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Abstract

RNA modification is a post transcriptional modification that occurs in all organisms and

plays a crucial role in the stages of RNA life, closely related to many life processes. As one

of the newly discovered modifications, N1-methyladenosine (m1A) plays an important role in

gene expression regulation, closely related to the occurrence and development of diseases.

However, due to the low abundance of m1A, verifying the associations between m1As and

diseases through wet experiments requires a great quantity of manpower and resources. In

this study, we proposed a computational method for predicting the associations of RNA

methylation and disease based on graph convolutional network (RMDGCN) with attention

mechanism. We build an adjacency matrix through the collected m1As and diseases associ-

ations, and use positive-unlabeled learning to increase the number of positive samples. By

extracting the features of m1As and diseases, a heterogeneous network is constructed, and

a GCN with attention mechanism is adopted to predict the associations between m1As and

diseases. The experimental results indicate that under a 5-fold cross validation, RMDGCN

is superior to other methods (AUC = 0.9892 and AUPR = 0.8682). In addition, case studies

indicate that RMDGCN can predict the relationships between unknown m1As and diseases.

In summary, RMDGCN is an effective method for predicting the associations between m1As

and diseases.

Author summary

• As a new epitranscriptomic modification, m1A plays an important role in the gene

expression regulation, closely related to the occurrence and development of diseases.

• However, due to the low abundance of m1A, verifying the associations between m1As

and diseases through wet experiments requires a great quantity of manpower and

resources.
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• It is especially important to develop computational methods for predicting the associa-

tions between m1A modifications and diseases.

• We developed a deep learning model to predict the associations of m1As and diseases,

namely RMDGCN.

• RMDGCN increases the number of known relationships between m1As and diseases

through PU learning, and combines m1A similarity network and disease similarity net-

work to construct heterogeneous networks. It adopts GCN with layered attention mech-

anism to predict the associations between methylations and diseases.

• The results of the 5-fold cross validation show that the performance of RMDGCN is

superior to other comparison algorithms.

• Through case study analysis of breast cancer, RMDGCN can effectively predict the rela-

tionships between unknown m1As and diseases.

Introduction

RNA epigenetic modifications occur in almost all types of RNA and play an important role in

all stages of life. Up to now, more than 170 different RNA modifications have been identified.

As one of the modifications, N1-methyladenosine (m1A) is a new epigenetic one, and the

nitrogen in the first position of adenine is modified by a methyl group during the process [1].

The University of Chicago analyzed the methylation of m1A in eukaryotic mRNA by m1A

RNA methylation sequencing and RIP sequencing techniques, and the appearance of the m1A

chemical modification was to significantly enhance protein translation of transcripts. It was

further observed that m1A modification is prevalent in humans, rodents and yeast, which sug-

gested that m1A modification is evolutionarily conserved [2]. With the development of high-

throughput sequencing technologies, several studies have identified methylation sites for m1A

in nuclear and mitochondrial RNA. The results show that unlike the prevalent m6A modifica-

tion, the abundance of m1A is relatively low and most of the m1A methylation modification

sites are concentrated in the 5’UTR of the mRNA transcript, particularly at the first and second

positions of the transcript initiation site. A small proportion of sequences were created by a

known methylation enzyme complex, TRMT6 / 61A, conform to the ’GUUCRA’ sequence

motif [3]. A large number of m1A methylation modifications were found in the mitochond-

rially encoded transcripts by using m1A mapping techniques. Among them, m1A within the

5’UTR of mRNA transcripts can promote protein translation, while m1A observed in the cod-

ing region of transcripts can lead to inhibition of translation. In addition, ALKBH1, an RNA

repair enzyme, can function as an m1A scavenger by catalyzing the demethylation reaction [4].

And m1A can affect ribosome biosynthesis and mediate antibiotic resistance in rRNA [5], and

mediate tRNA responses to environmental stress [6,7].

Some researchers have shown that genetic variants function can alter RNA modification by

specifically replacing nucleotides at the modification site or altering the nucleotide sequence in

the proximal flanking region [8]. More and more scientific studies have shown that m1A meth-

ylation sites are closely associated with human diseases, such as cardiovascular disease [9], can-

cer [10], etc. Due to the high cost and complexity of wet experiments used to verify the

associations between m1A modification sites and diseases, predicting the associations between

m1A sites and diseases based on computational methods can help predict potential
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relationships between m1As and diseases. Therefore, it is necessary to develop effective meth-

ods for predicting the associations between m1A sites and diseases. The associations prediction

between m1A modification sites and diseases is a computational approach to predict the rela-

tionships between unknown m1A modification sites and diseases based on experimentally

confirmed m1A modification sites and diseases associations. So far, there has been no specific

method for predicting the associations between m1A sites and diseases. However, there are

some methods for predicting the associations between N7-methylguanosine and diseases.

m7GDisAI [11] integrates the location information of m7G and the comprehensive similarity

information of diseases to construct a heterogeneous network, on which matrix decomposition

methods are applied to predict potential disease-related m7G sites. HN-CNN [12] constructs

heterogeneous networks based on m7G site similarity, disease similarity, and the associations

between m7G and diseases to form features of m7G site-disease pairs. Then, multidimensional

and uncorrelated features are obtained through convolutional neural networks (CNN) [13].

And XGBoost was used to predict the correlation between m7G site and disease. BRPCA [14]

can accelerate the presence of noise and redundancy in association and similar information.

