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Abstract

Positive and negative affective states are respectively associated with optimistic and pessi-

mistic expectations regarding future reward. One mechanism that might underlie these

affect-related expectation biases is attention to positive- versus negative-valence features

(e.g., attending to the positive reviews of a restaurant versus its expensive price). Here we

tested the effects of experimentally induced positive and negative affect on feature-based

attention in 120 participants completing a compound-generalization task with eye-tracking.

We found that participants’ reward expectations for novel compound stimuli were modulated

in an affect-congruent way: positive affect induction increased reward expectations for com-

pounds, whereas negative affect induction decreased reward expectations. Computational

modelling and eye-tracking analyses each revealed that these effects were driven by affect-

congruent changes in participants’ allocation of attention to high- versus low-value features

of compounds. These results provide mechanistic insight into a process by which affect pro-

duces biases in generalized reward expectations.

Author summary

Positive affective states are associated with optimistic future expectations, and negative

affect is associated with pessimistic future expectations. However, the cognitive mecha-

nisms that underpin these affect-congruent shifts in reward expectations remain unclear.

To investigate this question, we focused on feature-based attention, the process by which

attention to the different features of a stimulus influences the estimated value of that stim-

ulus. We formulated a new compound generalisation paradigm to investigate how indi-

viduals allocate attention to high- versus low-value components of novel compound

stimuli, and adopted a multi-method approach combining eye-tracking and computa-

tional modelling of behavioural data. Crucially, our central experimental manipulation

was a controlled between-subjects laboratory affect induction during the generalisation

phase of the task. The results of this study clearly identify feature-based attention as a cog-

nitive mechanism by which affective states influence reward expectations: in positive
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affective states, participants attended more strongly to high-value cues within compound

stimuli (and therefore formed more optimistic reward expectations for the compounds).

In negative affective states, the converse was true: participants attended more strongly to

low-value cues within compound stimuli, and therefore formed more pessimistic reward

expectations for the compounds. These behavioural and modelling findings were sepa-

rately corroborated by evidence from eye-tracking data.

Introduction

Affect is deeply intertwined with expectations about future reward and punishment. Whereas

psychological wellbeing and positive affect are linked with optimistic future expectations, neg-

ative affect is associated with pessimistic expectations [1, 2]. Clinically, various symptoms of

mood disorders can be viewed as changes in expectation formation: mania is associated with

grandiose positive expectations [3, 4], whereas depression and anxiety are marked by pessimis-

tic expectations about future reward and punishment [4, 5]. It is therefore critical to under-

stand how affect might influence cognitive processes that underlie expectation formation.

One process by which humans and other animals form reward expectations for novel sti-

muli is feature-based generalization [6–9]. In choosing whether to rent an apartment, for

example, a prospective renter might consider features such as its floorspace, the quality of its

furnishings, and its neighborhood. Using a weighted combination of these features, they can

form a generalized reward expectation (i.e., a reward expectation formed via feature-based gen-

eralization) that determines their willingness to rent the apartment.

How people form generalized reward expectations for a novel stimulus depends on how

they allocate attention to its different features. For example, if a prospective renter were to

attend more to positively valenced stimulus features (i.e., features of the apartment that are

predictive of reward, such as good-quality furnishings and appliances), they would form a

higher reward expectation for the apartment than if they attended more to its negatively

valenced features (such as a dangerous neighborhood or small floorspace). Feature-based
attention [10–13] is therefore a crucial determinant of reward expectation: if attention to a

stimulus is biased toward its high-value features, then reward expectations will be inflated as a

result, and vice versa if attention is biased towards low-value stimulus features.

Separately, human visual attention is known to be modulated by affect in an affect-congru-
entmanner, such that subjects preferentially attend to visual stimuli that are congruent with

their affective state. Whereas positive affective states facilitate attentional selection of positively

valenced visual stimuli [14–16], negative affect is associated with increased attention to nega-

tively valenced stimuli [16–18]. These results are consistent with affect-congruent informa-

tion-processing biases across a number of species and cognitive domains (e.g., [19–23]),

though it should be noted that other, more complex patterns of interaction between affect and

attention have also been demonstrated [24–28].

If affective biases alter value-based attention in the same affect-congruent manner as they

do visual selective attention, we would predict affect-congruent changes in generalized reward

expectations as a result. That is, we would predict positive affect to produce higher generalized

reward expectations (via increased attention to high-value stimulus features), and negative

affect to produce lower reward expectations (via increased attention to low-value stimulus fea-

tures). This interaction between affect and attention should alter choice patterns, a hypothesis

that has not previously been tested in the domain of decision-making.
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To test this hypothesis, we combined eye-tracking with a novel compound-generalization
task [29–31]. In a learning phase, participants first learned to associate a set of simple visual

cues with differing reward probabilities; then, in a generalization phase, participants were pre-

sented with choices involving novel compounds composed of pairs of simple cues from the

learning phase. To test the effects of affect on reward expectation, participants experienced

either a positive, neutral, or negative affect induction during the generalization phase of the

task. We hypothesized that we would observe an increase (decrease) in generalized reward

expectations for novel compounds following a positive (negative) affect induction, and that the

mechanism for this effect would be affect-congruent changes in attention (i.e., increased atten-

tion to high-value cues in the positive affect group, and vice versa in the negative affect group).

Results

120 adult participants (77 female, 43 male; mean age (SD) = 21.34 (4.40)) completed a novel

“space mining” compound-generalization task designed to assess the effects of affect on the

distribution of attention over different cues within compound stimuli (see Fig 1 and Methods).

Participants were told they would be mining minerals from different “planet” stimuli, where

each planet could contain either a valuable mineral (termed “positivium”) or a worthless min-

eral (“negativium”). Different planets were denoted by different cues (rune symbols), each of

which was associated with a different probability of yielding the valuable mineral. The experi-

ment used a between-participants design for affect inductions, with participants pseudo-ran-

domly allocated to receive either positive, neutral, or negative affect inductions during the

task.

The task was divided into three phases (Fig 1A). The first phase involved learning the values

of six different cues, and the second assessed whether participants had successfully learned

these values. In the third phase, the critical test of our hypotheses, participants chose between

compounds of the previously learned cues with no new outcomes. These generalization choice

trials were interspersed with an affect-induction procedure (positive, neutral, or negative,

between participants; see Methods). Eye-tracking was conducted throughout all three phases

of the task, and subjective current mood was elicited at the start and end of each block. We

also collected several self-report measures quantifying individual differences in current mood

state and potential symptoms of mood disorders (trait depression and hypomania as well as

state positive and negative affect; see Methods for further information), since we reasoned that

these individual differences might moderate the effects of an affect induction on behavior [32,

33]).

Participants accurately learned values of simple cues

In the first phase of the task, participants learned the reward contingencies of six distinct rune

cues via a Pavlovian learning procedure (Fig 1B). For each participant, there were two low-

value cues (reward probability of 25%; hereafter denoted L), two medium-value cues (reward

probability of 50%; denotedM) and two high-value cues (reward probability of 75%; denoted

H). In the second phase (Fig 1C), we verified that participants had successfully learned to dis-

tinguish between the different cues by offering them choices between all pairs of cues (without

feedback, to avoid unequal exposure to the outcomes of each cue type due to the participant’s

specific choices).

Participants displayed good overall learning (mean proportion correct in simple cue test tri-

als = 0.89, SD = 0.11). As expected given that the learning phase of the task preceded the subse-

quent between-participants affect induction, there was no evidence for a significant difference

in learning between different affect induction groups (β = −0.12, p = .41, mixed-effects logistic
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Fig 1. Task structure. A. The task comprised three phases, with affect inductions (90-second emotional film clips) presented prior to each of three blocks

in the compound-generalization phase. For positive/negative affect groups, the induction was preceded by one additional compound-generalization block

to measure generalization in neutral affect. B. Sequence of visual events for phase 1 (simple cue learning). One cue was presented on each trial, to the left or

right of a central fixation cross; after a “planet” was selected for “mining”, its outline color changed to green to indicate the participant’s selection. The

chosen planet’s outline color changed again to purple after a jittered interval, signifying that the planet could now by mined. At this point, the participant

could press any key to reveal the outcome, which was indicated both by a change in planet fill color to blue (win) or orange (non-win) and a distinctive win

or non-win sound. C. Sequence of visual events for task phases 2 and 3 (simple cue test and compound-generalization test). The structure of each trial was

the same as in phase 1, except that two stimuli were presented and the participant could choose between them, and feedback was uninformative (a neutral

purple color and neutral sound). Three example cue configurations are shown, representing (from top to bottom) a simple-versus-simple choice in the

simple cue test phase, a simple-versus-compound choice in the compound-generalization phase, and a compound-versus-compound choice in the

compound-generalization phase. Cues in compound stimuli were symmetrically offset from the center of the stimulus, ensuring that the distance of all cues

from fixation was approximately equal.

https://doi.org/10.1371/journal.pcbi.1011707.g001
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regression; Fig 2A). There were also no significant associations between performance at test

and individual differences in either baseline self-reported mood valence (Spearman ρ = .05,

p = .56) or arousal (Spearman ρ = .05, p = .60).

