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Abstract

The analysis of neurons that exhibit receptive fields dependent on an organism’s spatial

location, such as grid, place or boundary cells typically begins by mapping their activity in

space using firing rate maps. However, mapping approaches are varied and depend on mul-

tiple tuning parameters that are usually chosen qualitatively by the experimenter and thus

vary significantly across studies. Small changes in parameters such as these can impact

results significantly, yet, to date a quantitative investigation of firing rate maps has not been

attempted. Using simulated datasets, we examined how tuning parameters, recording dura-

tion and firing field size affect the accuracy of spatial maps generated using the most widely

used approaches. For each approach we found a clear subset of parameters which yielded

low-error firing rate maps and isolated the parameters yielding 1) the least error possible

and 2) the Pareto-optimal parameter set which balanced error, computation time, place field

detection accuracy and the extrapolation of missing values. Smoothed bivariate histograms

and averaged shifted histograms were consistently associated with the fastest computation

times while still providing accurate maps. Adaptive smoothing and binning approaches were

found to compensate for low positional sampling the most effectively. Kernel smoothed den-

sity estimation also compensated for low sampling well and resulted in accurate maps, but it

was also among the slowest methods tested. Overall, the bivariate histogram, coupled with

spatial smoothing, is likely the most desirable method in the majority of cases.

Author summary

Spatially modulated neurons in the brain increase their activity when an animal visits spe-

cific regions of its environment. Studying these neurons often begins with the creation of

a firing rate map: a statistical representation of the cell’s activity in space. Different meth-

ods, relying on different parameters, are commonly used to generate these maps. These

parameters can have a huge impact on the maps created and, in turn, any results derived

from them. Yet, very little quantification of these parameters has been attempted and they

are almost universally chosen based on qualitative, study-dependent assessments. In this

paper we quantify the ‘best’ combinations of parameters for each method and provide a
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way for researchers to calculate these for their own data. Using parameters that are both

consistent across studies and quantifiably demonstrated to be the most accurate will

reduce the variability between future studies while improving the validity of their results.

Introduction

Finding food, shelter, mates, and safety all depend on accurate spatial navigation. It is unsur-

prising then that many regions of the brain harbor spatially modulated neurons. Typically

these cells are inactive, exhibiting brief periods of activity in spatially constrained locations

[1,2]. Place cells in the hippocampus, for instance, increase their activity in one or more

regions known as ‘place fields’ [3–5]. Grid cells in the medial entorhinal cortex (mEC) exhibit

similar firing fields but these are more numerous and span the environment in a triangular

grid [6,7]. Boundary cells found in the subiculum and mEC, as well as a number of other

regions, have elongated firing fields which extend parallel to environment boundaries [8–10].

The analysis of spatial neurons such as these typically begins by mapping their spatial activ-

ity. However, the methods for creating firing rate maps are varied, fragmented, and their per-

formance has not been systematically compared. Additionally, the parameters used to generate

firing rate maps are often chosen subjectively and vary greatly between studies. It is unknown

how much variability in spatial navigation research can be attributed to these differing

approaches, although small changes to analyses such as these have been shown to impact

results significantly [11].

Firing rate maps are dependent on two types of multi-dimensional data: position sampling

and spike locations. Many advances have been made towards multivariate histogram optimiza-

tion, for instance, Sturge’s rule [12], Scott’s rule [13] and the Freedman-Diaconis rule [14] can

be applied to estimate how many bins to use when generating a univariate histogram. How-

ever, these methods are almost universally adapted for normally distributed data sets [12,15]

and position sampling is rarely normally distributed. To the contrary, in open field environ-

ments researchers are typically working to obtain a uniform distribution–equal sampling

throughout the environment [16]. Conversely, in alleyway mazes coverage is restricted to the

shape of the maze and thus position sampling is highly non-normal, and these rules-of-thumb

should not be expected to perform well. Additionally, while the spikes contained within an

individual place field are often conceptualized or modelled as Gaussian [17,18], they are rarely

normally distributed [19–21]. Furthermore, cells often exhibit multiple, possibly overlapping

fields [16,22,23] indicating that we can expect spike data to deviate significantly from a normal

distribution in the majority of cases as well. Thus, firing rate maps are the result of two very

different non-normal distributions, neither of which can be easily estimated or described

parametrically.

In the face of these shortcomings, researchers in the field of spatial navigation have perse-

vered using firing rate map approaches and parameters based on subjective assessments, with-

out quantification. To begin to address this issue and start to provide some guidelines which

may be used in future, we utilized an empirical approach to compare the effects of different

mapping parameters on different mapping methods with the aim of discovering the best

parameters to use in each case. The mapping methods we compare here are the bivariate histo-

gram, averaged shifted histogram, adaptive smoothing and adaptive binning, and two kernel

smoothed density estimate approaches. The ‘best’ parameters can take two forms: a) they mini-

mize the error between the firing rate map r(x,y) and the true underlying spike probability dis-

tribution f(x,y), thus capturing the fine and large-scale properties of place fields whilst also
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compensating for inhomogeneous sampling or, b) they minimize this error in a way that also

provides an efficient trade-off with computational speed. This latter factor is important

because although individual firing rate maps can be easily and quickly generated using modern

computers, more and more analyses are being developed which depend on generating rate

maps en masse such as bootstrapping [24], spike-train shuffles [25] and cross-validation [26]

that benefit from increased computational speed.

Here, we provide equations for each mapping approach that can be used to calculate the

best mapping parameters under most circumstances. Comparing across approaches we con-

clude that smoothed bivariate histograms are consistently associated with fast computation

times while providing surprisingly accurate maps, for this reason it is likely to be the preferred

method in the majority of cases. As expected, adaptive smoothing and binning approaches

compensate for low sampling the most effectively, but among these adaptive binning demon-

strates the highest accuracy across a wide range of parameters while balancing computation

time and other factors. Kernel smoothed density estimation is among the slowest methods but

exhibits consistently low errors and demonstrates the highest accuracy when computation

time is unlimited. In the literature, the mapping parameters commonly reported for the histo-

gram, KSDE and adaptive smoothing methods (the most widely used) closely resemble the

parameters our analyses highlight as Pareto-optimal, this suggests that researchers can make,

and generally have made, good qualitative assessments of optimal map accuracy.

Results and discussion

When we create a firing rate map using real-world data, we have no way to quantify its accu-

racy because we do not know the true underlying activity pattern of the cell. To solve this

issue, we used a simulated dataset which mimicked as closely as possible the positional trajec-

tories of rodents and the spatial properties of hippocampal place cells. This allowed us to con-

struct firing rate maps and quantify their accuracy by comparing them to the simulated cell’s

ground-truth firing distribution. We will start by providing a brief overview of this approach,

we will then briefly describe each mapping method, greater details for which can be found in

the corresponding methods sections. We then quantify the error associated with each mapping

method, its optimal parameters and the effect of recording duration and field size on these.

Lastly, we compare the different methods and compare our results to the parameters most

commonly reported in the literature.

Simulated dataset

First, we simulated random walk trajectories which mimicked a rat exploring a 1.2 m × 1.2 m

square environment (Methods: Random walk). These walks simulated 64-minute-long sessions

(Fig 1A and 1E) which were also clipped to 4- and 16-minute durations so that we could inves-

tigate the effects of recording duration and behavioral coverage. We generated 8 unique trajec-

tories of each duration to reflect the fact that place cell datasets normally include multiple

sessions from different rats.

We then simulated the spike probability distributions of three groups of 256 place cells; the

three groups differed in their average field diameter (Fig 1B and 1D; Methods: Place cells) so

that we could investigate the effects of spatial selectivity. Using the random walk trajectories

and a Poisson function to generate spikes, we transformed these spike probability distributions

into simulated spiking data (Fig 1C; Methods: Spiking). Spikes were randomly shifted in time

by small amounts to mimic errors in behavioral tracking and oscillatory dynamics such as

phase precession. Cells were also simulated to exhibit different average firing rates and a small

amount of random out-of-field activity.
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Fig 1. Trajectory and place cell simulations. A) The simulated environment with a scale rat for comparison. B) The spike probability map for a

simulated place cell with a single firing field. The field parameters are given below: the centroid is the center point of the field, the coordinates are

relative to the center of the map, σx and σy give the field’s standard deviation in x or y respectively, σxy gives the field’s variance in x and y and is used

here to give fields an orientation oblique to the x- and y-axes. C) Place cell spikes, simulated using the probability map in b and a random walk

trajectory. D) We simulated place cells with three different firing field sizes, examples exhibiting a single firing field are shown from each group, text

above gives the average field radius of the group and the field parameters are given below as in b. E) We simulated 8 different random walk trajectories,
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Next, for each combination of recording duration and firing field radius we generated firing

rate maps for all 256 place cells using each mapping method while varying their main parame-

ters, such as bin size and smoothing strength. We then compared these maps to the ground-

truth spike probability maps using mean integrated squared error (MISE; Methods:Map accu-
racy). Lastly, we found the combination of parameters which either a) minimized MISE, thus

providing the most accurate map possible or b) provided a Pareto-optimal solution [27]:

simultaneously minimizing MISE, computation time and the proportion of empty map bins

while maximizing the accuracy with which place fields could be detected (Methods: Parameter
optimization). The MATLAB code used to generate each type of firing rate map is provided

alongside this paper.

Generating firing rate maps

Histogram. The earliest, simplest, and most widely used method for constructing firing

rate maps is to bin the spike and position data into a grid of non-overlapping square pixels.

The resulting bivariate histogram maps crosstabulations of values in x and y. This method was

first proposed as a firing rate map approach by O’Keefe [28] and later by Muller, Kubie, and

Ranck [4] (linear firing rate maps were also proposed around this time by Barnes et al. [29]

and McNaughton et al. [30]). By dividing a histogram generated using the spike xy coordinates

by a histogram generated using position xy coordinates (multiplied by the sampling interval of

this data) a third histogram is obtained which gives the firing rate, in Hz, of the cell in every

bin. Often, the spike map and dwell map are also smoothed before this division (or very rarely,

after), resulting in a smoothed firing rate map. This process can be seen in Fig 2 and is formal-

ized in Methods: Histogram.

