more popular area

under the receiver-operating characteristic curve (auROC) for two reasons. First, gene classifi-

cation is a highly imbalanced problem with many more negative examples than positive exam-

ples, and auROC is ill-suited for imbalanced problems [43]. Second, optimizing for precision

controls for Type-1 error (false positives) [44], thus ensuring that the list of top predictions

generated from a classifier contains as few false positives as possible. This goal of increasing

precision is, therefore, more in line with the foremost goal of gene classification—to provide a

list of top candidate genes with as few errors (false positives) as possible for further experimen-

tal follow-up—compared to increasing auROC, which ensures that, on average across the full

genome-wide prediction ranking, positive examples are ranked higher than negative examples.

Results

Creating joint multi-species network representations using GenePlexusZoo

GenePlexusZoo was designed to build a robust reusable joint network-based feature represen-

tation for genes from multiple species for its machine learning (ML) classifier to improve gene

classification both within and across species [Fig 1]. It begins with genes and their within-spe-

cies relationships from human, mouse, fish, fly, worm, and yeast followed by combining them

into a multi-species network by adding connections between pairs of genes across species

based on orthology. Such a network built only using protein-protein interactions (PPI) from

BioGRID contains 46,741 genes (across the six species) and nearly 1.59 million edges. The net-

work built using predicted functional relationships from IMP contains 135,049 genes and

nearly 566 million edges. Converting each of these large network objects into feature sets for

ML entails making some choices that impact both gene classification performance and practi-

cal feasibility:

• Which species to include? For instance, which is better: the network from that species alone,

a network combining that species and another well-studied species, or a network with all six

species?

• How to connect genes across species? Should the new connections between cross-species

gene pairs be weighted uniformly (with what weight?) or differently based on the degrees of

the incident gene nodes?

• How to represent the network as features in the ML classifier? Can the adjacency matrix of

the large multi-species network used as-is for ML or should the network be further

smoothed (e.g., using random walk with restart) or embedded into a lower dimension (e.g.,
using singular value decomposition or node embedding).

To determine the best choices, we performed extensive evaluation for the human and

mouse function and phenotype annotation tasks. For methods that directly consider network

edge information, we tried AdjMat and RWR, and for network embedding methods, we con-

sidered N2V and SVD at different embedding dimensions (500, 2000, 10000). Many methods

had additional hyperparameters that were tuned as well. Considering performance across all

tasks as well as computational resources, we found that the adjacency matrix (AdjMat) is the

best representation among those that directly consider the edges of the network as features.
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node2vec (N2V) is the best-performing embedding method and has the additional properties

of readily utilizing different weighting techniques and the ability to computationally handle

combining networks from more than two species. For further discussion of the hyperpara-

meter analysis, see S1 File.

Multi-species network representations improve within-species gene

classification

Once we had picked the best performing ways to create feature representations, we wanted to

see if features derived from multiple species could offer improvement over features coming

from a single species, even when the annotation task is restricted to only one species. For this

analysis, we used non-redundant gene sets (see Methods) for function annotation (Gene

Ontology) and phenotype annotation (Monarch) for the two networks considered in this

study (BioGRID and IMP). We note here that the main goal of the work is to determine how

changing feature representations affects classifier performance in a given task (i.e., network

and gene set collection pair), and not to compare across tasks.

First, we examined the effect of adding multi-species network information on human gene

annotation tasks. For functional annotation, using either BioGRID or IMP, features derived

from pairs of species [Fig 2: blues] or features from all six species [Fig 2: orange] perform sub-

stantially better than features derived from a single species [Fig 2: greens]. For each network,

we compared the log2(auPRC/prior) values each method that uses information from at least

two species to the baseline method of Human-Only AdjMat using a Wilcoxon Signed Rank

Fig 2. Predicting function- and phenotype-associated human genes using human, human+model, and all-species network representations. The boxplots

show the log2(auPRC/prior) prediction performance of logistic regression classifiers trained to predict human gene annotation for two tasks: function (left

column) and phenotype (right column). Features for the classifiers were created using all six species (orange), human plus one other species (blues), or human

only (greens), and are represented using the adjacency matrix (AdjMat) or node embeddings (N2V). This analysis was performed using both the BioGRID (top

row) and IMP (bottom row) networks.

https://doi.org/10.1371/journal.pcbi.1011773.g002
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Test, where a representation was considered significantly different from the baseline method is

the Bonferroni adjusted p-value was below the family-side error rate (FWER) of 0.01 (see Fig

E in S1 File). For BioGrid and IMP, every method was significantly better than Human-Only

AdjMat, except for BioGRID’s Human-Fish N2V representation. Phenotype annotation is a

much harder task in general and all methods perform roughly the same no matter how the fea-

tures are derived. For IMP, there are no significant differences, and for BioGRID the baseline

method is better than N2V Human-Fish, and the AdjMAt representations for Human-Worm,

Human-Fly and Human-Mouse.