We also assessed post-choice mining times (the response time for revealing the outcome

after the chosen planet became ready to mine). Consistent with a general approach bias

towards higher-value stimuli, mining time was significantly modulated by cue value during

the simple cue test (β = −0.09, p = .03, mixed-effects linear regression), with a faster mining

time for higher-value simple cues (mean response time [SEM] for high-value cues: 505.5 ms

[19.3]; medium-value cues: 519.9 ms [21.5]; low-value cues: 548.8 ms [25.3]).

Fig 2. Behavioral results. A. The simple cue test evidenced no significant between-groups differences in choice accuracy (i.e., proportion of trials on which

the higher-value cue was chosen). B. As expected, there was a significant effect of affect-induction videos on self-reported mood valence (β = 2.63, p< .001;

mood reports standardized within subject with reference to the average between-block mood change in the learning blocks, where no videos were

presented). C. In the compound-generalization phase, there were no significant between-groups differences in choice accuracy (the proportion of trials in

which the compound with the higher mean value was chosen). D. There was, however, a significant between-groups difference in preference for the L/H
stimulus as opposed to theM/M stimulus in compound probe trials (β = 0.79, p< .001). E. There was also a significant between-groups difference in

preference for the L/H stimulus as opposed to theM cue in simple probe trials (β = 0.56, p = .004). F. Preference for the L/H stimulus in simple probe trials

and preference for the L/H stimulus in compound probe trials were positively correlated (Spearman ρ = .81, p< .001). Dot color reflects participant

condition as per subplots A-E. For all panels, groups are presented as mean ± 95% CI. Points in scatterplots represent condition means for individual

participants, and are jittered to prevent overplotting (horizontal jitter in subplots A-D, 2% horizontal and vertical jitter in subplot F).

https://doi.org/10.1371/journal.pcbi.1011707.g002
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Affect inductions successfully induced positive and negative affect

In the third phase of the task, participants chose between pairs of options involving novel com-

pounds of cues from the earlier learning phase. To measure the effects of affect on compound

generalization, this phase of the task was conducted with a between-participants video-based

affect induction, such that each participant saw either three positive videos, three neutral vid-

eos, or three sad videos (one video at the start of each block). Further details of affect-induction

stimuli, as well as of a separate affect-induction validation experiment, are presented in the

Methods and in S1 Text, Section A. Participants in the positive and negative affect-induction

groups also completed an additional block of compound-generalization choice trials prior to

the first affect induction. This enabled our computational modelling analyses of behavior (see

below) to quantify the effects of the affect induction as a within-subjects change from baseline

for these participants (see Methods).

As expected, a mixed-effects linear regression revealed that the affect induction significantly

modulated the valence of participants’ self-reported mood (β = 2.63, p< .001; Fig 2B), but did

not modulate their self-reported arousal (β = 0.44, p = .16). For both valence and arousal, there

was no significant effect of video number on self-reported mood change (valence: β = −0.22,

p = .23; arousal: β = −0.09, p = .39), and no significant interaction between video group and

video number (valence: β = −0.21, p = .34; arousal: β = −0.07, p = .60), suggesting that the influ-

ence of videos on self-reported mood did not change over time.

Participants treated compound stimulus values as weighted averages of

simple cue values

After each affect induction, participants were presented with novel compound stimuli com-

prised of pairs of the simple cues that they had learned about previously (Fig 1D; see Methods

and S1 Text, Section B for further information on the composition of stimulus choice pairs).

Based on previous studies of compound generalization, and given no explicit instruction on

how to estimate the values of these new stimuli, we assumed that participants would estimate

the value of a compound stimulus as a weighted average of the values of the cues within the

compound [6, 9]. A qualitative prediction of a weighted-average rule is that the value of a com-

pound stimulus should be proportional to the mean of the values of its constituent cues (e.g.

an L/H [25/75] stimulus should be treated as more valuable than an L/M [25/50] stimulus, but

less valuable than anM/H [50/75] stimulus). (This prediction encounters a limit as the weight-

ing on any single cue approaches 100%, in which case the value of the compound would be

solely determined by the value of the single attended cue.

Fig 2C shows this predicted qualitative pattern in our data. In choices between compound

stimuli with different mean cue values, participants tended to choose the stimulus with the

higher mean value (mean choice proportion for higher-mean-value stimuli (SD) = 0.71 (0.13);

p< .001, Wilcoxon test against chance). This pattern did not differ significantly across affect

groups (β = −0.09, p = .38, mixed-effects logistic regression) or across different blocks of the

task (β = −0.003, p = .95, mixed-effects logistic regression). In particular, we observed the pre-

dicted qualitative pattern for the choices described above: participants showed a significant

preference for the higher-mean L/H stimulus over the lower-mean L/M stimulus when these

were the two choice options presented (L/H stimulus chosen on 63% of such trials; p< .001,

one-sample t-test against chance), and a significant preference for theM/H stimulus over the

L/H stimulus (M/H stimulus chosen on 70.2% of trials; p< .001, one-sample t-test against

chance).

For simple-versus-compound trials, we found that participants’ choice behavior was sensi-

tive to the value of both cues within each compound: we found that theM simple stimulus was
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chosen significantly more frequently inM vs. L/M trials (mean choice proportion = 61.2%)

than inM vs. L/H trials (mean choice proportion = 48.3%; t(116) = 5.13, p< .001, paired sam-

ples t-test). By contrast, participants chose theM simple stimulus significantly less frequently

inM vs.M/H trials (mean choice proportion = 24.9%) than inM vs. L/H trials (t(116) = −9.30,

p< .001, paired samples t-test). These results indicate that participants did not simply attend

to the highest- or lowest-value cue in a compound, but attended to both its constituent cues

when estimating the value of a compound stimulus.

Finally, as in the simple-cue test phase, planet mining time for compound stimuli was sig-

nificantly modulated by mean cue value (β = −0.18, p = .04, mixed-effects linear regression),

such that participants were significantly faster to mine higher-mean-value compounds (mean

response time [SEM] forM/H compounds: 464.4 ms [16.1]; for L/H orM/M compounds:

470.0 ms [14.4]; for L/M compounds: 495.5 ms [17.7]). These findings support the explanation

that participants estimated compound cue values using a linear weighted average.

Affect inductions produced affect-congruent biases in valuation of

compound stimuli

The primary goal of the compound-generalization phase was to test participants’ allocation of

attention to the different simple cues contained within each compound stimulus. The main tri-

als of interest for this analysis were ‘probe trials’, in which participants chose between an L/H
compound stimulus and either an equal-mean simple M stimulus (simple probe trials) or an

equal-mean compoundM/M stimulus (compound probe trials). In these trials, the value the

participant assigned to the L/H stimulus—and, therefore, their preference for this stimulus

over the alternative—depended on the respective attention weights assigned to the L andH
cues. If more attention was paid to the L cue, the estimated value of the compound L/H stimu-

lus would be lower, and the participant would therefore tend to chose it less frequently than

the alternative stimulus (eitherM orM/M), and vice versa if more attention was given to theH
cue.

Crucially, mixed-effects logistic regression analyses revealed a clear modulation of prefer-

ence for the L/H stimulus by affect group, both in compound probe trials (Fig 2D; β = 0.79,

p< .001) and in simple probe trials (Fig 2E; β = 0.56, p = .004). As we hypothesized, this mod-

ulation was consistent with affect-congruent shifts in attention such that across trial types,

preference for the L/H stimulus was strongest in the positive affect group, intermediate in the

neutral affect group, and weakest in the negative affect group.

For compound probe trials, there was a significant interaction between affect group and

block number, such that the effect of affect induction on choice behavior weakened over time

(S1 Text, Section C); compound probe trials: β = −0.27, p = .006; cf. simple probe trials: simple

probe trials: β = −0.19, p = .07). The main effect of block number on choice behavior was not

significant for either trial type (compound probe trials: β = 0.14, p = .07; simple probe trials:

β = −0.08, p = .30). There was no evidence for an association between any individual-differ-

ence measure and performance in either probe trial type, and no interaction between any indi-

vidual difference measure and the strength of the effect of the affect induction on choice

behavior (all p> .10; see Methods for a list of individual-difference measures).

Choice behavior on both simple and compound probe trials showed good internal consis-

tency (Spearman-Brown-corrected split-half reliability: simple probe trials ρ = .85, compound

probe trials ρ = .88). In particular, preference for the L/H stimulus was strongly positively cor-

related across simple and compound probe trials (Fig 2F; Spearman ρ = .81, p< .001). These

psychometric results suggest that both probe trial types reliably measure the same underlying

behavioral phenotype.
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Lastly, we also investigated between-groups differences in overall preferences for simple

versus compound stimuli over all choice pairs (S1 Text, Section C). This analysis provides a

measure of whether the affect induction influenced preferences for compound stimuli in gen-

eral (including but not limited to simple probe trials). Similar to the observed effects in simple

probe trials alone, we found evidence for an affect-congruent modulation of preference for

compound stimuli, such that preference for compound stimuli was strongest in the positive

affect group, intermediate in the neutral affect group, and weakest in the negative affect group

(β = 0.33, p = .01, mixed-effects logistic regression). Once again, there was a significant interac-

tion between this effect and block number, such that between-groups differences became less

pronounced over time (β = −0.15, p = .03, mixed-effects logistic regression). However, note

that since all non-compound cues were M cues, simple preference for the H or L cues could

manifest as preference for compound stimuli in this analysis. In our modelling of task behavior

(below) we tease apart these two effects.

