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Abstract

Reinforcement learning (RL) models are used extensively to study human behavior. These

rely on normative models of behavior and stress interpretability over predictive capabilities.

More recently, neural network models have emerged as a descriptive modeling paradigm

that is capable of high predictive power yet with limited interpretability. Here, we seek to aug-

ment the expressiveness of theoretical RL models with the high flexibility and predictive

power of neural networks. We introduce a novel framework, which we term theoretical-RNN

(t-RNN), whereby a recurrent neural network is trained to predict trial-by-trial behavior and

to infer theoretical RL parameters using artificial data of RL agents performing a two-armed

bandit task. In three studies, we then examined the use of our approach to dynamically pre-

dict unseen behavior along with time-varying theoretical RL parameters. We first validate

our approach using synthetic data with known RL parameters. Next, as a proof-of-concept,

we applied our framework to two independent datasets of humans performing the same

task. In the first dataset, we describe differences in theoretical RL parameters dynamic

among clinical psychiatric vs. healthy controls. In the second dataset, we show that the

exploration strategies of humans varied dynamically in response to task phase and difficulty.

For all analyses, we found better performance in the prediction of actions for t-RNN com-

pared to the stationary maximum-likelihood RL method. We discuss the use of neural net-

works to facilitate the estimation of latent RL parameters underlying choice behavior.

Author summary

Currently, neural network models fitted directly to behavioral human data are thought to

dramatically outperform theoretical computational models in terms of predictive accu-

racy. However, these networks do not provide a clear theoretical interpretation of the

mechanisms underlying the observed behavior. Generating plausible theoretical explana-

tions for observed human data is a major goal in computational neuroscience. Here, we

provide a proof-of-concept for a novel method where a recurrent neural network (RNN)
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is trained on artificial data generated from a known theoretical model to predict both

trial-by-trial actions and theoretical parameters. We then freeze the RNN weights and use

it to predict both actions and theoretical parameters of empirical data. We first validate

our approach using synthetic data where the theoretical parameters are known. We then

show, using two empirical datasets, that our approach allows dynamic estimation of latent

parameters while providing better action predictions compared to theoretical models fit-

ted with a maximum-likelihood approach. This proof-of-concept suggests that neural net-

works can be trained to predict meaningful time-varying theoretical parameters.

Introduction

A fundamental goal in neuroscience is to describe the underlying computations that animals

and human agents might deploy when deliberating between actions. In pursuit of this goal,

researchers have used reinforcement learning (RL) models which seek to describe behavior

through a concise set of interpretable parameters that are believed to correspond to specific

underlying processes (i.e., learning rate, exploration rate, etc.) [1–3]. While these models have

generated important findings [4–6], they usually fit behavioral data poorly since they typically

adopt a normative approach, focusing on how behavior should be rather than learning a gener-

ative model from the data itself [7, 8]. A more recent descriptive approach, in which neural

networks are fitted directly to behavioral data, has been shown to exceed RL models in action

prediction [9]. Neural networks are extremely flexible and can be used across a wide range of

data variants and experimental environments [10, 11]. However, despite neural networks’ high

predictive performance, they do not provide a clear theoretical interpretation, which is a major

goal of brain and behavior research [12, 13]. Alternatively, neural networks could be employed

to enhance and refine the parameter estimation for existing theoretical models, where the

interpretation of parameters is more readily understandable.

Reinforcement learning models have proven effective in understanding and predicting

decision-making behavior in both animals and humans [4, 14–16]. This method involves

breaking down behavior into a parameterized computational model that can be fitted to indi-

vidual choices [1, 2]. The individuals’ parameters are then viewed as low-dimensional repre-

sentation of behavioral data, which provides insight into the latent cognitive configuration that

might have generated the observed data. However, fitting RL models to behavioral observa-

tions can be challenging as it involves prolonged data collection in order to fit complicated

and non-convex functions using iterative maximum-likelihood approximations [17]. To man-

age this complexity, constraints such as assuming stationary behavior [1] (i.e., fixed parame-

ters) or rationality [8] (i.e., optimality) are imposed, eventually leading to lower predictive

accuracy.

Recently, an alternative approach to studying decision-making has gained much attention,

involving fitting neural network models directly to behavioral data [9, 18–20]. Unlike theoreti-

cal RL models that rely on assumptions about behavior, neural networks require minimal

assumptions and can learn complex features from the data without human intervention. This

data-driven approach has yielded high predictive accuracy on various behavioral tasks [9, 18].

Although some researchers have used neural network modeling beyond prediction to enhance

our theoretical understanding of behavior [19, 21], the challenge of how to utilize the flexibility

of neural networks to better interpret behavior remains open.

Here, we present a novel framework we term theoretical-RNN (henceforth, t-RNN), which

aims to combine the strengths of RL models with the flexible and predictive power of neural
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networks. This is done by first simulating many artificial RL agents performing a two-armed

bandit task, and then training an RNN using the trial-by-trial artificial data to predict both the

agents’ theoretical RL parameters and future actions from observed action-reward history (see

Fig 1C). Moreover, the t-RNN recurrent structure allows it to estimate time-varying RL

parameters, enabling it to track changes in behavior over time (see Fig 1E).

We start by validating our method using synthetic behavior (for which we know the ground

truth) and show that at test time, without further optimization, the network successfully recov-

ers unseen agents’ RL parameters. We then present a proof-of-concept using two existing

empirical datasets [9, 22], where human individuals performed a two-armed bandit task. For

both datasets, we used t-RNN that was initially trained using synthetic data. Then, the net-

work’s weights were fixed, and we applied it to predict individuals’ actions and to infer trial-

by-trial theoretical RL parameters. In the first dataset, we utilized t-RNN to describe higher

volatility in theoretical parameters for psychiatric individuals compared with healthy individu-

als, a group known for unstable internal mental states [23]. In the second dataset, we illustrated

that t-RNN was able to capture dynamical changes in individuals’ directed and random explo-

ration strategies [24]. Remarkably, across both datasets, we showcased that t-RNN produces

Fig 1. Summary schematic for theoretical-RNN. (A) Illustration of the predictability-interpretability trade-off plane. Theoretical models (green)

are thought to be highly interpretable (x-axis), yet their predictive capability (y-axis) is often limited compared to data-driven RNN (d-RNN;

orange). We suggest a new way to train a network (t-RNN) that allows dynamic estimation of theoretical RL parameters. (B) Empirical results for

the analysis of two publicly available datasets where human individuals performed a two-armed bandit task [9, 22]. We present a comparison of

action prediction made by d-RNN (orange), t-RNN (blue), and stationary theoretical modeling (green). Overall, we found that t-RNN was able to

produce better predictions compared to stationary theoretical modeling fitted using a maximum-likelihood approach (y-axis illustrates error

measured with binary cross-entropy; lower is better; black lines indicate s.e.m). (C) Illustration of t-RNN training procedure. We first simulated

many artificial RL agents performing a two-armed bandit task with known RL parameters. We then familiarized t-RNN with the mapping between

the action and reward (at, rt) in trial t, to the action of the next trial at+1 and the theoretical RL parameters in the current trial θt. (D) Estimating

humans RL parameters. Post-training, we froze the network weights and predicted the future action âtþ1, as well as estimated the dynamical RL

parameters ŷ t , of humans performing a similar two-armed bandit task. (E) Illustration of t-RNN’s ability to estimate time-varying RL parameters,

enabling it to track changes in behavior over time. (F) t-RNN architecture consists of several fully connected (FC) layers and gated recurrent units

(GRU), such that the action prediction and RL parameters estimation are carried out with two different heads. Significant effect at * p< .05, *** p<
.001; n.s., a nonsignificant effect (Wilcoxon signed rank test).

https://doi.org/10.1371/journal.pcbi.1011678.g001
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parameter estimations that are meaningful while maintaining a level of predictive accuracy

that is higher than theoretical models using a maximum-likelihood estimation approach [1].

