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Abstract

Slow brain rhythms, for example during slow-wave sleep or pathological conditions like sei-

zures and spreading depolarization, can be accompanied by oscillations in extracellular

potassium concentration. Such slow brain rhythms typically have a lower frequency than

tonic action-potential firing. They are assumed to arise from network-level mechanisms,

involving synaptic interactions and delays, or from intrinsically bursting neurons. Neuronal

burst generation is commonly attributed to ion channels with slow kinetics. Here, we explore

an alternative mechanism generically available to all neurons with class I excitability. It is

based on the interplay of fast-spiking voltage dynamics with a one-dimensional slow dynam-

ics of the extracellular potassium concentration, mediated by the activity of the Na+/K+-

ATPase. We use bifurcation analysis of the complete system as well as the slow-fast

method to reveal that this coupling suffices to generate a hysteresis loop organized around

a bistable region that emerges from a saddle-node loop bifurcation–a common feature of

class I excitable neurons. Depending on the strength of the Na+/K+-ATPase, bursts are gen-

erated from pump-induced shearing the bifurcation structure, spiking is tonic, or cells are

silenced via depolarization block. We suggest that transitions between these dynamics can

result from disturbances in extracellular potassium regulation, such as glial malfunction or

hypoxia affecting the Na+/K+-ATPase activity. The identified minimal mechanistic model out-

lining the sodium-potassium pump’s generic contribution to burst dynamics can, therefore,

contribute to a better mechanistic understanding of pathologies such as epilepsy syndromes

and, potentially, inform therapeutic strategies.

Author summary

The brain can produce slow rhythms, such as those observed during sleep or epilepsy.

These rhythms are much slower than the neuronal electrical signals, and their origins are

still under debate. Mechanisms discussed so far are often based on the connection delays

in neural networks or on neuronal ion channels with particularly slow kinetics. We show

that neurons with specific spiking dynamics–allowing them to fire at arbitrarily low
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frequencies (so-called class I neurons) can produce slow rhythmic patterns without

requiring synaptic connectivity or special ion channels. In these cells, slow rhythmic activ-

ity arises from the interplay of slow changes in extracellular potassium concentration and

the cell’s voltage dynamics, mediated by the Na+/K+-ATPase pump. The latter, found in

all neurons, regulates the concentrations of sodium and potassium ions across the cell

membrane. The core mechanism is not idiosyncratic, rather mathematical analysis shows

under which conditions slow rhythmic activity can arise generically from the pump-based

coupling in a broad class of neurons. We demonstrate that the pump is relevant for the

creation of different firing patterns, some of which have been associated with pathologies

of the brain. A better mechanistic understanding of these complex, concentration-depen-

dent dynamics can therefore be relevant for therapeutic approaches.

Introduction

Rhythms on diverse timescales are a hallmark of our brain’s activity. Such oscillatory activity is

associated with physiological states, ranging from normal breathing to the consolidation of

memories, or pathological situations such as epileptic seizures and spreading depolarization

(SD) [1–5]. Some rhythms are orders of magnitude slower than single-neuron spiking. For

these, different mechanistic origins of their slow dynamics have been proposed. First, a neu-

ron’s embedding in the network can produce bursts via reverberating activity, with synaptic

delays serving as an important parameter that determines the period of the resulting oscilla-

tions [6]. Second, one or more cells with intrinsically bursting dynamics can act as pacemakers

[7] and entrain larger networks. Combinations of both of the above mechanisms, network

effects and intrinsic bursting, have also been reported [8]. Along these lines, brain regions that

exhibit large-scale oscillatory behaviour often contain significant numbers of single-neuron

bursters [9–11], fostering network entrainment via pacemaker neurons [2]. Theoretical and

experimental research suggests that the neuron’s ability to generate bursts of activity intrinsi-

cally arises from the expression of specific ion channels, such as hyperpolarization-activated

inward transient potassium channels or calcium-dependent channels [2,12–14]. The kinetics

of these channels form the basis of the slow dynamics.

Ion channels with dedicated slow kinetics, however, are not the only single-cell mechanism

that can generate rhythms on long timescales. Specifically, an interplay between concentration

dynamics and membrane dynamics has been shown to give rise to slow oscillations [15–17].

Here, we explore in detail how the combination of slower, pump-dependent extracellular

potassium concentration dynamics with the faster spike generating dynamics can generate

slow oscillations. We analyse the bifurcation structure in a minimalistic model, focussing on

the role of the Na+/K+-ATPase. The minimalistic burst mechanism is based on a hysteresis

loop arising from the feedback of the fast spiking dynamics to the slower concentration-domi-

nated dynamics; the bistability arises in the fast subsystem [9,18,19]. We argue that via this

mechanism, in principle, any class I nerve cell can be switched into an intrinsic burster even in

the absence of channels with slow dynamics. For the proposed mechanism two facts are com-

bined: (1) All neuron models that can produce arbitrarily slow firing rates (class I excitable

neurons [20,21]) share the necessary fundamental bifurcation structure [19,22] and can be

tuned into a bistable regime (where a stable fixed point and a limit-cycle co-exist) [23–25].

Alternating between the two stable states in the bistable regime is the basis of the deterministic

bursting mechanism. (2) The electrogenic and concentration-dependent Na+/K+-pump can

transform the fundamental bifurcation structure such that a hysteresis loop in a concentration
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dimension can form under physiological conditions. The slow rhythm produced by this mech-

anism is expressed both at the level of neuronal spiking and ionic concentrations. It does

require neither ion channels with slow dynamics nor rhythmic input via the neuronal

network.

In the following, we first introduce a model exemplifying the proposed generic mechanism

of slow deterministic bursting. Next, the mechanism is analysed by dissecting the slow and fast

dynamics (here also termed the slow-fast method) [26]. Based on numerical continuation, the

bifurcations in the fast subsystem are identified and the existence of a slow hysteresis loop

mechanism is demonstrated. Finally, the conditions for which the model can be tuned into the

slow bursting regime or other dynamics such as depolarization block and tonic spiking are dis-

cussed by analysis of the bifurcations in the complete system. Taken together, this study high-

lights the ubiquitous nature of the mechanism by which extracellular potassium dynamics and

Na+/K+-ATPase can induce slow rhythms in single neurons and beyond.

Results

Modelling neurons in an extracellular environment

In order to study the emergence of slow rhythmic activity via the interactions of fast spiking

and slow concentration dynamics (i.e., fast and slow subsystems, respectively. see next sec-

tions), a neuron model equipped with only basic fast spike-generating ion channels is placed

in an external environment of fixed volume that contains extracellular potassium ions, whose

concentration, [K+]out, can change (Fig 1). The interplay between concentration dynamics and

neuronal voltage dynamics is modulated by the Na+/K+-ATPase in two-fold manner: First, the

pump current directly affects the voltage dynamics. Second, the pump changes concentration

gradients which, in turn, alter ionic reversal potentials. It will be shown in the subsequent sec-

tion that this parsimonious setup suffices to create slow rhythms.

The neuron model, inspired by the Wang-Buzsáki model, comprises four currents: The

depolarising Na+-current and repolarising K+-current are part of the spike-generating mecha-

nism. A leak current balances the membrane potential in the rest state. For completing our

model, we add a fourth current as a hyperpolarising pump current (Ip). This pump extrudes

three Na+ ions out of the cell while two K+ ions are pumped in. The pump maintains the ionic

gradient of the cell, which drives spiking activity. The activity of the pump is regulated by the

extracellular potassium concentration, with higher [K+]out resulting in increased pump strain

(Eq 7). However, the pump’s activity is limited by its maximum current capacity (Imax), which

is influenced by both the electrophysiology characteristic of the pump and its density on the

neuron’s membrane. For the mathematical details, see Methods.

With each action potential, K+ ions flow out of the cell through the voltage-dependent K+

channels and accumulate in the extracellular space. The elevated extracellular potassium con-

centration ([K+]out), in turn, not only affects the pump current but also influences the neuron’s

excitability state via its effect on the reversal potential. Therefore, the dynamics undergoes a

sequence of transitions, which form the basis for the rhythmic bursting behaviour and are

explained and analysed in more detail in the following sections.

Pump- and extracellular potassium-mediated slow bursting

In this section, we first provide a brief illustrative description of the generic burst mechanism,

leaving a detailed analysis of the conditions for its existence to the following sections.

An example trace of voltage and potassium concentration, respectively, for the slow burst-

ing dynamics in a dedicated extracellular volume is depicted in Fig 2A. Each burst cycle con-

tains two alternating states: quiescence and spiking. The rhythmicity of the voltage shows an
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inter-burst period of about one second. This period is about 30 times longer than the dynamics

of one complete action potential in the spiking phase. The number of spikes per burst is fixed

(i.e., bursting is deterministic).

The basic cycle undergone during a burst is summarised in Fig 2B. The burst relies on the

bistable nature of the neuron’s dynamics between spiking and quiescence. During the spiking

period, the outward flow of potassium ions is considerable. The inter-spike interval does not

provide sufficient time for the Na+/K+-ATPase to pump back all K+ ions that left the cell dur-

ing the spike. Consequently, K+ ions accumulate in the extracellular space, resulting in a saw-

tooth-like build-up of [K+]out (Fig 2B, spiking phase). Furthermore, during the spiking phase

of each burst, the inter-spike interval progressively prolongs as a result of K+ accumulation in

the extracellular space. Eventually, the rise of [K+]out reaches a level where spiking is not possi-

ble anymore (the quiescent phase). Spiking is terminated by a homoclinic bifurcation (HOM)

in the fast subsystem, indicated by the blue circle in Fig 2B. In the quiescent phase, the pump

activity now suffices to reduce extracellular potassium, as the outward current via the potas-

sium channels is significantly reduced in the absence of spike generation. Ultimately, the

Fig 1. Schematic drawing of the neuron model in the extracellular environment. The concentration of extracellular

potassium changes with the activity of voltage-gated potassium channels (red) and the Na+/K+-ATPase pump (green).