The interactions between affect group and block number for both simple and compound

probe trials suggest that the affect induction’s effect on behavior weakened over time, despite

there being no block-wise differences in the effect of videos on self-reported affect. It is possi-

ble that initial surprise at the occurrence of compound stimuli might have resulted in greater

overall salience of compounds in early compound-generalization blocks. In this case, the

greater effect of the affect induction on behavior in earlier blocks might have resulted from the

fact that more attention was initially paid to these compound stimuli in absolute terms [34],

resulting in greater downstream effects of the affect induction on behavior. See S1 Text, Sec-

tion C, for analyses of choice behaviour in non-probe trials during the compound generaliza-

tion phase of the task.

Computational modelling of behavior captured the effects of affect on

attention

We next turned to computational modelling to dissect the influence of affect on compound

generalization. We used a modelling framework (see Methods) in which the values of com-

pound stimuli were assumed to be an attention-weighted linear combination of the values of

simple cues within the compound (denoted vj), multiplied by a parameter ϕ that captured the

non-specific tendency for participants to prefer compound stimuli to simple stimuli or vice

versa:

VðcompoundÞ ¼ � �
XN

j¼1

Aj � vj ð1Þ

The attention weights (Aj) for each cue in a compound were allowed to vary as a function of

the relative value of each simple cue, such that attention might be biased either towards or

away from high-value cues, with individual differences controlled by an αV parameter. The rel-

ative influence of the simple cue values were then normalized to ensure that the attention

weights for all cues within a compound summed to 1:

Aj ¼
exp ðaV � vjÞ

PN
k¼1

exp ðaV � vkÞ
ð2Þ

Eq 1 presents the model in its general form. For compounds of two cues like those in the

present study, this equation can also be expressed as V(compound) = ϕ � (A1 � v1 + A2 � v2),

where A2 = (1 − A1) and 0� A1, A2� 1.
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We assumed that choices between stimuli were made on the basis of stimulus values using a

softmax policy-mapping function, with individual differences in the stochasticity of the value-

to-policy mapping controlled by the inverse temperature parameter β. As such, the full frame-

work accounted for individual differences in behavior using three parameters per participant:

the compound preference parameter ϕ, the attention-to-value parameter αV, which was our

primary parameter of interest, and the softmax inverse-temperature parameter β.

We conducted a model-recovery analysis to ensure that our experimental design was able

to differentiate between models in which different combinations of these parameters were free

to vary (see Table 1). That is, we simulated data from each model, and tested whether each

dataset was correctly identified as having been generated by the relevant model using our

model-comparison procedure. The results, reported in S1 Text, Section D, indicated that the

models were appropriately identifiable on the basis of data collected in our task. S1 Text, Sec-

tion D also reports the results of a parameter-recovery analysis, which indicated that all of the

parameters in each model could be estimated with adequate accuracy by our model-fitting

procedure.

Modelling of neutral-affect data. First, we sought to determine whether all the above

parameters were necessary to account for participants’ task behavior in the absence of an affect
induction. That is, we compared the full model to simpler models that involve subsets of the

three parameters using all choices of participants in the neutral affect group and choices of par-

ticipants in the positive and negative groups in the pre-induction baseline block only.

To do this, we formulated four models in which different subsets of the three parameters

were free to vary across participants (Table 1). We first conducted a model-recovery analysis

to ensure that our experimental design was able to differentiate between these models. For

this, we simulated data from each model, and tested whether each dataset was correctly identi-

fied as having been generated by the relevant model using our model-comparison procedure.

The results, reported in S1 Text, Section D, indicated that the models were appropriately iden-

tifiable on the basis of data collected in our task.

We then fit the four models to choice data using Hamiltonian Monte Carlo estimation (see

Methods), and compared models using standard comparison statistics for hierarchical Bayes-

ian models (see Methods). The results, reported in Table 2, indicated that the full model (#4),

in which all three parameters were free to vary across participants, provided the best overall

account of participants’ choices in phases 2 and 3 of the task, even when accounting for (and

penalizing in the model comparison) additional degrees of freedom. This suggested that each

of the parameters corresponds to a meaningful dimension of individual variability in behavior.

Modelling the effects of the affect induction. We next considered which of the two

major parameters in Model 4 (αV and ϕ) were modulated by the affect induction. We did not

consider modulations of the softmax inverse temperature parameter β, since variation in this

Table 1. First-stage computational models.

Model # Description Free parameters

1 Baseline β

2 Baseline with compound multiplier β, ϕ
3 Value-weighted averaging β, αV
4 Value-weighted averaging with compound multiplier β, ϕ, αV

Note: Simplified models (i.e., those without the full set of free parameters, #1–3) were created by setting non-free

parameters to the parameter values necessary to eliminate their effect (0 for the additive parameter αV; 1 for the

multiplicative parameter ϕ).

https://doi.org/10.1371/journal.pcbi.1011707.t001
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parameter can simply be an index of a model’s overall goodness of fit. We compared the best-

fitting model from the first stage (Model #4) to a set of more complex models in which the

affect induction produced a shift in some or all model parameters (see Methods). In addition,

we considered the possibility that the influence of the affect induction on model parameters

decayed over time, in line with our finding that the strength of affect’s influence on behavior

weakened over time. Unlike in the first-stage model comparison, in this stage we fit all models

to all test-phase choices by all participants. All models were found to be recoverable in a

model-recovery analysis (see S1 Text, Section D).

The results of this model comparison (Table 3) supported a model in which affect induction

influenced both αV, which controls attention to value, and ϕ, which controls the preference for

compound relative to simple cues. In addition, in the best-fitting model, the strength of affect’s

influence on these parameters decayed over successive compound-generalization blocks. Spe-

cifically, we assumed that this effect decayed according to a power-law decay function with

parameter λ. For instance, for ΔαV, the affect-related change in αV, for instance, the effective

parameter value in a given block was computed as αV(effective) = αV + ΔαV × λblock × Affect,

where Affect is a dummy-coded categorical variable denoting the participant’s affect-induction

condition (with neutral affect as the reference condition; see Eq 7 Methods for further infor-

mation), such that the effect of affect decayed across blocks. We note that this block-wise

change in parameters cannot be attributed to influences of affect on learning, since the com-

pound-generalization phase of the task did not involve feedback, and therefore did not prompt

new learning.

Our model fitting assumed that participant-level parameters were drawn from group-level

distributions and estimated the means and standard deviations of these distributions from the

Table 2. Goodness of fit of models to neutral-affect data (model numbers as per Table 1).

Model number n free parameters per participant WAIC ΔWAIC (Std. Err.)

1 1 7559.95 1282.80 (57.15)

2 2 7046.11 768.95 (46.21)

3 2 6319.98 42.82 (14.69)

4 3 6277.15 0 (-)

WAIC: Watanabe-Akaike Information Criterion, presented on a deviance scale such that lower numbers indicate

better model fit. ΔWAIC: the difference between the WAIC of each model and that of the best-fitting model (model

4), calculated as per [35] using the loo package for R.

https://doi.org/10.1371/journal.pcbi.1011707.t002

Table 3. Results of second-stage model fit to all compound-generalization data.

Model number Parameters modulated by affect Blockwise decay in effect n free parameters per participant WAIC ΔWAIC (Std. Err.)

4 None - 3 13698.13 189.33 (27.20)

4a ϕ No 4 13637.80 129.01 (24.99)

4a-λ ϕ Yes 5 13595.81 87.01 (20.70)

4b αV No 4 13598.95 90.16 (20.20)

4b-λ αV Yes 5 13552.32 43.53 (12.61)

4c ϕ, αV No 5 13585.01 76.21 (19.81)

4c-λ ϕ, αV Yes 6 13508.79 0 (-)

WAIC: Watanabe-Akaike Information Criterion, presented on a deviance scale such that lower numbers indicate better model fit. ΔWAIC: the difference between the

WAIC of each model and that of the best-fitting model (model 4c-λ).

https://doi.org/10.1371/journal.pcbi.1011707.t003
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data. Fig 3 presents samples from the posterior (i.e., post-fit) distributions for the group means

of several of these parameters (means of affect-independent parameters in grey, mean affect-

related changes in parameters in purple). The mean of the distribution over the value-attention

parameter αV was negative (though overlapping with zero, see Fig 3A; estimated SD of group

distribution = 4.27). Negative values of αV mean that attention was higher for lower-valued
cues. The group mean for the affect-related change in this parameter (ΔαV; Fig 3D) was credi-

bly greater than zero (posterior median = 0.68, estimated probability of 96% that the mean

effect size in the population was greater than zero), indicating affect-congruent modulation of

attention to value, consistent with the probe-trial results presented in Fig 2D and 2E. That is,

as positive affect increased, so did attention to higher valued cues.

The group mean of the ϕ parameter was significantly above one (Fig 3B; estimated SD for

group distribution = 0.19), indicating an overall preference for compound stimuli rather than

those including only one cue. The change in this parameter due to affect, Δϕ, was numerically

negative but not significantly below zero (posterior median = -0.03, estimated probability of

Fig 3. Estimated posterior distributions for group-mean parameters. Top histograms: group-level means for the parameters αV (A), ϕ (B), and β (C).