Overall, we contend that our method can be used as a general framework, applicable to various

theoretical models of behavior and datasets, and we discuss its advantages in enhancing the

expressiveness of theoretical models to capture complex non-stationary behavior.

Results

In the current study, we present a novel approach to simultaneously predict human behavioral

choices and generate trial-by-trial estimations of theoretical RL parameters using neural net-

works. To demonstrate this approach, we use the well-known two-armed bandit task widely

used in human neuroscience to investigate cognitive and neural processes. Initially, we train a

t-RNN on artificial data obtained from theoretical RL agents performing the task and then

keep the weights fixed to predict unseen behavior. We validate the effectiveness of our

approach using synthetic data, followed by two use cases where we demonstrate t-RNN’s abil-

ity to predict actions and infer time-varying theoretical RL parameters in empirical datasets

where human individuals performed the same task.

Theoretical recurrent neural network (t-RNN) framework

Here we present a proposed method we termed t-RNN and describe how the network is

trained to infer underlying theoretical RL parameters from behavioral observation of RL

agents engaged in a two-armed bandit.

Two-armed bandit task. We present our model in the context of a generic two-armed

bandit task widely used decision-making task to study behavior [1, 15]. At each trial of time t,
the agent is forced to choose between two possible actions, a (denoted L and R). Next, a sto-

chastic reward, r, is delivered. The reward probability of each action is fixed during a block of

B trials and selected randomly at the beginning of each block from a pre-existing setting (see

Materials and methods for more details).

t-RNN architecture. Our model as depicted in Fig 1F, is based on a recurrent neural net-

work (RNN) consisting of fully connected (FC) layers and gated recurrent units (GRU; [25]).

At each step, the inputs to the t-RNN are the two observed time-dependent variables, the

action at and the reward rt, and it produces two outputs: currents estimate of the agent RL

parameters Ŷt (Θ denotes a vector of RL parameters; subscripts t denotes time-varying RL

parameters), and prediction of the future action âtþ1.

t-RNN training. The two outputs that t-RNN produces, namely the hidden RL parame-

ters and future action, are processed through different loss terms. The RL parameters are

predicted in two stages. First as a multiclass classification task, after employing quantization

of each RL parameter to a discretized space (i.e., R! N; see Materials and methods), and

then as a regression problem. It is important to note that quantization was used only to stabi-

lize the network training, while the network’s final output remains continuous. This proce-

dure is based on previous work [26, 27] which has shown that MSE loss is much harder to

optimize and often converges to a fixed output that reflects the mean. To ensure that quanti-

zation did not affect our performance in any meaningful way, we ran multiple experiments

in which we varied the number of the RL parameters quantization and found similar results

(see S1 Table).

In the first stage, at (coded using one-hot transformation) and rt is passed through a single

layer of 32 GRU cells and the output is projected to m = |Θ| FC layers with ReLU activation to

obtain the network intermediate prediction of the categorical class of each RL parameter. We
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then compute a cross-entropy loss (denoted as LCE
yi

) with regard to the true class for each RL

parameter separately.

Next, to allow a continuous recovery of each RL parameter, in the second stage, the network

categorical class prediction (i.e., the logits) is passed through m additional regression heads

(each FC layer of size 1; each FC layer is responsible for a different RL parameter). We com-

pute the mean-square error (denoted as LMSE
yi

) with regard to the true continuous values of

each RL parameter separately.

In addition to estimating the parameters, our network also predicts the future action, at+1.

For this aim, we concatenate the network categorical class predictions (i.e., the logits) together

with at and rt and passed this vector through a second single layer of 32 GRU cells. We project

the output to an FC layer with SoftMax activation to obtain a probability distribution over pos-

sible future actions and computed a cross-entropy loss (denoted as LCE
action) with regards to the

true future action at+1.

In S6 Fig, we provide an additional experiment to examine the necessity of concatenation

and its impact on the results. To investigate this, we employed ablation techniques and trained

a version of the t-RNN model without concatenation.

We now define the combined loss function used to train the network,

Ltotal ¼ LCE
action þ

X

i2fYg

l
CE
yi

LCE
yi
þ
X

i2fYg

l
MSE
yi

LMSE
yi
; ð1Þ

where λCE and λMSE are hyperparameters, set early during the development process such that

each loss term is approximately of equal magnitude (see Materials and methods for further

details).

Validating t-RNN using synthetic behavior

We first demonstrate our method on simulated data of RL agents for which the ground truth

RL parameters are known. Specifically, we trained t-RNN to predict the actions and parame-

ters of a theoretical RL model. We then generated test agents on which the network was not

trained with and compared the performance of t-RNN, to both stationary theoretical RL

model (using maximum-likelihood [1]) and Bayesian particle filtering [28].

Theoretical RL model. To generate a training set of t-RNN, we simulated Q-learning [29,

30] agents performing a two-armed bandit task. Specifically, for the Q-learning agents, at each

experience of time t, the agent updates the Q-values (initialized to zero at the beginning of

each block) of the action selected at using the obtained reward rt by,

Qtþ1ðatÞ  QtðatÞ þ aðrt � QtðatÞÞ
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

dTD

;
ð2Þ

where 0� α� 1 is a learning-rate free-parameter, which determines the extent to which

newly acquired information overrides old information, and δTD is the temporal-difference

(TD) error that drives learning.

These Q-values are in turn transformed to a stochastic choice-rule policy in accordance

with the Boltzmann distribution,

PðaÞ ¼
exp bQðaÞ

P
~a2A exp bQð~aÞ

; ð3Þ

where β� 0 is the inverse-temperature free-parameter, which determines the randomness of

action selection.
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Training t-RNN was done with a synthetic training set of 2,000 simulated Q-learner agents

operating with Eqs 2 and 3. Each agent performed a two-armed bandit task for 10 blocks of

100 trials each, and the agents’ RL parameters were sampled from a uniform distribution.

Importantly, to stabilize the training procedure, we applied two techniques. First, to allow for

continuous recovery of each RL parameter, we performed a quantization preprocessing step,

where we discretized each RL parameter into evenly spaced bins, which acted as an intermedi-

ate prediction target during training. Second, to facilitate t-RNN’s flexibility to recover time-

varying RL parameters, we simulated agents with non-stationary parameters. For each agent,

there was a small probability per trial that the agent’s parameters would be re-sampled from

the same uniform distribution (see Materials and methods for more details).

For comparison purposes, we included two additional baseline methods for estimating hid-

den RL parameters. The first baseline method was a stationary Q-learning model (denoted Q-

stationary), in which stationary RL parameters were estimated for each agent individually,

using a maximum-likelihood estimation. The second baseline method was Bayesian particle fil-

tering (denoted Bayesian) adopted from [28]. Here, underlying RL parameters are assumed to

drift slowly according to a Gaussian random walk and are estimated for each agent on a trial-

by-trial basis using Bayesian particle filtering (see Materials and methods for more details).