The model equations governing the spike-generating inward sodium (blue) and outward potassium (red) currents

correspond to those in the original Wang-Buzsáki model, retaining their fast dynamics. A slower timescale arises from

the dynamics of the extracellular potassium concentration.

https://doi.org/10.1371/journal.pcbi.1011751.g001
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decrease of [K+]out, during quiescence results in another bifurcation of neuronal dynamics,

corresponding to saddle-node bifurcation (SN) of the fast subsystem, see red square in Fig 2B.

In passing this bifurcation, neuronal dynamics are back in the spiking region and the cycle

starts all over again.

In Fig 2C, the amplitude of potassium concentration change is plotted as a function of the

pump current density for different applied currents. At lower input currents, a decrease in

pump density causes the potassium oscillation amplitude to grow. At high input currents,

there is an additional jump-like increase in potassium oscillation amplitude that is caused by

the chaotic dynamics of period doubling in the complete system bifurcation which is discussed

in more detail below.

In summary, the spiking dynamics of the neuron impacts [K+]out, the latter of which, in turn,

influences the K+ reversal potential and hence the neuron’s voltage dynamics. In the next sections,

it will be shown that the identified mechanism is, indeed, a hysteresis loop where one branch of the

bistable system corresponds to the spiking state and the other branches constitutes the quiescent

state. The properties of the hysteresis loop are then further analysed in the slow-fast analysis sec-

tion. The remainder of the article focuses on establishing how generic this mechanism is.

Slow-fast analysis

Neuronal bursting consists of an oscillation governed by two time scales: one corresponding to

the fast spiking dynamics and one corresponding to the slower dynamics related to

Fig 2. Bursting dynamics overview. (A) Each bursting cycle consists of two phases: a spiking phase and a quiescent phase, visible in the voltage trace.

The concentration waxes with each spike and wanes during the quiescent phase. (Iapp = 0.5 μA/cm2, Imax = 1 μA/cm2). (B) The spiking phase

commences at a saddle-node (SN) bifurcation of the fast subsystem (red square). During the spiking phase, the average outward potassium flux

through potassium channels surpasses the average inward potassium flux through the Na+/K+-ATPase leading to an accumulation of extracellular

potassium. This phase terminates at a homoclinic (HOM) bifurcation of the fast subsystem (blue circle). From this bifurcation, the quiescent phase

initiates, accompanied by a continuous decrease in extracellular potassium concentration due to the Na+/K+-ATPase current superseding the

potassium current through the voltage-gated channels. This eventually results in a new spiking phase. (C) Minimal and maximal values of [K+]out

during an oscillation as a function of pump capacity (Imax) for different Iapp. For each curve from right to left (decrease in pump capacity Imax): onset of

bursting (inter-spike interval transitions from unimodal to bimodal), widening of the range of [K+]out covered by the oscillations, finally burst

termination (via depolarization block for Iapp = 0.3 and 0.5 μA/cm2, or initially double period and tonic spiking before entering depolarization block

for Iapp = 0.7 and 0.9 μA/cm2).

https://doi.org/10.1371/journal.pcbi.1011751.g002
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concentration changes. Typically, these two different time scales result from either the pres-

ence of fast and slow currents [26], stochastic escape [27], external drive, synaptic delays [6],

or as here, the slow variation of ions. All these cases benefit from a slow-fast analysis [26].

In the mechanism for the generation of slow rhythms proposed here, the fast subsystem is

governed by the millisecond kinetics of the ion channels that shape the neuron’s action poten-

tials. In contrast, the slow subsystem is governed by the timescale of slow changes in [K+]out.

The bursting rhythmicity of the system is thus regulated by an interplay between these two

subsystems, which crucially depends on the activity of the Na+/K+-ATPase.

In slow-fast analysis, it is assumed that the timescale difference between the two subsystems

is sufficiently large for them to be investigated separately. We will first subject the fast subsys-

tem to bifurcation analysis while assuming that the slow subsystem undergoes only negligible

variations on the timescales of the fast subsystem. Hence, [K+]out can be treated as constant

and the bifurcation parameter in this scenario. Subsequently, we will explore the dynamics of

the slow subsystem assuming time-averaged values of the fast subsystem dynamics. More

details on the method are to be found in the Methods section.

[K+]out is a variable of interest featured in all figures related to slow-fast analysis. For consis-

tency, it is depicted on the y-axis in all the figures addressing the dynamics of the system. To

facilitate the comparison with other studies, the more conventional representation of the fast

bifurcation diagram and slow dynamics (presenting bifurcation parameters on the x-axis) is

given in S1 Fig.

Fast subsystem bifurcation analysis

For analysis of the fast, spike-generating subsystem, extracellular potassium concentration is

approximated as a constant parameter. The bifurcation diagram in Fig 3 summarises the tran-

sitions in dynamics induced by changes in [K+]out.

Fig 3A shows a two-parameter bifurcation diagram of the fast subsystem spanned by the

parameters extracellular potassium ([K+]out) and applied current (Iapp) in the vicinity of the

region used for the simulated traces in Fig 2A. Overlaid on the bifurcation diagram of Fig 3A

are the dynamic changes of the complete system during a burst cycle with the parameters of

Fig 2A shown as the black vertical line. If [K+]out is low, the only stable state for the fast subsys-

tem is a stable limit cycle (the dark grey area in both panels of Fig 3). In this region, the neuron

spikes tonically. If [K+]out is increased, the dynamics of the fast subsystem traverse the saddle-

node (SN) bifurcation (the red line in Fig 3A). From the SN bifurcation, a saddle and a stable

node emerge. When [K+]out exceeds the SN bifurcation value, the neuron enters the bistable

region (the white region in both panels of Fig 3). In the bistable region, the fast subsystem of

the neuron model has two stable states, a stable limit cycle and a stable fixed point, separated

by a separatrix originating from the stable manifold of the saddle. By raising [K+]out even

more, the blue line of a homoclinic orbit bifurcation (HOM) is crossed, at which the limit

cycle of the action potential collides with the saddle and is annihilated. If [K+]out passes this

line, the fast system dynamics end up in the monostable zone, because at the HOM bifurcation,

the stable limit cycle disappears. Hence, in the light grey part of Fig 3A, the neuron is in a qui-

escent state.

To better understand the bursting dynamics, the voltage trajectory of one burst cycle in the

complete system (black solid line) is superimposed on the codimension-one ([K+]out) bifurca-

tion diagram of the corresponding fast subsystem (coloured lines) in Fig 3B. The black trajec-

tory depicts the burst dynamics presented in Fig 2A, however, instead of time the

corresponding levels of [K+]out are shown. The resulting phase portrait encompasses the com-

plete system dynamics of the burst: In the dark grey region of Fig 3B the fast subsystem is in
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Fig 3. Bifurcations of the fast subsystem and bursting dynamics. The bistability of the fast subsystem is a

requirement for the emergence of bursting dynamics in our system. (A) Two-parameter (extracellular potassium,

[K+]out, and applied current, Iapp) bifurcation diagram of the fast subsystem. The black vertical line indicates the range

of [K+]out values that the complete system traverses during the burst cycle shown in Fig 2A. The burst trajectory passes

through the bistable region, bounded by the homoclinic (HOM) bifurcation at higher [K+]out and the saddle-node

(SN) bifurcation at lower [K+]out. During the spiking phase of the burst, [K+]out builds up, whereas it depletes during

the resting part. The black line extends into the tonic spiking domain of the fast subsystem due to the time spent near

the ghost of the SN bifurcation. (B) Phase portrait of the complete burst (in voltage and [K+]out) onto the one

parameter ([K+]out) bifurcation diagram of the fast subsystem. The black solid line demonstrates the same bursting

dynamics as in Fig 2A.

https://doi.org/10.1371/journal.pcbi.1011751.g003
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the tonic spiking mode. Here, the complete system (black trace) is going through a spiral path.

Each rotation corresponds to one action potential. With each action potential, more K+ accu-

mulates in the extracellular space (see also Fig 2). By increasing [K+]out, the system enters the

fast subsystem’s bistable region (white area) and continues on the spiking branch. Note that if

the neuron model was subjected to strong perturbations, jumps between the two attractors, a

stable fixed point and a stable limit cycle, would occur. The effective increase in [K+]out per

spike diminishes as spiking progresses because the pump becomes more and more active due

to the increase of extracellular potassium (Eq 7). Furthermore, the inter-spike interval

increases because of the changes in the spiking dynamics caused by changes in the potassium

reversal potential due to the accumulation of extracellular potassium.

Spiking continues until, eventually, [K+]out reaches the HOM bifurcation (blue circle) and

the stable limit cycle of the fast subsystem is annihilated. Here, the system enters the quiescent

phase of the fast subsystem (light grey zone). In this phase, the only stable state is the rest state.