Bottom histograms: group level means for the effect of affect on αV (D), the effect of affect on ϕ (E), and the block-wise decay in the strength of these effects,

λ (F). Horizontal error bars denote the 90% credible interval for each parameter, and vertical dotted lines denote the reference value for each parameter

(i.e., the parameter value at which there is no influence of the parameter on behavior: 0 for additive parameters such as αV, 1 for parameters that were

multiplicative or exponents such as ϕ and λ). Asterisks denote parameters for which there is credible evidence (i.e., estimated probability in excess of 95%)

that the group mean is different from the reference value.

https://doi.org/10.1371/journal.pcbi.1011707.g003
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89% that the mean effect size in the population was less than zero; Fig 3E). This provides tenta-

tive evidence that positive (/negative) affect might have acted to reduce (/increase) partici-

pants’ overall preference for compound stimuli.

Finally, the posterior distribution of the mean of the decay parameter λ was significantly

smaller than one (posterior median = 0.45; Fig 3F), suggesting a considerable block-by-block

reduction in the strength of affect’s influence on behavior. As a result, the best-fitting model

was able to capture the time-dependent effects of the affect induction on behavior (see S1 Text,

Section C).

To aid interpretation of these parameter values, Fig 4 illustrates the dynamics of the αV
parameter in the model for different affect groups across time. As mentioned, the negative

value of αV at a group level indicates that in the neutral group, participants tended to attend

more to low-value cues rather than high-value cues within a compound. However, this ten-

dency was modulated by the affect induction in an affect-congruent fashion: participants in

the negative-affect group tended to attend even more strongly to low-value cues than partici-

pants in the neutral group. By contrast, the positive affect induction mitigated the baseline ten-

dency to attend more strongly to low-value cues. The effects of the affect inductions tended to

diminish over time such that by the final block of the task, attention to value did not differ

strongly across the affect-induction groups.

Our modelling approach, in which affect group was coded as a continuous predictor,

implicitly assumed that the effects of positive and negative affect inductions on model parame-

ters were equal in magnitude but opposite in sign. There is no reason why this must be the

Fig 4. Illustration of model estimates of attention to valence across time and between groups. Negative values of

αV indicate more attention to low-value cues; positive values indicate more attention to high-value cues. There was a

strong affect-congruent modulation of attention to value in the generalization blocks, the strength of which decayed

over time. The dynamics of mood as plotted here were calculated using medians of the posterior distributions of the

αV, ΔαV, and λ parameters.

https://doi.org/10.1371/journal.pcbi.1011707.g004
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case. For instance, it is possible that only the positive affect induction influenced a given

parameter. We therefore conducted additional model comparisons to test this assumption

directly (see S1 Text, Section E). The results of these additional analyses supported the idea

that effects of positive and negative affect were symmetric and in opposite directions.

Eye-tracking data are consistent with affect-congruent modulation of

attention

In the analyses above, we interpreted compound-generalization choice behavior in terms of

the allocation of attention to different simple cues within compounds. To more clearly deter-

mine if differences in choice behavior can specifically be explained by attentional biases, we

used eye-tracking data (N = 33, N = 32 and N = 24 participants in the neutral, positive and

negative groups, respectively). Specifically, we tested whether affect-congruent modulations of

behavior in the compound-generalization task were accompanied by changes in overt atten-

tion as measured by patterns of visual fixations.

As an initial validation of our eye-tracking measure, we first tested whether eye-gaze in the

simple versus simple trials of the cue test replicated previous findings showing that gaze is

biased towards to-be-chosen stimuli [36–38]. Indeed, even before making a choice, partici-

pants were more likely to fixate on the to-be-chosen stimulus in simple vs. simple trials (Fig

5A; main effect of subsequent choice status, Fð1; 86Þ ¼ 19:94; p < :001; Z2
p ¼ 0:19, ANOVA;

no significant interaction between choice and affect group, as expected given that this choice

test preceded the affect manipulation). We also tested whether attention in these simple vs.

simple trials was biased towards cues in proportion to their value. We found that relative look-

ing time increased as a function of cue value (Fig 5B; main effect of cue value,

Fð1; 86Þ ¼ 31:84; p < :001; Z2
p ¼ 0:27, ANOVA; no significant interaction). This is consistent

with previous demonstrations that attention, as measured by relative looking time, is biased

towards higher values [39], and aligned with the fact that participants chose the higher-valued

simple cues more often, and fixated more on to-be-chosen stimuli.

To provide mechanistic insight into how affect modulates feature-based attention and its

effect on choice, we next turned to analyses of looking time in compound-generalization probe
trials (that is, trials in which participants chose between the L/H compound and either aM or

M/M compound). We specifically asked (1) whether looking time to the high-value cue (H)

relative to all other cues was predictive of choice, and (2) whether looking time to the high-

value cue changed as a result of affect inductions.

We first investigated the overall (group-average) proportion of looking time to low- and

high-value component cues during compound-versus-compound trials (in which participants

chose between two compound stimuli) and simple-versus-compound trials (in which partici-

pants chose between one simple stimulus and one compound stimulus). We found that partici-

pants tended to spend slightly more time fixating on the low-value cue (25.8% of total looking

time) than the high-value cue (23.9% of total looking time; p< .05, paired-sample t-test), with

the remainder of the looking time spent on the 50/50 stimulus. These results were therefore

conceptually consistent with the negative group-level mean for the αV parameter in computa-

tional modelling analyses (which predicts more attention to low-value cues within the L/H
compound). In simple-versus-compound trials there was no significant overall difference in

the proportion of time looking at low- versus high-value cues (40.5% versus 40.0%; p = .67; the

remainder of the looking time was spent on the 50% simple stimulus).

Then we asked whether the general tendency to look at the high-value cue within an L/H
compound predicts changes in choice. We used a mixed-effects analysis to test whether, in all

probe trials, time looking at the high-value cue relative to all other cues predicted choice of the
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Fig 5. Eye-tracking validation results. A: Proportion of time spent looking at each cue in simple versus simple trials, as a function of whether a cue was

subsequently chosen or not. For all groups, participants tended to look more at the to-be-chosen cue. B: Proportion of time spent looking at each cue in

simple versus simple trials, as a function of cue value (25, 50 or 75% probability of reward). For all groups, participants looked longer at more valuable cues.

Diamond markers denote the mean of each group and its 95% confidence interval; dots indicate individual participants. C: Relative looking time to the

high-valued cue within a L/H compound (normalized to the total time looking at all cues in the trial), plotted against the tendency to choose the L/H
compound in probe trials. D: Attention to value estimated from the computational model, plotted against the relative looking time to theH cue within a L/

H compound during probe trials. Data points are color-coded by condition (neutral, positive and negative affect). Each point corresponds to one

participant in each of the three groups.

https://doi.org/10.1371/journal.pcbi.1011707.g005
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L/H compound, controlling for main effects of affect condition. Consistent with our hypothe-

sis, we found that the more time people spent looking at the high-value cue, the more likely

they were to choose the L/H stimulus over anM orM/M stimulus of the same expected value

(Fig 5C, χ2(1) = 83.1, p< .0001; likelihood-ratio test for mixed-effects regression; interaction

was not significant: χ2(1) = 3.7, p = .16). This finding also held when we instead calculated rela-

tive looking time to theH cue as a proportion of total time looking at the L/H compound (S1

Text, Section F, χ2(1) = 7.54, p< .05; interaction was not significant: χ2(1) = 3.18, p = .21), sug-

gesting that the effect on choice is specifically due to an increase in relative attention to the

high over the low-value cue.

To establish the correspondence between our two measures of attention to value (αV, esti-

mated from choice, and relative looking time), we ran a mixed-effects analysis with the model-

based attention parameter (αV) as a predictor of relative looking time to theH cue relative to

all other cues. We found that the model-based attention to value (individually estimated from

choice during all compound generalization trials) was a significant predictor of people’s ten-

dency to look at theH cue during all probe trials (Fig 5D, χ2(1) = 4.69, p< .05; interaction was

not significant: χ2(1) = 0.75, p = .69). This result validates our choice of the model-based atten-

tion parameter as a metric of value-based attention. The result was not significant when we cal-

culated relative looking time to theH cue within the L/H compound (χ2(1) = 0.71, p = .41), a

point we return to in the discussion.

Finally, we directly investigated the role of positive and negative affect in driving attention

by assessing how relative looking time to affect-congruent cues changed following the affect

induction. In this analysis, we simultaneously quantified the extent to which the positive affect

induction increased attention for theH cue, and the negative affect induction increased atten-

tion to the L cue during probe trials. A mixed-effects model predicting looking time to affect-

congruent cues within the L/H compound (relative to time looking at all other cues in the

trial) showed a significant interaction between probe trial type (simple vs. compound) and

affect induction (pre- vs. post-induction; χ2(1) = 5.15, p = .02, likelihood-ratio test for mixed-

effects regression). Post-hoc tests revealed that this interaction was driven by a significant

increase in time looking at affect-congruent cues in compound probe trials (β = 0.071, p = .03;

Fig 6A) but not in simple probe trials (β = −0.073, p = .19; Fig 6B). That is, when participants

made a choice between an L/H and anM/M compound, we found evidence that participants

spent more time looking at high-value cues following a positive affect induction, and more

time looking at low-value cues following a negative affect induction. This finding aligns with

results of the computational modelling analyses, in which we found that the affect induction

specifically altered the αV parameter of the model, which modulates attention to high- versus

low-value cues. Given that relative looking time predicts choice (Fig 5C), these results support

the overall hypothesis that affect-congruent attention mediates differences in choice between

affect conditions. We note that this pattern of results was only evident when calculating look-

ing time as a percentage of gaze to all cues present on the screen; when we instead calculated

looking time to affect-congruent cues as a proportion of time looking at the L/H stimulus, we

did not find a significant effect of the affect induction on looking time (see S1 Text, Section F,

and Discussion).