Results. To validate our method, after training t-RNN, we simulated 30 additional test

agents (Materials and methods) on which the network was not trained and recorded the pre-

dictions made by t-RNN as well as the two baseline methods. First, we calculated the binary

cross-entropy (BCE) between the true actions and predicted actions of each of the three mod-

els (stationary Q-learning, Bayesian, and t-RNN). We found that t-RNN had the lowest error

compared to the two other models (p< .01 when comparing Q-stationary and t-RNN using

Wilcoxon signed rank test, and p< .05 when comparing Bayesian and t-RNN; see BCEaction in

Fig 2A;). Second, we calculated the mean-squared error (MSE) between the true and estimated

Fig 2. Validating the ability of t-RNN to predict both agents’ actions and to infer RL parameters of simulated data. (A) Action prediction

(measured with binary cross entropy; BCE) and RL parameter estimation error (measured with mean-square error; MSE) averaged across 30

artificial test agents (black lines indicate s.e.m). We found that our method exceeded alternative methods (Q-stationary [Maximum-likelihood],

green; Bayesian [particle filtering], yellow) in both action prediction (left) and parameter estimation (middle and right). (B) Recovery of theoretical

RL α learning-rate (left) and β inverse-temperature (right) parameters of three example simulated agents with different RL parameter trajectories.

These trajectories included abruptly changing (top), random-walk drift (middle), and stationary (bottom) RL parameters. Overall, we found that

our network (blue dotted line) was able to effectively recover the true dynamic RL parameters (red solid line). This demonstrates the versatile ability

of t-RNN to accurately capture a wide range of time-varying RL parameter dynamics. Significant effect at * p< .05, ** p< .01; n.s., a nonsignificant

effect (Wilcoxon signed rank test).

https://doi.org/10.1371/journal.pcbi.1011678.g002
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RL parameters and found that t-RNN outperformed the two alternatives methods in terms of

MSEβ (p< .01 when comparing Q-stationary and Bayesian to t-RNN using Wilcoxon signed

rank test; see Fig 2A). Note that although t-RNN exhibited the lowest MSEα compared to both

baseline methods, it was not significant. This finding confirmed that our network can accu-

rately recover hidden RL parameters of test agents operating with various underlying RL

parameter dynamics (see S2 Table for raw results).

To further examine and illustrate the t-RNN capabilities, we plotted (see Fig 2B) the true

and recovered RL parameters of three types of test agents: abruptly changing RL parameters

(top), gradually changing RL parameters (middle), and agents with stationary RL parameters

(bottom). Visual inspection of Fig 2B indicates that t-RNN generated predictions that closely

matched the true RL parameter trajectories. Overall, these results indicate t-RNN flexible abil-

ity to recover underlying RL parameters while keeping high predictive accuracy. Additionally,

we examine the recovery of agents simulated in a volatile environment, where we observed

that t-RNN maintains superior performance compared to both baseline methods (see S3

Table). We also examine the ability of t-RNN to estimate stable parameters compared to the

stationary Q-learning method as a function of the number of observations (see S1 Text). Our

findings demonstrate that t-RNN performs well for stable parameters and is comparable to the

stationary method when more than one parameter is included in the theoretical model. More-

over, for a low number of observations (below 50 trials), t-RNN outperforms the stationary

estimation.

Using t-RNN to interpret behavior of psychiatric individuals

After confirming the ability of our method to recover hidden RL parameters with a variety of

test agents, we next present an application of t-RNN to an empirical behavioral dataset col-

lected by Dezfouli et al., 2019 [9] where 33 individuals diagnosed with bipolar disorder, 34

with depression and 34 individuals who were matched healthy controls (total of N = 101) per-

formed two-armed bandit task (see Materials and methods for more details).

Theoretical RL model. To model subjects’ behavior (and to train t-RNN), we consider

the same RL Q-learning model as mentioned above (see Eqs 2 and 3) with an additional action

preservation free-parameter added to the SoftMax choice-rule policy,

PðaÞ ¼
exp bðQðaÞ þ ktðaÞÞP

~a2A exp bðQð~aÞ þ ktð~aÞÞ
; kt að Þ ¼

k if a ¼ at� 1

0 otherwise

(

; ð4Þ

where −0.5� κ� 0.5 is an action preservation free-parameter determining the agent’s ten-

dency to stick with (or switch) a previous action regardless of the reward [31].

Results. Following training of the t-RNN with a synthetic training set of Q-learner agents

using Eqs 2 and 4, we fixed the network’s weights and recorded the predictions made by the t-

RNN on the behavioral dataset of humans who performed a two-armed bandit task [9]. Addi-

tionally, we fitted a stationary Q-learning with preservation model (denoted QP-stationary) to

each subject, which estimated stationary RL parameters via maximum-likelihood estimation,

as well as a Bayesian model fitted with particle filtering. Furthermore, we fitted a data-driven

RNN (d-RNN) to subject behavior, as described in [9], which solely produced action predic-

tions (see Materials and methods for more details).

As expected, we found that t-RNN was able to maintain a higher action prediction of

human behavior compared to the QP-stationary model but not compared to d-RNN (see Fig

1B; p< .05 when comparing QP-stationary and t-RNN using Wilcoxon signed rank test, and

p< .0005 when comparing t-RNN and d-RNN). To further explore this result, we divided the
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subjects according to their diagnostic groups and examined the action predictions within each

group. We found that t-RNN superiority over QP-stationary and Bayesian models was mainly

due to the improved action prediction of bipolar and depressed individuals (p< .01 compar-

ing QP-stationary and Bayesian to t-RNN in the bipolar group; p< .01 comparing QP-station-

ary to t-RNN and p< .001 comparing Bayesian to t-RNN in the depressed group; Wilcoxon

signed rank test), while there was no significant difference in its prediction accuracy for

healthy controls (p = 0.36 comparing QP-stationary to t-RNN; p = 0.07 comparing Bayesian to

t-RNN; see Fig 3A and S4 Table for the raw results).

We next turn to explore the dynamic estimation of the theoretical parameters. First, we

assessed the volatility in κ preservation estimates estimated trial-by-trial using t-RNN. Our

results revealed that the bipolar group exhibited lower values and greater volatility in these esti-

mates compared to the healthy group (M = 0.15, SD = 0.30 for the bipolar group, M = 0.35,

SD = 0.14 for the healthy group; see Fig 3B). This finding might correspond with the clinical

nature of the disorder where volatility is a main feature [23]. However, for the aim of the cur-

rent study, this is mainly a proof-of-concept to the t-RNN’s ability to inform us regarding

Fig 3. Application of t-RNN to behavioral data of psychiatric and non-psychiatric individuals [9]. (A) Action prediction (measured with BCE;

black lines indicate s.e.m) divided by diagnostic labels. Bipolar and depressed subjects at the group level are explained significantly better by t-RNN

(blue) compared to the QP-stationary model (green) that assumes that the RL parameters are fixed, as well as to the Bayesian model (yellow). (B)

