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Abstract

The structure of the internal representation of surrounding space, the so-called cognitive

map, has long been debated. A Euclidean metric map is the most straight-forward hypothe-

sis, but human navigation has been shown to systematically deviate from the Euclidean

ground truth. Vector navigation based on non-metric models can better explain the observed

behavior, but also discards useful geometric properties such as fast shortcut estimation and

cue integration.

Here, we propose another alternative, a Euclidean metric map that is systematically dis-

torted to account for the observed behavior. The map is found by embedding the non-metric

model, a labeled graph, into 2D Euclidean coordinates. We compared these two models

using data from a human behavioral study where participants had to learn and navigate a

non-Euclidean maze (i.e., with wormholes) and perform direct shortcuts between different

locations. Even though the Euclidean embedding cannot correctly represent the non-Euclid-

ean environment, both models predicted the data equally well. We argue that the embed-

ding naturally arises from integrating the local position information into a metric framework,

which makes the model more powerful and robust than the non-metric alternative. It may

therefore be a better model for the human cognitive map.

Author summary

How is the metric of space, i.e., knowledge about distances and angles between places, rep-

resented in the brain? Existing theories argue for either purely relational topological

graphs without a metric, or consistent Euclidean maps where each place is assigned spe-

cific coordinates. The problem lies in the fact that human behavior systematically deviates

from perfect metric maps, and theories need to account for these deviations.

We propose an intermediate model that has both properties of non-metric graphs and

metric maps, by embedding a graph labeled with local position information into metric

space. In this “embedded graph”, measurements of local metric information also affect the

estimates of adjacent distances and turning angles. The result is a consolidated spatial

representation which is still a graph, but whose local metric labels are globally optimized
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to match the available egomotion measurements. We show that the embedded graph is

consistent with human behavior in a (virtual) non-Euclidean environment and argue that

it is a natural consequence of the optimal integration of repeated local measurements over

time.

Introduction

The cognitive map

The spatial long-term memory contains representations of places, landmarks, and local views.

A sequence of navigational actions connecting these representations is called a route and ani-

mals with such route knowledge are able to navigate between known places by following these

routes [1–4]. If knowledge about many different items, places, and routes is integrated and

novel routes and shortcuts can be inferred from previously learned route segments, the repre-

sentation is called a map [4–8]. The cognitive map is thus a form of declarative memory in the

sense that it characterizes “knowing what” or “knowing where” as opposed to the non-declara-

tive “knowing how” of routes or guidance information [6, 9].

A cognitive map is the most general form of spatial long-term memory, and it is believed

that many animals, including humans, have access to this representation [3, 7, 10]. This is

exemplified by the existence of neural correlates of position, the place cells [6, 11–13], which

encode the position of the animal within the current context via population activity.

The intuition of an internal map is relatively straight-forward, because it matches maps

encountered in everyday life: In general, such maps may be broadly characterized by two

frameworks: Euclidean metric maps and topological graphs. Euclidean metric maps, such as a

bird’s eye view of a city or a satellite image, assign unique coordinates to each position that

approximate the real-world geometry by preserving the metric relationships between posi-

tions. Topological graphs, such as a subway or bus chart or an instruction manual, describe

states and possible actions that lead from one state to another, rather than geometry.

The metric framework (Fig 1c) is considerably better suited to explain environments with a

Euclidean geometric structure, and, based on the Kantian notion of an a priori assumption of

absolute external space [14], it has often been argued that the cognitive map must likewise fol-

low the laws of the Euclidean metric to capture these properties [6, 7, 10, 15]. This theory is

supported by the existence of grid cells in the entorhinal cortex, which are believed to encode

metric path integration information [15–17].

The notion of an absolute Euclidean metric may be challenged, e.g., by pointing out that

the intuition of straight lines on a curved surface (or any surface that is not a plane) are actually

geodesics and not true straight lines in an Euclidean sense [4, 18, 19]. But even an approxi-

mately Euclidean or non-Euclidean metric map may be advantageous, since geometric rela-

tionships between places are preserved in a highly efficient manner. That is, distances, routes,

and shortcuts can be directly inferred from the map and need not be memorized individually.

This property enables metric maps to store an immense amount of data, making them power-

ful informational tools [10].