There was one unexpected discrepancy between the computational modelling results and

the eye-tracking data. Computational modelling results implied that the modulation of atten-

tion by affect occurred equally in both simple and compound probe trials; by contrast, we

found evidence for modulation of attention by affect only within compound probe trials in the

eye-tracking analyses.

Lastly, we also found evidence for a significant three-way interaction (χ2(1) = 3.95,

p = 0.047, likelihood-ratio test for mixed-effects regression; see insets in Fig 6) between probe
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type, timepoint (before versus after the affect induction) and affect-induction valence (positive

versus negative). Post-hoc tests revealed that this interaction was largely driven by a difference

in time looking at affect-congruent cues in simple probe trials prior to the affect induction

(β = −0.07, p = .01). Since this pre-induction difference is an effect of no interest and did not

influence the primary effects of interest within the compound probe trials as described above,

we do not interpret this finding further.

Discussion

Summary and significance

In this study, we tested the influence of positive and negative affect on participants’ behavior

in a novel compound-generalization task. We hypothesized that affect would alter reward

expectations for unfamiliar compound stimuli via affect-congruent modulation of attention to

features of the compounds. As predicted, we found that participants receiving a positive affect

induction showed increased reward expectations for compound stimuli relative to those

receiving a neutral affect induction, and vice versa for participants receiving a negative affect

induction. Computational modelling suggested that this effect was driven by affect-congruent

changes in the allocation of participants’ attention to high-value versus low-value cues within

compound stimuli. These results were corroborated by analyses of participants’ gaze-fixation

patterns, which revealed an analogous pattern of affect-congruent modulation of overt atten-

tion to high- versus low-value features.

Taken together, these results suggest a potential computational and perceptual-level mecha-

nism for the well-documented finding that positive affect is associated with optimistic future

expectations (i.e., value), whereas negative affect is linked with pessimistic future expectations

[1, 2, 40, 41]. Concretely, systematic affect-congruent biases in attention to high- versus low-

Fig 6. Affective modulation of relative looking time. Average relative looking time to the affect-congruent cue (i.e., the low-value 25% cue for participants

receiving a negative affect induction and the high-value 75% cue for participants receiving a positive affect induction) pre- versus post-affect induction.

Data are plotted separately for compound probe trials (A) and simple probe trials (B). There was a significant increase in time looking at affect-congruent

cues after the affect induction in compound probe trials (main effect of time; p< .05, denoted by *), but not in simple probe trials. Insets: data separated by

affect-induction condition (red: positive affect; blue: negative affect). The affect by timepoint interaction was significant for simple probe trials (p< .05) but

not for compound probe trials, though this interaction was driven by group differences in eye-gaze before the affect induction, and as such is of no interest.

Error bars denote the standard error of the mean computed based on estimated marginal means from the linear mixed-effects analysis.

https://doi.org/10.1371/journal.pcbi.1011707.g006
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value features of abstract future prospects (e.g., attending to positive reviews of a fine-dining

restaurant in a positive mood, versus attention to the large expected expense in a negative

mood) would produce increased reward expectancies in positive affective states and lowered

reward expectancies in negative affective states. This is consistent with previous studies show-

ing an increased perceptual attention bias towards positive stimuli in individuals that score

high on trait optimism, happiness, and pronenness to hypomania [33, 42, 43]. By extension,

our results may also suggest a potential mechanism for affect-congruent changes in reward

and punishment expectations in mania, depression, and anxiety [32, 44–46].

Converging evidence from choice and eye-tracking data

Our study operationalized attention in two different ways. On the one hand, we operationa-

lized attention as a parameter (αV) within the computational model of behaviour that con-

trolled the degree to which particular cues within a stimulus contributed to the overall value of

that stimulus as a function of their value. This was equivalent to the common ‘attention weight’

formalization of attention in models of choice (see, e.g., [47]). On the other hand, in our eye-

tracking analysis we operationalized attention as the proportion of total looking time that was

spent looking at each cue during the choice phase of this task [13, 36–38, 48]. We found that

there were some discrepancies between model-based measures of attention and eye-tracking

measures of attention.

Most notably, our gaze analyses produced an unexpected pattern of results when trials were

subdivided into simple probe trials (involving choices between one single-cue stimulus and

one compound-cue stimulus) versus compound probe trials (involving choices between two

distinct compound stimuli). Consistent with the behavioral and computational modelling

results, relative time looking at affect-congruent cues (i.e., looking time for high-value cues

after a positive affect induction and for low-value cues after a negative affect induction)

increased as a result of the affect induction. This effect was seen in compound probe trials, but

surprisingly was not present in simple probe trials. One potential explanation for this unex-

pected distinction is that compound stimuli pose a more stringent requirement for overt atten-

tion (i.e., shift of eye gaze) due to visual crowding [49], whereas simple stimuli are more

readily processed using covert attention only (see, e.g., [50, 51]). As a result, our eye-tracking

measure may have provided a better estimate of attention in trials where both stimuli were

compounds.

We also found that the expected pattern of affect-congruent attention in probe trials

depended on whether the looking time measure of attention was computed relative to all cues

on the screen, or only captured relative attention between the low and high-value cues within a

compound. In our task, this discrepancy suggests a more complex interaction between affect

and attention than a simple value-congruence account. For instance, it could be that negative

affect increases attention to uncertain cues, thereby indirectly shifting attention away from the

high-value cues [52]. Future work might seek to address this alternative explanation by using

cues for which values are pre-established (and elicited through self-report or other methods)

and not acquired through conditioning.

Configural and elemental theories of generalization

Independent of the affect induction, we found that in our setting, participants tended to evalu-

ate compound stimuli as linear combinations of the values of their constituent cues. Although

weighted cue combination is a common assumption across models of generalization (e.g., [53,

54]), we note that participants were not instructed how to interpret compound stimuli, and

never experienced outcomes associated with these stimuli. As such, they could conceivably
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have chosen other strategies, such as evaluating the compound using a non-linear XOR cue

combination rule (e.g., a compound with either cue A or cue B has high value), as is observed

in the biconditional discrimination paradigm [55].

Within the set of possible weighted cue combination rules, we found that participants’

behavior during compound generalization was more consistent with cue averaging than with

cue-summation. This is notable because cue averaging is predicted by configural models of

compound generalization (e.g., [54]), which assume that compounds are treated as unique

configurations that accrue value according to their similarity to the values of other stimuli (the

simple cues, in this case). By contrast, elemental models of compound generalization assume

that expectations for compound stimuli are computed by summing the values of independent

features [29, 53, 56, 57]. Here, elemental models would predict that participants would never

prefer simple stimuli over compound stimuli (since the summed value of compound cues was

always equal to or greater than the value of simple cues in our task). More broadly, whether

behavior is consistent with elemental or configural generalization has been shown to depend

on experimental context (for review see [31, 58]). In our case, the binary reward distribution

that participants were exposed to in the training phase likely favored configural (linear combi-

nation) generalization over elemental summation.

Our model predicts an influence of affect on generalized reward expectations for both con-

figural and elemental generalization. Further research is needed to test our hypothesis in the

elemental case, for instance, by testing the effects of affect on generalization for compounds

comprising cues from different sensory modalities, or comprising cues associated with differ-

ent outcome amounts rather than different outcome probabilities. In addition, further research

is required to investigate the role aversion to uncertainty might play in compound generaliza-

tion task. In our task, there were at least three different forms of uncertainty that could have

affected choices: first, at the cue level, there was uncertainty as to probability of reward for

each cue (often called ambiguity), as well as the actual receipt of reward given the probabilistic

nature of the task (“risk”, which was greatest for the 50% cue). Additionally, for compound sti-

muli preferences may have been sensitive to uncertainty regarding how to estimate the value

of a compound, since participants received no instruction in how to interpret these stimuli,

and no feedback in the compound generalization trials. Future work could consider expanding

the set of cue-reward contingencies tested in both simple and compound cues to shed further

light on this question.