Boxplot of the time-varying κ preservation parameter estimates by t-RNN across the three diagnostic groups (middle black solid lines denote the

median; light dots indicate a single trial estimate of the κ preservation parameter). Result suggests higher volatility in the clinical groups mainly the

bipolar group, compared with the healthy group. (C) Distribution of the Pearson correlation between stay probability (calculated using moving

average of 10 trials) and time-varying κ preservation parameter produced by t-RNN for each subject individually. Result shows a strong relation

between t-RNN time-varying RL κ parameters estimation and moving average of the stay probability. (D) Sequence of selected actions of two

example subjects, with bipolar on the left and depressed on the right. The top panel shows the action prediction, and the bottom panel shows the RL

κ parameter estimation produced by t-RNN (blue) and QP-stationary model (green) for a 50-trial segment (see S4 Fig for all trials). Both subjects

seemed to switch between selecting the same action for several trials to repeatedly alternating between both actions every trial (red dots). We found

that the t-RNN model was able to detect this visually apparent shift in behavior, estimating a change in the κ action perseveration parameter. In

contrast, the QP-stationary model was not able to capture this transition. (E) Trial-by-trial κ preservation parameter estimates by t-RNN averaged

over the first 100 trials of each block and for each diagnostic group separately (shaded area signifies the s.e.m). In all three groups, subjects show a

steady increase in their tendency to perseverate their actions as the block progresses. Significant effect at * p< .05, ** p< .01, *** p< .001; n.s., a

nonsignificant effect (Wilcoxon signed rank test).

https://doi.org/10.1371/journal.pcbi.1011678.g003
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volatility in underlying parameters, while also providing better action predictions compared

with a stationary QP-stationary model. In S5 Table, we show additional distribution of all RL

parameters produced by t-RNN.

Second, to gain insight into the association between RL parameter estimation and observed

behavior, we selected two clinical participants with bipolar disorder and depression whose

behavior displayed clear transitions between high (sticking with the same action) and low

(switching the action selection every trial) levels of perseveration. We plotted the sequence of

selected actions alongside the action predictions and inferred κ estimates generated by t-RNN,

as well as the predictions of the QP-stationary model for a 50-trial segment (see Fig 3D and S4

Fig for all trials). We found that the observed change in action perseveration was closely cou-

pled with a change in the κ parameter, and the t-RNN model accurately detected the visually

apparent shift in behavior. In contrast, the stationary model, which assumes fixed RL parame-

ters, was unable to capture this transition, resulting in lower action prediction accuracy. These

results highlight the utility of t-RNN in capturing dynamic changes in RL parameters and their

association with observed behavior.

Third, to further support that t-RNN parameters estimation indeed corresponds well with

changes in observed behavior across all individuals, we turn to a well-established and easy-to-

interpret model-agnostic measurement and calculated a moving average of the stay probabili-

ties (probability of repeating the previous action; window size of 10 trials). If indeed the t-

RNN κ perseverate dynamic parameter is doing a good job of capturing fluctuations in persev-

eration, we should expect a high correlation with the moving average model-agnostic estimate.

We calculated a Pearson correlation between the moving average and t-RNN κ perseverate

trial-by-trial estimation for each individual (see Fig 3C). Overall, we found that the average

Pearson across individuals was very high (Median = 0.64; see S1 Fig for further detailed exam-

ples). We also included a similar analysis with the β inverse-temperature parameter (see S2

and S3 Figs).

Finally, we plotted the trial-by-trial κ perseveration average for each group, showing that

overall, across groups individuals increased their tendency to perseverate with the previous

action selection which might reflect an overall reduction motivation as the block progresses

(see Fig 3E). Overall, we were able to show that t-RNN is able to produce trial-by-trial esti-

mates of RL parameters, while also keeping higher predictive accuracy compared with QP-sta-

tionary model. In the current dataset, we provided a proof-of-concept on how t-RNN might

be able to inform of higher volatility in RL parameters in clinical psychiatric groups.

Using t-RNN to interpret exploration behavior of human individuals

To demonstrate the generality of our proposed method, we present a second application of t-

RNN to empirical behavioral dataset collected by Gershman, 2018 [22] where N = 44 humans

performed two-armed bandit task to examine human exploration strategies.

Theoretical RL model. To model subjects’ behavior, we consider the same model hybrid

exploration model presented in Gershman, 2018 [22]. The learning model included a Kalman

filtering algorithm [15, 32] where agents recursively compute the posterior mean and variance

for each action by,

Qtþ1ðatÞ  QtðatÞ þ Ktðrt � QtðatÞÞ; ð5Þ

s2
tþ1
ðatÞ  s2

t ðatÞ � Kts
2
t ðatÞ; ð6Þ

where Qt+1(a) and s2
tþ1
ðaÞ is the posterior mean and variance estimates over the value of action
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a, respectively and Kt is the Kalman gain given by,

Kt ¼
s2
t ðatÞ

s2
t ðatÞ þ t2

t ðatÞ
; ð7Þ

where t2
t ðaÞ is the error variance. At the beginning of each block the initial values estimate for

both actions were set to the prior mean, namely, Q0 (a) = 0, s2
0
ðaÞ ¼ 100 and t2

0
ðaÞ ¼ 10 (see

Materials and methods for more details).

Action values estimate were transformed to action policy with a hybrid of random and

directed exploration [24] choice-rule,

P a ¼ Lð Þ ¼ F b
QtðLÞ � QtðRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
t ðLÞ þ s2

t ðRÞ
p þ g st Lð Þ � st Rð Þ½ �

 !

; ð8Þ

where F is the cumulative distribution function (CDF) of the standard Gaussian distribution

(i.e., probit), 0� β� 4 is a free-parameter that controls the contributions of random explora-

tion (similar in spirit to the inverse-temperature parameter of the SoftMax choice-rule of Eq 3)

and 0� γ� 1 is a free-parameter that controls the contributions of directed exploration.

This model can also be interpreted as a combination of Thompson sampling [33] and UCB

policies [34], where the first term in the brackets promotes a random exploration that is pro-

portional to the difference in the value estimates, Qt (L) − Qt (R) together with the total uncer-

tainty
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
t ðLÞ þ s2

t ðRÞ
p

much like Thompson sampling. The second term in the brackets,

σt (L) − σt (R), is the so-called relative uncertainty, synonyms with UCB policy which promotes

a directed exploration toward the less certain option (i.e., information bonus).

Results. After the training of the t-RNN with a synthetic training set of Q-learner agents

using Eqs 5, 6, 7 and 8, we fixed the network’s weights and recorded the predictions made by

the t-RNN on the behavioral dataset of humans who performed a two-armed bandit task [22].

Additionally, we fitted a stationary hybrid exploration model, a Bayesian model, and a d-RNN

to subject behavior (Materials and methods). We found significantly higher action prediction

for t-RNN compared to both the stationary hybrid exploration model (p< .05; Wilcoxon

signed rank test) and the Bayesian model (p< .01), but no significant difference in prediction

accuracy when comparing t-RNN to d-RNN (p = 0.12; see Fig 4A and S6 Table for raw

results).

To investigate the trial-by-trial dynamics of the t-RNN’s theoretical parameter estimation,

we conducted a manual search of the data to identify an instance in which an individual made

an ungreedy action. Specifically, we located a trial where an individual chose option L despite

having been rewarded for option R for the previous four consecutive trials. We observed a

sharp decrease in the t-RNN’s β random exploration parameter estimation, indicating its sen-

sitivity to changes in observed behavior (see Fig 4B). To determine whether this pattern gener-

alizes across individuals and trials, we aggregated all trials (a total of 32 trials) in which

individuals selected the better rewarding arm for three or more consecutive trials, were then

rewarded, and subsequently switched to the alternative, poorer arm. Our analysis revealed an

overall decrease in the β random exploration parameter produced by t-RNN in these cases

(mean ± s.e.m. before: 2.1 ± 0.079, after: 1.40 ± 0.080; see Fig 4C). In S5 Fig, we provide a simi-

lar example for the γ directed exploration parameter.