Histograms depend on two input parameters, the bin size (i.e., the distance between neigh-

boring pixels of the histogram) and, if used, the smoothing strength, typically expressed as the

standard deviation of the smoothing kernel if it is Gaussian. Initially, histogram firing rate

maps were generated using large bin sizes, usually dictated by the resolution of the camera

used to track the animal and were left unsmoothed. However, more recent approaches tend to

utilize smaller bin sizes combined with Gaussian smoothing (see section Comparison to the lit-
erature below). We generated histogram firing rate maps for our simulated place cells using

bin sizes ranging from 1 to 640 mm and a Gaussian smoothing kernel with standard deviations

ranging from 0 (no smoothing) to 640 mm (Methods: Histogram). These ranges of values were

chosen so that they encompass the values reported in the literature with a significant margin.

Should firing rate maps be smoothed before or after division? In the vast majority of cases

spike and dwell time maps are smoothed and then used to produce a firing rate map which

does not require its own smoothing. Alternatively, unsmoothed spike and dwell time maps can

be used to produce a firing rate map which then has smoothing applied to it. The former

approach benefits from the fact that the original spike and dwell maps contain no missing val-

ues (empty bins simply equal zero), which makes smoothing with a weighted kernel trivial. By

comparison, firing rate maps do contain missing, or NaN (Not a Number), values in positions

where the dwell time was equal to zero. This complicates smoothing because the natural ten-

dency of a smoothing kernel is to propagate missing values—when a single NaN falls within

the kernel window the returned result will be NaN. However, more complex kernels can be

constructed which ignore these missing values and smooth only the numerical data [31]. We

briefly investigated the implications of this effect and found that, generally, smoothing after

these were clipped to a 4-, 16- or 64-minute duration. Shown here is one trajectory clipped to these three durations (for the kernel smoothed density

estimate a 24-minute duration was used in place of the 64-minute one).

https://doi.org/10.1371/journal.pcbi.1011763.g001
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division does not greatly improve accuracy (S1 Fig), thus, we smoothed our maps only before

division.

One potential disadvantage of smoothing before division is that it can introduce fictional

values in bins that are empty by propagating values from nearby visited bins. By comparison,

smoothing after division assigns firing rate values only to bins that contained at least one posi-

tion data sample, because there is no such propagation of values in the dwell map. The result is

a map which more honestly represents the position sampling and may be more valuable in

complex, alleyway mazes with consistent trajectories. Alternatively, this propagation problem

can also be solved by imposing a minimum dwell time on bin values, thus removing the small

dwell times resulting from smoothing [32], by setting bins as empty if the closest position data

sample is more than some cut-off distance away [33], or by emptying unvisited bins after

smoothing [34].

Fig 2. Schematic showing the histogram method. See Methods:Histogram for more detail. Schematics showing the steps involved with creating a histogram

firing rate map. Position and spike data are binned separately into unsmoothed maps. Position counts are multiplied by the sampling interval of the position

data to obtain the dwell map. For this example, 50 mm2 bins are used. These maps are then, optionally, smoothed with a Gaussian kernel, in this case a 5×5 bin

kernel with the standard deviation set to 50 mm, to produce a smoothed dwell and spike map respectively. The spike map is then divided by the dwell map to

obtain a map of average firing rate.

https://doi.org/10.1371/journal.pcbi.1011763.g002
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Averaged shifted histogram (ASH). One issue that has been raised with histograms is

that the locations of the bins are somewhat arbitrary [35]. It is often possible to shift the edges

of the bins in one or both dimensions while still enclosing all of the data, and in some cases

this can lead to very different final distributions [36,37]. This issue led Scott [35] to propose

the averaged shifted histogram (ASH) [35,38,39]. The ASH utilizes the histogram procedure

outlined above (Fig 2) but instead of one histogram and one set of bins, numerous histograms

are generated with slightly offset bin edges. The final ASH is then calculated as the average of

these offset histograms (Methods: Averaged shifted histogram). This approach is computation-

ally very efficient but typically benefits from a significant decrease of error over the traditional

histogram [35,36,38] and often only requires around 80% of the data [35]. Firing rate maps

can be calculated by dividing a spike map ASH with a dwell map ASH as with the histogram

method.

The averaged shifted histogram depends on two input parameters: a bin size which acts as

in an ordinary histogram and a smoothing parameterm, which defines how many sub-histo-

grams are generated and thus, the offset between histograms, δ, which is equal to the bin size /

m. Ifm is set to 1 the ASH closely resembles the result of a bivariate histogram with no smooth-

ing. Conversely, asm approaches infinity (or the maximum resolution of the data) the ASH

approximates a kernel smoothed density estimator [35,38]. Thus, we generated firing rate

maps using bin sizes ranging from 1 to 640 mm and smoothingm values ranging from 2 to 64

(Methods: Averaged shifted histogram).

One benefit of this method is the increased resolution of the resulting maps: a histogram

and an ASH rate map generated with a bin size of 20 mm will look qualitatively similar, but if

the ASH map is generated with a smoothingm of 5, for example, it will have 25× greater reso-

lution owing to its subdivided bins. This increased precision could make ASH maps valuable

when quantifying place field spatial properties such as their shape, area, or centroid as it will

allow more precise measurements. Despite these advantages, as far as we are aware this

approach has never been implemented in the spatial navigation literature.

Adaptive smoothing. Smoothing provides a convenient way for bins to make use of sur-

rounding data and interpolate across regions with low or missing sampling. Ideally though,

each bin would ‘adapt’ to the density of the surrounding data, enlarging when there is not a

great deal of local information, but shrinking in regions where the local data density is very

high [40]. An approach like this for firing rate maps was first described by Jung et al. [41] but

was only fully described later by Skaggs and McNaughton [42] which is the approach we have

adopted here. A similar, but less frequently adopted variant was described by Skaggs et al. [43]

(see Methods: Adaptive smoothing) and is not discussed here. This ‘adaptive smoothing’ allows

bins to differ in size, depending on the density of the surrounding data (Fig 3). The aim is to

allow bins which contain too little sampling to expand until they contain a minimum number

of spikes and position data. The adaptive nature of this approach means that every firing rate

map bin results from a trade-off between smoothing error (data are too blurred together) and

sampling error (too few samples to estimate firing rate accurately). The pixelwise approach

described by Skaggs and McNaughton [42] can be seen in Fig 3. However, as discussed in

Methods: Adaptive smoothing, this method can be accelerated using pre-binning and convolu-

tion, as shown in Fig 4. This accelerated process generates virtually identical firing rate maps,

but in a small fraction of the time (S2 Fig) and so this was the method we employed here.

Adaptive smoothing depends on two input parameters: an initial bin size which sets the

minimum area a bin must occupy (this ensures all of the data is included in at least one bin)

and a tunable smoothing parameter α which controls the minimum number of spikes and

position data required within each bin. As before, we used bin sizes ranging from 1 to 640 mm
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and to capture the full range of smoothing α values reported in the literature we tested values

ranging from 100 to 32000 (Methods: Adaptive smoothing).

Adaptive binning

A similar method to Skaggs and McNaughton’s [42] adaptive smoothing was proposed by

Yartsev and Ulanovsky [44] for data collected from freely flying bats. A variation of this was

also used by Ginosar et al. [45]. In the Yartsev and Ulanovsky [44] approach, bins are

expanded until they contain a minimum 1 second of recording data, regardless of the number

of spikes. The firing rate in a bin is then equal to the number of spikes within this radius of the

bin divided by the total time spent within this radius. This method is similar to adaptive

smoothing (Fig 3) but instead represents K-nearest neighbor density estimation [40], where

the 1 s time interval can also be understood as K equal to the position sample rate. Compared

to adaptive smoothing this method places emphasis on behavioral sampling rather than a com-

bination of sampling and spike count. Like adaptive smoothing, this method can be accelerated

Fig 3. Adaptive smoothing, pixelwise method. See Methods: Adaptive smoothing for more detail. Schematic showing the steps involved with creating a firing

rate map using the adaptive smoothing approach described by Skaggs and McNaughton [42]. A set of query points are specified, these typically form a square

grid spanning the data. A circle is expanded around each point until the contents satisfy the adaptive equation (bottom of figure). The radius needed to satisfy

the adaptive equation is shown for two query points. The value of the firing rate map at each query point is then equal to the number of spikes divided by the

number of position samples within that circle multiplied by the sampling interval of the position data.

https://doi.org/10.1371/journal.pcbi.1011763.g003
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using a convolution-based procedure (similar to that in Figs 4 and S2). Here, we used a two-

dimensional implementation of the method proposed by Yartsev and Ulanovsky [44], acceler-

ated in this way.

Adaptive binning depends on two input parameters: the first is the initial bin size which

sets the minimum area a bin must occupy (this ensures all of the data is included in at least

one bin) the second smoothing parameter t defines the minimum enclosed duration at which

bin expansion is halted. Yartsev and Ulanovsky [44] used 10 cm3 voxels and set t to 1 second,

so we generated firing rate maps using two-dimensional bin sizes ranging from 1 to 640 mm

and smoothing t values ranging from 0.5 to 10 seconds (Methods: Adaptive binning).

Fig 4. Adaptive smoothing, convolution method. See Methods: Adaptive smoothing for more detail. Schematic showing the steps involved with creating a

firing rate map using the adaptive smoothing approach accelerated through convolution. Position and spike data are binned separately into unsmoothed dwell

and spike maps respectively. For this example, 50 mm bins are used. Convolution with circular unity-gain kernels of varying sizes is used to sum the total spikes

and position samples at a set of discretized radii. For each bin, the smallest radius of kernel at which the adaptive equation can be satisfied is then found. The

value of the firing rate map in that bin is equal to the number of spikes divided by the number of position samples within the kernel multiplied by the sampling

interval of the position data. The result is a map which is functionally identical to one generated using the pixelwise approach (Fig 3) but in a fraction of the

time (S2 Fig).

https://doi.org/10.1371/journal.pcbi.1011763.g004
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Kernel smoothed density estimate (KSDE)

Both the bivariate histogram and adaptive methods estimate data density through binning fine-

scale data points into, somewhat arbitrary, discretized portions of space. Smoothing allows data

points to affect bins other than the one they are assigned to, but the resulting estimate is always

discontinuous–values are only known for each bin location and each bin contains only one

value. Adaptive smoothing and binning further extend the histogram method, allowing more

data to be utilized in under-sampled regions. However, the kernel smoothed density estimate

(KSDE) proposed by Rosenblatt [46] and Parzen [47], also known as the Parzen–Rosenblatt

window method, takes this a step further and estimates local data density based on all of the

available data, producing a continuous estimate which can be queried at any location.

Although KSDE’s are often considered one of the most accurate approaches for data density

estimation [48,49], they are not commonly utilized to generate firing rate maps. Leutgeb et al.