Related work on affective biases

In our model, the influence of each cue within a compound on reward expectations was

dynamically weighted by attention [13]. Attention provides a mechanism for changing the

degree of generalization from each simple cue to the compound, and our results suggest that

affect-congruent attention may play an important role in how reward expectations generalize

across features. However, affect-congruence is not the only principle that might underlie affec-

tive modulation of attention. One influential alternative model suggests that positive affect

broadens the scope of attention [59]. Affect-related broadening might lead to generalization of

reward expectations across a broader set of features, similar to the kind of temporal generaliza-

tion predicted by several recent normative models of affect [60, 61]. Our results for simple

probe trials are consistent with this hypothesis, given that we observed a more equal allocation

of attention across cues in a compound in the positive-affect condition relative to the negative-

affect condition. More broadly, reward generalization is a promising transdiagnostic computa-

tional construct that warrants further investigation as an explanatory computational model of

affective disorders [62, 63].
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Our findings are also in line with a separate body of research studying affective biases in

humans and other animals [23, 64–66]. In these studies, participants are trained with an excit-

atory and an inhibitory conditioned stimulus that differ from one another along one percep-

tual dimension (e.g., high-frequency vs. low-frequency audio tones). Affective biases are

measured in terms of behavioral responses to subsequent generalization stimuli intermediate

between the two training stimuli; across species, positive affect has been associated with an

increased positivity bias (i.e., increased generalization of the excitatory conditioned stimulus

to intermediate stimuli), and vice versa for negative affect [23, 64–66]. Our results suggest a

potential interpretation of these findings in terms of internal attention to appetitive versus

aversive internal representations of stimuli (see [67]). Indeed, by reconceptualising interpreta-

tion biases as arising from the allocation of attention between latent dimensions of reward-pre-

dictive stimuli, affect-congruent attention biases may provide a unifying explanation for

effects of affect on judgement and interpretation more broadly (e.g., [68–70]).

Implications for computational models of affect

The modulation of attention by affect is a phenomenon that presents a challenge to many for-

mal computational models of affect. Ransom et al. [71] recently showed that this is particularly

the case for predictive-processing models of affect (e.g., [72]), which conceptualise attention as

being driven by the expected precision of sensory inputs, rather than by affective factors. Simi-

larly, although less challenging to core tenets of the theory, affective modulation of attention is

also not predicted by recent reinforcement-learning models of affect [60, 73].

Affective modulation of attention might also provide a useful framework for conceptualis-

ing the role of anxiety in value-based decision making, which has been shown to drive a bias to

learn about punishment-avoidance features when the goal is to avoid threat rather than accrue

reward [74]. Our findings demonstrate one manner in which reinforcement-learning models

might be extended to account for affective modulation of attention in real-world settings

where stimuli and outcomes have multiple features that must be attended to. Further research

is required to integrate these ideas into normative accounts of affect, though some preliminary

work suggests the form that such a theory might take [62, 75–77].

Finally, our results point to the influence of mood-congruent attentional biases when form-

ing generalized reward expectations. How might such an attentional mechanism be imple-

mented? Attention and memory-based processes both play a role in generalization [78]These

accounts are not incompatible: because generalization by definition requires switching

between (internal) attention to memory and (external) attention to the sensory environment,

one way mood-congruent attentional biases could arise is by directing attention to memories

as a function of their valence [79, 80]. This suggests it might be beneficial to integrate affective

biases into sampling-based models of value-based and attribute-based attention [81–83]. Sam-

pling-based models propose that attentional effects during value computation, and people’s

overt fixation patterns, reflect evidence accumulation over internal beliefs about the probabil-

ity of reward [36–38, 48]. The results of our study suggest that fixation patterns during deci-

sion-making are sensitive to affect. Formalising how affective biases arise from information

sampling may help integrate empirical findings suggesting that both attention and memory

are biased by affect, and in turn mediate affect’s downstream effects on choice [19, 43, 84, 85].

To conclude, we provide direct evidence from behavioral and eye-tracking data that experi-

mentally induced changes in affect bias attention towards features predictive of affect-congru-

ent reward outcomes. That is, positive affect leads to increased attention to high-value

stimulus features, whereas negative mood produces increased attention to low-value features

prospects. These results suggest a potential cognitive mechanism for affect-congruent
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modulation of future reward expectations in the general population, as well as for extreme

forms of affect-congruent changes in reward expectations associated with psychiatric syn-

dromes including mania, hypomania, and depression.

Materials and methods

Ethics statement

This study received ethical approval from the Princeton University Institutional Review

Board, and all participants provided written informed consent.

Participants

We recruited a total of 120 participants (77 female, 43 male; mean age [SD] = 21.34 [4.40], age

range 18 to 55), via online advertisements from the general population in Princeton, New Jer-

sey, USA. This study was approved by the Institutional Review Board of Princeton University,

and all participants provided written informed consent and had normal or corrected-to-nor-

mal vision. Total study duration was approximately 90 minutes per participant. Participants

received monetary compensation for their time and travel expenses, plus an incentive-compat-

ible bonus for task performance (mean payment = USD $19.01, SD = 2.92).

Design

Participants were allocated to one of three affect groups (positive, neutral, or negative, 40 par-

ticipants in each group; see Affect induction procedure below) in a randomized between-sub-

jects design. This sample size was designed to give in excess of 80% power to detect a moderate

effect size of f2 = 0.3 (under standard assumptions of the general linear model and with α =

.05). Participants completed a behavioral task with concurrent eye-tracking recording, as well

as self-report measures of trait depression and hypomania (the General Behavior Inventory

(GBI); [86]) and current positive and negative affect (the Positive and Negative Affect Schedule

(PANAS); [87]). These individual-difference measures were included because they were identi-

fied as potential moderators of the effects of the affect induction on behavior. To ensure that

self-report measures were not influenced by the affect induction that occurred during the

behavioral task, self-report measures were presented before the task, with the order of the two

self-report instruments counterbalanced across participants.

Behavioral task

The cover story for the behavioral task was a “space mining game” (see Fig 1). Participants

were instructed that they would mine minerals from different “planets”, and that each planet

stimulus could be made of a valuable mineral or a worthless mineral (differentiated by color,

blue vs. yellow). Different planet stimuli were marked with different cues (rune symbols), and

participants were informed that each cue provided information about the probability that a

given planet would yield the valuable mineral when mined. To incentivize learning, partici-

pants received a monetary bonus proportional to the amount of the valuable mineral that they

mined across the task.

The task comprised three phases: an initial cue-learning phase, a learning test involving

choices between different cues, and a compound-generalization phase involving planet stimuli

marked with multiple cues (‘compound stimuli’). On each trial, two planet stimuli were pre-

sented: one above and to the left of a central fixation cross, and the other above and to the

right, and participants chose one of the two planets to “mine” using the computer keyboard

(left/right arrow keys). After a short delay (0.5 to 1.5 seconds, uniformly jittered), the chosen

PLOS COMPUTATIONAL BIOLOGY Affect-congruent attention modulates generalized reward expectations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011707 December 21, 2023 20 / 33

https://doi.org/10.1371/journal.pcbi.1011707


planet became “available to mine” (represented visually by a change in the its border color)

and participants could press any key to extract the mineral on the planet. Each trial therefore

yielded 3 measures: stimulus choice, choice response time, and reaction time for mining the

planet (i.e., time elapsed between when the planet become ready to mine and when the partici-

pant mined it). Mining reaction time was taken as an index of approach motivation for the

chosen stimulus.

Stimuli were presented in MATLAB with PsychToolbox [88], using a CRT monitor at a res-

olution of 1024 × 768 pixels. Participants were seated comfortably using a chin rest at a dis-

tance of 57 cm from the screen, such that 1 cm on the screen subtended a visual angle of 1

degree. The radius of each planet stimulus was 2.5 centimetres, and each was diagonally offset

13 centimetres from a central fixation cross. Audio was presented via headphones.

Learning phases. In the first phase of the task, participants learned to associate six cues

with different reward probabilities (24 exposures per cue, randomly intermixed across 3 blocks

of 48 trials each). Two cues were associated with a low probability of reward (25%), two with a

medium reward probability (50%), and two with a high reward probability (75%). The alloca-

tion of cue images to reward probabilities was randomized across participants. On each trial, a

single cue was presented in the center of either the left planet stimulus or the right planet stim-

ulus. Participants were informed that planets without a cue (“empty planets”) had zero proba-

bility of yielding the valuable mineral, and that it would not benefit them to choose these

planets. Consistent with this instruction, participants very infrequently chose planets without a

cue (the mean number of empty-planet choices across participants was 2.7 out of a total of 144

first-phase trials). One participant from the negative-affect group who chose the empty planet

on more than 25% of learning trials was excluded from further analysis.

The second phase of the task assessed the learning of cue-reward contingencies. Partici-

pants completed a single block of choices between the six cues whose reward probability was

learned in phase 1 (30 trials total; two repetitions of each possible cue pair). This allowed us to

verify that participants had indeed learned to discriminate between cues. To ensure that no

further learning took place in this task phase, no informative feedback regarding the outcome

of participants’ choices was provided (availability of the concealed outcome was denoted by a

non-informative purple colour, and participants were still required to “mine” the planet to

receive the unknown outcome). Participants were instructed that their selections would still

count towards the monetary bonus that they received at the end of the experiment, but that

they would not receive trial-by-trial information on the outcomes of their choices (see Fig 1C).

Participants still had to mine the chosen planet in this version of the task. Seven participants

(five from the negative-affect group and one each from the positive-affect and neutral-affect

groups) who did not display above-chance performance levels in this phase of the task (as

determined by a binomial test against chance; α = .05, one-tailed) were excluded from further

analysis.