Next, we investigated the overall dynamics of the two exploration parameters (random and

directed) within blocks. Specifically, we examined blocks where the true expected value differ-

ence between the two arms was above or equal to 19 (referred to as “easy” blocks; total of 91

blocks) and blocks where the true expected value difference between the two arms was below

or equal to 1 (referred to as “hard” blocks; total of 110 blocks). It is worth noting that

PLOS COMPUTATIONAL BIOLOGY Dynamical inference of reinforcement learning parameters using recurrent neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011678 January 4, 2024 10 / 22

https://doi.org/10.1371/journal.pcbi.1011678


participants were not informed whether a block was easy or hard and were required to start

with a similar strategy in the first trial where the difficulty of the block was unknown. We

hypothesized that participants would change their exploration strategy across time, and pre-

dicted that in easy blocks, individuals would reduce random exploration since the best action

is easy to detect, whereas, in hard blocks, individuals would show a higher tendency for ran-

dom exploration (indicating either noisy behavior due to block difficulty or a desire to test the

arms in a more heterogeneous fashion to gain more information, where the information gain

is relatively small for the participant).

We found that participants had a higher correct choice rate in easy blocks compared to

hard blocks (mean ± s.e.m. easy: 0.90 ± 0.007, hard: 0.56 ± 0.003; see Fig 4D). Consistent with

our hypothesis, t-RNN estimated an increase in random exploration (i.e., a decrease in the β
parameter) across hard blocks and a decrease across easy blocks (see Fig 4E). We also observed

the same pattern for the γ directed exploration, where overall directed exploration was high at

the beginning of the block, possibly reflecting the individual’s lack of knowledge about the

Fig 4. Application of t-RNN to investigate changes in random and directed exploration [22]. (A) Action prediction (measured with binary cross

entropy; BCE; black lines indicate s.e.m). We found a significant improvement in the action prediction of the t-RNN model (blue) compared to the

hybrid exploration model (green; * p< .05) and the Bayesian (yellow; ** p< .01). (B) Example of a single instantiation of ungreedy action. The top

panel depicts the sequence of chosen actions, obtain rewards, and t-RNN action predictions as red dots, red numbers, and blue solid lines,

respectively. The subject consecutively chooses the higher value action and suddenly switches and chooses the lower value action (denoted with a

downward arrow). The bottom panel depicts t-RNN β random exploration parameter estimation, where it estimates a step decrease in the

parameter after the ungreedy action selection. (C) Dynamics of the random exploration parameter averaged across all instantiations of ungreedy

action. t-RNN estimates a sharp and sudden decrease in the random exploration parameter after an ungreedy action is taken. (D) Correct choice

rate of individuals’ actions divided by blocks where the true value difference is high (� 19; easy blocks; purple) and blocks where the true value

difference is low (� 1; hard blocks; grey). Subjects are more accurate when it is easy to distinguish the correct action compared to when it is hard.

(E) Dynamics of the β random exploration parameter estimation produced by t-RNN average overall easy (purple) and hard (grey) blocks. Random

exploration increases in hard blocks (grey) where it is difficult to tell apart which action is best, whereas in the easy blocks (purple) random

exploration decreases as subjects become more deterministic in their action selection. (F) Dynamics of the γ directed exploration parameter average

overall easy (purple) and hard (grey) blocks. Directed exploration is high at the beginning of the block where uncertainty is equal in both

conditions, however only in the easy blocks (purple) where it is easy to differentiate between the better/worst arm, directed exploration decreases as

the block evolves. In panel C, E and F solid line/dots signifies the mean estimation and the shaded area correspond to s.e.m.

https://doi.org/10.1371/journal.pcbi.1011678.g004
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environment. However, there was a selective decrease in directed exploration only for easy

blocks, where the best action was easy to locate (see Fig 4F).

Our results indicate that individuals modify their exploration strategies based on both the

block difficulty and phase, as evidenced by changes in both random and directed exploration

parameters. Importantly, t-RNN was successful in capturing these nuanced changes in explo-

ration strategies, thus providing a second proof of the utility of our method.

Discussion

In this work, we introduce the notion of a “theoretical-RNN” (i.e., t-RNN), where neural net-

works are utilized to augment the expressiveness of theoretical models of behavior. Specifically,

we train an RNN on artificial data simulated from a theoretical model, freeze the network

weights, and use the network to predict trial-by-trial theoretical RL parameters and future

actions. The immediate benefit of this approach is its ability to infer non-stationary trial-by-

trial theoretical parameters, thus allowing us to examine dynamics in latent parameters

thought to underlie human behavior. We first validated our framework with simulated data,

showing our ability to recover both stationary and non-stationary theoretical parameters. We

then applied this approach to two independent empirical datasets. In the first dataset, we dem-

onstrated that t-RNN can capture the volatile behavior patterns of psychiatric patients, which

differ significantly from healthy controls. In the second dataset, we show that t-RNN can iden-

tify the changes in human exploration strategies that are modulated by task difficulty and

block phase.

Several studies have explored the benefits of using neural networks fitted directly to behav-

ioral data to examine various behavioral phenomena, including response time in task switch-

ing paradigms [35], the identification of novel theories in behavioral economics under risky

choice [19], and particularly relevant to the current research, reinforcement learning (RL)

tasks [9, 18, 21, 36]. For example, Dezfouli et al., 2019 [9] trained a recurrent neural network

(RNN) to predict future human actions in a two-armed bandit task which was found to out-

perform a standard RL model in pure action prediction. This result was also generalized to

other, more complicated decision-making tasks, such as the four-armed bandit [36] and build-

your-own-stimulus tasks [18]. Additionally, in [37, 38] the authors employed a feedforward

neural network fed with inputs such as mouse stress, affective phenotype, and prior task per-

formance to examine how neurological measures control RL parameters. More recently, in

order to study individuals’ differences, [21] developed an autoencoder model, where an RNN

encoder was used to map each agent’s behavior into a low-dimensional latent space. The low-

dimensional latent space produces a disentangled representation that can be used to study var-

iations in participants’ decision-making strategies. Overall, previous work shows the high abil-

ity of neural networks to learn to some extent the latent data generating model of human

behavior across different paradigms. However, the main challenge remains the low interpret-

ability of these methods.

Here, we consider our research as an expansion of the growing trend in using neural net-

work models to study behavior and identify four distinct contributions of using a t-RNN

framework. First, our method enhances the utilization of existing theoretical RL models,

leveraging parameters with clear and straightforward interpretations. This allows us to dynam-

ically estimate latent RL parameters based on empirical choice behavior. Additionally, we

demonstrate that this approach exceeds stationary theoretical models fitted with conventional

approaches (e.g., maximum-likelihood) by providing better predictive accuracy. Second, a

known difficulty when training neural networks with empirical data is the need to obtain a

large training set. Here, we demonstrate the validity of training RNN using synthetic data
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which can be arbitrarily large. Post training, and without further optimization, the trained net-

work is then used to infer empirical behavioral data. Third, our method also holds the benefit

that it can be applied directly and online to newly acquired data, thus providing solutions for

latent parameter estimation in real time. This allows for online monitoring of behavior during

cognitive tasks, facilitating personalized interventions or manipulations based on each individ-

ual’s current state. Fourth, the generality of our framework may be extended beyond choice

behavior by utilizing theoretical models of other modalities. For example, given reaction times

observation, we might be able to employ t-RNN to predict the dynamic theoretical parameters

of evidence accumulation models. Another possibility is to utilize theoretical models of neural

data (e.g., attractor networks) to train t-RNN in predicting latent theoretical parameters from

the neural recordings.