However, results from navigation experiments often disagree with the Euclidean metric

map hypothesis: Human performance in shortcutting or triangle completion from long-term

memory, which have been taken as evidence for an Euclidean representation, is highly unreli-

able with angular errors of over ±90˚ and angular standard deviations between 25˚ − 45˚ [3,

20–22]. The Euclidean metric postulates are often violated and angle and distance estimations

are systematically biased by features of the environment such as landmarks, junctions or
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region boundaries [3, 23–27], or the number and recency of preceding turns [17, 28, 29]. In

rats, place cells have been shown to stretch and shear following room deformation, while still

preserving topological information about the environment [30, 31]. These results imply that

space is encoded with lower fidelity than what a precise metric map would predict.

As an alternative, the comparatively weaker class of topological graphs is often proposed.

The environment is expressed through neighborhood or adjacency relations, forming a net-

work of places as graph vertices and paths or actions connecting them as edges [3, 17, 32–34].

The graph may be labeled with pairwise distance or angle measurements, but this information

need not adhere to the metric postulates and is therefore not metric (Fig 1a). Still, shortcuts

and novel routes can be derived via vector addition of the labels along paths in the graph;

indeed, Warren et al. (2017) [35] suggest that vector addition based on labeled graphs best

explains human performance in navigation experiments.

Nevertheless, poor navigational performance, biases, and large errors are not enough to

completely rule out a Euclidean metric representation because the map may be systematically

biased or distorted to large degrees while still being metric [3]. Overall, the errors of inferred

distances in distorted metric maps are likely smaller than in non-metric labeled graphs, where

distance labels are independent. A means to find such distorted metric representations by effi-

ciently exploiting all available distance information, is metric embedding.

Distorted maps and non-Euclidean environments

Each individual cognitive representation will generally be different due to acquisition order,

biases, and accumulation of measurement errors. One possible advantage of map-like repre-

sentations in spatial memory is the mutual refinement of (possibly conflicting) local position

information over time: As the agent explores the environment, it will repeatedly obtain dis-

tance and angle measurements of connections between the known places or graph states.

Fig 1. Cognitive map hypotheses. (a) Non-metric topological graph, labeled with distance measurements. The labels are independent of each other

and do not need to adhere to the triangle inequality. (b) Embedded graph from (a). To find a Euclidean embedding, the distance labels need to be

adjusted to create a valid configuration, for example by stretching or compressing the edges or “wiggling” on the vertices until the difference between

map and labels is minimized. As opposed to the non-metric labeled graph, changes to one label will therefore influence others. (c) Euclidean metric

map. Places are directly assigned coordinates based on their position in the world. Over time, the coordinates may be refined by repeated measurements

and the map will approach the Euclidean ground truth. The same can be expected from the embedded graph optimization if the labels are refined.

https://doi.org/10.1371/journal.pcbi.1011748.g001
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With a topological graph, repeated measurements of the same information could be used to

create more precise labels by averaging. However, the labels will always remain independent of

labels corresponding to adjacent connections and, in a triangle, might persistently violate the

triangle inequality which defines a mathematical metric (Fig 1a). In the following, we therefore

refer to this representation as the non-metric labeled graph.

Additional precision can only be gained if repeated measurements of one connection will

also improve estimates along other connections in the graph. This may for example be

achieved by metric embedding (Fig 1b). Metric embedding is a means of finding a representa-

tion of the non-metric labeled graph in 2D or 3D Euclidean space in a way that best reproduces

the spatial information contained in the graph. Since the acquisition of spatial memory is not

complete after a single pass through the environment but relies on the consolidation of many

local measurements, metric embedding seems to be a natural method for continuous integra-

tion of local information. In this sense, cue integration might be the main reason for organiz-

ing spatial representations in a metric framework.

If the measured labels are not perfect, Euclidean metric embedding can only approximate

the true Euclidean metric relations and will result in a distorted representation. The so embed-
ded graph could therefore be an alternative metric explanation for the large deviations in

human navigation, as opposed to the non-metric labeled graph.

In regular environments, differences between a non-metric labeled graph, an embedded

graph, and a Euclidean metric map will be minimal, because the models are likely to approach

the same underlying ground truth as measurements are refined. Therefore, cases need to be

considered in which the models would make different predictions. With the advent of immer-

sive virtual reality, a unique opportunity has opened up to present non-Euclidean environ-

ments, thus dissociating presented metric information from the underlying true Euclidean

positions [35–38]. The non-Euclidean manipulations have been shown to heavily influence

navigation but are usually not noticed by the subjects [35, 36].