[50,51] described what has become the most widely adopted approach [7,9,33,52–55], by esti-

mating firing rate as the ratio of two kernel smoothed density estimates, one calculated on

position data and the other on spikes (Methods: Kernel smoothed density estimate; Fig 5). In

Fig 5. KSDE firing rate map method. See Methods: Kernel smoothed density estimate for more detail. Schematics showing the steps involved with creating a

kernel smoothed density estimate (KSDE) firing rate map. A set of query points are specified forming a square grid spanning the data. For each query point the

distance to every position data sample and spike is calculated, these are then kernel weighted and summed. The value of the firing rate map at that query point

is then equal to the spike-distance-sum divided by the position-distance-sum multiplied by the sampling interval of the position data.

https://doi.org/10.1371/journal.pcbi.1011763.g005
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comparison to the Leutgeb et al. [50,51] approach we found that the MATLAB kernel density

estimate implementation (MATLAB functionmvksdensity), which uses a very similar smooth-

ing kernel, provides a significant speed increase, generates virtually identical firing rate maps

(S3 Fig) and offers many convenient additions such as boundary correction. Alternatively,

combining the two approaches by employing the Leutgeb et al. [50,51] kernel viamvksdensity,
as a custom kernel, was the slowest implementation (S3 Fig). For these reasons we generated

KSDE maps using the MATLAB function,mvksdensity, and its built-in kernel.

This method depends on three main parameters: the smoothing kernel, smoothing

strength, and query points. The smoothing kernel can take many shapes (e.g. uniform, triangu-

lar, biweight, triweight, Epanechnikov) but we restricted our analyses to a Gaussian kernel as

this was the form proposed by Leutgeb et al. [50,51]. The smoothing strength, often denoted as

h and called the smoothing ‘bandwidth’, effectively changes the relative standard deviation of

the smoothing kernel, and thus the smoothness of the estimate. Although kernel density esti-

mates are continuous and can be quantified at any point, in order to produce a discretized

map they must be queried at a finite set of points. For simplicity, these form a square grid simi-

larly to the bins of a histogram. The density of the query points can easily be controlled by set-

ting the distance between neighboring points, hereafter called the bin size. Unlike with the

previous approaches, values are calculated independently for each query point, meaning that

decreasing the bin size increases the resolution of the estimate without changing its shape. In

this way, we know a priori that smaller bin sizes are more accurate and should thus produce

the lowest error but, this will likely increase the computation time considerably making small

bin sizes sub-optimal. For this reason we tested query grids with bin sizes ranging from 2.5 to

640 mm and bandwidth values ranging from 10 to 320 mm (Methods: Kernel smoothed density
estimate).

Temporal KSDE

Brun et al. [56], Fyhn et al. [6] and Leutgeb et al. [57] described a unique spatial mapping pro-

cedure which uses a KSDE approach applied to the instantaneous firing rate of the cell, rather

than treating all of the data within a bin as a homogenous temporal sample. This temporal

KSDE (tKSDE) approach is dependent on three inputs: grid size, spatial smoothing strength,

and temporal smoothing strength. The instantaneous firing rate of the cell in time is estimated

using a sliding window, typically employing a 2-second-long Blackman window–this approxi-

mates a Gaussian with a standard deviation equal to ¼ the window length. However, we found

that shorter time windows resulted in more accurate maps overall (S4 Fig) and so instead

focused on a window duration of 0.125 seconds (Methods: Temporal KSDE). The grid size

input acts similarly as in the KSDE and provides the resolution at which to estimate the cell’s

firing rate (i.e. the bin size). The value of each bin is calculated as the weighted average of the

cell’s instantaneous firing rate, where the values are weighted according to their distance from

the bin center, much like in a KSDE. The weighting kernel is typically a second Blackman win-

dow, but for simplicity we replaced this with a Gaussian kernel. The spatial smoothing input,

σ, defines the standard deviation of this Gaussian and thus acts as a tunable spatial smoothing

parameter. For this approach, we used bin sizes ranging from 2.5 to 640 mm and smoothing

values ranging from 10 to 640 mm (Methods: Temporal KSDE).

Quantifying rate map error

For each mapping method we generated firing rate maps for our simulated place cells using a

range of parameters chosen to encompass values reported in the literature (Fig 6). For each

rate map parameter combination we then compared the resulting rate map r(x,y) to the
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underlying spike probability of the cell f(x,y) using mean integrated squared error (MISE;

Methods:Map accuracy; note that MISE is in units of integrated probability squared, not firing

rate). In testing, similar results were observed when using Pearson correlation, Euclidean dis-

tance and mutual information (S5 Fig). Every mapping method exhibited some parameter

combinations which performed better than others. Generally, small bin sizes coupled with lit-

tle smoothing, large bins, and high smoothing were all associated with inaccurate maps (Fig

7A–7F). It is clear from the example maps in Fig 6 why this is the case: small bin sizes with lit-

tle to no smoothing are very sparse, exaggerate small-scale firing features and the lack of

smoothing does not allow interpolation between filled bins. Conversely, very large bin sizes or

smoothing values provide maps which lack detail and obscure place fields. However, for each

method a region of high accuracy maps was apparent between these zones. For the histogram

method, smoothed maps were superior in terms of accuracy than when smoothing was

Fig 6. Qualitative assessment of firing rate maps. A) The spike probability map of one example simulated place cell. B) Spikes simulated in a 16-minute

recording session using this probability map. C-H) For each mapping method, firing rate maps generated for the spike and position data in b using a range of

parameter combinations. For each method, 256 place cells were simulated and mapped in this way.

https://doi.org/10.1371/journal.pcbi.1011763.g006
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omitted (parameter pair with the smallest average error: with smoothing = 3.1×10−12, without

smoothing = 1.0×10−12; t(510) = 14.7, p = 1.6×10−12, two-sample t-test).

Broadly, we found similar results for 4-, 16- and 64-minute-long sessions, although as the

session duration was increased the region of low error combinations generally widened to

encompass a greater range of parameter combinations (Fig 7A–7F). This is to be expected

because a firing rate map is estimating f(x,y): the probability a cell will fire at a position given

infinite time. Thus, as the number of available samples approaches infinity this estimate can be

made with greater certainty. This effect was greatest in the adaptive smoothing and binning

methods, which is perhaps unsurprising because these approaches were designed to make the

greatest use of the available data. Importantly, as recording duration was increased the region

of optimal parameter combinations often expanded to include a broader, overlapping set. This

suggests that if an experiment involves sessions of different durations, experimenters should

optimize their mapping procedures for the lowest data density as these will also generalize to

higher densities. Adaptive binning exhibited the broadest region of low error parameter com-

binations: essentially, any map with a bin size less than 50 mm and a smoothing criterion

greater than 0.5 s exhibited very low errors (Fig 7F). This makes adaptive binning much more

resistant to incorrect or suboptimal input parameters.

Fig 7. Quantitative investigation of firing rate map accuracy. A-F) For each mapping method, the error associated with a range of parameter combinations

when used on 16 min duration sessions (main panel), 4- or 64-min-duration sessions (inset right). Each plot is an average of 256 simulated place cells. Also

denoted are the parameter combinations associated with the minimum error and the combinations found to optimize error, computation time and place field

detection accuracy in a balanced way. Note that plots are shown using a consistent color axis which may not span the full range of data values for every method.

https://doi.org/10.1371/journal.pcbi.1011763.g007

PLOS COMPUTATIONAL BIOLOGY Estimating neuronal firing density

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011763 December 27, 2023 13 / 38

https://doi.org/10.1371/journal.pcbi.1011763.g007
https://doi.org/10.1371/journal.pcbi.1011763


The histogram, ASH and KSDE methods exhibited a region of greater accuracy maps

around a bin size of 80 mm (Fig 7A and 7B and 7D), these regions correspond to the bin size

at which acceptable accuracy can be obtained with no smoothing (see Fig 6C and 6D) leading

to a vertical band of low error maps which is only disrupted by over-smoothing. Interestingly,

Sturge’s rule [12] suggests that a 16- and 64-minute recording session should be discretized

into 70 and 63 mm bins respectively, based solely on the number of position data samples col-

lected (Methods: Bin size rules-of-thumb) which closely resembles this 80 mm region. By con-

trast, two implementations of the Freedman-Diaconis rule [14] suggests that for a 16-minute

session, 35- or 18-mm bins should be used and for a 64-minute session 23- and 11-mm bins

should be used respectively (Methods: Bin size rules-of-thumb). These are close to the optimal

bin sizes found for the histogram and KSDE methods (20–30 mm), suggesting that the Freed-

man-Diaconis rule [14] offers a more accurate rule-of-thumb when generating firing rate

maps, although none of these rules-of-thumb are recommended for spatial data.

Optimizing map parameters

The low error parameter combinations we found sometimes suffered from drawbacks in other

areas. For instance, when bin size is changed by a factor of k, the total number of bins, and

thus computational demand and map size will scale by (1/k)2, thus small bin sizes are typically

associated with increased computation time (Fig 8 insets) and required storage space. These

parameters can be ignored when generating a small number of firing rate maps, but they are

important to consider when generating maps en masse. Generally, error in place field detection

was correlated with map error (Fig 8; histogram: r = 0.25, ASH: r = 0.78, Adaptive smoothing:

Fig 8. Additional firing rate map parameters. All plots are based on the 16-minute session data and are the average of 256 simulated place cells (except

temporal KSDE computation time which was estimated using 8 place cells). A-F) For each mapping method, the error in detecting place fields (main), the

computation time (inset top) and the proportion of the map left empty (inset bottom) associated with each parameter combination are shown. The color axes

used here do not show the full range of data values but were chosen to visually isolate low error region(s).

https://doi.org/10.1371/journal.pcbi.1011763.g008
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r = .90, tKSDE: r = 0.54, KSDE: r = 0.72, Adaptive binning: r = 0.98). Small bin sizes were

more likely to be associated with a high proportion of empty bins, particularly when little

smoothing was used (Fig 8 insets). Empty bins are not strictly errors and thus do not nega-

tively impact our calculation of map error (MISE), but an abundance of empty bins is often

undesirable when investigating a neuron’s spatial activity because they represent regions

where the cell’s activity remains unquantified.

To quantify these complex relationships we used multi-objective (Pareto) optimization [27]

to find the combinations of map parameters that not only minimized error but also minimized

the computation time taken to generate each map, minimized the proportion of each map that

is empty, and maximized the accuracy with which place fields could be detected (Methods:

Parameter optimization). The Pareto-fronts found for each method can be seen in Fig 9A–9F.