Compound-generalization phase. The third phase of the task assessed compound gener-

alization across three blocks of 32 trials each. This phase introduced compound stimuli con-

taining two rune cues rather than one (see Fig 1C). Compound stimuli were introduced into

the task without any additional instructions to participants on how they ought to be inter-

preted. As in the simple-cue test phase, no feedback was provided on the outcome of partici-

pants’ choices, and participants were informed that their choices would continue to count

towards their monetary bonus (though they were not given any information on how the prob-

ability of positivium for the compound stimuli would be assessed). By withholding informative

feedback on participants’ choices, we ensured that we were assessing participants’ generaliza-

tion from previous learning, distinct from new learning of the value of the compounds them-

selves. This presents a contrast with previous studies of attention to compound stimuli (see
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[47, 89] for review), which studied the distribution of attention at learning rather than at

choice.

We focused our analysis on two kinds of choice trials that were expected to be especially

diagnostic of the distribution of attention within compounds. In simple probe trials (16 of 96

trials in the compound-generalization phase) participants chose between a medium-valued

simple stimulus (i.e., a planet marked with a single 50% reward cue) and a low/high compound

stimulus (a planet marked with one 25% reward cue and one 75% reward cue). In compound
probe trials (24 trials) participants chose between a medium/medium compound and a low/

high compound.

These 40 probe trials provide a critical test of the distribution of attention over cues in a

compound. If participants divide attention equally among the cues in a compound stimulus,

then a low/high compound stimulus has the same expected value as both a medium-value sim-

ple stimulus and a medium/medium compound. If participants allocate more attention to the

high-value cue in the low/high compound, however, then they will prefer the low/high com-

pound in both simple and compound probe trials, and vice versa if they allocate more atten-

tion to the low-value cue in the low/high compound. Choice behavior on probe trials therefore

provides a measure of the distribution of attention to individual cues in the process of com-

pound generalization.

The remaining 56 non-probe trials in this phase of the task were a mixture of different sim-

ple-versus-compound trials and compound-versus-compound trials where the two options

did not have similar expected values (see S1 Text, Section B for details). This mixture of trial

types was designed to yield a rich behavioral dataset that would allow us to fit computational

models of the distinct psychological processes at play in compound generalization.

Affect-induction procedure

We used a video-based procedure to induce either positive, neutral, or negative affect during

the compound-generalization phase of the task. Each of the three compound-generalization

blocks was preceded by a 90-second video with either positive, neutral, or negative emotional

content such that each participant viewed three videos with the same emotional valence. Self-

report ratings of affective arousal and valence were collected using affective sliders [90] before

and after seeing a video.

We selected a set of 9 videos (3 happy, 3 neutral, 3 sad) from several sources, including

affect-induction videos used in previous research [91–93], as well as publicly available clips

chosen especially for this study. We confirmed the utility of these videos in inducing the

desired affective states in a separate validation study conducted on Amazon Mechanical Turk.

Full details of the specific videos used, as well as the results of the validation study are provided

in S1 Text (section A).

To measure baseline compound-generalization behavior in the positive-affect and negative-

affect groups (i.e., behavior prior to the affect induction), participants in these two groups

completed an additional compound-generalization block prior to the affect induction. This

additional baseline block comprised 32 trials (16 simple-probe trials and 16 compound-probe

trials). Participants in the neutral-affect group did not complete this baseline block, since we

assumed that these participants’ performance was unaffected by the (neutral) videos that they

watched. Indeed, the neutral group showed a flat mood profile throughout the compound-

generalization phase (Fig 2B), and as such, we were able to treat task performance for partici-

pants in this group as being at ‘baseline’ affect levels throughout the task.

Since no affect manipulation was conducted during the learning phase of the task, all partic-

ipants were at a baseline mood level during the acquisition of cue-reward contingencies. This
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ensured that between-groups differences in choice behavior during the compound-generaliza-

tion phase of the task were attributable to the effects of the affect induction on compound gen-

eralization itself, rather than any effects of affect on learning. This is important given a large

body of work that has shown complex effects of affect on learning across a number of tasks

(e.g., [94, 95]).

Eye-tracking

Data collection. Eye-tracking data were acquired using an infrared eye-tracker (SR

Research EyeLink 1000 Plus), at a sampling rate of 500 Hz. Fixation points were calibrated

prior to the task, and to control within-experiment drift we used automatic drift-correction

after each block to re-calibrate fixations to the center of the screen. Before stimuli appeared on

each choice trial, participants were required to maintain fixation within 200 pixels of the center

of the screen for 1 second (i.e., stimuli did not appear on the screen until this condition was

met). This ensured that participants began every choice trial fixating at a location that was

approximately equidistant from the two stimuli. Raw output files were analysed using NivLink,

an open-source Python package for preprocessing EyeLink eye-tracking data developed in-

house (available at https://github.com/nivlab/NivLink).

AoI selection and quality control. Our preprocessing and quality-control protocols for

eye-tracking data are detailed in S1 Text, Sections G.

Each simple cue was associated with an elliptical or semi-elliptical area of interest (AoI)

defined around the center of its corresponding planet stimulus (S1 Text, Section H). The

major axes of the ellipses were angled at 45 and -45 degrees from the vertical for the left and

right stimulus respectively. To account for the different visual properties of simple and com-

pound stimuli, we used a larger ellipsis around the compound stimulus (exactly twice the area

of the simple-cue ellipsis), and created cue AoIs by dividing the ellipsis in two along the minor

axis (S1 Text, Section H). This procedure ensured that while each cue could be enclosed either

in a full or half-ellipse, the total area of its associated AoI was held constant across stimulus

configurations.

In principle, the center of each ellipsis should coincide with the center of each planet stimu-

lus. However, eye-tracking studies suffer from significant post-calibration drift, which typically

increases with the length of the experiment [96]. To mitigate this issue, the center of each ellip-

sis was manually determined blockwise in post-processing by two independent raters (S1 Text,

Section G).

As a first quality control step, we excluded from subsequent eye-tracking data analyses

those participants for whom inter-rater agreement was low. Specifically, we excluded subjects

for whom mean inter-rater disagreement was more than 1.5 of the inter-quartile range (IQR)

above the third quartile of overall disagreement (in practice, participants with a mean disagree-

ment of more than 32 pixels; see S1 Text, Section G).

As a second quality control step, for each participant, we computed the percentage of sam-

ples that fall outside a valid AoI, and excluded from the analysis participants for whom this

metric was 1.5 IQR above the third quartile (for these participants, more than 70% of all fixa-

tions were outside a valid AoI; see S1 Text, Section G). This yielded an eye-tracking sample of

N = 33, N = 32 and N = 24 participants in the neutral, positive and negative groups

respectively.

We chose this manual quality assurance method because drift can vary significantly

between participants and over time. Our manual rater-agreement metric captures this data

quality discrepancy, allowing us to formulate a quantitative criterion for excluding participants

who have excessive drift (S1 Text, Section G). For participants for whom drift was moderate,
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we used custom correction to correct for drift while preserving the relative distribution of fixa-

tions across AoIs.

Relative looking time. Previous work has shown that the relative looking time to each fea-

ture of a multidimensional stimulus is a reliable measure of participants’ focus of attention

during decision-making [13]. A similar measure was recently used in a study exploring the

relationship between uncertainty, choice and eye-gaze [97]. While relative looking time does

not account for within-trial dynamics of visual fixations [36–38, 48], it does provide a reliable

and interpretable metric of how much relative sensory evidence a participant has collected

about one cue versus another. Relative looking time can thus be used to detect biases in value

computation.

In our task, relative looking time can be taken as an index of the extent to which partici-

pants weighed each of the cues on the display in their decision. This is particularly useful for

measuring attentional biases to cues that have higher or lower value, which we hypothesized

would be influenced by affect. To compute the relative weight of simple cues within a com-

pound, we summed the durations of fixations to each cue, and divided by the total time spent

looking at any of the cue AoIs. This normalization allowed us to interpret relative looking time

as a trial-specific measure of attention to each cue.

Because we were only interested in the relative weighting of cues during value computation,

we restricted the computation of relative looking time to the time window before the partici-

pant chose a planet.

Data quality control

In total, eleven participants (9.2% of the sample) were excluded from all analyses: seven due to

failure to learn outcome contingencies (based on a one-tailed binomial test against chance, α =

.05), one due to excessive choice of empty stimuli in the learning phase (> 25%), one due to

incongruent response (laughter) to the negative affect induction, and two because of computer

error resulting in failure to save data. 25 additional participants (20.8% of the sample) were

excluded from analysis of eye-tracking data only, as a result of the eye-tracking data quality-

control checks described above.

Statistical analysis

Initial analyses used mixed-effects models as implemented in the lme4 package [98] in R to

analyse participants’ self-reported mood, choice behavior, and relative looking time. Self-

report mood data were analysed using linear mixed-effects analyses, and choice behavior and

relative looking time were analysed using mixed-effects logistic regression analyses. Random

effects were selected according to a maximal- to minimal-that-converges procedure [99], and

incorporated random intercepts for participants as well as per-participant random slopes for

effects that were entirely within-participant [100]. p-values were calculated using either the

Satterthwaite degrees of freedom approximation (for linear mixed-effects analyses; [101]) or

the Wald t-to-z test (for mixed-effects logistic regression analyses).