Evidence from wormhole experiments

In the following, we focus on a specific example, Warren et al. (2017) [35], because the experi-

ment offers an excellent setup to investigate the hypotheses with respect to systematic distor-

tion and the data are available online.

Warren et al. (2017) [35] presented participants with a non-Euclidean environment and

argued that, if the cognitive map has a Euclidean metric, participants should have greater diffi-

culties in learning the non-Euclidean environment compared to control, because mismatches

between the cognitive map and the environment should occur. On the other hand, a non-met-

ric graph should have no such issues.

Using head-mounted display virtual reality, Warren et al. created a hedge maze augmented

with two invisible wormholes. The wormholes functioned as instant seamless teleportation

and 90˚ rotation between different parts of the maze while participants continued to walk nor-

mally in the real-life room, therefore creating a mismatch between maze position and path

integration information. Interestingly, only one out of fifty participants reported noticing any

kind of spatial anomaly in the maze.

Participants had to memorize object positions within the maze and were later asked to walk

direct shortcuts between them. For this, the participants were moved to a starting object and

had time to orient themselves. Then, the walls of the maze disappeared, and the participants

had to walk to the presumed position of a target object. The initial angles of the subjects’ trajec-

tories were measured and used as directional estimates to compare the non-metric labeled

graph and undistorted Euclidean map models.
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Warren et al. found that directional estimates were heavily distorted towards the worm-

holes. This is predicted by vector addition along the shortest path on a labeled graph but not

by straight lines in Euclidean ground truth coordinates. The authors thus rejected the Euclid-

ean map hypothesis in favor of the non-metric labeled graph, arguing that only a non-Euclid-

ean structure could explain the observed results [3, 35]. A distorted Euclidean map was briefly

considered but rejected on the basis that such a map “must still satisfy the metric postulates

[. . .] in the inertial coordinate system” [35]. However, the metric embedding is not a simple

integration of local position information (Warren’s “inertial coordinates”) but the mutual con-

solidation of distance and angle information over the entire graph. I.e., two different positions

in undistorted ground truth coordinates may very well occupy the same position in the dis-

torted embedding and vice-versa. Therefore, deviations from the ground truth do not imply

that the representation is not Euclidean, but only that the representation does not match the

ground truth.

We reexamined the data reported in Warren et al. (2017) [35] with respect to the possibility

of a distorted Euclidean map. In the following, we show that such a map can be found by first

creating a non-metric labeled graph for the maze and then embedding the graph into 2D

Euclidean coordinates. This is achieved by the minimization of the angle and distance differ-

ences between graph and map, following the method described in Hübner and Mallot (2007)

[39] and Mallot (2024) [4] for the embedding of view graphs. In an ordinary Euclidean envi-

ronment, the embedding will recover the ground truth coordinates, but in a non-Euclidean

environment, a residual error between embedding and local measurements must remain.

Because of this error, the models should make different predictions, and may be distinguished

by comparing their predictions to experimental data. That is, shortcuts derived from the

embedded graph should fall somewhere between the shortcuts from the other two models.

However, we found that both models, the non-metric labeled graph and its Euclidean met-

ric embedding, were able to predict the data equally well. Because the embedded graph is a

valid Euclidean map, it is better suited for shortcut generation and especially cue integration

than the non-metric alternative. We therefore refute the claim by Warren et al. (2017) [35]

that their findings cannot be explained by a Euclidean metric map and argue for the embedded

graph as a better alternative explanation.

Materials and methods

Data acquisition

The data used here are figures, measurements, and results from Warren et al. (2017) [35]. The

anonymized per-subject measurements are available as supplementary material online in the

Brown University Digital Repository (http://dx.doi.org/10.7301/Z0JS9NC5, retrieved in

November 2022). The relevant datasets contain measurements of the direction of individual

shortcuts between object pairs in the wormhole maze, given as angular difference between the

estimate and the straight-line direction in Euclidean ground truth coordinates. We estimated

these coordinates from pixel positions based on Fig 2B in Warren et al. (2017) [35] (Fig 2a)

and transformed the subject estimates into global angles (i.e., increasing counterclockwise

from the positive x-axis or east). The layout of the maze and example subject estimates are

shown in Fig 3.