Hence, the system trajectory leaves the spiking spiral and converges to the stable fixed point

(orange line). In the rest state, [K+]out is efficiently pumped back into the cell by the Na+/K+-

ATPase (see also Fig 2). The pump activity increases the resting state voltage until an SN bifur-

cation is reached (red square). The saddle and the stable node collide and annihilate at this

point. Thereby, the resting state loses stability and the system converges back onto the tonic

spiking dynamics (dark grey), where the next burst cycle is initiated; for a zoom out of the

bifurcation diagram in Fig 3B see S1 Fig.

Notable in both panels of Fig 3, there is a gap between the SN bifurcation and the onset of

the first spike in a burst cycle. In this region, the voltage dynamics cannot, after passing the SN

bifurcation, immediately jump to the spiking branch. The dynamics is slowed down by the

proximity of the saddle-node bifurcation in the eigendirection associated with the eigenvalue

that is still close to zero. This phenomenon is often referred to as ghost of the SN bifurcation

(or, for brevity, the SN ghost in the rest of the article). Thus, the decrease of the [K+]out does

not immediately stop when the system reaches the SN bifurcation. [K+]out is further reduced

when moving away from the SN ghost until it can finally enter the spiking phase.

Slow subsystem analysis

The previous section analysed the spiking behaviour with the slow variable, specifically, the

extracellular potassium concentration ([K+]out) treated as a parameter. The fast subsystem

bifurcations that initiate and terminate spiking were identified. In this section, the dynamics of

the slow subsystem is explored. The time scale of the slow subsystem is determined by the

effect of spiking on [K+]out in relation to the balancing effect of the Na+/K+-ATPase. Note that

the effective pump rate depends on both the extracellular potassium concentration as well as

the density of ATPase proteins (indirectly defined by Imax, see the Eq 7). Relevant quantities

for the slow subsystem are thus the amount of K+ leaving the cell per spike and the effective

pump rates during the spiking and quiescent phases.

The slow concentration dynamics can be isolated by applying the method of averaging to

the fast dynamics. It exploits the effect that the slow subsystem cannot track the rapid changes

in the fast subsystem; effectively, it only senses the average impact of one complete spike. To

calculate this average impact on the change of [K+]out, the pump current and the current car-

ried by the fast spiking potassium channels are integrated over one spike period. The averaged

quantity of the fast subsystem currents determines the time derivative of the slow subsystem

and, consequently, its dynamics (see Eq 14). Note that when the fast subsystem is quiescent

(i.e., no spiking), averaged and non-averaged fast subsystem dynamics are equal. With this

averaging method, we can describe the dynamics of the slow subsystem as a reduced model

PLOS COMPUTATIONAL BIOLOGY Pump-induced bursting in neurons with class I excitability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011751 August 12, 2024 8 / 31

https://doi.org/10.1371/journal.pcbi.1011751


that can capture the complete system dynamics. See Methods for more details on the averaging

method and [26] for an introduction.

Fig 4 shows the phase portrait of the reduced slow subsystem, in terms of [K+]out and its

temporal derivative, for the specific parameters used in Fig 2. In analogy to Fig 3, in Fig 4 areas

of tonic spiking (dark grey), bistability (white), and quiescence (light grey) of the fast subsys-

tem are marked. The HOM and SN bifurcations of the fast subsystem mark the borders of

these zones, (blue and red horizontal lines). Trajectories of the reduced slow subsystem

Fig 4. Hysteresis loop of the slow subsystem overlaid with the bifurcations of the fast subsystem. The extracellular

potassium ([K+]out) dynamics of the reduced, slow subsystem entails a hysteresis loop oscillator. The slow oscillation

organises around the bistable region of the fast subsystem, as also shown in Fig 3. The slow subsystem trajectory for the

resting branch is calculated by inserting steady state fast variables as a function of the slow concentration into the

[K+]out time derivative (see Methods, Eq 9), while the spiking branch requires averaging (see Methods, Slow-fast

method, Eq 14). The red and blue lines represent the location of the saddle-node (SN) and homoclinic (HOM)

bifurcations of the fast subsystem according to ([K+]out), respectively. Note that, after going through the SN

bifurcation, the system remains near the SN ghost for a while before spiking is resumed (brown dotted line).

Parameters as in Fig 2A.

https://doi.org/10.1371/journal.pcbi.1011751.g004
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corresponding to spiking and quiescence of the fast subsystem are indicated by the labels ‘spik-

ing’ and ‘rest’, respectively.

Fig 4 reveals the hysteresis nature of the slow subsystem (reduced system), which revolves

around the bistability of the fast subsystem. The bistability of the fast subsystem serves as the

prerequisite for the existence of the hysteresis loop in the reduced slow subsystem. For clarifi-

cation of the mechanism, we follow the [K+]out hysteresis loop in Fig 4 through the same

sequence of bifurcations as in Fig 3B. If our fast subsystem is spiking (equivalent to the spiral

path in Fig 3B), this corresponds to the spiking branch of the hysteresis loop in Fig 4 and the

time derivative of [K+]out is positive. This means that in each cycle of an action potential, the

mean K+ flux into the extracellular space is larger than the mean of the K+ flux via the pump,

which reabsorbs potassium ions into the neuron. In other words, extracellular K+ accumulates

continuously in extracellular space. However, while the slow subsystem slides up on this

branch (from right to left) through the bistable region, the potassium increment reduces with

every additional spike. With the parameters used here, the spiking branch of the slow subsys-

tem terminates at the HOM bifurcation before the derivative of [K+]out turns negative. This

observation depends on the system’s parameters, as it is further explored below. After the

HOM bifurcation of the fast subsystem, the slow subsystem falls back to the stable resting

branch.

In the quiescent state of the fast subsystem (light grey region), the K+ flux via the Na+/K+-

ATPase dominates, as there is no spiking and, consequently, no major flux of potassium out of

the neuron. Therefore, the time derivative of [K+]out is negative (Fig 4, rest branch). [K+]out

decreases and potassium is pumped back into the neuron. The slow subsystem follows the qui-

escence branch from higher to lower [K+]out through the bistable zone (equivalent to sliding

on the orange line in Fig 3B). At the SN bifurcation (red line), the stable node disappears from

the fast subsystem’s dynamics. As a consequence, the silent branch comes to an end at a lower

[K+]out. Subsequently, the reduced slow subsystem undergoes a transition to the spiking

branch after passing through the ghost of the SN bifurcation. This completes the hysteresis

loop of the reduced slow subsystem.

In summary, the bursting process is enabled by the bistability of the fast subsystem and cor-

responds to a hysteresis loop. The bistability allows the system to alternate between quiescence

(where the activity of the Na+/K+-ATPase suffices to extrude potassium from the extracellular

space) and spiking (marked by accumulation of potassium in the extracellular space).

Generic occurrence of the burst mechanism

The previous sections described how, for specific parameter settings, class I conductance-

based neuron models can exhibit slow bursting when the dynamics include the activity-depen-

dent concentration changes in an extracellular space of fixed volume. The following section

investigates the robustness and prevalence of the described burst mechanism and its depen-

dence on model parameters.

The pump’s essential contribution to the bursting mechanism. To investigate the influ-

ence of the electrogenic Na+/K+-ATPase, we switched off the pump current in the model’s

voltage equation, yielding a system similar to [15] (see Fig 5A, and compare it to the full model

with an electrogenic pump current Fig 5B). At higher input currents, the Na+/K+-ATPase

switches the system from turning towards the depolarization block in all cases to a system that

can transition from rest via tonic firing to proper bursting and only then depolarization block.

The electrogenic pump activity shifts the depolarization block to higher inputs.

As the mechanism of bursting relies on a region of bistability in the fast subsystem, one

may note that the generic unfolding of a codimension-two saddle-node loop (SNL) bifurcation
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[28] from the neuron model with an electroneutral pump includes a region of bistability

(Fig 5C) [29]. For the burst mechanism to work, however, the fast dynamics along the [K+]out

direction (with constant Iapp in Fig 5C) needs to be bounded by HOM and SN branches for

higher and lower values of [K+]out, respectively (compare Figs 5C and 3A). This is possible, if

the bifurcation diagram is sheared such that the HOM and SN branches bend to the right.

Interestingly, such shearing occurs as a result of adding a K+-dependent electrogenic pump

Fig 5. Shear transformation of the saddle-node loop (SNL) unfolding induced by the Na+/K+-ATPase. Including a

Na+/K+-ATPase into the neuron model affects the fast subsystem bifurcation diagram and thereby enables bursting

dynamics in the complete system. (A) and (B): Voltage traces from the models with an electroneutral (akin to [15])

and with an electrogenic Na+/K+-ATPase for different values of the applied current Iapp (0.1, 0.25, 0.5, 0.9 μA/cm2, top

to bottom). Tonic spiking and bursting dynamics occur in the paradigm with pump. (C) Two-dimensional bifurcation

diagram of the fast subsystem with the electroneutral pump. The generic unfolding of the SNL bifurcation (green

circle) includes a bistable area between the homoclinic (HOM) and saddle-node (SN) bifurcation lines. (D) In the

model with electrogenic pump, the area of bistability is sheared. This opens up the possibility for a [K+]out hysteresis

loop (yellow region) for values of Iapp between the SNL (green circle) and the HOM inflection point (purple square).