An important benefit of t-RNN is its ability to predict theoretical parameters in a dynamic

manner. While some recent studies have recognized the importance of relaxing the assump-

tion of stationarity parameters in behavioral data [39–42], it remains common to treat behav-

ior as a stationary process. Specifically, most of the computational modeling work in

behavioral RL studies is performed by fitting a single set of parameters to each participant.

Here, we compare our t-RNN framework to the Bayesian particle filtering method used in [14,

28, 43] which estimates hidden RL parameters assumed to slowly drift according to a Gaussian

random walk. Our approach requires less prior specification (i.e., manual specification of prior

and hyper-prior distributions) and provides a more flexible way to recover a wider range of RL

theoretical parameter trajectories.

Another important aspect in the current work is the fact that a specific generative theoreti-

cal model, which serves as the supervised training signal for t-RNN needs to be specified. If

human behavior is governed by a substantially different model, our method may have difficul-

ties in accurately predicting behavior. Therefore, t-RNN is limited in its ability to predict

parameters and actions, to the extent that the RL theoretical model it was introduced to during

training accurately describes the participant’s behavior. However, the high flexibility of neural

networks opens the way for using t-RNN in much more sophisticated ways in the future. For

example, future studies can train t-RNN on simulated data that were obtained from different

agents acting according to different models. Moreover, these agents might switch from one

model to the other arbitrarily. This might allow the dynamic trial-by-trial estimation of both

parameters and models that might generate the observed behavior, and allow to estimate

moments where the subject is switching from one to another model. Furthermore, since t-

RNN is trained on synthetic data that can be infinitely large, it might be possible to introduce

during training a vast model space and then predict the most suitable model, parameter, and

action dynamically for a single empirical dataset. Thus, by incorporating all three predictions

into the training process (models, parameters, and actions), future studies might be able to bet-

ter address the issue of model misspecification, as a single t-RNN model may have the ability

to predict various theoretical models.

Some limitations of our work. First, while our study demonstrated the ability of t-RNN to

capture the high temporal dynamics of theoretical parameters, we did not provide a detailed

explanation for the underlying nature of such changes. Although our current study did not

include biological measurements, we believe that our approach might be able to facilitate

future research where changes in latent parameters can be linked to meaningful biological

indicators. Integrating the t-RNN methodology with these indicators may offer a deeper

understanding of the neural correlates of behavior and the interplay between latent parameters

and physiological processes. Second, we acknowledge that the training settings can influence t-

RNN performance, our study aims to present a proof-of-concept for the primary framework

of using RNNs to predict theoretical parameters, with further work required to test the impact
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of different training settings on t-RNN performance. Third, our approach provided point esti-

mates of latent parameters. To allow detailed conclusions for empirical data there is also a

need to provide some confidence interval around these point estimates. There are several

options that might facilitate such estimation. One option is to train several networks, estimate

latent parameters for each subject and trial using all train networks, and then provide some

summary statistics per data point. As a preliminary examination for this approach we did an

ensemble analysis and found that it can indeed provide plausible variance estimates that are

somewhat similar to the Bayesian uncertainty estimation of the particle filtering approach (see

S7 Fig). However, other approaches could also be used, such as network dropout [44], or

directly training the network to provide both point estimates and certainty estimates. Further

studies should examine these alternatives in detail to provide further understanding for how

variance estimates should be obtained. Fourth, t-RNN was compared in the current study with

a particle filtering approach that requires the setting of a drift-rate parameter. We were able to

show that using different settings of drift-rate did not change the overall conclusion of our

study. Yet, another option might be to tailor the drift-rate parameter per individual. For exam-

ple, if a training/validation/test set is available, one can search (e.g., using grid search) for the

optimal drift-rate per subject and then use that to estimate parameters and behavior in the test

set. However, this will require a large amount of data points per individual (which is typically

hard to collect in human studies due to fatigue and other practical considerations). Further-

more, this approach will be different in essence from t-RNN, since the t-RNN approach pro-

vides behavior predictions and parameters estimation without any training with empirical

data. As such it can be applied more efficiently (after training with artificial data and freezing

the network’s weights). Lastly, it is interesting to speculate how the complexity of the theoreti-

cal model might affect our methods. Previous studies have demonstrated that increasing

model complexity may be necessary to effectively capture a broader range of animal and

human behaviors [45]. We hypothesize that for more complex theoretical models we will find

an advantage for t-RNN, as neural networks are known to be able to learn complex non-linear

mappings [46]. Additionally, it is plausible that under certain conditions, t-RNN may estimate

parameters with fewer observations compared to more traditional approaches (see S1 Text).

However, further studies are required to ensure that our approach generalizes across a wide

range of model complexities.

In conclusion, we argue that the advantages of our method outweigh its limitations and that

we present a novel and versatile framework for enhancing the expressiveness of theoretical

models to capture complex non-stationary behavior using neural networks. We believe that t-

RNN serves as a bridge between traditional RL models and modern neural network models,

allowing for a unified approach that can retain the strengths of both modeling paradigms.

Materials and methods

t-RNN Implementation

We implemented our network in PyTorch library [47], training with a single NVIDIA GeForce

RTX 3080. We splitted the training set to 80/20, where 80% was used for training and the

remaining 20% for validation. We use Adam optimizer [48] and a constant learning rate of

0.001. The number of hidden cells of the GRU layer was determined by a grid search selecting

the one with the best validation loss which turn out to be 32 cells. We use early stopping

together with dropout (p = 0.2 in both GRU layers) to prevent overfitting. We found that the

best performance is obtained after a short training of fewer than 50 epochs. We also tested our

model with different batch sizes (100,500,1000) and found the same results; therefore, we

chose a batch sizes of 1000 to speed up the training time.
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Application of t-RNN to simulated data

Task structure. Agents performed a two-armed bandit task for 10 blocks of 100 trials

each. At each trial the agent received a stochastic binary reward of r = 1 for rewarded trials, or

r = 0 otherwise. The reward probability of each action is fixed during a block of 100 trials and

is selected randomly at the beginning of each block from three possible Bernoulli distribution:

fPrL
; PrR
g ¼ f0:1; 0:9g; f0:5; 0:5g; f0:9; 0:1g.

t-RNN training. Training t-RNN was done with a synthetic training set of 2,000 simu-

lated Q-learners agents operating with Eqs 2 and 3. Each agent performed a two-armed bandit

task for 10 blocks of 100 trials each. Each agents RL parameters were sampled from a uniform

distribution of α* U(0, 1) and β* U(0, 10). In the quantization preprocessing step, we dis-

cretized the α parameter into five evenly spaced bins (of size 0.2), and the β parameter into five

evenly spaced bins (of size 2).