Warren et al. (2017) [35] measured direction estimates in two separate experiments, one to

investigate shortcuts (Dataset “Route-finding and shortcuts”, see Fig 3b) and one to investigate

the ordinal reversal of landmark positions (Dataset “Rips and folds”, see Fig 3c). “Route-find-

ing and shortcuts” contains directional estimates of 10 subjects (5M, 5F) for four pairs of

objects for a total of 10 × 4 × 2 (bidirectional) = 80 measurements. “Rips and folds” contains
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directional estimates of 11 subjects (9M, 2F) for eight starting locations and three targets each

for a total of 11 × 8 × 3 = 264 measurements. For the purpose of this study, both datasets were

treated in the same way but were evaluated separately; this was done for direct comparison

and to avoid bias because some subjects may have participated in both studies. For further

information about the participants, hardware, and experimental setup please refer to the origi-

nal paper by Warren et al. (2017) [35].

Fig 2. Graph creation. (a) Vertex positions in the maze. Their pixel coordinates were considered the Euclidean ground

truth for the model. The maze was partitioned into straight segments and corners, and one vertex was placed per

corner. Two vertices, 12 and 35, were only used in a control graph without wormholes. (b) The corresponding

topological graph with edges through wormholes (red dotted lines). The graph was then labeled with local distance and

angle measurements based on the ground truth, except for the wormhole edges, which were manually adjusted to reflect

the locally distorted topology instead. Note that the distance along the wormhole edges is shortened but not zero.

https://doi.org/10.1371/journal.pcbi.1011748.g002

Fig 3. Maze and shortcut data. (a) Layout of the wormhole maze, redrawn from Warren et al. (2017) [35]. The yellow arrows show wormhole position

and magnitude. Touching one end of the arrow instantly and seamlessly teleported subjects to the other end. (b, c) Example directional estimates for

object pairs from the “Route-finding and shortcuts” dataset (Experiment 1 in Warren et al. (2017) [35]) and the “Rips and folds” dataset (Experiment 2

in Warren et al. (2017) [35]). The thin arrows show the Euclidean ground truth direction between objects, the short dotted lines the corresponding

subject estimates, and the thick solid line the average subject estimate. The length of the estimates has been normalized and does not reflect walked

distance. In (c), the colors indicate different goals.

https://doi.org/10.1371/journal.pcbi.1011748.g003
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Graph and map setup

Plausible Euclidean embeddings were found in two steps: First, a topological graph of the

maze was created and labeled with the veridical distances and angles. This graph was also used

to derive predictions for the non-metric labeled graph hypothesis, i.e., vector addition of the

labels along the shortest paths. Next, the graph was embedded into 2D Euclidean coordinates

by iterative minimization of a stress function [4, 39] describing the difference between the

coordinates and the local labels.

In general, the creation of the topological graph is a non-trivial problem with a possibly infi-

nite set of solutions consisting of any number of vertices, edges and measurements along the

maze. Therefore, good solutions have to be guessed. We used the ground truth of the worm-

hole maze as a basis (Fig 2a); due to its well-defined straight segments and corners, it can easily

be reduced to a simplified graph by placing one vertex per corner and one edge per straight

segment (Fig 2b). Formally, we define the graph G = {V, E} as a set of n vertices V = {v1, . . ., vn}

corresponding to places in the maze and edges E = {eij, ejk, . . .} describing maze arms connect-

ing the places vi to vj and vj to vk.
The algorithm for metric embedding is based on local distance and turning information

only, without the assumption of a global reference direction (e.g., north). It is therefore based

on triplets of neighboring places T = {(i, j, k)}, i.e., places that can be visited in sequence. For

each triplet, the local distances dij, djk and the turning angle αijk were measured in the ground

truth maze and added as labels to the topological graph. dij and djk describe the distances

between places i, j and j, k and αijk the heading change at j when moving from i to k. All labels

were taken from the required egomotion steps such that labels around wormholes differed

from the Euclidean ones. I.e., the labeled graph perfectly matches the local geometry encoun-

tered throughout the maze, including the passage through wormholes. The same labeled graph

was used for datasets from all subjects.

From the graph, a 2D Euclidean embedding X = {(x1, . . ., xn)} of the n vertices was derived

by minimizing the following stress function: The algorithm considers all measured triplets of

neighboring places T = {(i, j, k)} and their related distance and angle measurements (dij, djk,

αijk). Each place may appear many times as part of different triplets, and forward-backward

movements of the form (i, j, i) are also considered (with αijk = 180˚). The stress function can

then be written as

f ðx1; :::; xnÞ ¼

X

ði;j;kÞ2T

l1½ððxj � xiÞ � ðxj � xkÞÞ � dijdjkcosaijk�
2
þ

l2½ððxj � xiÞ � ðxj � xkÞÞ � dijdjksinaijk�
2
:

ð1Þ

here, (�) denotes the dot product and (�) the third component of the cross product, (a�b)≔
a1b2 − a2b1, which is twice the area of the triangle (i, j, k). The constants λ1, λ2 can be used to

weigh the components based on their variances [4]; we chose λ1 = λ2 = 1.