Imax = 1 μA/cm2 in all panels.

https://doi.org/10.1371/journal.pcbi.1011751.g005
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(Eq 7) to the neuron model with an SNL bifurcation (see Fig 5D). The pump current acts as an

applied current that depends on [K+]out; in our model it is a sigmoidal function with half acti-

vation at 11 mM. The pump induces a shear transformation of the canonical unfolding of the

SNL bifurcation (Fig 5D). The larger the maximum pump current (Imax), the larger the shear.

The Na+/K+-ATPase density in the membrane (directly related to Imax), hence is a crucial

parameter for the emergence of bursting by the minimalistic mechanism proposed here.

The region of burst occurrence in the fast subsystem (yellow area in Fig 5D) is bounded by

the SNL point (green circle) and the inflection on the HOM branch (purple square). For Iapp
beyond the inflection point, spiking continues until [K+]out reaches a fold of limit cycles

(FLC), which is analysed in the next section.

In summary, the burst mechanism relies on two essential ingredients from the neuron’s fast

subsystem, which enable the hysteresis loop:

1. For low [K+]out, the onset of spiking in the fast subsystem occurs via a saddle-node on

invariant cycle (SNIC) bifurcation (typically present in neurons with class I excitability).

This implies that the neuron model also undergoes an SNL bifurcation; at higher [K+]out

[22,25], opening up the bistable region between a homoclinic and a SNIC branch (Fig 5C).

2. The electrogenic Na+/K+-ATPase counteracts the K+ efflux and mediates the coupling

between [K+]out and neuronal voltage dynamics. The pump’s activity shears the bistable

region such that it can be traversed by changes in [K+]out while being bounded by a fixed-

point region (quiescence) from above and a limit-cycle region (tonic spiking) from below

(Fig 5D).

Dynamics in the proximity of the bursting region. To comprehensively understand the

model’s dynamics, we need to take a detailed look at the dynamics occurring in the vicinity of

the bursting in the full system to shed light on factors that constrain bursts, the dependence on

parameters, and the robustness of the described mechanism.

Zooming further out of the Kout-Iapp plane depicted in Fig 3A reveals additional structures

in which the region of bistability of the fast subsystem is embedded (Fig 6A). The vertical tra-

jectories overlaid on the fast subsystem bifurcation show the direction of the slow subsystem

(i.e., complete system) dynamics. According to Fig 6A, variation of the applied current resulted

in different dynamics of the complete system. The slow bursting is possible in the range of Iapp
between SNL (green circle) and the HOM inflection point (purple square), as is the case in the

yellow area in Fig 5D. The specific bursting dynamics of Fig 2A is found in the parameter

region D in Fig 6A.

For Iapp higher than the HOM inflection point (purple square in Fig 6A), the complete sys-

tem dynamics ends up in depolarization block. After passing through a Hopf bifurcation, the

neuron loses the ability to spike in a fold of limit cycles (FLC) bifurcation. This can be referred

to as a depolarization block. The letter B in Fig 6A corresponds to one example that converges

towards depolarization block. If the system starts in low [K+]out at position B, i.e., the tonic

spiking region of the fast subsystem (dark grey area), with each spike, [K+]out increases, mov-

ing the system upwards along the flow field direction of the complete system (filled black

arrows in Fig 6A). The system passes the bistable zone but does not encounter the HOM bifur-

cation. The limit cycle terminates in an FLC bifurcation instead. The same can also be seen in

the dynamics of the reduced slow subsystem for the same modelling parameters (Fig 6B).

Here, if we start from the spiking branch (solid line), the time derivative of [K+]out is positive.

Hence, the system slides on the spiking branch from lower to higher [K+]out, until it reaches

the FLC bifurcation. At this point, the spiking branch terminates, and the system jumps to the
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Fig 6. Bifurcations of the fast subsystem with an overlaid phase portrait around the bursting region. The bifurcations of the fast subsystem together with

the flow of dynamics is shown in the vicinity of bursting area. (A) Zoom-out of the two-parameter bifurcation diagram of the fast subsystem depicted in Fig 3A.

Depending on the applied current (Iapp) and extracellular potassium concentration ([K+]out), the fast subsystem exhibits mono-, bi-, or even multistability. The

resting region in the top right corner, above the fold of limit cycles (FLC) is characterised by bistability between two fixed points. The region between the Hopf

and FLC bifurcations is multistable between two fixed points and one limit cycle. The bistable region enclosed between the homoclinic (HOM), saddle-node

(SN), and Hopf bifurcations enables bursting. Here, the bistability occurs between one limit cycle and one fixed point. The burst is possible for values of Iapp

between the ones corresponding to the saddle-node-loop (SNL) and HOM inflection point. The area marked as D highlights where the bursting shown in Fig
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resting branch with a positive time derivative of [K+]out instead of the normal resting state.

The time derivative of [K+]out on this branch is positive because this state corresponds to an

upstate voltage at which more voltage-gated channels are in a conducting state. With the given

Imax, the pump is insufficient to compensate and [K+]out continues to increase until the silent

branch eventually approaches zero in a very large [K+]out. If the system starts at [K+]out higher

than the SN bifurcation of the fast subsystem and is on the other resting branch of the slow

subsystem (left side of the Fig 6B), however, the negative time derivative moves the system

along this branch in the direction of decreasing [K+]out. As it progresses, the system reaches

the SN bifurcation, transitioning into a spiking state, and eventually leading to the depolariza-

tion block.

At Iapp below the SNL bifurcation in Fig 6A, tonic spiking is possible. An example from the

tonic spiking area is indicated by the letter C in Fig 6A. The bistable region, which is a require-

ment for the bursting mechanism under investigation, is absent in the fast subsystem bifurca-

tion for this case. As shown in Fig 6A, in the vicinity of the position marked C, two dynamical

regimes for the fast subsystem exist: tonic spiking and quiescence. Why has the complete sys-

tem a stable state at tonic spiking? The answer can be read of Fig 6C, which depicts the time

derivative of the reduced slow subsystem. The spiking branch of the reduced slow subsystem

crosses zero with a negative slope (see arrow in Fig 6C); the reduced system has a stable fixed

point. This fixed point is in the region where the only attractor in the fast subsystem is a stable

limit cycle. The silent branch in Fig 6C is lower than zero. Consequently, if we start on this

branch, the reduced slow subsystem eventually jumps to the spiking branch and reaches the

stable fixed point. Thus, the complete system in the region around C ends up in the spiking

regime.

Note that, in Fig 6A, for Iapp lower than the HOM inflection point of the fast subsystem and

[K+]out higher than HOM bifurcation in the bistable region of the fast subsystem, the complete

system dynamics are similar to the dynamics of Fig 6B, where [K+]out is higher than the fast

subsystem SN bifurcation. Therefore, two directions for the complete system dynamics exist.

The first one increases [K+]out, resulting in depolarization block. The second one decreases

[K+]out, in contrast to the scenario in Fig 6B, resulting in either tonic spiking or bursting, in

dependence of the size of Iapp. Hence, the dynamics of the complete system exhibits bistability

(depolarization block versus either bursting or tonic spiking).

In this section, we demonstrated that our basic neuron model possesses the ability to not

only generate slow rhythmic bursting activity but also to exhibit other significant dynamics

such as tonic spiking and depolarization block. Each of these dynamics plays a crucial role in

both physiological and pathological scenarios.

Dependence of the bursting mechanism and other dynamics on the pump density. We

saw that Na+/K+-ATPases are crucial for the feedback from the fast to the slow dynamics. The

pump density, denoted in our model by Imax, is thus a natural parameter to investigate the

robustness of the described bursting mechanism, regarding both the existence and extent of a

2A occurs. The vertical arrows indicate the flow field direction of the complete system. For the higher [K+]out than the Hopf line, the one branch of the

complete system flow field direction which is going to higher [K+]out and indicating the depolarization block branch is not shown (see panel B, rest branch with

positive time derivative of [K+]out). Two specific cases are selected from the region of depolarization block (B) and tonic spiking (C) of the complete system

dynamics for further study. (B) Reduced slow subsystem dynamics overlaid on the bifurcation of the fast subsystem in the case marked as B in panel A (Iapp =

0.9 μA/cm2). This case corresponds to a transition to the depolarization block in the complete system. The arrangement of the resting and spiking branches

indicates that, regardless of where the system starts on this diagram, it will eventually reach the resting branch with the higher time derivative of [K+]out and

follow that line up to the depolarization block. (C) Reduced slow subsystem dynamics overlaying on the bifurcation map of the fast subsystem in the case

marked as C in panel A (Iapp = 0.25 μA/cm2). This case corresponds to tonic firing in the complete system. The black straight vertical line represents d[K+]out/

dt = 0, and the arrow indicates the spiking branch of the slow subsystem crossing this line and having a stable fixed point. Accordingly, the complete system

remains tonically firing. Imax = 1μA/cm2 for all the panels.

https://doi.org/10.1371/journal.pcbi.1011751.g006
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bursting region. In Fig 7A, the complete system dynamics is explored in the Imax-Iapp plane.

Four regions are identified, each associated with a distinct regime of the complete system: rest,

tonic spiking, bursting, and depolarization block. As a reminder: In the previous sections we

examined representative cases from the bursting (Figs 2–4 and label D in Fig 6A), depolariza-

tion block (label B in Fig 6A and 6B), and tonic spiking (label C in Fig 6A and 6C) regions, all

of which shared the same Imax value (1 μA/cm2). In contrast, here Imax is varied.