From among the solutions on this front we selected the one that best balanced error and com-

putation time (hereafter called the ‘balanced’ solution; Methods: Pareto-optimal parameters).
In addition, we also found the parameter combination associated with the lowest possible

error, ignoring all other factors (hereafter called the ‘minimum error’ solution). The balanced

solutions typically differed from the minimum error solutions by having a much larger bin

size but with a similar level of smoothing (Fig 7A–7F). This is likely because increasing the bin

size while keeping the same level of smoothing generally decreases the computation time while

minimally affecting map error and the other performance factors. Maps generated using the

two solutions closely matched the underlying spike probability and did not noticeably differ

from each other (Fig 10C).

Fig 9. The relationships between error, computation time and mapping parameters. A-F) For each mapping method, the Pareto-front of optimal parameter

combinations for all tested recording durations. Circled is the parameter combination selected as the most balanced. In addition to computation time and

overall map error (MISE), which are plotted here, Pareto-optimization also sought to minimize the proportion of empty bins and place field detection errors.

Insets show the relationship between average field radius, recording duration and balanced bin size (top) or smoothing (bottom) parameters, determined using

multivariate regression. The exact regression fits can be seen in Table 1 in addition to the fits for the parameters associated with the minimum error.

https://doi.org/10.1371/journal.pcbi.1011763.g009
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Fig 10. Error and computation time across methods. All plots are based on the 16-minute session data. Horizontal lines denote a

significant (p < .05) post-hoc comparison, for simplicity only the balanced solution groups are compared. A) The mean integrated squared

error (MISE) associated with each mapping method when using the balanced or minimum error parameters. Markers denote simulated

place cells and the same 256 cells were tested using each method. B) The same as a but for computation time. Some methods have a

bimodal distribution, the longer computation times represent the first time a map was generated for a recording session (8 unique sessions

were simulated) and a dwell time map was created. Only these 8 values are shown for the tKSDE computation times. C) The accuracy with
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The effects of recording duration and firing field size

We next looked at how recording duration and firing field size affect the selection of mapping

parameters. To quantify this relationship, we used multivariate regression (MATLABmvre-
gress); the effect of recording duration and firing field size on the balanced bin size and

smoothing strength can be seen in Fig 9A–9F (insets). To guide parameter choice more accu-

rately over a wide range of situations, for each method, we have also provided the numerical

relationships between recording duration, firing field size, bin size and smoothing strength in

Table 1.

Broadly speaking, larger firing fields are best represented by maps produced using larger

bins and stronger smoothing (Fig 9A–9F, insets), this can also be seen in the positive coeffi-

cients of r in Table 1. Large firing fields benefit from large bins and broader smoothing because

these emphasize large-scale firing features, such as place fields, rather than small-scale noise.

An exception to this is the balanced ASH method, which has a practically flat relationship

between field size and smoothing, suggesting that smoothing strength has surprisingly little

impact on the resulting map, an effect which can also be seen in Figs 6D and 7B.

Longer recording durations are generally best represented by smaller bin sizes and weaker

smoothing (Fig 9A–9F, insets), this can also be seen in the negative coefficients of d in Table 1.

Low data densities benefit from larger bins and smoothing because this allows better interpola-

tion across sparse regions and increases the accuracy of each bin value by increasing the num-

ber of samples their estimate is based on. This is consistent with a general prediction for kernel

estimators that as the number of samples increases smoothing should decrease [49,58]. How-

ever, the adaptive smoothing and binning methods showed the opposite trend, with longer

durations best represented by slightly stronger smoothing and slightly larger bins in the case of

adaptive smoothing. Why this is the case is not immediately clear. One possibility is that as the

recording duration is increased the region of low error parameter combinations expands

markedly for both adaptive methods (Fig 7C and 7F) leading to a more homogenous pattern

of error which may have made the regression fit less meaningful for these methods.

which place fields were detected for each mapping method. D) The proportion of empty bins remaining for each mapping method. E) The

spike probability map and simulated spikes for an example simulated place cell. Below this, firing rate maps for this place cell generated

using each method (columns) and the balanced solution parameters (top row) or minimum error solution parameters (bottom row). Text

gives the bin size and smoothing parameters used.

https://doi.org/10.1371/journal.pcbi.1011763.g010

Table 1. The relationship between field size, recording duration, bin size and smoothing strength.

Method Minimum error solution Balanced solution

Histogram Bin size ¼ smallest available
Smoothing ¼ 16:232þ 0:119r � 0:218d

Bin size ¼ 22:229þ 0:115r � 0:413d
Smoothing ¼ 9:900þ 0:278r � 0:617d

ASH Bin size ¼ 76:339þ 0:055r � 0:278d
Smoothing ¼ � 29:982þ 0:328r � 0:085d

Bin size ¼ 56:510þ 0:259r � 0:513d
Smoothing ¼ 5:338 � 0:006r � 0:006d

Adaptive smoothing Bin size ¼ 1:7615þ 0:0077r � 0:0050d
Smoothing ¼ � 11872þ 125r þ 281d

Bin size ¼ 9:714þ 0:041r þ 0:104d
Smoothing ¼ � 9917þ 61r þ 106d

Adaptive binning Bin size ¼ 1:606 � 0:004r þ 0:009d
Smoothing ¼ � 5:078þ 0:041r þ 0:050d

Bin size ¼ � 5:451þ 0:135r � 0:055d
Smoothing ¼ � 4:336þ 0:036r þ 0:045d

KSDE Bin size ¼ smallest available
Smoothing ¼ 17:685þ 0:133r � 0:768d

Bin size ¼ 9:900þ 0:099r � 0:325d
Smoothing ¼ 14:806þ 0:139r � 0:707d

Temporal KSDE Bin size ¼ 3:529þ 0:014r � 0:020d
Smoothing ¼ 10:949þ 0:213r � 0:179d

Bin size ¼ 14:720þ 0:104r � 0:188d
Smoothing ¼ 19:304þ 0:242r � 0:222d

Table showing regression fit equations for determining the bin size and smoothing associated with the minimum error and balanced solutions given the average firing

field radius r and the recording session duration d.

https://doi.org/10.1371/journal.pcbi.1011763.t001
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In the case of the histogram and KSDE, bin size is absent from the minimum error formula

because it was always equal to the smallest tested (Table 1). This is perhaps unsurprising

because a histogram generated with the smallest possible bins (i.e. matching the resolution of

the position and spike data) and large enough smoothing will approach the result of a KSDE,

which is in turn generally considered one of the most accurate density estimation approaches

[48,49]. In practice, bin size is limited by the resolution of the camera used to track the animal

and the distance of this camera from the experimental apparatus. So, this value can simply be

replaced with the smallest bin size permitted by the data or desired by the experimenter. This

is permissible because the minimum-error and balanced solutions share practically identical

smoothing values and so the resulting map will always fall between these points and approxi-

mate the best possible result.

Estimating field size

The equations presented in Table 1 call for an estimate of the cell’s firing field radius, r, how-

ever, we typically estimate firing field size using a firing rate map. How can we estimate this

value before we have generated a firing rate map? Firstly, using firing field size values estimated

in previous experiments, or using a qualitatively accurate map, will often be sufficient for

deriving this value as we found that place field detection was typically resistant to errors in the

firing rate map (although the two are correlated). However, it is also possible to estimate the

average field radius without a rate map. One way is to use spatial density metrics such as Rip-

ley’s k-function (Methods: Estimating field size; [59]). This algorithm estimates the radius of

dense clusters in xy point data, such as the positions of a cell’s spikes [60]. Using this method

on our simulated place cell dataset, we found a high positive correlation between the actual

and estimated place field sizes (S6B Fig; r = 0.71, p = 1.3 × 10−50, Spearman’s correlation

between estimated and real field size). Further research could look to improve on these kinds

of density metrics for place field size estimation.

Comparing mapping methods

We compared several different mapping approaches: the standard bivariate histogram (cou-

pled with Gaussian smoothing), averaged shifted histogram (ASH), adaptive smoothing, adap-

tive binning, kernel smoothed density estimate (KSDE) and a temporal implementation of the

KSDE (tKSDE). Concentrating on the balanced solution results and looking at the error asso-

ciated with each mapping approach, a one-way ANOVA confirmed that the approaches dif-

fered (F(5,1530) = 29.0, p< .0001, η2 = 0.05), the results of post-hoc multiple comparisons can

be seen in (Fig 10A). A one-way ANOVA also confirmed that the approaches differed in their

computation time (F(5,1284) = 712.8, p< .0001, η2 = 0.74), the results of post-hoc multiple

comparisons can be seen in (Fig 10B). A one-way ANOVA also confirmed that the approaches

differed in the proportion of bins left empty (F(5,1530) = 4352.6, p< .0001, η2 = 0.93), the

results of post-hoc multiple comparisons can be seen in (Fig 10D).

If using balanced parameters, the adaptive binning, adaptive smoothing and KSDE meth-

ods demonstrated the smallest average map error (Fig 10A). The maps generated using these

methods were also the most reliable when detecting place fields (Fig 10C), contained very few

empty bins (Fig 10D), and exhibited a high level of detail (Fig 10E), which may make them

desirable for investigating fine-scale firing characteristics. However, these methods were also

among the slowest to produce (Fig 10B) making them undesirable when generating maps en
masse (the KSDE was so slow we could not test recording durations greater that 24 minutes or

bin sizes smaller than 2.5 mm because the computation times became untenable).
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The tKSDE, histogram and ASH methods demonstrated the largest average error. However,

the histogram and ASH methods were virtually instantaneous to produce, making them a very

practical mapping method (Fig 10B). When using parameters that minimize error only, the

histogram and KSDE methods showed the greatest possible levels of accuracy (Fig 10A), in

this state the histogram method remains computationally fast while the KSDE method remains

one of the slowest (Fig 10B). Given that the histogram is the most widely used approach, is

very flexible, computationally very fast and provides very accurate maps, it is likely to be best

suited to most scenarios. Additionally, the computational speed of histograms makes them

very well suited to shuffle-based analyses that are becoming more common in the field [24]. It

should be noted however, that the ASH method shares many of these properties and produces

much higher resolution maps.