Then, we examined the effect of adding multi-species network information on model-spe-

cies gene annotation tasks, where we considered features only from the network for the species

the annotation task pertains to [Fig 3: greens], adding human network information to the fea-

tures [Fig 3: blues] and using features from all six species [Fig 3: orange]. For function annota-

tion, the trends we observed were generally similar to that for human gene annotation–

features derived from multiple species typically increase performance–albeit to a lesser extent.

This can also be seen in the significance testing where 10 times a feature space derived from

multiple species shows statistically significant improvement over the baseline method (here

baseline method is the AdjMat representation using only information from the model species

in which the prediction task is for, see Fig F in S1 File), whereas the baseline method never sig-

nificantly outperforms a multi-species feature space. However, for model species annotation,

the variation in performance using AdjMat or N2V increases substantially, especially for phe-

notype annotation. For BioGRID, the only statistically significant difference is the baseline

method (AdjMat Yeast outperforming N2V All-Species). For IMP, the baseline method shows

a significantly better performance 7 times, where the opposite is true only once (see Fig F in

S1 File).

Fig 3. Predicting function- and phenotype-associated model species genes using model, human+model, and all-species network representations. The

boxplots show the log2(auPRC/prior) prediction performance of logistic regression classifiers trained to predict model species gene annotations for two tasks:

function (left column) and phenotype (right column). Features for the classifiers were created using networks from all six species (orange), human plus the

other species (blue), or the model species only (green), and are represented using the adjacency matrix (AdjMat) or node embeddings (N2V). This analysis was

performed using both the BioGRID (top row) and IMP (bottom row) networks.

https://doi.org/10.1371/journal.pcbi.1011773.g003
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We additionally checked the impact of explicitly marking orthologs of positive examples as

additional positives when training the ML classifiers (on top of multi-species network implic-

itly containing this information through cross-species gene connections) [Figs H–I in S1 File].

We found that the addition of these potentially redundant positive examples results in occa-

sional significant increases and decreases in performance for classifiers using the adjacency

matrix representation, but consistently results in decreased performance for classifiers using

the node embeddings.

As a final analysis of within-species gene classification, we compared results using a second

orthology source, WORMHOLE, a machine learning based orthology prediction method that

combines data across 17 distinct orthology databases for the six species used in this work [45].

In these results, we see that both orthology sources have comparable performance [Figs J-K in

S1 File].

Multi-species network embeddings enable cross-species gene classification

Next, we investigated the ability of these feature representations to transfer knowledge between

human and model species. To that end, we first established a matched non-redundant gene set

collection (see Methods) for each model species paired with human. For each human-model

species pair, we trained a ML classifier using only the human annotations for a gene set in the

matched gene set collection. Then, we generated prediction probabilities for every gene in the

model species and calculated the log2(auPRC/prior) for every gene set in the matched gene set

collection using model species annotations only. We performed this for three sets of features:

AdjMat with features derived from human and model species, N2V with features derived from

human and model species, and N2V with features derived from all six species.

We present the results of this analysis in terms of the ability of the human ML classifier to

prioritize model species genes in the matched model-species gene set in which the classifier

was trained [Fig 4; top row] as well as how the log2(auPRC/prior) of the model species annota-

tions in the matched gene set is ranked compared to the log2(auPRC/prior) of the model spe-

cies annotation in all the other (i.e. unmatched) gene sets in the matched gene set collection

[Fig 4; bottom row]. These summaries clearly indicate that feature representations using node

embedding are more accurate transferring knowledge from human to model species. These

differences are all statistically significant except for Human-Worm N2V representation [Fig G

in S1 File]. This trend also holds in the inverse case of transferring knowledge from model spe-

cies to human (e.g., training on model species gene sets and predicting the matched human

gene sets) [Fig L in S1 File] for both network sources (IMP and BioGRID) [Figs M–N in S1

File], and nearly all but three cases are significantly different [Fig G in S1 File].