Finding an embedding that minimizes this stress function is a nonlinear optimization prob-

lem. Solutions may for example be found with iterative numerical approximations like New-

ton’s method. We used the quasi-Newton method Sequential Least Squares Programming

(SLSQP), as implemented in the SciPy 1.10 optimize Python library [40], credited to [41].

The resulting embedding will be a Euclidean metric map of the graph’s vertices with an

arbitrary global orientation, but it is not a complete distorted map of the wormhole maze in

the sense that it only assigns coordinates to the vertices but not to arbitrary places. The dis-

torted position of other places may be found by adding them as additional vertices to the
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graph before embedding or by interpolation. Nevertheless, the embedding is sufficient to

derive directional predictions.

Model comparison and data analysis

Next, the non-metric labeled graph and its Euclidean embedding were used to derive predic-

tions about shortcut directions between object pairs. For the non-metric labeled graph, predic-

tions were obtained by finding the shortest path between start and target object using

Dijkstra’s algorithm, as implemented in the NetworkX 3.0 Python library [42]. Along the path,

the angles and distances were summed up to a vector, and the global direction of the resultant

vector relative to the ground truth coordinates was considered the final shortcut prediction. In

the embedded graph, shortcuts were simply the straight lines from start to target objects.

The predictions of the two graph models were compared to the subject data and the predic-

tion error was measured. Because the embedded graph has no defined reference direction, sub-

ject estimates had to be considered relative to a local reference. We used the respective local

angle between the starting arm and measurement or prediction, which is independent of the

reference direction.

For each model, the mean prediction errors and between-subject angular deviation were

calculated for the group, and the within-subject angular deviation separately for each partici-

pant. The errors were compared with the two-sample Watson-Williams F-test for circular data

[43], as implemented in the PyCircStat Python library [44]. The null hypothesis assumes that

the samples come from underlying distributions with the same mean [43], i.e., that the models

explain the subject data equally well; note that this does not mean that the models make the

same prediction. Cohen’s d was used as a measure for effect size. All statistical tests were two-

tailed with α = 0.05.

We then compared the models using the Bayesian information criterion (BIC) [45]. The

BIC is based on the maximum likelihood of observing the data given a specific model and

penalizes the number of free parameters in the model. Generally, a model with a lower BIC is

preferable.

To obtain likelihood functions for the prediction errors, we added a noise term describing

the inter-subject variation to both models. The noise was modeled as a von Mises distribution

using the empirical prediction error means and variances. In the embedded graph, the free

parameters are the n × 2 coordinates of the 2D Euclidean embedding X and a noise term for a

total of 82 free parameters. To fully specify the non-metric labeled graph model, the required

parameters are the set of all distance labels d and angle labels α, as well as the noise term for a

total of 162 parameters. Note that these definitions are only valid in the respective Euclidean-

and graph-based frameworks which, for example, come with different distance functions

(straight lines in the Euclidean framework and the shortest path in the graph-based

framework).

Results

Embeddings

The numerical optimization method may find different local minima. Which solution is found

depends on the starting point in the solution space, i.e., the initial vertex positions X = {(x1,

. . ., xn)}. We restarted the optimization procedure 1000 times with random initial vertex posi-

tions X � U2ð0; 20Þ and found two local minima with stress values f(X1) = 450.68 (Fig 4c) and

f(X2) = 367.36 (Fig 4b). In the following, we report results from the first embedding, which

resulted in better fits to the subject data.
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Dataset 1: Route-finding and shortcuts

We derived shortcut predictions from the non-metric labeled and embedded graph models

and compared the predictions to human shortcut estimates from Warren et al. (2017) [35],

dataset “Route-finding and shortcuts” (Fig 5a–5c). The resulting angular prediction error was

measured. Rayleigh tests on error direction revealed non-uniform distributions, z(10) = 9.59, p
<. 001 for the non-metric labeled graph and z(10) = 9.57, p<. 001 for the embedding.