In addition to exhibiting the largest error, the tKSDE approach was also very slow, unreli-

able for place field detection and among the worst at compensating for poor sampling, making

it one of the least desirable methods overall. This approach utilizes the instantaneous firing

rate of the cell over time to estimate the average firing rate within a bin making it unique in

this aspect, as all the other methods treat data points within or around a bin as if they were

contemporaneous. One benefit of this approach is that it relies on an instantaneous firing rate

vector which could prove valuable for mapping the results of calcium imaging experiments. In

this case, exact spike times are unknown, and researchers use algorithms to estimate them

before constructing firing rate maps, but a temporal KSDE would eliminate the need for this

step.

Overdispersion and uneven sampling

These results did not vary greatly when cells were simulated to include heavy overdispersion

[61,62], although the balanced and minimum error solutions consistently shifted towards sig-

nificantly stronger smoothing (S7 Fig). This increased smoothing requirement likely reflects

the larger uncertainty associated with overdispersion and should be taken into account when

analyzing recording sessions of a short duration and when overdispersion is anticipated.

Uneven trajectories, such as those caused by goal-directed navigation or thigmotaxis, did not

change the results of the bin size and smoothing analyses (S8 Fig) although MISE did increase

significantly when trajectories showed strong goal-directed biases. Lastly, to test the robustness

of our results in the face of real-world place cell data, we used the equations provided in

Table 1 to calculate firing rate map parameters for real place cells extracted from the dataset of

[20] (S9 Fig).

Comparison to the literature

Having now quantified the error associated with different input combinations, we looked back

at the parameter combinations reported in the spatial navigation literature. To do this we sur-

veyed peer-reviewed papers that focus on spatial neurons, spanning from the first description

of a firing rate map (1983) to the current year (2023). We recorded their rate map approach

and the parameters used (Methods: Literature survey).
Focusing first on the histogram method, and looking at the types of smoothing used, we

found that over time researchers have gradually transitioned from no smoothing to boxcar

kernels and finally to Gaussian kernels, suggesting that the field has recognized the increased

accuracy afforded by smoothing (Fig 11A). We also found a weak, but significant, decrease in

bin sizes over time, likely related to the adoption of more powerful laboratory computers and

better smoothing techniques (r = -0.2, p = .016; Fig 11A, black line). We also found that when

Gaussian smoothing was used, the parameter combinations reported in the literature closely
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Fig 11. Mapping parameters in the published literature. A) Top: bin sizes used to generate histogram firing rate maps in the literature, surveyed across 100

published papers and plotted as a function of publication year. Gaussian jitter (mean = 0, σ = 2) was added to the literature values to make visualization of

overlapping data clearer. Bottom: the spike and position data for an example, simulated place cell. Firing rate maps for this cell are depicted to the right, generated

using the average parameters used in the specified time period. B) Error maps overlaid with the minimum error, balanced and literature reported parameter

combinations for the histogram, adaptive smoothing and KSDE methods as in Fig 7. In the published literature, researchers tend to use parameter combinations
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clustered around the balanced solution found through our analysis (Fig 11B) although they

still showed a wide range of variability between studies (S10 Fig). When smoothing was not

used the reported bin sizes still tended to cluster in the lowest error region (Fig 11B inset top).

This suggests that researchers have, generally, been remarkably successful at balancing rate

map error with computation cost. Place field detection was also very accurate across the

parameter combinations reported in the literature (S11 Fig), this may be because place field

detection represents only a very rough measure of map accuracy, or because researchers using

firing rate maps optimize their firing rate maps for accurate place field detection rather than

computation time or MISE.

Adaptive smoothing and KSDE are the next most widely adopted mapping methods and

show a similar clustering around the balanced solution (Fig 11B). However, with these meth-

ods researchers tend to use over-sized bins, likely to offset the low speed of these approaches.

Summary

Here we replicated the most widely adopted firing rate map methods described in the litera-

ture, as well as some rarely and never-before used ones, and quantified the effects of their dif-

ferent input parameters. We did this by generating maps for simulated data sets and

comparing the results to their ground-truth firing probability distribution. For each method

we determined the parameter set yielding the smallest mean integrated squared error possible,

then we considered factors such as computation time and place field detection error to deter-

mine the Pareto-optimal parameter set: settings which balanced error and computation time.

Each approach exhibited a clear region of optimal parameters. Typically, the solution asso-

ciated with the lowest error consisted of the smallest bin size possible and a relatively large

amount of smoothing; in comparison the balanced solutions tended to call for a larger bin size

with less smoothing. Overall, we found that the bivariate histogram method was consistently

among the fastest while still providing surprisingly accurate maps. The ASH method was con-

sistently the fastest and provided a medium level of accuracy, coupled with increased spatial

resolution, these results suggest that the ASH method may be an unfairly overlooked option

for generating rate maps. Adaptive smoothing and binning approaches compensated for low

sampling the most effectively, as expected, and produced lower error maps but at a longer

computation time. The histogram and KSDE approaches achieved the greatest possible accu-

racy when all other factors were ignored. However, the extremely long computation time of

KSDE makes it a generally undesirable choice.

Limitations and further research

Here we have concentrated on widely used approaches for generating firing rate maps, with

some exploration of underused variants. However, there are a number of more recent and

more advanced approaches which have not yet received wide adoption. These include Bayesian

[63] and Gaussian process [64,65] methods. These computationally complex approaches could

provide improvements over traditional mapping methods and will require further investiga-

tion. Increasing the adoptability of these approaches would facilitate this; for example, we have

provided MATLAB code alongside this paper which allows the reader to adopt any of the

methods discussed here with minimal effort and without a need for any computational back-

ground. Complex approaches often provide a mathematical description but lack a packaged

implementation, which likely hinders their adoption by the research community.

which are very close to the balanced solution. Gaussian jitter (mean = 0, σ = 2) was added to the literature values to make visualization of overlapping data clearer.

See S10 Fig for example ratemaps generated using different literature values.

https://doi.org/10.1371/journal.pcbi.1011763.g011
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In this analysis we have concentrated on an open field arena setup which represents one of

the simplest and most widely used experimental apparatus in the literature [16,19,22,66,67].

While we do not expect the findings here to differ among open field environments of a differ-

ent shape, many experiments instead make use of complex alleyway mazes [68–70] where

place fields can take on new characteristics [71,72]. These mazes also present new challenges

for spatial mapping, such as areas separated by walls [73,74] that should not be smoothed

together. While most experiments solve this problem by linearizing the maze data, this is not

always possible or desirable. For a more flexible solution these situations would benefit from

non-isotropic smoothing kernels such as the alleyway-limited smoothing employed by Derdik-

man et al. [68] or geodesic kernels that take into account the shape of an environment during

smoothing. Future research will be needed to develop these alleyway-suited mapping methods.

Conclusion

While the purpose of a firing rate map is to quantify the spatial activity of a neuron, it is sur-

prising that these maps are often based on qualitatively chosen parameters. Here we have

shown that, while generally accepted, this should not be the case because some parameter com-

binations are clearly superior. In the field, it is difficult to know which parameters to choose

and often a multitude of such choices must be made across many different analyses. We have

provided a way to guide at least some of these in the future. Additionally, we hope that this

investigation will motivate further inspection and discussion of these, and perhaps other tools

which the spatial navigation field relies on.

Methods

Random walk

To simulate rat exploratory behavior, we employed a Gaussian random walk. The environ-

ment was recreated as a binary grid map, with a resolution of 0.5 cm. The agent started in the

geometric center of the environment with a random starting heading, it then made successive

steps through the environment, with each step representing 1 second of walk time for a total

duration of 64 minutes. At each time point the agent’s next position was calculated as:

gðxÞ ¼ argmax
1

s
ffiffiffiffiffiffi
2p
p e

� ðD� mÞ2

2s2 þ
1

2pI0ðkÞ
ek cosðA� at� 1Þ þ occþ dw þ dc þ b

� �

ð1Þ

where D is the distance to every pixel in the grid map from the agent’s current position, μ = 64

and σ = 128, I0 is the modified Bessel function of order zero, A is the angle to every pixel in the

grid map from the agent’s current position, αt is the angular heading of the agent at time step t,
κ is the concentration of the von-Mises distribution which was set to 1, occ is the total occu-

pancy in each grid map pixel calculated using a retrospective 8-minute sliding window, dw and

dc are the distance to every pixel from the nearest wall in the environment and the distance to

every pixel from the center of the environment respectively, b was an optional parameter used

in the biased sampling conditions and is described below.

Each input described above was normalized to range from zero to one (the maximum

value). Additionally, the values of occ were inverted. dw and dc were Gaussian weighted accord-

ing to the function:

f ðxjm; sÞ ¼
1

s
ffiffiffiffiffiffi
2p
p e

� ðx� mÞ2

2s2 ð2Þ

For dc μ was set to 0 and σ was set to 512, for dw μ was set to 0 cm and σ was set to 512.
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To simulate a goal-directed trajectory, biased towards one position in the environment, b
was included and set to the distance to every pixel from a single point in the environment

located halfway between the minimum and maximum y-value and three quarters of the way

between the minimum and maximum x-value. b was also Gaussian weighted using the func-

tion in (2), μ was set to 0 and σ was set to 25, the result was also down weighted by a factor of

0.9. To simulate thigmotaxis, dc was set to zero and for dw σ was set to 100 so that the agent

would be attracted towards the walls more frequently.

Once g(x) was found, the quasi-Euclidean optimal route between the current and next

point, avoiding obstacles, was taken as the agent’s path and this was up sampled by a factor of

50 (for a 50Hz positional sampling rate). This step allows the agent to navigate around barriers

and obstacles efficiently and smoothly, although this was not needed in the current analysis.

Lastly, to mimic errors in real-world position tracking we added random jitter between

±8.5cm to the points and smoothed the resulting path using an unsupervised, robust, discre-

tized, n-dimensional spline smoothing algorithm (MATLAB function smoothn [75,76] with

the smoothing parameter set to 128).

In effect, at every time step the agent ‘chooses’ a next step which does not deviate too much

from its current heading and is not too far for a rat to travel in the given time. It is also weakly

attracted towards the center of the environment, weakly repelled by walls in the environment

and attracted towards any areas of the environment not visited recently. To represent the fact

that place cell datasets are recorded across multiple animals and sessions, we simulated 8 dif-

ferent random walks using the settings above. To investigate the effect of sampling we tested 4-

, 16- and 64-minute-long sessions, these were generated by simulating a 64-minute long ses-

sion as described above and then clipping the sampling to the desired duration from the start

of the session.