Delving further into the benefits of multi-species network embeddings (involving pairs of

species or all species), we asked how does an ML classifier for a particular gene set perform in

a given species when it is trained on gene annotations in that species compared to when it is

trained on annotations from another species [Figs O–R in S1 File]. We observed that, for

human gene annotation tasks, there is invariably a substantial drop in performance when the

classifier is trained with model-species annotations compared to human annotations. How-

ever, the performances for the model species gene annotation tasks are variable. Compared to

training on model-species annotations, training on human annotations results in reduced per-

formance in fly and worm, but on-par performance in mouse and yeast, indicating that the

knowledge in human is often a good proxy for these species.

As a final evaluation of cross-species transfer, we checked if training the ML classifier on

both human and model species annotations would improve its performance in either species

[Figs S–V in S1 File]. An analysis on prediction tasks in both human and model showed that,
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when using the multi-species network embeddings as features, including annotations from

multiple species in the same classifier does not improve gene classification performance in a

target species (human or model). The similarity of performance is likely because the informa-

tion from different species is already inherent to the multi-species feature representation. This

hypothesis is supported by the clear significant jump in performance between using features

from a single species and features from multiple species.

Mapping human diseases across species using all-species network

embeddings

Having established the broad utility of all-species network embeddings in GenePlexusZoo, we

explored the ability of this network representation to map human diseases across species and

help discover meaningful and novel insights into diseases in all six model species. First, we

identified ten human diseases that had top-performance in network-based disease-gene pre-

diction (trained and tested only on human gene annotations and evaluated based on study-

bias holdout for both BioGRID and IMP). Then, for each of these diseases, we trained a new

ML classifier using all human genes annotated to that disease using the all-species network

embeddings as features and made a prediction for every gene in all the five model species. For

each model species, we could determine which processes and phenotypes were most enriched

among the top-ranked “disease” genes in that species [S1 Data] (see S1 File for more informa-

tion on how the enrichment scores are calculated).

To illustrate how GenePlexusZoo can provide insights across species, we focus on the cilio-

pathic disorder Bardet-Biedl Syndrome 1 (BBS) [46]. We choose this syndrome because it has

Fig 4. Transferring knowledge from human to model species using human+model and all-species network representations. The

boxplots (top row) show the log2(auPRC/prior) prediction performance of logistic regression classifiers that were trained using only human

genes annotated to a given biological process and then used to predict model species genes annotated to the same biological process. The

barplots (bottom row) show the counts of where the log2(auPRC/prior) for the matched biological process ranks in comparison to the other

processes in the collection. Features for the classifier were created pairwise between human and a model species with IMP networks using

the AdjMat (light blue) and N2V (dark blue) representations, as well as features from all species using the N2V (orange) representation.

https://doi.org/10.1371/journal.pcbi.1011773.g004
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a strong genetic component and impacts many processes across the body. Upon training an

ML classifier only on human BBS genes and predicting genes in all model species, we observed

that the top-ranked genes [Table E in S1 File], biological processes [Table F in S1 File], and

phenotypes in the model species are relevant to cilium function and manifestations of the BBS

disorder such as rod/cone dystrophy, polydactyly, and hypogonadism [Table G in S1 File]. To

better highlight the relationships between the top biological processes across species, we sum-

marized them as a graph [Fig 5] with nodes representing individual processes, node colors

encoding the species the processes were identified in, and edges connecting semantically simi-

lar processes. Among these top processes were 13 where, in at least one species, the genes

annotated to that biological process had no orthologs to any human gene annotated to BBS

(see Discussion section for further discussion of this result).

Embeddings bring together genes from multi-species networks

All the results above demonstrate the power of multi-species network representations in

improving gene classification performance both within and across species, and in enabling

knowledge transfer about human diseases to model species. These results also show that per-

formance is influenced by how connections are made between genes across species in the

multi-species network and how the multi-species network is turned into a feature representa-

tion (i.e., as is in the form of the adjacency matrix or as low-dimensional node embeddings;

see Methods and S1 File). Therefore, we performed visual exploratory analysis to inspect the

Fig 5. The ten most enriched biological processes associated with the top genes in each species predicted to be related to Bardet-Biedl Syndrome 1 (BBS).