First, we can see in Fig 7A that the larger the pump density, the larger the applied current

needs to be to achieve depolarization block. For completeness, note that, as mentioned in the

analysis of Fig 6, in the regions labelled as rest, tonic spiking and bursting, the complete system

can also directly converge to depolarization block when the initial potassium concentration is

large, depending on the other initial conditions. In contrast, in the region labelled as depolari-

zation block, i.e., for Iapp beyond the HOM inflection point of the fast subsystem (purple dot-

ted curve), the depolarization block will inevitably be reached, even starting from low [K+]out.

Numerical continuation of the complete system shows that the limit cycle corresponding to

tonic firing disappears in a fold of limit cycle bifurcation (pink curve in Fig 7A; pink star in

Fig 7D). Beyond this bifurcation, only the large-[K+]out stable branch of fixed points remains

(orange solid curve in Fig 7D), leaving depolarization block as the only possible outcome.

We now examine the bursting region. In the preceding sections, we established the essential

role of the pump current in opening up a range of applied current values for which bursting

can potentially take place: for a constant Iapp between the fast subsystem SNL bifurcation and

HOM inflection point, the fast subsystem possesses a region of bistability, bounded by the

homoclinic and saddle-node bifurcations (Fig 5D). This configuration is a necessary condition

for the formation of the hysteresis loop that drives the bursting dynamics. The bursting region

(yellow area in Fig 7A) is therefore constrained by the SNL bifurcation and HOM inflection

lines of the fast subsystem (depicted in dotted green and purple lines, respectively). The burst-

ing region initially expands with Imax as these two lines diverge, until at some point, although

the requirement for bursting is still met, it shrinks and terminates. In the remaining area

between the two lines, the complete system exhibits tonic spiking instead of bursting.

We conducted a case study in this particular zone, at the point in parameter space position

marked E in Fig 7A. The corresponding slow-fast analysis diagrams are shown in Fig 7B and

7C. The fast subsystem does indeed fulfil the essential prerequisites for bursting: bistability

between quiescence and tonic spiking for potassium concentrations comprised between the

homoclinic and saddle-node bifurcations (Fig 7B). However, the reduced slow subsystem fea-

tures a stable fixed point inside this region of bistability, marked with an arrow in Fig 7C. It

corresponds to a stable limit cycle of the complete system, during which the contributions of

the pump and voltage-gated channels to potassium dynamics cancel each other out on average.

In this situation, in contrast to the case studied in Fig 3–4, the hysteresis loop fails to form and

the complete system stabilizes in a tonic firing state (position E in Fig 7B) instead of bursting.

When approaching the bursting region from the tonic spiking region, the stable fixed point

of the reduced slow subsystem moves progressively closer to the homoclinic bifurcation of the

fast subsystem. Near the bifurcation points of the fast subsystem, the slow-fast method and

analysis of the reduced slow subsystem fails because the timescale of the fast subsystem

increases to the point the separation of the fast and slow timescale is not possible anymore. To

better understand the transition between tonic spiking and bursting, we performed a numeri-

cal continuation of the complete system. We find that the limit cycle corresponding to tonic

spiking destabilizes in a supercritical period doubling cascade to become the bursting solution

(light blue curve in Fig 7A, light blue dots in Fig 7D). An in-depth investigation of the transfer

to the bursting state in this region as well as of mechanisms that add extra spikes during burst-

ing (also termed spike-adding mechanisms [30]) is beyond the scope of this work. We can,
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Fig 7. Dynamics of the complete system for varying pump density. Depending on the maximal pump current (Imax) and applied current (Iapp), the complete

system can show different dynamics (rest, tonic spiking, bursting, and depolarization block). This figure focuses on a low potassium concentration. (A)

Bifurcations in the complete system as well as the corresponding fast subsystem saddle-node-loop (SNL) and HOM inflection point. The points labelled B, C,

and D in this figure correspond to the same parameter sets as shown in Fig 6 with the same labelling. The area between the saddle-node-loop (SNL) and HOM
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however, predict that it involves both chaos-induced (see period-doubling route to chaos in

Fig 7D and 7E) and canard-induced (see jump-on canard solution in S2 Fig) mechanisms,

similarly to what was reported for the phenomenological Hindmarsh-Rose neuron model, for

example in [31]. Such phenomena are commonly found in Fold/HOM bursters and have been

thoroughly analysed in several models of excitable cells [32–37]. Period doubling has previ-

ously been shown to be inducible by changes in the extracellular bath concentration [16].

From this section, it becomes clear that the Na+/K+-ATPase plays a pivotal role in various

dynamics possible in models with class I spike generating dynamics, when extracellular potas-

sium dynamics are taken into account. A higher pump density contributes to postponing the

depolarization block. Moreover, while the pump can establish the necessary conditions for

bursting, a pump current that is too strong can also suppress bursting incidents.

Finally, we briefly note that the mechanism was also tested in the presence of dynamic Na+

concentrations. To this end, we modified the model by incorporating intracellular sodium

concentration ([Na+]in) dynamics through Eqs 11 and 12 and by adjusting the Na+/K+-ATPase

equation to also account for changes in [Na+]in (see Eq 13). The result is shown in S3 Fig. The

desired bursting mechanism is present in the modified model, too. However, including

[Na+]in dynamics in the model can introduce more intricate behaviours. For example, in of

S3A Fig, sodium slightly accumulates over time and can result in alterations of spike amplitude

and spiking threshold [38]. These dynamics, however, are not the focus of this paper.

Discussion

In this article, we demonstrate that a neuron whose dynamics of extracellular potassium are

taken into account requires only two essential elements to exhibit slow bursting: a bistable

region arising from an SNL bifurcation and a feedback loop mediated by a Na+/K+-ATPase. In

contrast to some previous models for slow bursting, this firing mode requires neither ion

channels with slow dynamics nor rhythmic inputs. Our slow-fast bifurcation analysis reveals a

ubiquitous mechanism: square-wave bursting via a fold-homoclinic hysteresis loop, requiring

only a single slow concentration variable. This mechanism, in principle, can be encountered in

all class I excitable neurons with spike onset via a SNIC bifurcation, the spiking dynamics of

which have been shown to be tuneable into an SNL regime via a number of physiological

parameters [22,25]. The evidence presented assigns a pivotal role to the Na+/K+-ATPase in the

generation of slow bursting, tonic spiking, and depolarization block. The exploration of the

mechanistic core and robustness of the described bursting mechanism provides novel perspec-

tives on elevated extracellular potassium levels in neural pathologies such as seizures or spread-

ing depolarization and potentially their treatment.

inflection point lines of the fast subsystem represents the parameter space where bursting can potentially occur, according to the fast subsystem analysis.

Within this region, the complete system displays bursting behaviour only in the yellow zone. Numerically, the boundary of the bursting region is verified by

detecting the transition of the interspike interval distribution from unimodal (tonic spiking) to bimodal (bursting). This boundary aligns with the period-

doubling (PD) bifurcation line of the complete system. (B) Two-parameter (extracellular potassium [K+]out, and Iapp) fast subsystem bifurcation diagram for the

case indicated by E in panel A (Imax = 2 μA/cm2, Iapp = 1 μA/cm2). The necessary condition for bursting, i.e., a bistable region bounded by homoclinic (HOM)

and saddle-node (SN) bifurcations from above and below, respectively, is satisfied. (C) Reduced slow subsystem dynamics overlaid onto the bifurcation map of

the fast subsystem corresponding to letter E in panels A and B. The spiking branch of the reduced slow subsystem intersects the line d[K+]out/dt = 0, indicated

by the black arrow. This intersection signifies the presence, on the spiking branch, of a stable fixed point of the reduced slow subsystem, within the bistable

region of the fast subsystem. Consequently, the complete system exhibits tonic spiking, despite the fast subsystem meeting the conditions for bursting (D) One-

parameter bifurcation diagram ([K+]out, Imax) of the complete system; Iapp = 0.5 μA/cm2. Insets: zoom in near the borders of the bursting region, where the

complete system undergoes cascades of supercritical period doubling bifurcations. Note that this bifurcation diagram is not exhaustive. (E) Consecutive

samples along the period-doubling cascade shown in the inset on the right-hand side of panel D. E_5 to E_2: stable limit cycles before the first PD (case 5:

I_app = 1.5897 μA/cm2), between the first and second PD (cases 4 and 3: I_app = 1.5767, and 1.5037 μA/cm2, respectively) and between the second and third

PD (case 4: I_app = 1.4903 μA/cm2). E_1: chaotic trajectory further down the cascade (I_app = 1.45 μA/cm2), obtained by direct simulation for 90 seconds.

https://doi.org/10.1371/journal.pcbi.1011751.g007
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The relevance of the Na+/K+-ATPase

Our findings highlight the large influence of Na+/K+-ATPases [39,40] on the dynamics of neu-

ronal spiking. Different isoforms of the pump are known as generic players in the homeostasis

of extracellular potassium, the resting potential, as well as cell volume. Previous experimental

evidence already indicated that neuronal Na+/K+-ATPase function extends beyond the stabili-

zation of extracellular potassium. Along these lines, it has been argued that if most of the potas-

sium secreted by neurons was siphoned off by astrocytes, neuronal activity could not continue

for tens of seconds because of imbalances in potassium concentration [41]. Our model indi-

cates yet another function of the Na+/K+-ATPase: as an enabler of rhythmic activity when

extracellular potassium concentration is elevated. While previous studies assigned a mechanis-

tic role to the Na+/K+-ATPase for rhythmic bursting in pattern generators [42,43], it was the

interaction between h-currents and the pump for control of Na+ that was emphasized; the

burst mechanism proposed in this paper was not investigated. The involvement of the Na+/

K+-ATPase in the induction of rhythmic activity is consistent with a previous proposal [44].