Place cells

Place cell spike probability distributions were generated as the sum of one or more multivari-

ate normal distributions (MATLABmvnpdf). Three field sizes were simulated to reflect the

fact that the diameter of place fields varies along the dorso-ventral axis of the hippocampus

[77] and between brain regions [1]. These groups had a mean standard deviation in the x- and

y-dimensions of 4000, 8000 and 1600 respectively, or in other words an average field radius at

2 standard deviations of 126, 179 and 253 mm. To reflect individual variability among cells

these values were drawn from a normal distribution (MATLAB normrnd) with a standard

deviation of 1000 and limited to values greater than 1000. Additionally, to reflect the fact that

spatial fields are not always isotropic, but are often elongated [19,20], standard deviation in the

x- and y-axis were determined independently. To emphasize this elongation, but also allow

fields to adopt orientations oblique to the x- and y-axes fields were also assigned an xy covari-

ance. This was calculated as the average variance in x and y, multiplied by a value drawn from

a normal distribution (MATLAB normrnd) with a mean of 0, a standard deviation of 0.25 and

limited to values between –1 and 1. Field centroids were randomly distributed within the sim-

ulated environment.

For each place cell a spike probability map was modelled as the random combination of

these multivariate normal distributions, 512 of which were generated in total. The number of

fields expressed by each cell was drawn from a gamma distribution (MATLAB gamrnd) with

shape parameter 5.73 and a scale parameter 0.26, limited to values greater than 1. These fields

were then randomly selected from the pool of 512 and merged into one spike probability map.

Merging was done by taking the maximum value across the spike probability maps at each

location. In this way we simulated 256 place cells for each field radius group.
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Spiking

Each place cell was randomly assigned to one of the 8 random walk trajectories we described

above (Methods: Random walk). Next, to model spiking, the value of its spike probability map

(Methods: Place cells) was found for each position in this random walk. This value was then

converted to a spike count by drawing a value from the Poisson distribution (MATLAB

poissrnd) with λ set to the spike probability value. Additionally, to mimic realistic single-unit

recordings we combined this value with a random background noise value also drawn from

the Poisson distribution (MATLAB poissrnd) with λ set to 0.001. To mimic errors in position

tracking and the local drift of place cell activity within a theta cycle [78] we also randomly

time-shifted spike probability values, forwards or backwards along the animal’s trajectory, by a

duration which was drawn from a normal distribution (MATLAB normrnd) with a mean and

standard deviation of 0.01 and 0.02 seconds respectively.

Lastly, the spikes resulting from this procedure were downsampled to match each cell’s

desired mean firing rate. For each cell the desired average firing rate was drawn from a normal

distribution (MATLAB normrnd) with a mean of 1, a standard deviation of 1 and these were

limited to values greater than 0.5 but less than 10 Hz.

To simulate overdispersion [61,62] the above steps remained the same but we employed a

method similar to that reported by [62]. Before generating a spike train, the spike probability

vector was multiplied by a 1.5 Hz time-varying signal which varied between 0.2 and 1.8 (either

decreasing or increasing the likelihood of spikes occurring by 80%).

Histogram

Formally, where x0,y0 is the origin of the histogram and h is the side length of a square bin, the

ijth bin of the histogram is defined as the left-closed right-open interval:

Bij ¼ ½x0 þ ih; x0 þ ðiþ 1ÞhÞ&½y0 þ jh; y0 þ ðjþ 1ÞhÞ ð3Þ

if the number of spikes falling into Bij is denoted by Sij and the number of position samples as

Pij then a firing rate map would be defined as:

rðx; yÞ ¼
Sij
PijðfsÞ

for x; y 2 Bij ð4Þ

where fs is the sampling interval of the position data. For smoothing we implemented a Gauss-

ian smoothing kernel defined as:

gðx; yÞ ¼ e�
x2þy2

2s2 ð5Þ

where x and y denote the bin position relative to the one being smoothed and σ is the standard

deviation of the distribution. Throughout our analyses the kernel size was always set to:

kernel width ¼ 2dð2sÞe þ 1 ð6Þ

ensuring that the kernel was always an odd number of pixels and at least 4 standard deviations

in width. Maps were padded with zero values before smoothing to accommodate the smooth-

ing kernel and reduce edge effects. We chose zero-padding because it most closely represents

the actual data values collected without attempting to extrapolate spatial activity outside the

sampling range. However, other padding methods such as reflective or symmetric padding

may be preferred, especially when the out-of-field firing rate of a cell deviates significantly

from zero, and these can be implemented using the code provided alongside this paper. We

chose a Gaussian smoothing process as it should approximate the Gaussian shape of place
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fields well [79], it is increasing in popularity in experimental studies (Fig 11A) and it allows for

the most straightforward comparison with the other rate mapping methods described later.

We provide MATLAB code alongside this paper for generating histogram maps described in

the literature but with a number of time saving modifications (rate_mapper; ‘histogram’

method; Fig 2).

As a baseline we also tested histograms without any smoothing applied. Additionally, we

also tested the result of applying smoothing on the firing rate map, rather than the spike and

dwell maps. For this latter approach, a firing rate map was calculated using unsmoothed spike

and dwell maps, and then the Gaussian function described above was applied (S1 Fig).

Smoothing after the division of spike and time values is complicated by the inclusion of miss-

ing values–unvisited bins result in a division by zero and are typically considered unvisited

and filled with placeholder values such as NaN. Ordinarily, convolution of a kernel with a map

containing NaN values results in propagation of these values, resulting in a degraded map.

Thus, for smoothing after the division we made use of the MATLAB function nanconv [31]

which ignores NaN values during convolution. This variant of the histogram approach can

also be replicated using the supplied MATLAB code.

Averaged shifted histogram (ASH)

Formally, to compute the ASH, a grid of square bins is defined as for the bivariate histogram

with side length h. Each bin is then further subdivided intom smaller sub bins each having a

side length of δ = h/m. If the ijth sub bin is defined as:

Bij � ½id; ðiþ 1ÞdÞ&½jd; ðjþ 1ÞdÞ ð7Þ

and nij is the number of samples falling within this bin, then the bivariate ASH is defined as:

f̂ ðx; yÞ ¼
1

nh2

Xmx � 1

i¼1� mx

Xmy � 1

j¼1� my
wmxðiÞwmyðjÞvkþi;lþj ð8Þ

where w is the weighting function:

wðiÞ ¼
m � kði=mÞ

Pm� 1

j¼1� m kðj=mÞ
ð9Þ

in our case k is the quartic or biweight kernel, although other kernels can easily be employed

instead:

kðtÞ ¼
15

16
ð1 � t2Þ2 ð10Þ

In effect, a kernel is passed over every sub bin which calculates the weighted average of the

local sub bins within a region of side length h (the original bin size). As long as the kernel satis-

fies the conditions of symmetry, nonnegativity and its weights sum to 1 the resulting histogram

will still sum to the number of input samples [80]. A different smoothing kernel function k(t)
can also be applied [81] but we used the quartic or biweight kernel as it efficiently approximates

a Gaussian and is the kernel suggested by [38]. We padded maps with zero values before apply-

ing the kernel to reduce edge effects. We chose zero-padding because it most closely represents

the actual data values collected without attempting to extrapolate spatial activity outside the

sampling range. However, other padding methods such as reflective or symmetric padding may

be preferred, especially when the out-of-field firing rate of a cell deviates significantly from zero,

and these can be implemented using the code provided alongside this paper. We provide

MATLAB code alongside this paper for generating ASH maps (rate_mapper; ‘ash’ method).
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Adaptive smoothing

Formally, in this approach each bin is incrementally expanded outwards and at each increment

the number of position data and spikes contained within the circle are counted. This continues

until the following formula is satisfied:

r �
a

np
ffiffiffiffins
p ð11Þ

where r is the radius of the circle, α is a parameter which controls the smoothing extent of the

bins, np is the number of position data points falling within the circle and ns is the number of

spikes falling within the circle. Once a radius has been found which satisfies the adaptive equa-

tion the firing rate of the bin is calculated using the spikes and position samples within that

radius. After iterating across all bins, the result is a firing rate map with a regularly spaced grid

of values, based on differently sized regions of underlying data which may also be overlapping.

Note that the version reported by Skaggs et al. [43] took the form:

ns >
a

n2
pr2

ð12Þ

This is still often cited but requires orders of magnitude larger values for α (i.e., 1×1013 in

one study). Note that both methods will fail without intervention if ns is zero–some studies,

such as Yoganarasimha et al. [82] exclude cells with a low number of spikes.

The computational resources needed to generate adaptive rate maps can be far larger than a

bivariate histogram. For each bin the distance to all position and spike data points needs to be

known so that the number of points falling within a radius r can be calculated. For large data-

sets this distance calculation can be computationally expensive. Furthermore, the resolution at

which r is tested is unclear–by what amount should the bin expand with each iteration? We

provide MATLAB code alongside this paper for generating adaptive smoothed maps as

described in the literature but with a number of time saving modifications (rate_mapper;
‘adaptive’ method; Fig 3).

However, we used a convolution-based implementation of the adaptive smoothing method

which takes a fraction of the computation time with little to no change in the resulting firing

rate maps (rate_mapper; ‘kadaptive’ method; Figs 4 and S2). This implementation first bins

the position and spike data using the unsmoothed histogram method. The np and ns values of

the adaptive equation are then calculated by convolving the histogram with a circular kernel of

radius r, which sums the values of the bins within its radius. This process is then repeated for

kernels with varying values of r. We used 32 kernel radii varying from the width of a single his-

togram bin to 640 mm. The smallest kernel radius which satisfies the adaptive equation can

then be used to calculate the firing rate of the cell in that bin. To reduce edge effects, in our

implementation we pad maps with zero values before applying the kernel. We chose zero-pad-

ding because it most closely represents the actual data values collected without attempting to

extrapolate spatial activity outside the sampling range. However, other padding methods such

as reflective or symmetric padding may be preferred, especially when the out-of-field firing

rate of a cell deviates significantly from zero, and these can be implemented using the code

provided alongside this paper.

Adaptive binning

Adaptive binning, described by Yartsev and Ulanovsky [44] and Ginosar et al. [45], is very

similar to adaptive smoothing. As with adaptive smoothing, for each bin a circle is incremen-

tally expanded outwards, but in this case at each increment only the number of position data
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contained within the circle are counted. This continues until the bin contains equal to or more

than t seconds of data, where t in this case is a tunable smoothing parameter. Once a radius

has been found which satisfies this constraint, the firing rate of the bin is calculated as the ratio

of spikes and position samples within that radius. After iterating across all bins, the result is a

firing rate map with a regularly spaced grid of values, based on differently sized regions of

underlying data which may also be overlapping.