A classifier trained using human BBS genes and all-species N2V features was used to predict BBS-related genes in the five model species. The figure shows the

ten most enriched biological processes associated with the top-ranked genes in each species. Nodes represent biological processes and are colored by which

species they were identified in. Edges represent pairs of semantically similar processes (scaled Resnik similarity based on the Gene Ontology). Isolated nodes

are not shown. Nodes with thick borders (with corresponding bolded labels in the legend) represent biological processes where, in at least one species, none of

the annotated genes are orthologous to any human BBS gene.

https://doi.org/10.1371/journal.pcbi.1011773.g005
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feature spaces created through these different choices and to reason why the embeddings per-

form so well in cross-species tasks [Fig 6; Figs X-Z in S1 File].

The first observation from the plots comparing the features from different choices is that

genes from different species are very disjoint in the adjacency matrix representation. This

could perhaps explain why within species like fly and yeast, the adjacency matrix has such high

performance, but for transferring knowledge across species, the adjacency matrix is the worst

performing representation. On the other hand, multi-species network embeddings bring

together genes from different species. Second, genes across species are brought much closer

together when a degree-based weighting strategy is used to connect genes across species before

embedding. These trends hold in pairwise settings (human and mouse [Fig 6]; human and

other model species [Figs X-Z in S1 File]) and in the all-species setting.

Discussion

GenePlexusZoo is a network-based gene classification framework that derives features for a

supervised machine learning classifier from molecular networks from multiple species, provid-

ing a powerful foundation for improving gene classification accuracy within species and for

transferring knowledge across species. GenePlexusZoo affords many ways to represent net-

works from multiple species including a novel method introduced here for generating a con-

cise cross-species joint network representation that can be easily reused for any new gene

classification task. This method involves connecting genes from different species together

using orthology information and then jointly embedding them using a random-walk based

algorithm, node2vec [30]. We find that the strategy for setting the weights between genes across

Fig 6. PCA of adjacency matrix and node embedding representations. Each PCA plot shows the top two PCA components from the human-mouse

adjacency matrix (first column), the human-mouse node embedding (second column) and the all species node embedding (third column) representations. The

cross-species edge weights were created by always using a uniform edge weight with a value of one (top row) or by using degree based edge weights (bottom

row) for the IMP network.

https://doi.org/10.1371/journal.pcbi.1011773.g006
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species can be very important and in particular we see that using a degree-based method that

encourages walks to more readily traverse cross-species edges shows the best performance.

One of the goals of GenePlexusZoo is to offer a seamless way to handle one-to-many and

many-to-many orthologs that goes beyond the typical workflows that use one-to-one orthologs

to convert gene lists between human and model species. Previous computational approaches,

such as MUNK [19], anchor networks together by “connecting” genes across species as one-

to-one pairs. However, genes often act as coherent modules and simple one-to-one matching

can be limiting to an analysis. It is often daunting and non-intuitive for researchers to handle

one-to-many or many-to-many mappings, as a gene of interest in one species may be in a

“functional orthologous group” with many genes from another species, thus clouding the

transfer of knowledge. GenePlexusZoo inherently incorporates many-to-many gene mappings

by generating network-based feature representations where genes from different species are

close to each other if they are similar based on both sequence (orthology) and function (net-

work neighborhood). Upon a classifier is trained on such a joint representation using annota-

tions from one species, the resulting predictions in another species are returned as a ranked

list, removing much ambiguity as to which of the one-to-many or many-to-many mapped

genes are important for the user’s task.

In addition to the problem of incorporating many-to-many orthologs, a challenge in gener-

ating cross species feature spaces lies in the increasing size of the total network space as more

and more species are added. This restricts the use of naive methods such as concatenating

adjacency matrices together, as those matrices quickly become computational intractable to

work with. Graph neural networks designed for scalability, such as GraphSage with neighbor

sampling [47] or GNNAutoScale [48], could be promising future directions to explore. How-

ever, currently these methods assume nodes across networks are equivalent, or at least highly

overlapping. The PecanPy [31] implementation of the node2vec [30] node embedding method

allows for a flexible way of incorporating connections across species, freedom in determining

how walks are generated (i.e depth- or breadth-first searching), and an is optimized to handle

networks with a large number of nodes, making it an ideal solution for GenePlexusZoo.