Kager and colleagues indicated that [K+]out or voltage-dependent ion channels that elicit

inward currents can generate seizure-like rhythmic activity, provided that the inward current

secondarily triggers the release of K+ into a confined extracellular space–a set of conditions

met by the Na+/K+-ATPase.

Our model predictions match a number of observations in pathological states. For example,

our results that a higher pump density shifts the initiation of the bursting mode and depolari-

zation block towards higher input currents agree with the experimental observation that the

Na+/K+-ATPase helps to inhibit seizures and SD. Specifically, inactivation of the neuron-spe-

cific alpha3-isoform of Na+/K+-ATPase has been shown to induce seizures in mice [45]. Fur-

ther, the loss-of-function mutation that causes chorea-acanthocytosis is accompanied by an

impaired capacity of the Na+/K+-ATPase in neurons, and epilepsy is among the symptoms of

this neurodegenerative disorder [46], potentially fostered by the bursting mechanism at hand.

Even partial inactivation of the Na+/K+-ATPase with ouabain has been shown to cause SD-like

depolarization: An epileptic population spike is followed by an ouabain-induced SD [47],

which is consistent with the cellular dynamics observed in the model presented here. More-

over, a shortage of oxygen or ATP as it may, for example, occur during ischemia, renders the

pump less effective. We demonstrate that an insufficient pump current can first induce burst-

ing and then facilitate depolarization block. This agrees with depolarization events occurring

in hypoxic and ischemic conditions [47,48] as well as previous suggestions that hypoxia or an

impaired pump can move neurons into seizure states [44,49]. In addition, an experimental

study has revealed a correlation between seizures and lowered oxygen pressure levels.

Decreases in oxygen pressure can first induce seizures but also stop them at even more oxy-

gen-deprived levels [50]. Our model, in alignment with these experimental findings, indicates

that–although an insufficient pump current can trigger seizures (i.e., bursting)–a too strong

reduction in pump activity can again terminate bursting (and thus potentially seizures)

because the pump’s activity positively correlates with oxygen levels [49].

The Na+/K+-ATPase density sets four dynamical regimes

The present biophysical model also demonstrates the ability to exhibit both bursting and depo-

larization block, which aligns with previous observations indicating that seizures and spread-

ing depolarizations (SD) can originate from the same neuronal population [51,52]. Depending

on Na+/K+-ATPase density and input strength, the complete concentration-dependent system

exhibits four different regimes: rest, tonic spiking, bursting, and depolarisation block, which

have been associated with a range of healthy and/or pathological states. For example, seizures
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can be triggered by a handful of neurons going through bursts of activity [53]. In SD, the phase

of neuronal hyperactivity preceding the depression can arise from synchronized activity of

bursting neurons, as observed by population spikes in electrocorticography (ECoG) traces

[54]. In the wave of death (i.e. the massive and simultaneous depolarization of neurons [55])

or when the SD wave changes from hyperactivity to silence, depolarization-block-like dynam-

ics could be observed [51]. The changes in extracellular potassium concentration during burst-

ing and depolarization block in our model are consistent with experimental observations

during seizures and SD, as well as during sleep rhythms [56–58].

The SNL bifurcation as an organisational center for bursting

At the core of the present burst mechanism is the SNL bifurcation and the bistable region initi-

ating from it in the fast subsystem. The latter is bounded by the HOM and SN branches, i.e.,

the two codimension-one bifurcation branches that appear from the codimension-two SNL

bifurcation. Interestingly, the majority of seizures observed in patients and experimental mod-

els are assumed to rely on an SN/HOM bifurcation [52]. The minimalistic model by Depanne-

maecker et al. discovered this kind of onset-offset combination (SN/HOM) in their

oscillations. Unlike the present model with a one-dimensional slow subsystem, their model

features a two-dimensional slow subsystem. Other mechanisms for bursting do not involve SN

or HOM bifurcations at the onset and offset of the burst (e.g., [15,16,51,59]).

The SNL bifurcation itself originates from the unfolding of the codimension-3 degenerate

Takens–Bogdanov singularity which is present in a large class of conductance-based models

[19]. We demonstrate that the minimal bursting mechanism analysed here requires the

involvement of the Na+/K+-ATPase and ordinary K+ and Na+ channels, which are omnipres-

ent throughout the brain.

Proximity of an SNL bifurcation can be found in a generic class of neuron models, i.e. all

models starting with class I excitability [21,22], which encompass a significant proportion of

neuron models, ranging from isolated gastropod somata to mammalian hippocampal neurons

[25]. Note that in the bistable region between the HOM and SN bifurcations, the presence of

noise in the system or its input can result in stochastic bursting that emerges from switching

between the stable limit cycle attractor and the fixed-point dynamics (see, for example [38]).

Here, in contrast, the bursting mechanism is deterministic and stems from the feedback

mediated by the Na+/K+-ATPase. Specifically, the electrogenic pump induces a distortion of

the bifurcation diagram of the fast subsystem, which is crucial for the actual occurrence of

deterministic bursting. If the pump, however, is not included in the voltage dynamics (as, for

example, in [15,60,61]), a shear-induced hysteresis loop is not observed.

The relevance of potassium homeostasis

The dynamics described in this study does not explicitly consider other ionic transporters, or

external potassium regulators, such as diffusion, or glial cells [16,17,62–66]. The model’s extra-

cellular space can, however, be interpreted as an effective compartment that also subsumes

possible additional potassium homeostasis mechanisms. Hence, the pathological dynamics

introduced in our mechanism could arise from anomalies in these kinds of regulators. This

hypothesis is consistent with the experimental observation that dysfunctional astrocytes are

crucial players in epilepsy, assuming that extracellular potassium homeostasis is impaired as a

function of the astrocytic impairment [67]. Other experiments have implicated dysfunctional

astrocytes in SD [68]. We note that although our model produces intriguing dynamics at the

level of a single cell, it cannot generate some of the more complex behaviours, such as recovery
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from depolarization block. This recovery requires the explicit involvement of other potassium

regulators [17], exceeding the scope of this paper.

Relation to previous findings

Our study demonstrates that the interplay between potassium dynamics and neuronal excit-

ability in class I neuron models with SNIC dynamics can give rise to slow bursting under mini-

mal conditions. The general idea of generating diverse spiking dynamics via feedback from

increased extracellular potassium has been previously reported and is supported by experi-

mental evidence. For example, fluctuations in extracellular potassium levels have been

observed to co-vary with the electroencephalogram (EEG) and field-potential waves during

sleep or seizures [56,57,69]. Increases in extracellular potassium have been reported during

pathological conditions like seizures and spreading depression [70–72]. Moreover, prior stud-

ies have shown that accumulated extracellular potassium does not rapidly diffuse away from

neurons, thereby providing a feedback signal that can influence neuronal dynamics [73–77].

On the modelling side, a number of studies have explored the generation of slow determin-

istic bursting involving changes in ion concentrations. Sætra et al. [78] employed a Pinsky-

Rinzel model to highlight the significance of considering ionic concentration dynamics, diffu-

sion, and electrical drift. Bazhenov et al. [12] showed that increasing extracellular potassium

levels, alongside various currents triggers rhythmic activity in both individual cells and net-

works. Also, Kager et al. [44], reported a slow bursting activity (around 0.06 Hz), arising from

the interplay of potassium and sodium concentration dynamics in a complex multi-compart-

mental model with dendrites and glia. In contrast, Øyehaug et al. [59] utilized a similar model

but attributed the slow oscillatory behaviour to the slow dynamics of glial cells.

In two papers, Hübel et al. [16,17] demonstrated that the Na+/K+-ATPase pump alone is

insufficient to recover the system from depolarization block (referred to as free energy-starva-

tion). Through complete system bifurcation analysis, they revealed that models augmented

solely with the pump as a homeostatic regulator and within certain ranges of pump strengths,

exhibit bistability between physiological states and depolarization block. They further showed

that adding another ionic regulatory mechanism, such as a bath or glia, to the model can

restore the system from depolarization block back to physiological conditions after a signifi-

cant phase space excursion in ionic variables. The bistability between physiological cell state

and a state of free energy starvation, i.e., depolarisation block, studied in their work, also exists

in our model. It is important to note, firstly, that this bistability is different from the bistability

in the fast subsystem that the burst mechanism relies on, and secondly, that the free energy

depleted depolarisation block, a property of the whole system, is not the same as the Hopf

curve in our fast bifurcation diagram, which also terminates spiking. Barreto et al. [15] devel-

oped a model incorporating sodium and potassium concentrations as slow subsystems but no

pump current in the voltage equation. Their model is capable of producing slow-wave bursting

particularly with very high variations in concentration, notably extracellular potassium. Prior

to this work, Cressman et al. [60] examined a similar model. By sketching the bifurcation dia-

gram of their slow subsystem, they investigated the effect of different potassium homeostasis

(specially bath diffusion and glia) mechanisms on their model. Building upon a similar frame-

work, Wei et al. [51] aimed to enhance the realism of neuron modelling by introducing addi-

tional elements such as more realistic glial ionic currents, oxygen and volume dynamics, and

the Goldman–Hodgkin–Katz formalism. As a result, their model exhibited a diverse spectrum

of dynamics including steady-state, seizure, spreading depression, tonic firing, and wave of

death. Depannemaecker et al. [52], in turn, presented a more minimalistic model in which the

potassium concentration in the bath compartment is regulated by diffusion. Dependent on the
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bath’s potassium concentration, this model can generate diverse rhythms. The majority of pre-

vious modelling work, however, has predominantly focused on ion-channel-based mecha-

nisms with channel dynamics slower than those typically required for spike generation.