For relative looking-time data, we weighted each trial by the total duration of fixations

within the AOI. As such, trials for which we had more valid eye-tracking data were weighted

more heavily, thereby accounting for trial-by-trial differences in the precision of the relative

looking time measure. This ensured that, for instance, a trial for which the total fixation dura-

tion to cue AoIs was 1000 milliseconds was treated as more informative regarding the latent

probability of fixating on different cues than a trial for which the total fixation duration to cue

AoIs was 100 milliseconds.
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To reflect the hypothesized ordinal relation between affect groups, the video induction was

coded as positive = 1, neutral = 0, negative = -1. Compound-generalization block number was

recoded as 0, 1, 2, such that coefficient estimates for other predictors reflect the effect of that

predictor in the first compound-generalization block, and interactions of that predictor with

block number reflect changes in the strength of the predictor’s effect relative to the first com-

pound-generalization block. To ensure that the interpretation of the coefficient quantifying

the effect of block number on behavior was equivalent across affect-induction groups, the

additional baseline generalization block completed by participants in the positive/negative

affect groups was not included in analyses of block-dependent changes. Covariates (i.e. per-

participant sum scores for each self-report measure) were centered and scaled across partici-

pants prior to inclusion in models. For analyses of post-choice mining response times,

response times were log-transformed. Trials with mining response times in excess of 2.5 sec-

onds (less than 1 percent of all trials) were excluded from reaction time analyses.

All statistical analyses reported in this manuscript can be reproduced using code and data

available in the project’s online repository (https://osf.io/egw5c/).

Computational modelling procedure

To formally test competing hypotheses about the potential effects of affect on compound gen-

eralization, we formulated and fit a number of computational models to participants’ choice

behavior in the compound-generalization phase of the task. These models shared a common

choice architecture, which we describe below in its maximal form (i.e., including all parame-

ters). All models tested were variants of this maximal model.

We fit models to data within a hierarchical Bayesian framework, using Hamiltonian Monte

Carlo as implemented in Stan [102] to sample from the joint posterior distribution over all

model parameters. Four separate chains with randomized start values each took 2750 samples

from the posterior distribution. The first 1500 samples from each chain were used for tuning

of algorithm hyperparameters (‘warmup’ phase) and were discarded prior to analysis, leaving a

total of 5000 post-warmup samples from the joint posterior distribution for analysis. R̂ for all

parameters was less than 1.1, indicating acceptable convergence between chains, and there

were no divergent transitions in any chain. To optimize sampling speed, all participant-level

parameters were drawn from group-level Gaussian distributions whose means and standard

deviations were estimated from the data, and then transformed to their respective non-cen-

tered parameterization (i.e., all parameters were sampled separately from a unit normal before

being transformed to the appropriate range). In particular, to prevent negative values, several

parameters were transformed using the normal cumulative distribution function (CDF) to lie

in a positive range (softmax β: standard normal CDF × 50; decay parameter λ and compound

bonus parameter ϕ: standard normal CDF × 10).

Model comparison was performed using the Widely Applicable Information Criterion

(WAIC; [103]), a statistic for comparing models fit with hierarchical Bayesian methods. The

WAIC selects models according to their goodness-of-fit to data minus a penalty for the mod-

el’s effective complexity (estimated as variance of log-likelihood across posterior samples;

[104]). We calculated the difference in WAIC between all models and the best-fitting model,

and regarded the best-fitting model as credibly better than its competitors if twice the standard

error of this difference did not overlap with zero. Ties were broken by selecting the model with

fewer parameters (as a coarse proxy for model complexity).

The model recovery analysis was performed by simulating 50 datasets of 100 participants

each for each of the four primary models under consideration. For each simulated dataset, we

then determined which of the four models provided the best fit to the data under the model
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selection criteria described above. The proportion of datasets that were correctly identified as

being generated by the true generative model provided an index of the overall identifiability of

the models under consideration. The parameter recovery analysis was performed by simulat-

ing 100 ‘participants’ for each of the four primary models under consideration, with different

parameter settings for each simulated ‘participant’. For each model, we then quantified param-

eter recoverability as the Spearman correlation between actual and estimated parameter values

for each free parameter.

Overview of models. We denote the value of a stimulus (i.e., a planet) by V and the value

of a cue (i.e., a rune image within a planet) by v. The reward-value v of cues was defined as the

true generative reward probability for each cue (i.e., 0.25, 0.5, or 0.75) under the assumption

that cue values were learned correctly during the learning phase. For simple stimuli (those

comprising only a single cue), the value of the stimulus was identical to the value of its constit-

uent cue:

VðsimpleÞ ¼ vcue ð3Þ

By contrast, the value of a compound stimulus was assumed to be a weighted linear sum of the

values of the two cues comprising it:

VðcompoundÞ ¼ � �
X2

j¼1

Aj � vj ð4Þ

where Aj is the attention weight assigned to cue j and ϕ is a scaling parameter that captures the

general tendency for compound stimuli to be treated as more valuable (ϕ> 1) or less valuable

(ϕ< 1) than simple stimuli. In this case, ϕ = 1 corresponds to weighted averaging of simple

cue values (as predicted by configural theories of compound generalization; e.g., [54]), whereas

ϕ = 2 (combined with equal attention to both cues, A1 = A2 = 0.5) would better correspond to

summation of simple cue values, as predicted by elemental theories of compound generaliza-

tion (e.g., [53]).

Within a compound, the attention weight Aj of cue j was proportional to the reward-value

of cue j (weighted according to the αV parameter), and attention weights were then normalised

across cues to ensure that the sum of attention weights for all cues within a single stimulus was

1:

Aj ¼
expðaV � vjÞ

PN
k¼1

expðaV � vkÞ
ð5Þ

Here, αV is a parameter that controls the degree to which attention is biased towards higher-

value compounds (when αV> 0, attention is drawn to higher-value cues; when αV< 0, atten-

tion is drawn to lower-value cues). We also considered an additional set of models in which

attention might be biased towards or away from cues as a function of the certainty with which

they predicted different outcomes [105, 106]. However, model recovery analyses indicated that

the attention-to-certainty component of these models was not identifiable on the basis of data

from this task, and we therefore do not consider this possibility further here.

Lastly, we assumed that choices were generated by a softmax function:

Prða ¼ iÞ ¼
expðb � VðiÞÞ

P2

x¼1
expðb � VðxÞÞ

ð6Þ

where i denotes the chosen stimulus, X is the set of available stimuli, and β is an inverse tem-

perature parameter that controls the stochasticity of choices.
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We selected the best-fitting computational model using a two-step procedure: in step 1, we

identified the model that provided the best fit to compound-generalization choices in the

absence of an affect induction (i.e., all compound-generalization choices for participants in the

neutral affect group, and choices from the baseline block for participants in the positive- and

negative-affect groups). In step 2, we tested which parameters of the best-fitting model were

modulated by the affect induction itself (step 2 models were fit to all trials in the compound-

generalization phase from all affect-induction groups, including the neutral group).

For each Step 2 model, we estimated two variants: one in which the effect of affect on

parameters was constant across the three compound-generalization blocks, and one in which

the effect of affect weakened between blocks according to a power-law decay function. For an

affect-related change in αV, for instance, the effective parameter value in a given block was

computed as

aVðeffectiveÞ ¼ aV þ DaV � l
block
� Affect ð7Þ

Here, λ is a block-wise decay parameter; when λ = 1, there is no decay in the strength of affect-

related parameter changes from one block to the next; by contrast, when λ = 0, Affect only
influences parameters in the first compound-generalization block (blocks were zero-indexed,

and so 00 = 1) and has no effect in later blocks. In Eq 7, the free parameter ΔαV therefore quan-

tifies the affect-related modulation of αV in the first compound-generalization block. A single

λ parameter was applied equally to all affect-related changes in each parameter, and λ was esti-

mated as a subject-level draw from a single group-level Gaussian distribution with a mean and

standard deviation estimated from the data.

Citation diversity statement

Recent work in several fields of science has identified a bias in citation practices such that

papers from women and other minority scholars are under-cited relative to the number of

such papers in the field [107–115]. Here we sought to proactively consider choosing references

that reflect the diversity of the field in thought, form of contribution, gender, race, ethnicity,

and other factors. First, we obtained the predicted gender of the first and last author of each

reference by using databases that store the probability of a first name being carried by a

woman [111, 116]. By this measure (and excluding self-citations to the first and last authors of

our current paper), our references contain 11.66% woman(first)/woman(last), 21.97% man/

woman, 22.68% woman/man, and 43.7% man/man. This method is limited in that a) names,

pronouns, and social media profiles used to construct the databases may not, in every case, be

indicative of gender identity and b) it cannot account for intersex, non-binary, or transgender

people. Second, we obtained predicted racial/ethnic category of the first and last author of each

reference by databases that store the probability of a first and last name being carried by an

author of color [117, 118]. By this measure (and excluding self-citations), our references con-

tain 4.44% author of color(first)/author of color(last), 14.48% white author/author of color,

15.93% author of color/white author, and 65.16% white author/white author. This method is

limited in that a) names and Florida Voter Data to make the predictions may not be indicative

of racial/ethnic identity, and b) it cannot account for Indigenous and mixed-race authors, or

those who may face differential biases due to the ambiguous racialization or ethnicization of

their names. We look forward to future work that could help us to better understand how to

support equitable practices in science.
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