The non-metric labeled graph model showed an average angular error of −12.4˚ with an

angular deviation (AD) of 11.76˚ and the embedding an average error of −15.26˚, AD = 11.98˚.

This difference was not significant (F(1, 18) = 0.2, p = .63) with a small effect size (d = .22). I.e.,

the shortcut directions derived from the graph model were not significantly closer to the sub-

ject data than the shortcut directions derived from the embedding or vice versa.

The within-subject angular deviation of the errors was fairly high but also similar for both

models, with an average of 29.75˚ for the graph model and 32.15˚ for the embedding. Statistical

comparison (F(1, 18) = 0.6, p = .42, d = .51) again revealed no significant difference. Given the

similar prediction errors but large difference in free parameters, the Bayesian information cri-

terion strongly favored the embedding over the non-metric labeled graph (BICembedding =

221.7 vs. BICnon-metric = 405.97).

Dataset 2: Rips and folds

For the purpose of this study, the “Rips and folds” dataset was treated the same as the “Route-

finding and shortcuts” dataset, with the only difference being the number of participants (11

vs. 10 in dataset 1) and estimates per participant (24 vs. 8 in dataset 1). The datasets were ana-

lyzed separately for the sake of comparison.

We again compared prediction errors of the non-metric labeled graph model and its

Euclidean embedding (Fig 5d–5f). Rayleigh test on error direction revealed non-uniform dis-

tributions, z(11) = 10.78, p<. 001 for the non-metric labeled graph and z(11) = 10.77, p<. 001

Fig 4. Embedded graph. (a, b) References for comparison. The unembedded graph (as in Fig 2) and an another embedding which

was also found by the optimization method. The second embedding performed worse on the subject data and was not further used.

(b) The embedded graph, i.e., the labeled graph with the vertices at coordinates that minimize the difference between map and labels.

The orientation of the embeddings is arbitrary; here, they were rotated so that the edge (2, 3) is horizontal. The red dotted lines show

the edges that pass through wormholes. (d) Sketch of the distorted wormhole maze according to the embedding in (c). The sketch

shows how the embedding might be represented by a subject. Edges that cross each other in the embedded graph could for example

be rationalized as multi-level paths, leading to a 3D representation. Alternatively, in a purely 2D map, the arms would simply

intersect. Note that the edges have no coordinates in the embedding but are simply lines in the adjacency matrix.

https://doi.org/10.1371/journal.pcbi.1011748.g004
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for the embedded graph. The non-metric labeled graph showed an average angular error of

5.68˚, AD = 8.12˚, and the embedded graph an error of 2.37˚, AD = 9.35˚. This difference was

again not significant (F(1, 20) = 0.72, p = .41) with a small effect size (d = .39). Within-subject

angular deviation of the errors was also high, with an average of 42.36˚ for the non-metric

labeled graph model and 33.77˚ for the embedding. This difference was trending towards sig-

nificance (F(1, 20) = 4.07, p = .057) with a large effect (d = .85).

Although dataset 2 contained many more measurements than dataset 1, there was still no

significant difference between the prediction errors, i.e., the models again predicted the data

equally well. As before, the Bayesian information criterion strongly favored the Euclidean

embedding over the non-metric alternative (BICembedding = 233.66 vs. BICnon-metric =

425.92).

Discussion

Using subject data from Warren et al. (2017) [35], we compared two cognitive map models,

the non-metric labeled graph and the embedded graph. We found both models predicted the

Fig 5. Results. (a-c): Dataset “route-finding and shortcuts”, (d-f): Dataset “rips and folds”. (a) Shortcut predictions

of the non-metric labeled graph (dotted lines) and average subject estimates (solid lines), plotted on ground truth

coordinates. The gray vertices show how the graph would continue on routes through wormholes. (b) Shortcut

predictions of the embedded graph, lines as in (a). The subject estimates were rotated to match the local orientation of

the originating maze arm. (c) Distribution of the prediction error. The difference between the models is not

significant, i.e., they predict the data equally well. (d) Example shortcut predictions (dotted lines) and subject estimates

(solid lines) for three of the 24 object pairs in the “rips and folds” dataset. (e) Shortcut predictions of the embedded

graph for the same object pairs as in (d). (f) Distribution of the prediction error. The difference between the models is

also not significant on this dataset.

https://doi.org/10.1371/journal.pcbi.1011748.g005
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data equally well, i.e., both models made prediction errors with a similar magnitude and distri-

bution. Given the data, we therefore found insufficient evidence to reject the null hypothesis.