Alternatively, concentration dynamics paired with fast spike generating channels were aug-

mented by additional features like multiple compartments or homeostasis mechanisms. In

contrast to some earlier studies on bursting induced by ionic concentration [15,60], which

required multiple slow variables (termed slow-wave burst [9,19]), our model demonstrates

that a single slow concentration ([K+]out) suffices for burst formation. This type of burst is cat-

egorised as a hysteresis loop burst [9,19]. In our model, two conditions need to be met for the

hysteresis loop to form: First, a bistable region must be part of the bifurcation structure, which

is typical for the SNL unfolding in class I neurons. Second, the bifurcation structure must be

arranged such that the slow variable can traverse the saddle-node and HOM branches that

delimit the bistable region, to respectively initiate and terminate spiking. In our model, this

tuning is achieved through the electrogenic action of the ubiquitous Na+/K+-ATPase. Due to

the universality of the identified mechanism, which applies to any neuron with class I excitabil-

ity, our results demonstrate the sufficiency of the Na+/K+-ATPase for the generation of slow

rhythmic bursting across a large set of neuronal cell types.

Summary

In summary, we present a minimal mechanism for deterministic bursting activity that arises

from the interplay of very common spiking dynamics with changes in the extracellular potas-

sium concentration mediated by a ubiquitous Na+/K+-ATPase. While other, more complex

models, exhibit deterministic bursting too, the mechanism described in this study relies only on

a minimal set of physiological assumptions in neurons and its dynamics agree with experimen-

tal observations in pathological states like epilepsy or spreading depolarization. The underlying

mechanism strengthens the role of Na+/K+-ATPases in the generation of slow rhythms and

their relevance as a therapeutic target in pathology. While more complex models may capture

bursting dynamics faithfully, the minimal model enabled us to deduce the exact mechanism

involved in the bursting sequence. We anticipate that this detailed understanding, as well as the

efficiency of the model in numerical simulations, will facilitate analyses aimed at mechanistically

linking the biophysics of neurons to the behaviour of the networks that embed them.

Methods

Model description

In the following, we describe the parsimonious biophysical model, composed only of two fast

spike-generating currents and a Na+/K+-ATPase pump as well as extracellular potassium con-

centration ([K+]out) dynamics.

Our model is based on the Wang-Buzsáki model [79]. As it is shown in Fig 1, the model

consists of two compartments: the neuron and its extracellular space. The outward potassium

current through the neuron’s voltage-dependent channels will increase the concentration of

[K+]out. Conversely, [K+]out is decreased by the Na+/K+-ATPase pump activity. We calculated

these changes by the mass conservation equation of [K+]out. Variation in [K+]out affects the

reversal potential of the potassium, which is calculated by the Nernst equation.

The Wang-Buzsáki model. The Wang-Buzsáki (WB) model is a modified version of the

famous Hodgkin-Huxley (HH) model. However, contrary to the HH model for invertebrate

motoneurons, the WB model is categorized as a class I neuron model, mimicking fast-spiking

vertebrate interneurons dynamics. The model has two fast spike-generating sodium and potas-

sium voltage-dependent channels [79]. The potassium and sodium currents are described
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below:

INa ¼ gNahm
3

1
ðV� ENaÞ; ð1Þ

IK ¼ gKn
4ðV � EkÞ; ð2Þ

where the sodium channel inactivation variable h and potassium channel activation variable n

are defined with the following equations:

dh
dt
¼ 5 ahð1 � hÞ � bhhð Þwhere

bh ¼
1

exp
� 28 � V

10

� �

þ 1

� �

ah ¼ 0:07exp
� V � 58

20

� �
; ð3Þ

8
>>>>><

>>>>>:

dn
dt
¼ 5 anð1 � nÞ � bnnð Þ where

bn ¼ 0:125exp
� V � 44

80

� �

Þ

an ¼
ð� 34 � VÞ

100 exp
� 34 � V

10

� �

� 1

� �� �
: ð4Þ

8
>>>>><

>>>>>:

m1 ¼
am

ðam þ bmÞ
where

am ¼
ð� 35 � VÞ

10 exp
� 35 � V

10

� �

� 1

� �� �

bm ¼ 4exp
� V � 60

18

� �
: ð5Þ

8
>>>>><

>>>>>:

Within the framework of the Wang-Buzsáki model, the activation variable of the transient

sodium current (m) is considered to evolve rapidly and is thus replaced with its corresponding

steady-state function.

This approach serves as a means to simplify the WB model, transitioning it from a four-

dimensional system to a three-dimensional one.

The Wang-Buzsáki model also has a leak current, which is described below:

IL ¼ gLðV � ELÞ: ð6Þ

All of the symbols and constants of this section are described in Table 1.

Na+/K+-ATPase pump current. To generate action potentials in neurons, the presence of

ionic gradients between the intracellular and extracellular spaces is required. This entails a

high concentration of K+ within the cell and a low concentration outside, while Na+ is kept at

a low concentration within the cell and a high concentration outside. To maintain the resting

potential and neuronal excitability the cell membrane contains pumps like the Na+/K+-

ATPase. The ATPase pump puts 3 sodium ions out of the cells while pumping 2 potassium

ions into the cells; hence, this pump is not electroneutral. The concentration dependence of

the pump current is a sigmoidal function, adapted from Hübel et al. [17] and modified to

match our model so that the resting potential of the Wang-Buzsáki model does not change

dramatically:

IP ¼
Imax

1þ exp 10 �
½Kþ�out

1:1

� �� � : ð7Þ
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This pump equation demonstrates the adaptability of the pump current in response to changes

in extracellular potassium concentration. The more potassium has accumulated outside of the

cell, the stronger the pump current that pumps potassium back inside. Nevertheless, the

pump’s current never exceeds the maximum level, Imax, set by the density of pumps in the

membrane.

Membrane potential equation. Having described all the currents of our model, we can

now calculate the membrane potential dynamics as below:

C
dV
dt
¼ Iapp � INa � IK � IL � IP; ð8Þ

where Iapp is the constant applied current or stimulus.

Ionic continuity equation. Neuronal activity raises the potassium reversal potential,

while lowering the sodium reversal potential. In general, the sodium reversal potential has a

strong impact on action potential height, while the potassium reversal potential induces bifur-

cations of the resting state and the saddle that determines the threshold manifold. In particular,

homoclinic connections to the saddle are affected by changes in potassium reversal potential

[38]. Furthermore, due to higher potassium conductance than sodium conductance at the rest-

ing potential, the resting membrane potential is typically closer to the potassium reversal

potential. Additionally, due to the smaller extracellular space in relation to intracellular space,

changes in extracellular potassium concentration ([K+]out) can have a greater effect on

Table 1. Nomenclature.

Symbol Name Value (unit)
[K+]out extracellular potassium concentration variable (mM)
α and β gating variables variable (ms-1)
Acell surface area of the cell 3.142×10−6 (cm2) [80]

C membrane capacitance 1 (μF/cm2) [79]

Ek potassium reversal potential variable (mV)
EL leak reversal potential -65 (mV) [79]

ENa sodium reversal potential 55 (mV) [79]

F Faraday’s constant 9.694×104 (C/mol) [80]

gk potassium conductance 9 (mV) [79]

gL leak conductance 0.1 (mS/cm2) [79]

gNa sodium conductance 35 (mS/cm2) [79]

h sodium channel inactivation variable ___
IK potassium current variable (μA/cm2)
IL leak current variable (μA/cm2)
IP Na+/K+-ATPase pump current variable (μA/cm2)
Iapp injected (stimulation) current varies per simulation (μA/cm2)
Imax Na+/K+-ATPase pump maximal current varies per simulation (μA/cm2)
INa sodium current variable (μA/cm2)
m1 fast sodium channel activation variable ___
n potassium channel activation variable ___
rv ratio of extracellular to intracellular volumes 0.15 ___ [80]

t time variable (ms)
V membrane potential variable (mV)
Vcell cellular volume 5.23×10−10 (cm3) [80]

https://doi.org/10.1371/journal.pcbi.1011751.t001
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neuronal behaviour than any other neuronal concentration [60]. Therefore, it is reasonable to

focus on extracellular potassium dynamics in our model.

For converting the potassium current to potassium ionic flux, we multiply the pump cur-

rent by two; as in each pumping cycle, two potassium cations are exchanged. Thus, the conti-

nuity equation of [K+]out is as follows:

d½Kþ�out
dt

¼
ðIK � 2IpÞAcell

rvFVcell
: ð9Þ

In our model, the reversal potential of potassium (in Eq 2) is dynamic and is calculated accord-

ing to the Nernst equation [17,80]:

Ek ¼ 26:71ln
½Kþ�out

140

� �

: ð10Þ

Dynamic intracellular sodium. To demonstrate that the slow burst dynamics observed in

our model is persistent, we have added sodium concentration dynamics to the model. The

results of this addition are reported in the Supplement materials (S3 Fig).