In this work, we performed extensive evaluations comparing our new multi-species network

embedding with many other ways to represent networks from single and multiple species. Eval-

uation on single species annotation prediction tasks shows that the multi-species embedding

almost always offers superior or equivalent performance to using the adjacency matrix. Notably

however, for model species phenotype annotation prediction with the IMP network the adja-

cency matrix representation shows much better performance than embedding representations,

especially in yeast and fly [Fig 3]. While the adjacency matrix representations show great perfor-

mance for single species annotation prediction, the multi-species embedding representation

could still be considered as these large feature representations that naively concatenate features

from the different species appear to largely separate genes from different species [Fig 6], thus

have trouble generalizing when transferring knowledge from one species to another [Fig 4] and

require much greater computational resources to train. When creating low-dimensional repre-

sentations using node embedding, building feature sets from more than one species almost

always offers improvement over single species features. With the cross-species gene relation-

ships already encoded in these representations, explicitly adding genes from multiple species as

extra positives in the classifier does not improve performance [Figs S-V in S1 File].

After establishing the merits through the various evaluations, we applied GenePlexusZoo’s

multi-species network representation to a number of human disorders to explore the frame-

work’s ability to identify cross-species counterparts of human diseases and gain insights into

the molecular and phenotypic basis of these conditions [S1 Data]. The case of ciliopathic dis-

order Bardet-Biedl Syndrome 1 (BBS) [46] provides an illustration of this application. Here,
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we trained a classifier only using human BBS genes and predicted “BBS-associated” genes in

the five model species. Many of the phenotypes associated with the top-ranked genes predicted

by GenePlexusZoo in the model species correspond to the various manifestations of this syn-

drome including rod/cone dystrophy, polydactyly, central obesity, hypogonadism and kidney

dysfunction [46]. In addition, most of the biological processes associated with the top-ranked

genes speak to the ciliopathy of the disease, in particular a major component of BBS is disrup-

tion to intraflagellar transport [46,49,50]. This result indicates that the network-based classifier

is general enough not to overfit to any one aspect of the syndrome and is able to recapitulate

the diverse set of systems affected by BBS.

Further, this analysis has the potential to not only prioritize the best process/pathway to

study in a given model organism, but also point to which model organism might be the best to

study a given process/pathway. For example, ciliary behavior is related to the etiology of BBS

and it has been studied extensively in fly [51,52]. Previous studies like this often guide the

choice of model organism and, in this case, suggest fly as a good model. However, the associa-

tion scores calculated using GenePlexusZoo for processes and, in particular, phenotypes

related to ciliary behavior are quite low in fly [S1 Data]. On the other hand, the scores for

these processes and phenotypes are much higher in worm, suggesting that it might be a better

model than fly to study ciliary behavior. This hypothesis is supported by studies that show that

Bardet-Biedl syndrome might be more driven by dysregulation of non-motile cilia, which is

corroborated by GenePlexusZoo results [Tables F-G in S1 File] [53,54]. Further, many more

genes have been associated with non-motile cilia in worm (32) compared to fly (13), possibly

due to the fact that worms only have non-motile cilia in one cell type (sensory neuron) [55],

thus lending itself as a better system for studying non-motile cilia diseases.

The application of GenePlexusZoo to BBS also brought to light a fundamental challenge in

identifying ‘phenologs’, phenotypes in different species that are ‘orthologous’ by virtue of hav-

ing a similar genetic and molecular basis (i.e., similar functional modules composed of ortho-

logous genes) [56]. While phenologs are critical for studying cross-species models of human

diseases, finding them solely based on shared (orthologous) genes is problematic because our

knowledge about the genes involved in both human diseases and model species phenotypes is

far from complete. This incomplete knowledge can lead to bona fide phenologs being missed

(false negatives) because the genes experimentally characterized thus far for the human and

model phenotype happen to be non-overlapping (or minimally overlapping) even if they are

part of the same underlying functional module in the two species. This challenge can be deftly

remedied by using a network-based approach like GenePlexusZoo because it can relate disjoint

sets of genes across species if they are close to each other in the underlying networks.

As evidence of this capability, GenePlexusZoo picks out highly similar processes and phe-

notypes in model species even when they share no orthologs with BBS in human [Fig 5]. A

major mechanism underlying BBS is disruption to the meditation and regulation of microtu-

bule-based intracellular transport processes [46,49,50]. A number of top predicted biological

processes are microtubule-based intracellular transport processes (microtubule-based move-

ment, microtubule-based movement, transport along microtubule, axoneme assembly, organ-

elle transport along microtubule, etc.), however the model species genes annotated to those

specific gene ontology terms have no known orthologs to the human BBS genes.