The Bayesian information criterion, on the other hand, strongly favored the Euclidean

embedding in both cases. Due to the similar predictions, the difference in BIC scores are

largely a result of the different number of free parameters needed to fully specify the models.

In this sense, the metric constraints of the Euclidean embedding are advantageous, leading to a

simpler model. In the non-metric labeled graph, each label is independent of other labels and

must therefore be fully specified. Still, due to the non-Euclidean property of the wormhole

environment, a perfect Euclidean embedding cannot exist and a difference between the models

must remain. It is therefore surprising that the lack of metric constraints in the non-metric

labeled graph did not lead to significantly smaller prediction errors.

In the original study, subjects explored the environment by walking continuous paths and

thereby obtained information not only about the place-to-place distances and turns but also

about the overall connectivity of the network. The conclusions drawn in Warren et al. (2017)

[35] imply that this network information is not used for the shortcut task, which is thought to

be solved by vector addition along the direct path only. Here, we showed that the behavioral

data are also consistent with the idea of consolidating both distance and network information

in a metrically embedded graph. We thus refute the conclusion in Warren et al. (2017) [35]: it

is not necessary to discard Euclidean metric properties and to reduce the representation to a

non-metric framework in order to explain the observed behavior.

The main difference between the vector navigation in the labeled graph and the embedded

graph suggested here lies in the treatment of repeated distance and angle measurements during

prolonged navigation. Repeated measurements might simply be used to improve the estimates

of distances and angles for individual labels without exploiting the constraints that these mea-

surements impose on adjacent labels and indeed on the entire graph. Metric embedding, in

contrast, allows to make use of these constraints such that improved estimates of one edge will

lead to better distance and angle estimates everywhere. In this view, the main advantage of hav-

ing a metrically embedded representation of space is not so much its resemblance to a geo-

graphic map, but the possibility to integrate local and repeated measurements into a

consolidated structure. The result is still a graph, but with metrically embedded vertices from

which directions can be derived directly without the “mental path integration” procedure sug-

gested by Warren et al. (2017) [35]. This finding is also strongly supported by the large differ-

ence in BIC score between the models arising from the difference in required parameters to

specify them.

Note that even an optimal metric embedding is not necessarily equivalent to the Euclidean

ground truth; cognitive space is not natural space, and the internal representation may still be

systematically distorted, even under normal Euclidean circumstances. This might explain poor

navigational performance even after prolonged exposure to the environment (e.g. [21]).

Importantly, an internal Euclidean representation also does not preclude the possibility of

biased inference about the world from that map. For example, it has long been known that

judgments about distance and directions between places are biased by context and asymmetric

[26, 46], which is in principle incompatible with a Euclidean metric map. However, it is possi-

ble to arrive at biased estimations if the estimation function itself is biased and context-depen-

dent, even if the representation is not [46]. Here, distances and angles are explicitly not stored

in the metric Euclidean representation and have to be inferred, which leaves room for such

biases. Of course, it is difficult to disentangle factors caused by the representation from factors

caused by the processing [26], but this is also true for judgments derived from the labeled

graph model, and there is room for compromise:
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Non-metric topological and metrically embedded information may also coexist. Combined

models have previously been proposed, for example for different levels of spatial hierarchy [47,

48], where the local Euclidean structure of individual places or regions is known but higher-

level relations between different regions are encoded as a graph. For example, a local plaza

may be well-represented by a Euclidean metric map, but directions to other places within the

city may only be memorized as a sequence of turns. In the context of this present study, this

relates to the problem of what constitutes a vertex of the graph. In our simulation, we placed

vertices at all corners of the maze, but other choices are possible. A neural network model

assuming metric representations within small regions and categorical knowledge of these

regions themselves has been presented by Baumann and Mallot (2023) [49].

Topological and metric information may also be used under different environmental con-

straints or at different stages of exploration and familiarization [17]. Initially, the environment

may be encoded in terms of adjacency relations and individual routes, which then over time is

consolidated in an encompassing map as the amount of information increases. This scenario is

supported by reports that grid cell firing fields are initially anchored by the walls of individual

compartments, but with experience extend across boundaries to encompass a larger space [50,

51]. The embedding algorithm presented here may also be considered a support, because it

describes a transformation of local position information under topological constraints into a

Euclidean metric map.
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