The extracellular sodium concentration is higher than the intracellular sodium concentra-

tion ([Na+]in). Additionally, the Na+/K+-ATPase is responsive to changes in [Na+]in. Hence, to

enhance our model with sodium dynamics, we can focus on integrating the dynamics of

[Na+]in.

For simulating the model with dynamics [Na+]in, we add the continuity equation for

[Na+]in to the model:

d½Naþ�in
dt

¼
ð� INa � 3IpÞAcell

FVcell
: ð11Þ

We also calculate the reversal potential of sodium with the equation below instead of using it

as a parameter:

ENa ¼ 26:71ln
144

½Naþ�in

� �

: ð12Þ

Finally, we use the complete model of the pump [17] with some modifications:

IP ¼
Imax

1þ exp 10 �
½Kþ�out

1:1

� �� �
1þ exp 25� ½Naþ�in

3

� �� � : ð13Þ

To reproduce the bursting pattern shown in Fig 2A, we need to set [Na+]in to approximately

18.4 mM. Using this concentration in Eq 12 results in ENa = 55 mV, which aligns with our pre-

vious simulations. Moreover, in Eq 13 Imax should be adjusted. With [Na+]in near 18.4 mM,

Imax should be around 10 μA/cm2. This adjustment allows us to simulate the model under con-

ditions almost identical to those used to generate the results in Fig 2A.

The outcome of the simulation incorporating all the modifications above is presented in

S3A Fig. With the [Na+]in oscillation around 18.4 mM, we successfully replicate the nearly

identical bursting dynamics showcased in Fig 2A. However, it is worth noting the presence of

a gradual drift in the sodium concentration.

For another sanity check, in the modified model with dynamic [Na+]in, we set [Na+]in =

18.4 mM. The outcome of this simulation is depicted in S3B Fig, showcasing identical results
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to those seen in Fig 2A. Hence, the burst dynamics described in this paper can manifest in

more complicated systems.

Slow-fast method

The deterministic bursting introduced in this paper results from the interaction between

dynamics on different timescales. First, the fast spiking timescale mostly determined by gating

variables of channels and the membrane time constant (Eqs 3, 4 and 8). Second, the slower

timescale of the concentration dynamics. The slow dynamics is represented by variation in

[K+]out (Eq 9).

To gain a better understanding of our system’s behaviour, we analysed our neuron model

using the method of timescale separation [9,26]. For this, one needs to assume that slow and

fast timescales are sufficiently separated. As a result, the fast subsystem perceives the slow sub-

system ([K+]out) dynamics as a constant parameter. On the other hand, the oscillations of the

spiking dynamics are so fast for [K+]out dynamics that it only senses the average changes in the

fast subsystem. By using this strategy, we can consider the fast and slow subsystems separately.

For the fast subsystem, we treat [K+]out in the system of equations including Eqs 3, 4 and 8,

as a bifurcation parameter. Then with the help of numerical continuation [81], we produce the

bifurcation diagram of the fast subsystem. This is how we generated Figs 3, 5C, 5D, 6A, 7B and

S1.

To analyse the slow subsystem, we apply a numerical averaging method to obtain the

reduced slow subsystem [9,18]. The time evolution of the slow subsystem ([K+]out) is given by

Eq 9. Actually, the slow subsystem does not respond to the fast changes in the fast subsystem

during the spiking phase but only perceives the average effect of each action potential. There-

fore, for each desirable [K+]out, we can average the terms that relate to the fast subsystem (IP
and IK in Eq 9) over one full action potential limit cycle, as shown below:

d½Kþ�out
dt

¼
Acell

FVext

Z t

0

ðIK � 2IpÞfastdt; ð14Þ

where τ is the period of the fast subsystem’s limit cycle and the subscript "fast" shows that IP
and IK belong to the fast subsystem in specific [K+]out.

For each spiking branch of the fast subsystem, we discretize the [K+]out range that the

branch covers and compute the [K+]out derivative with the averaging method (Eq 14) for each

[K+]out value. This allows us to calculate the reduced system for each spiking branch of the fast

subsystem.

When the fast subsystem is quiescent and on its stable fixed point, to determine the slow

subsystem dynamics, it is enough to take, at the desired [K+]out, the fast subsystem’s fixed-

point value of IP and IK and put it in Eq 9.

The result of the averaging method as reduced slow subsystem time derivative diagrams are

shown in Figs 4, 6B, 6C and 7C.

The averaging method usually breaks down if the time scale difference between the slow

and fast subsystems becomes too small. This situation can arise near the fast subsystem bifur-

cations, such as in the vicinity of the HOM bifurcation, where the spiking frequency is signifi-

cantly reduced [26]. Hence, in these situations, we validate our results with numerical

simulations to ensure the accuracy of our results.

Numerical implementation

We performed numerical simulations using Python 3 [82] and the Brian 2 package [83]. The

Runge-Kutta fourth-order method was utilized with time steps of 0.005 ms, and in certain

PLOS COMPUTATIONAL BIOLOGY Pump-induced bursting in neurons with class I excitability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011751 August 12, 2024 25 / 31

https://doi.org/10.1371/journal.pcbi.1011751


instances, adaptive time steps were employed. In case of fixed time step method, we verified

the results with smaller time steps, which yielded consistent outcomes. Additionally, we car-

ried out the continuation of the bifurcation diagrams using XPPAUT [81] and Auto-07p [84].

Supporting information

S1 Fig. An overview of the bursting dynamics analysis. In the main manuscript, the extracel-

lular potassium concentration ([K+]out) is a variable of special interest, and for consistency, all

bifurcations and slow subsystem dynamics are depicted with [K+]out on the y-axis. Here, we

present the dynamic analysis of the burst (Figs 3B and 4) in the more conventional way (with

the independent variable [K+]out on the x-axis). Additionally, we include a more complete

depiction of the fast subsystem bifurcation. (A) A zoom out of Fig 3B is illustrated here. The

bistable region between the saddle-node (SN) and homoclinic (HOM) bifurcation is the burst-

ing region (indicated by the dotted rectangular). Note that there is another bistable region

between HOM and Hopf bifurcations where a stable node and a stable limit cycle coexist.

According to the slow subsystem dynamics, [K+]out increases if the fast subsystem spikes. On

the stable branch of the fast subsystem emerging from SN bifurcation, [K+]out decreases.

From the Hopf bifurcation of the fast subsystem, another stable node is added to the fast sub-

system. If the fast subsystem is on this stable node, the complete system dynamics dictates an

increase of the [K+]out. (B) Phase portrait of the complete burst (as a function of [K+]out hori-

zontally and voltage vertically, black line giving the trajectory) overlaid with the one-parameter

([K+]out) bifurcation diagram of the fast subsystem (coloured symbols and lines). The bursting

trajectory is identical to that in Fig 2A; the diagram corresponds to Fig 3B with flipped axes.

Additionally, Vmin of the stable limit cycle (lower green line) and the unstable focus (dashed

purple line) are depicted. (C) Hysteresis loop of the slow subsystem overlaid with the bifurca-

tions of the fast subsystem. The [K+]out dynamics of the reduced, slow subsystem entails a hys-

teresis loop oscillator. The slow oscillation organises around the bistable region of the fast

subsystem, as also shown in panels A and B. The red and blue lines represent the location of

the saddle-node (SN) and homoclinic (HOM) bifurcations of the fast subsystem as a function

of [K+]out, respectively. This diagram corresponds to Fig 4 with flipped axes. For more infor-

mation on how to calculate the reduced slow subsystem see Methods (Slow-fast method), and

Fig 4 in the main manuscript.

(PDF)

S2 Fig. Jump-on canard at the transition between 11-spike bursts and 12-spike bursts. The

spike-adding mechanism at play in our model appears to involve canard solutions. We show

here a jump-on canard, found at the transition between the 11-spike burst that was used as

illustrative example throughout this paper (Figs 2–4), and a 12-spike burst obtained when

increasing the pump density Imax. Jump-on canards are particular solutions that connect a fast

and attractive component (here when the neurons spikes), to a slow and repulsive component

of the dynamics (here the short pause in the spiking within the burst), see for example [85,86].

(A) Voltage trace during one period. (B) Potassium trace during one period. (C) Voltage tra-

jectory superimposed onto the bifurcation diagram of the fast subsystem with respect to potas-

sium. This trajectory follows for a while the repelling slow manifold defined by the saddle

point of the fast subsystem involved in the homoclinic bifurcation (orange dashed line). Iapp =

0.5 μA/cm2, Imax = 0.99450852625 μA/cm2.

(PDF)

S3 Fig. Effect of intracellular sodium on bursting dynamic. The bursting mechanism intro-

duced in this paper is not affected by the dependence of the Na+/K+-ATPase on [Na+]in. (A)
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Voltage and ionic concentration dynamics during bursting in a modified model with dynamic

[Na+]in. Despite the addition of [Na+]in dynamics, the bursting described in this paper is still

observed, with extracellular potassium accumulating during spiking and decreasing during

rest, similar to the behaviour shown in Fig 2. (Iapp = 0.5 μA/cm2, Imax = 10 μA/cm2.) (B) Burst-

ing dynamics for the modified model with fixed [Na+]in. By fixing [Na+]in at 18.4 mM (mean

approximation from A) in the modified model, the bursting dynamic is the same as what is

depicted in the main model of this paper (see Fig 2).

(PDF)
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