Importantly, to facilitate t-RNN flexibility to recover time-varying RL parameters, we simu-

lated agents with non-stationary parameters. For each agent, there was a small probability of

(p = 0.005) per trial that the agent’s parameters will be re-sampled from the same uniform dis-

tribution. To keep the set from changing too rapidly, the overall number of trials in which the

parameters were re-sampled was limited to four, and after each trial of parameters re-sampling

the probability of another change was fixed to zero for 100 trials.

The combined loss function (Eq 1) included the following λ hyperparameters values:

l
CE
a
¼ 0:2, l

CE
b
¼ 0:2, l

MSE
a
¼ 6, l

MSE
b
¼ 0:1, so that each loss term is approximately of equal

magnitude.

Stationary Q-learning. Here, RL parameters were estimated for each agent individually,

using a maximum-likelihood estimation approach (Python SciPy [49] minimized function

with L-BFGS-B optimization, and five different starting search locations to avoid local max-

ima). This approach allowed for an estimation of a single and fixed set of RL parameters for

each agent [1].

Bayesian particle filtering. Here, underlying RL parameters are assumed to drift slowly

according to a Gaussian random walk,

ytþ1  yt þ �t � � N ð0; sÞ ð9Þ

and are estimated for each agent on a trial-by-trial basis using Bayesian particle filtering. We

implemented the same model as described by Samejima et al., 2003 [28]. To recover the simu-

lated data, we set 1,000 particles to approximate the distribution of two hidden RL parameters

{α, β}. Initial distribution of the particles were set to be Gaussians, with means of {0, 0} and var-

iances of {3, 1}, respectively. We set the hyper-prior for the dynamics of α and β as σα = 0.1 and

σβ = 0.05, respectively (we also tested using hyper-prior as low as σα/σβ = 0.005/0.0005 and us

high as σα/σβ = 0.05/0.005 and σα/σβ = 0.1/0.5, these setting resulted in poorer results). We also

clipped the β to range between (0,10) to match the estimation range of other models.

Test agent. In order to validate and compare the performance of t-RNN against baseline

methods, we simulated a test set of 30 artificial Q-learning agents (Eqs 2 and 3). Each agent

was simulated on the same task structure, consisting of 10 blocks of 100 trials, and his RL

parameters were sampled from a uniform distribution of α* U(0, 1) and β* U(0, 10). The

test set included three groups of 10 agents each. The first group had stationary RL parameters,

while the second group had RL parameters that abruptly changed with a small probability for

each trial (p = 0.005). The third group had RL parameters that drifted slowly according to a

Gaussian random walk (Eq 9) with sigma values of σα = 0.1 and σβ = 0.05.
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Application of t-RNN to psychiatric human individuals

Behavioral dataset and task structure [9]. The behavioral dataset includes N = 101 indi-

viduals that performed the bandit task for 12 blocks, with a free-choice rate of 40 second per

block. At each trial subjects received a stochastic binary reward of r = 1 for rewarded trials, or

r = 0 otherwise. The reward probability of each action was fixed during a block and selected at

the beginning of each block from six possible

settings:fPrL
; PrR
g ¼ f0:25; 0:05g; f0:125; 0:05g; f0:08; 0:05g; f0:05; 0:25g; f0:05; 0:125g;

f0:05; 0:08g. Each possible reward setting was repeated twice, for a total of 12 blocks. The data

included task trials of 33 individuals diagnosed with bipolar disorder, 34 with depression and

34 individuals who were matched healthy controls (see Dezfouli et al., 2019 [9] for further

details).

t-RNN training. Training t-RNN was done with a synthetic training set of 2,000 simu-

lated Q-learners agents operating with Eqs 2 and 4. Each agent performed a two-armed bandit

task for 12 blocks of 100 trials each. Each agents RL parameters were sampled from a uniform

distribution of α* U(0, 0.2), β* U(0, 10) and κ* U(−0.5, 0.5). In the quantization prepro-

cessing step, we discretized the α parameter into three evenly spaced bins (of size 0.066), the β
parameter into five evenly spaced bins (of size 2) and the κ parameter into five evenly spaced

bins (of size 0.2). Again, to facilitate t-RNN flexibility to recover time-varying RL parameters,

we simulated agents with non-stationary parameters, with the same setting as described above.

The combined loss function (Eq 1) included the following λ hyperparameters values:

l
CE
a
¼ 0:3, l

CE
b
¼ 0:25, l

CE
k
¼ 0:3, l

MSE
a
¼ 10, l

MSE
b
¼ 0:05, l

MSE
k
¼ 10, so that each loss term is

approximately of equal magnitude.

d-RNN model. Data driven RNN was implemented following the same RNN model as

described by Dezfouli et al., 2019 [9] (term here d-RNN). d-RNN is composed of a single GRU

layer of 10 hidden units. The inputs to the d-RNN are the current action at and the reward rt
received after taking that action. The outputs are probabilities over the action of the next step

at+1. We train the d-RNN with and Adam optimizer, learning rate of 0.001 and batch size of

1000. We assess performance with the same leave-one-out cross-validation schema depicted in

[9]. At each CV round one of the subjects was withheld and d-RNN was train using data from

the remaining subjects. Importantly, this procedure is done separately for each diagnostic

group. For example, in order to predict the actions of a withheld bipolar subject, we use data

from only the remaining bipolar subjects to train the d-RNN model.

Stationary Q-learning with preservation (QP-stationary). Here, stationary RL parame-

ters are estimated for each subject individually, with maximum-likelihood estimation (Python

SciPy [49] minimized function with L-BFGS-B optimization, and five different starting search

locations to avoid local maxima).

Bayesian particle filtering. For each individual, we set 1000 particles to approximate the

distribution of three hidden RL parameters {α, β, κ}, Gaussian with means of {−2, 1, 0} and var-

iances of {1.5, 1, 1.5}, respectively. The hyper-prior for the dynamics of σα = 0.05, σβ = 0.005,

and σκ = 0.05. We clipped the beta to range between (0,10) to match the estimation range of

other models.

Application of t-RNN to interpret exploration behavior of human

individuals

Behavioral dataset and task structure [22]. The behavioral dataset includes N = 44 indi-

viduals that performed the bandit task for 20 blocks of 10 trials each. At each trial subjects

received a stochastic reward drawn from a Gaussian distribution with means of μL,μR (for
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actions L and R respectively) and a variance (i.e., error variance) of t2
L ¼ t

2
R ¼ 10. The mean

reward probability of each action was fixed during a block and was drawn at the beginning of

each block from a Gaussian distribution, with mean 0 and variance 100 (see Gershman, 2018

[22] for further details).

t-RNN training. Training t-RNN was done with a synthetic training set of 10,000 simu-

lated Q-learners agents operating with Eqs 5, 6, 7 and 8. Each agent performed a two-armed

bandit task for 20 blocks of 10 trials each. Each agents RL parameters were sampled from a

uniform distribution of β* U(0, 4) and γ* U(0, 1). In the quantization preprocessing step,

we discretized the β parameter into five evenly spaced bins (of size 0.8), the γ parameter into

five evenly spaced bins (of size 0.2). Again, to facilitate t-RNN flexibility to recover time-vary-

ing RL parameters, we simulated agents with non-stationary parameters, with the same setting

as described above. For each agent, there was a small probability of (p = 0.02) per trial that the

agent’s parameters will be re-sampled from the same uniform distribution. The overall number

of trials in which the parameters were re-sampled was limited to four, and after each trial of

parameters re-sampling the probability of another change was fixed to zero for 10 trials.