Another example is that in the case of organic acidemia (OA) [Fig W in S1 File], a class of

inherited metabolic disorders that arise due to defects in intermediary metabolic pathways of

carbohydrate, amino acids, and fatty acid oxidation [57]. Here, we observe that fatty acid bio-

synthetic process (FABP), a biological process highly relevant to OA [58], is top-ranked in

mouse, but the two sets of genes (annotated to human OA and mouse FABP) have no shared

orthologs.
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Considering the similarities between all the top processes prioritized across species sheds

additional light on the diversity of the molecular phenomena related to a particular human dis-

ease in terms of their biological relationships and the extent of our knowledge about them. For

instance, the top processes for BBS in human and model species are highly similar to each

other, with many of them being exactly the same across species [Fig 5, multicolored nodes].

On the other hand, in OA, there are zero biological processes that are exactly overlapping

between species. Moreover, the top human biological processes have strong connections

within themselves and not with biological processes from other species. The extreme case of

this scenario can be seen in zebrafish in which the processes are only connected to each other

and have no ortholog overlap with the human gene annotations for OA. Depending on the

research question, these observations from the two human diseases imply that it might be

harder to transfer research results across species for OA than BBS, or that, conversely, there

are many more novel research avenues for studying OA in model species. Though we only

highlight BBS and OA here, GenePlexusZoo identified biologically-meaningful processes and

phenotypes across all the diseases we analyzed, with every case including model counterparts

that have no gene overlap with the human disease [S2 Data].

Thus, GenePlexusZoo is a framework that will enable researchers to take any gene set they

are interested in and build classifiers on-the-fly that leverage the molecular, functional, and

phenotypic conservation across multiple species. The joint multi-species network representa-

tion of GenePlexusZoo simultaneously results in higher predictive power and offers a unique

way to transfer knowledge directly across species compared to using a single species network.

We note that the novelty of this work lies in the framework of this approach, and not so much

on the exact manner in which the reusable network-based feature space is generated. Our

implementation of this framework allows future work to explore how other similar methods

for joint network representation could be adapted to continue improving cross-species knowl-

edge transfer.

Supporting information

S1 Data. Processes and phenotypes in each model species that are most enriched among

the top-ranked “human disease” genes in that species. In each species, the top-ranked genes

for each human disease were identified by training a classifier trained on GenePlexusZoo’s

multi-species network representation using the human disease genes and applying the trained

model to predict genes in model species. The file contains a table of the Gene Ontology (GO)

biological process genesets and Monarch phenotype genesets most enriched among these top-

ranked genes. The columns of the file refer to the molecular network used to create the multi-

species network representation (Network), the model species where predictions were made

(Species), the Disease Ontology identifier of the human disease (DOID), the name of the dis-

ease (Disease Name), the number of human genes annotated to the disease (Number of Dis-

ease Genes), the subset of disease genes that have an ortholog in model species (Number of

Disease Genes With Any Orthologs in Model Species), the GO or Monarch enrichment task

(Task), the identifier of the process/phenotype (Term ID), the name of the process/phenotype

(Term Name), the False Discovery Rate of the enrichment (FDR of Term in Model), the FDR-

based enrichment rank (Rank), the number of genes in the model species annotated to that

process/phenotype term (Number of Term Genes), the number of process/phenotype genes

that have human orthologs (Number of Term Genes With Any Orthologs in Human), and the

size of the gene overlap between the disease and the process/phenotype (Disease-Term Gene

Overlap).

(TSV)
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S2 Data. The subset of processes and phenotypes in each model species that are most

enriched among the top-ranked “human disease” genes in that species and have no gene

overlap with the human disease. This table contains a subset of rows in S2 Data where the

size of the gene overlap between the disease and the process/phenotype (Disease-Term Gene

Overlap) is zero. The columns are identical across the two tables.

(TSV)

S1 File. Supplementary tables A–G, figures A–Z, and additional notes and references. This

information is organized under the following sections: multi-species networks, creating multi-

species network representations, properties of gene set collections, optimal choices for gene

classification using multi-species networks, statistical tests for main results, adding orthologs

as positives, cross-species knowledge transfer, same-species prediction vs. full cross-species

prediction, adding genes from multiple species during training, predicting model species

counterparts of human diseases, and additional PCA plots.

(PDF)
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