As before, we provide MATLAB code alongside this paper for generating adaptive binned

maps described in the literature but with a number of time saving modifications (rate_mapper;
‘yadaptive’ method). However, we used a convolution-based implementation of the adaptive

binning method which takes a fraction of the computation time with little to no change in the

resulting firing rate maps (rate_mapper; ‘kyadaptive’ method; similar procedure to Figs 4 and

S2). This implementation first bins the position and spike data using the unsmoothed histo-

gram method. The number of spikes and position data falling within each radius of a bin are

then calculated by convolving the histograms with a circular kernel of radius r, which sums

across the bins falling within it. This process is then repeated for kernels with varying values of

r—we used 32 kernels varying from the width of a single histogram bin to 640 mm in width.

The smallest kernel width which contains t seconds of data can then be used to calculate the

firing rate of the cell in that bin. To reduce edge effects, in our implementation we pad maps

with zero values before applying the kernel.

One disadvantage of adaptive smoothing and adaptive binning is that they do not natively

produce a spike or dwell time map. This can be an issue if researchers want to calculate spatial

measures such as spatial information content [43] which depends on comparing a rate and

dwell map. It can also be an issue if researchers need a dwell time map to quantify coverage or

biases in sampling position. It is likely in these cases that a separate set of dwell maps will need

to be produced based on another method, such as the bivariate histogram.

Kernel smoothed density estimate

Formally, in this approach the firing rate map is no longer made up of ‘bins’ but rather it is

estimated at a grid of equally spaced points overlaid on the data, but for simplicity we will refer

to these grid points as bins. For each bin the probability density of a dataset x is estimated as:

f̂ xð Þ ¼
1

nh

Xn

i¼1
K
x � yi
h

� �
ð13Þ

where yi are the bin centers, n is the total number of data points, h is a tunable smoothing

parameter (also known as the ‘bandwidth’, ‘window width’ or ‘smoothing parameter’ [40])

and K is the kernel density function which can be any symmetric function satisfying:

Z 1

� 1

KðxÞdx ¼ 1 ð14Þ

and is often a Gaussian kernel.

There is no implementation of the KSDE designed to deal with two separate but concomi-

tant data sets, instead Leutgeb et al. [50,51] used this approach to generate a firing rate map as

the ratio of a KSDE calculated on spike data (i.e. a spike map) and a KSDE calculated on posi-

tion data (i.e. a dwell time map) separately:

f̂ xð Þ ¼
Xn

i¼1
K
si � x
h

� �
=

Z T

0

K
yðtÞ � x
h

� �

dt ð15Þ

where, as before, K is a smoothing kernel, h is the smoothing parameter, n is the total number
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of spikes, si is the location of the i-th spike, y(t) is the location of the rat at time t, and [0 T) is the

entire recording period. Although the numerator calls for integrating across the position proba-

bility density, in practice this is also evaluated numerically (e.g. through the trapezoidal method

as a sum). Unconstrained, this approach will produce a firing rate map with no empty bins, as

both probability densities may approach but will never equal zero. In practice, bins that are

more than a set distance away from any position data (i.e., 50 mm) are typically set as empty.

The computational resources needed to generate KSDEs can be quite large. For each bin

the distance to all position and spike data points needs to be known and then Gaussian

weighted. For large datasets this calculation can be computationally expensive. We provide

MATLAB code alongside this paper for generating KSDE maps using the Leutgeb et al. [50,51]

approach and a native (MATLAB functionmvksdensity) approach, with a number of time sav-

ing modifications (rate_mapper; ‘leutgeb’, ‘leutgeb_pixelwise’ and ‘ksde’ methods respectively;

Fig 5). Themvksdensity implementations both utilize the ‘reflection’ boundary correction

method to reduce edge effects. We employ a Gaussian smoothing kernel as this is the form

described by [50,51].

Although not investigated here, a similar approach is described by Harris et al. [83] which

can be formalized as:

f xð Þ ¼
Pn

i¼1
ntKðxi � xÞPn

i¼1
Kðxi � xÞdt

ð16Þ

Here, K is a weighting kernel, n is the total number of time bins, xi is the location of the i-th

time bin, dt is the time bin duration, and nt is the number of spikes in the i-th time bin. Harris

et al. [83] did not provide a value for dt, but a value equal to the sampling interval of the data

will closely resemble the Leutgeb et al. [50,51] approach (Diamantaki et al. [84] use this

configuration).

Temporal KSDE

Brun et al. [56], Fyhn et al. [6] and Leutgeb et al. [57] describe a spatial mapping procedure

which uses a KSDE approach but which averages the instantaneous firing rate of the cell in

time, rather than treating all of the data within a bin as a homogenous temporal sample. For-

mally this approach can be described as:

f̂ ðxÞ ¼
Xn

i¼1
Kðxi � xÞfi ð17Þ

Here, K is a weighting kernel, n is the total number of time bins, xi is the location of the i-th

time bin, and fi is the firing rate of the cell in the i-th time bin. To maintain the highest degree

of accuracy we can choose dt, the sampling interval of the position data (i.e., 0.02s if sampled

at 50Hz) as our time bin duration. We can then construct a spike train by calculating the num-

ber of spikes associated with every position data sample. The firing rate vector fi can then be

calculated by convolving the spike train with a Blackman window of length w×s where w is the

desired duration of the window in seconds and s is the sampling rate of the spike train. If this

window has unit gain at zero frequency the resulting smoothed vector will sum to ns, the total

number of spikes, and dividing by dt will give the instantaneous firing rate of the cell. Brun

et al. [56], Fyhn et al. [6] and Leutgeb et al. [57] used a window duration of 2s, but through test-

ing we found that using shorter duration windows increased the accuracy of the resulting

maps (S4 Fig). We therefore used a window duration of 0.125 s (7 position data samples) as we

wanted to maintain some temporal smoothing and accuracy was not greatly improved by

using shorter windows.
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Fyhn et al. [6] defined K as a second Blackman kernel, but for simplicity we replaced this

with a Gaussian. In simple terms, this approach calculates the instantaneous firing rate of the

cell throughout the session, spatial firing rate is then estimated at a desired location by Gauss-

ian weighting these values according to their proximity to the bin. Because this approach is

based on the individual passes through a bin, rather than treating all samples within the bin as

a single group, it is likely more sensitive to the temporal consistency of spatial firing.

Map accuracy

For each rate map parameter combination we compared the resulting rate map r(x,y) to the

underlying PDF of the cell f(x,y) using mean integrated squared error (MISE):

MISE ¼ E
Z xt

x0

Z yt

y0

ðrðx; yÞ � f ðx; yÞÞ2dxdy ð18Þ

where x0 and xt were the first and last bin edge in the x dimension and y0 and yt were the same

in the y dimension, r(x,y) and f(x,y) were both normalized to unity and E represents the

numerical average. Firing rate maps often contain missing data (i.e. unvisited) bins, which

makes true integration over the maps impossible, so the integration was approximated by the

Riemann sum over bin centers. For this reason f(x,y) was evaluated at a precision of 1mm and

r(x,y) was interpolated to 1mm precision using nearest neighbor interpolation (MATLAB

interp2), dx and dy were set to 1. Alternative error measures are explored in S5 Fig.

Parameter optimization

The parameters we wanted to minimize were often in conflict, for example, it is generally not pos-

sible to reduce MISE without also increasing computation time. To tackle this issue, we used mul-

tiobjective optimization to find solutions which were Pareto-optimal, that is to say, solutions

which cannot be improved without diminishing at least one of the objective functions [85].

To achieve this, we used an elitist genetic algorithm (MATLAB gamultiobj) which was

given the MISE, computation time, proportion of missing data and place field detection error

rate for every firing rate map parameter combination. The algorithm was restricted to between

the smallest and largest bin size and smoothing values tested. The proportion of missing data

was calculated as the number of empty bins (equal to NaN, not counting bins equal to zero)

divided by the total number of bins. The place field detection error rate was calculated as the

difference between the number of place fields detected in the firing rate map and the number

detected in the actual spike probability map (sampled at 1 mm resolution). Place fields were

detected as contiguous regions greater than 36 cm2 remaining after thresholding the map at

20% of its maximum value.

Pareto-optimal parameters

Multiple Pareto-optimal solutions can be found for a given data set. To choose among the

returned solutions, we min-max normalized the Pareto-front solutions and then calculated their

Euclidean distance, in terms of MISE and computation time, from the ‘Utopia point’ which was

set to the minimum MISE and computation time found in the Pareto-front. In this way, our

Pareto-optimal solution represents the best trade-off between error and computation time.

Estimating field size

The equations we provide for estimating the ideal mapping parameters depend on a recording

duration and firing field size. One method to estimate firing field size without a firing rate map
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involves the Ripley’s K-function [59,60] (S6A Fig). Formally, Ripley’s K-function [59] repre-

sents the expected number of points N within a distance r of another point normalized by their

density, λ:

K rð Þ ¼
1

n

Xn

i¼1
Npi
ðrÞ=l ð19Þ

where pi is the current point, and the sum is taken over n points. For comparison, the value of

K(r) for a random Poisson distribution is always equal to πr2, thus deviations above or below

this expected value indicate clustering and dispersion respectively. Besag [86] proposed a nor-

malization for the K-function so that the expected value is always r:

LðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKðrÞ=p

p
ð20Þ

Subtracting r from this value gives a function where deviations are above or below zero:

HðrÞ ¼ LðrÞ � r ð21Þ

We then estimated firing field size as the radius associated with the maximum value ofH(r)
multiplied by 0.75 (S6b Fig). Kiskowski [60] previously found that the maximum value ofH(r)
approaches twice the clustering radius of simulated distributions, however, this is dependent

on the spacing between clusters and because the distance between place fields is not restricted

to 4× the field radius, as it was in Kiskowski [60], we found a smaller value to be more accu-

rate.

Bin size rules-of-thumb

We tested bin size rules-of-thumb and compared them to our quantitatively derived values.

Sturge’s rule [12] estimates the number of required histogram bins as equal to:

nbins ¼ dlog2N þ 1e ð22Þ

where N is the total number of data points. We applied this rule to the total number of position

data samples and utilized nbins in both the x- and y-axis.