The combined loss function (Eq 1) included the following λ hyperparameters values:

l
CE
b
¼ 0:25, l

CE
g
¼ 0:25, l

MSE
b
¼ 1, l

MSE
g
¼ 10, so that each loss term is approximately of equal

magnitude.

d-RNN model. Similar to the one described above, with the two differences being are that

the batch size was 200 and the LOOCV schema was performed over all 44 individuals.

Stationary hybrid exploration model. We adopted a similar model as described in [22],

in which we estimated two stationary (i.e., fixed) parameters for each individual separately.

Namely, a β random exploration parameter and a γ directed exploration parameter using max-

imum-likelihood estimation.

Bayesian particle filtering. For each individual, we set 1,000 particles to approximate the

distribution of two hidden RL parameters {β, γ}. Initial distribution of the particles were set to

be Gaussians, with means of {0, −2} and variances of {1, 1}, respectively. The hyper-prior for

the dynamics of β was σβ = 0.1, and for γ was σγ = 0.1. We clipped the β to range between (0,4)

to match the estimation range of other models.

Supporting information

S1 Text. Sensitivity of t-RNN as a function of the number of observations and free parame-

ters in the theoretical RL model.

(PDF)

S1 Table. Sensitivity of t-RNN to parameters quantization. To ensure that quantization did

not affect our performance, we ran two experiments where we quantized the RL parameters to

as low as 3 bins (α and β parameters to 3 evenly spaced bins each) and up to 10 bins (α and β
parameters to 10 evenly spaced bins each). We found similar performance across all three

quantization settings.

(PDF)

S2 Table. Action prediction and RL parameter recovery of simulated test agents. Summary

table of the raw results presented in the validation study of the main text (see Fig 2A).

(PDF)

S3 Table. Volatile environment. To assess the performance of t-RNN model in a volatile envi-

ronment, we conducted an additional analysis similar to the one described in the main text (see

Validating t-RNN using synthetic behavior) with agents simulated in a two-armed bandit task.

However, here instead of a fixed reward probability for each arm, the reward expected value
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schedule was governed by a random walk with a drift rate of 0.025, and upper and lower

bounds of 0.15 and 0.85, respectively. Our findings align with the conclusions mentioned in

the main text, demonstrating that the t-RNN outperformed the alternatives in terms of both

action prediction and parameter estimation. Therefore, we conclude that our conclusions

regarding tRNN performance generalized to two-armed bandit tasks in a volatile environment.

(PDF)

S4 Table. Action prediction for Dezfouli et al., 2019 [9] dataset. Summary table of the raw

results presented in the main text (see Fig 3A).

(PDF)

S5 Table. Summary statistics of RL parameters estimations by diagnostic group. Summary

statistics of the trial-by-trial RL parameter estimation produced by t-RNN for each diagnostic

group.

(PDF)

S6 Table. Action prediction for Gershman 2018 [22] dataset. Summary table of the raw

results presented in the main text (see Fig 4A).

(PDF)

S1 Fig. Relation of perseveration estimation with stay probability. The left panels show the

trial-by-trial RL κ perseveration parameter estimation using t-RNN (blue) and QP-stationarity

(green) methods, along with the moving average calculation of the stay probabilities (red; win-

dow size of 10 trials) for three example subjects (one from each diagnostic group). The right

panels show the corresponding Pearson correlation between the moving average stay probabil-

ities and κ parameter estimation of t-RNN and QP-stationarity model (red dashed line denotes

the identity). The results indicate a strong correlation between the stay probabilities and κ
parameter estimation of t-RNN (r2 > 0.9), but not of the QP-stationarity (r� 0), which fails to

detect changes in subject behavior throughout the task.

(PDF)

S2 Fig. Additional analysis inverse-temperature estimation. (A) Boxplot of the time-varying

β estimates for each diagnostic group (middle black solid lines denote the median; light dots

indicate a single trial estimate of the κ preservation parameter). Results indicate that all groups

exhibit similar estimates, with a slight increase in the healthy group compared to the clinical

groups. This suggests that the healthy group’s action selection was slightly less random than

the clinical group’s. (B) Trial-by-trial β inverse-temperature parameter estimates by t-RNN

averaged over the first 100 trials of each block and for each diagnostic group separately (shaded

area signifies the s.e.m). In all three groups, subjects show an increase in their β estimates

(behavior became less random as the block progressed), but the baseline differs, with clinical

groups having a lower starting point. (C) Distribution of the Pearson correlation between the

choice probabilities produced by t-RNN (calculated using a moving average of 10 trials) and

the time-varying β inverse-temperature produced by t-RNN for each subject individually. The

results indicate a strong relationship between t-RNN time-varying RL β parameter estimation

and the moving average of the choice probabilities.

(PDF)

S3 Fig. Relation of inverse-temperature estimation with random choice. The left panels

show the trial-by-trial RL β parameter estimation of t-RNN (blue; divided by 20 to fit the scale)

and a moving average calculation of the absolute value difference between the choice probabil-

ities produced by t-RNN and random choice probability (red; window size of 10 trials) for

three example subjects (one from each diagnostic group). The right panels show the
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corresponding Pearson correlation between the moving average choice probabilities and β
parameter estimation of t-RNN (red dashed line denotes the identity). The results indicate a

strong correlation between the two estimations.

(PDF)

S4 Fig. Supplement Fig 3D. In Fig 3D we depicted specific trials to illustrate the estimation of

parameters across the two methods (QP-stationary, t-RNN). For completeness, we present the

full range of trials for the same subjects (black boxes represent the trials that are depicted in

Fig 3D). (A) Example bipolar subject. (B) Example depression subject. Action prediction (top)

and theoretical RL κ parameters estimation (bottom).

(PDF)

S5 Fig. Directed exploration dynamics of repeated action blocks. (A) Example of a single

instantiation of a single action block. The top panel depicts the sequence of chosen actions,

obtain rewards, and t-RNN action predictions as red dots, red numbers, and blue solid lines,

respectively. The subject consecutively chooses the same action. The bottom panel depicts t-

RNN γ directed exploration parameter estimation, where it estimates a step decrease in the

parameter throughout the block. (B) Dynamics of the directed exploration parameter averaged

across all instantiations of a single action block. t-RNN estimates a sharp decrease in the γ
directed exploration parameter in these blocks.

(PDF)

S6 Fig. t-RNN concatenation ablation. Training t-RNN without concatenation (green bar)

led to a degradation in the performance in the action prediction compared to t-RNN trained

with concatenation (blue bar) for both empirical datasets (error measured in BCE; black lines

indicate s.e.m; *** p< .001; ** p< .01).

(PDF)

S7 Fig. Using ensemble method to gain variance estimation for t-RNN. (a) alpha parameter

estimation, (b) beta parameter estimation. The top panel represents recovery of stationary RL

parameters, the middle depicts recovery of abruptly changing RL parameters, and the bottom

shows recovery of gradually changing RL parameters. Ground truth (red), stationary Q-learn-

ing (green), Bayesian (yellow), our t-RNN with static training set (pink), and t-RNN (blue).

Error bars, Bayesian model (in yellow; calculated using the variance over the particles). Error

bars, ours (in blue; calculated using 10 different runs of our model).

(PDF)
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