For a one-dimensional histogram the Freedman-Diaconis [14] rule calculates the number

of bins along the x-axis as equal to:

nbins ¼ 2IQRðxÞN � 1=3 ð23Þ

Where x are the data values, IQR is the interquartile range, as before N is the total number of

data points. To extend this into two dimensions we used two approaches, in the first we esti-

mated the number of bins in the x- and y-axis as equal to

nbinsd ¼ dðmaxðxÞ � minðxÞÞ=nbinse ð24Þ

where x are the data values along dimension d. We applied this to the x- and y-dimensions of

the position data separately and took the maximum value. In the second approach we normal-

ized the two-dimensional position data using the L2 norm:

kvk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð25Þ

Where x and y are the position data values in the x- and y-dimensions respectively and ||v|| are

the normalized, one-dimensional values. We then applied the Freedman-Diaconis [14] rule to

these normalized values and created nbins in both the x- and y-axis.
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Literature survey

To compare our results to the parameter combinations used in the published literature, we

surveyed spatial navigation papers using Google Scholar and the PubMed database using

related keywords such as ‘place cell’, ‘grid cell’, ‘hippocampus’ and ‘rate map’. Relevant articles

were scanned for information regarding their rate map approach and settings. Articles were

excluded if the approach or bin size were not clearly specified. If a Gaussian smoothing kernel

was used but the standard deviation was not specified (9 articles) a standard deviation equal to

1 bin was assumed. If boxcar smoothing was used but the kernel size was not specified (1 arti-

cle) a kernel size of 3×3 was assumed. This information was categorized and accumulated, and

all values were converted to mm. Surveying was halted when the total number of bivariate his-

togram entries (the most widely adopted approach) exceeded 100.

Code availability

Code to generate firing rate maps using any of the methods described in this manuscript is

available in the GitHub repository at https://github.com/RoddyMGrieves/rate_mapper.

Supporting information

S1 Fig. Histogram rate map errors when smoothing before or after division. A) Example

firing rate maps where smoothing was applied to the spike and dwell maps before division. B)

Same as a but these maps were created by smoothing the rate map after division. Note the

greater number of empty bins. C) MISE maps for the approaches in a and b respectively,

shown as in Fig 7. d) Smoothing before division error map minus the smoothing after error

map. Smoothing before division is less accurate at small bin sizes, the two approaches are com-

parable otherwise.

(TIF)

S2 Fig. Adaptive implementations compared. Four example cells, one per row. Columns

show each cell’s spike probability map, simulated spikes and trajectory, firing rate map gener-

ated using the pixelwise adaptive smoothing approach described by Skaggs and McNaughton

[42], a convolution implementation of this, the pixelwise adaptive binning approach described

by Yartsev and Ulanovsky [44], and a convolution implementation of this. Bar graphs show

the average time taken to generate the maps in each column.

(TIF)

S3 Fig. KSDE approaches compared. Four example cells, one per row. Columns show each

cell’s spike probability map, simulated spikes and trajectory, and three firing rate maps gener-

ated using a MATLAB implementation of the kernel described by Leutgeb et al. [50,51], a pix-

elwise implementation of this (i.e. as described in the literature) and an implementation using

the built-in MATLABmvksdensity function and its kernel respectively. Bar graphs show the

average time taken to generate the maps in each column. Because the last implementation was

the fastest and did not visibly differ from the others, we used that approach.

(TIF)

S4 Fig. Choosing a window duration for temporal KSDE. A) Three example cells, one per

row. Columns show firing rate maps generated using the temporal KSDE approach (bin

size = 20 mm, spatial smoothing = 30 mm) with increasing temporal smoothing window dura-

tions. B) MISE maps for increasing temporal smoothing window durations. Bottom right text

gives the minimum MISE value in each map. The color axis used here does not show the full
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range of data values but was chosen to visually isolate any low error region(s).

(TIF)

S5 Fig. Alternative map error measures were generally consistent with MISE. A) Error

plots for 64 cells simulated in 8-minute sessions for each mapping method (rows) and for mul-

tiple error measures (columns), from left to right: mean integrated squared error (MISE), pair-

wise Pearson correlation, Euclidean distance and Mutual Information (Matlab functionmi, J.

Delpiano). There is little difference between the measures. Note that plots are shown using a

consistent color axis which may not span the full range of data values for every method. B)

Top: the balanced mapping solution bin size for each mapping approach and error measure,

normalized relative to MISE. Text above gives the result of a one-sample t-test comparing each

group to zero (* = p< .05, n.s. = not significant). Plots below show the same but for the bal-

anced solution smoothing strength, minimum solution bin size and minimum solution

smoothing strength. For visualization, a small amount of jitter was added to the x-axis values

in these plots.

(TIF)

S6 Fig. Estimating field size without a rate map. A) Left: The spikes and trajectory of an

example simulated place cell. Overlaid are test radii of increasing size. Middle: for each radius,

the total number of spikes that fall within its area (blue line) and the number of spikes we

would expect if they were distributed uniformly across the animal’s trajectory (black line).

Right: the number of spikes minus the expected number and the maximum of this function.

The maximum is related to the spatial clustering or place field size of the place cell. Ripley’s K

function is related to this example, but it is repeated across many different locations in the

environment and the results are averaged. B) Left: the result of applying the Ripley’s K proce-

dure to all our simulated place cells, colors denote the three firing field size groups (Fig 1).

Black line shows a linear fit to the data (Spearman’s correlation between estimated and real

field size: r = 0.71, p = 3.6 × 10−118). Gaussian jitter (mean = 0, σ = 8) was added to the y-values

to make visualization of overlapping data clearer. Right: kernel smoothed probability density

estimate of the data (no jitter; Matlab ksdensity with 25 mm bandwidth).

(TIF)

S7 Fig. Overdispersion has little effect on the balanced or minimum error mapping solu-

tions. A) Two example cells, one per column. The left cell’s spiking activity does not include

overdispersion, the bottom plot shows the variability in the cell’s firing during passes through

the place field (black bars; text above gives the standard deviation of this distribution) which

matches closely the expected distribution if the cell was modulated by space alone (red line).

The right cell’s spiking does include overdispersion. B) The MISE error plots for 64 cells simu-

lated in 4-minute sessions without overdispersion (left column) and with overdispersion (right

column) for each mapping method (rows). There is very little difference between the columns.

Note that plots are shown using a consistent color axis which may not span the full range of

data values for every method. C) Left: balanced and minimum error solution bin sizes did not

change when overdispersion was included. Right: balanced and minimum error solution

smoothing strength tended to be significantly higher when overdispersion was present. Text

above gives the result of a one-sample t-test comparing each group to zero (* = p< .05, n.s. =

not significant). D) The MISE (left plot) and error in detecting place fields (right) did not differ

when overdispersion was present if using the balanced solution. For visualization, a small

amount of jitter was added to the place field plot’s x-axis values.

(TIF)
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S8 Fig. Sampling bias has no effect on the balanced or minimum error mapping solutions.

A) Three example trajectories, 8-minutes long, one per column, from left to right: uniform

sampling of the environment, a strong bias to one location such as a goal and a bias for moving

close to the walls. Plots below show the dwell time map for each trajectory. B) The MISE error

plots for 64 cells simulated in 8-minute sessions, for each of the trajectory types (columns) and

for each mapping method (rows). There is very little difference between the columns. Note

that plots are shown using a consistent color axis which may not span the full range of data val-

ues for every method. C) Left: balanced and minimum error solution bin sizes did not change

when trajectories were biased. Values are normalized relative to the ‘uniform’ trajectory

results. Text above gives the result of a one-sample t-test comparing each group to zero (* = p

< .05, n.s. = not significant). Right: same for smoothing strength. D) The MISE (left plot) and

error in detecting place fields (right) when using the balanced solution for each trajectory type.

MISE increased for the ‘goal’ trajectory, which can also be seen in the middle column of panel

b, which is darker than the others. For visualization, a small amount of jitter was added to the

place field plot’s x-axis values.

(TIF)

S9 Fig. Mapping parameters applied to real place cells. Top row shows the spike (red dots)

and position data (black line) for 5 place cells from the dataset of [20] available online. Below

each of these, firing rate maps are shown that were generated using the balanced solution

parameter equations shown in Table 1 (left column of each cell) and maps generated using the

minimum error solution parameter equations shown in Table 1 (right column of each cell). In

both cases parameters were calculated assuming an average field radius of 300 mm and a

recording duration of 25 mins. One mapping method is shown per row.

(TIF)

S10 Fig. Mapping parameters in the literature result in very different rate maps. Related to

Fig 11B. Rows show the results for the Histogram, Adaptive smoothing and KSDE mapping

methods respectively. Left column: MISE map overlaid with the minimum error, balanced and

literature reported parameter combinations as in Fig 11B. Gaussian jitter (mean = 0, σ = 2)

was added to the literature values to make visualization of overlapping data clearer. For each

mapping method 3–5 literature values have been selected and numbered at points of interest.

Middle column: the MISE associated with the minimum error and balanced parameter combi-

nations and the numbered points in the MISE map for all 256 simulated place cells. In each

plot groups differed significantly (Histogram: F(6,1785) = 167.9, p = 1.93×10−169; Adaptive: F
(5,1530) = 73.6, p = 3.36×10−69; KSDE: F(4,1275) = 74.5, p = 8.06×10−57; one-way ANOVA)

and horizontal lines denote a significant (p< .05) post-hoc comparison. MISE values vary

greatly across the different literature values and the numbered points are generally less accu-

rate than the balanced solution. Right column: firing rate maps generated for an example place

cell using the minimum error and balanced parameter combinations and the numbered points

in the MISE map. While some parameter combinations produce maps similar to the minimum

error or balanced solution, they often deviate significantly.

(TIF)

S11 Fig. Mapping parameters in the literature are generally accurate for place field detec-

tion. Related to Figs 11B and S10. Rows show the results for the Histogram, Adaptive smooth-

ing and KSDE mapping methods respectively. Left column: place field detection error map

overlaid with the minimum error, balanced and literature reported parameter combinations as

in Fig 11B. Gaussian jitter (mean = 0, σ = 2) was added to the literature values to make visuali-

zation of overlapping data clearer. For each mapping method 3–5 literature values have been
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selected and numbered at points of interest. Right columns: the field detection error, computa-

tion time and proportion of empty bins respectively associated with the minimum error and

balanced parameter combinations and the numbered points for all 256 simulated place cells.

Horizontal lines denote a significant (p< .05) post-hoc comparison following a significant

Kruskal-Wallis omnibus test.

(TIF)

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

and statistical analysis for Fig panels 9A-9F, 10A-10D, 11A–11B, S5B, S6B, S7C–S7D,

S8C–S8D, S10 and S11.

(XLSX)
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