And by introducing appropriate bounded constraints, it ensures that the predicted correlation

score is within a meaningful interval. Numerous experiments have demonstrated the superior-

ity and robustness of BRPCA. m7GDP-RW [15] combines the m7G sites and diseases feature

information with known m7G-disease associations to calculate m7G similarity and disease sim-

ilarity. Then, a heterogeneous network of m7G- diseases is constructed by combining the

known m7G-disease associations with the computational similarity of m7G and diseases.

Finally, a two times random walk algorithm with restart is used to search for new m7G-disease

associations on the heterogeneous network.

Although there are few cases to solve the problem of predicting RNA methylation modifica-

tion sites and diseases associations, various models developed in the past few years have made

great progress in predicting potential miRNA-disease associations, lncRNA-disease associa-

tions, drug targets, etc. The existing methods can be roughly divided into two categories: net-

work-based methods and machine learning-based algorithms.

The network-based algorithm constructs the associated data into a network and uses the

model on the network to solve the problem. Tang et al. [16] proposed a double Laplacian regu-

larization matrix completion model for miRNA-disease associations prediction, which trans-

formed miRNA-disease associations prediction into a matrix complementation problem,

using double Laplacian regularization terms to make full use of miRNA functional similarity

and disease semantic similarity for miRNA-disease associations matrix complementation. The

AUC of GLOOCV and LLOOCV were 0.9174 and 0.8289, respectively. Gu et al. [17] devel-

oped a global network random walk model to predict the potential lncRNA-disease associa-

tions GrwLDA, which can be used for disease with unknown associated lncRNA (isolated

disease) and lncRNA with unknown associated disease (novel lncRNA). Wang et al. [18] pro-

posed a weighted graph regularization collaborative non-negative matrix decomposition

model to reconstruct the associations adjacency matrix between drugs and diseases by using

weighted k-nearest neighbors, and to identify potential associations between drugs and dis-

eases by using a graph regularization non-negative matrix decomposition model.

The machine learning-based approach treats the associations between histological data and

diseases as a triadic set of samples, and models the histological data-disease associations prob-

lem as a classification problem on the sample set, which is classified by machine learning meth-

ods. Chen et al. [19] proposed a Kronecker regularized least squares method based on multiple

kernel learning for miRNA-disease associations prediction, introducing Kronecker regularized

least squares, which can reveal potential miRNA-disease associations by automatically opti-

mizing the combination of multiple kernels of diseases and miRNAs. Zhang et al. [20]
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proposed a similar constraint matrix decomposition method for drug-disease associations pre-

diction SCMFDD, which considers the biological background of the problem and uses known

drug-disease associations, the drug features and diseases semantic information to project the

drug-disease associations into two low-order spaces that reveal the underlying features of the

drugs and diseases. Peng et al. [21] proposed to use neural networks for learning based

miRNA-disease associations recognition framework, and to construct a three-layer heteroge-

neous network based on the disease similarity network, miRNA similarity network and pro-

tein interaction network to extract association features, and to use automatic encoder for

feature dimension reduction. The features after dimension reduction are input into CNN,

after which CNN completes the prediction task.

Traditional convolutional neural networks have brought great improvements in the field of

text and image processing, but it can only process Euclidean spatial data. Due to the prevalence

of graph data, researchers started to focus on how to construct deep learning models on

graphs. Bruna et al. [22] first proposed Graph Convolution Network (GCN) and defined

graph convolution in spectral space based on convolution theorem. CRPGCN [23] proposed a

GCN constructed based on restart random walk (RWR) and principal component analysis

(PCA) to predict the associations between circRNA and diseases. The RWR algorithm is used

to improve the similarity associations between nodes and their neighbors and the PCA method

performs dimension reduction and feature extraction. The GCN algorithm learns the features

between circRNAs and the diseases and calculates the final similarity score. Hou et al. [24]

used two GCNs (Asso-GCN and Sim-GCN) to extract features of piRNAs and diseases by

obtaining association patterns from piRNA-disease interaction networks and two similar net-

works. GCN captures complex network structure information from the networks and learns to

identify features, using fully connected networks and internal yield as output modules to pre-

dict piRNA-disease associations scores. Zhang et al. [25] proposed a lncRNA-disease associa-

tions prediction model SGALDA based on a semantic and global dual attention mechanism,

which divides the constructed heterogeneous network into multiple sub-networks and applies

the GCN on each sub-network separately to extract the semantic features of nodes to capture

the higher-order interactions on the heterogeneous network.

In this study, we proposed RMDGCN to predict the associations between m1As and dis-

eases based on positive-unlabeled learning (PU learning) and GCN. We obtain the similarity

matrix of m1A sites through cosine similarity calculation, and the similarity matrix of diseases

through disease symptom similarity and semantic similarity. They form a heterogeneous net-

work with the adjacency matrix by PU learning. Finally, a GCN with attention mechanism is

applied to the heterogeneous network to predict potential m1A modification sites related to

diseases. In order to verify the effectiveness of RMDGCN, we used a 5-fold cross validation

method to compare this method with other methods. The experimental results show that

RMDGCN results are significantly superior to other methods and can well predict the poten-

tial m1A sites associated with disease.

Results and discussion

Evaluation metrics

In order to evaluate the performance of the model, we use 5-fold cross validation (5CV) to ver-

ify. In the 5CV, all known associations between m1As and diseases were randomly divided

into 5 parts, each part is considered as a test set, and the remaining four parts are considered

as training sets. In the test set, we set the known associations between m1As and diseases in the

~A matrix to 0, and then obtain the predicted scores by RMDGCN. Then the prediction scores

are sorted in descending order. We drew the receiver operating characteristic (ROC) curve
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and the Precision-Recall (PR) curve, and calculated the area under the ROC curve and the area

under the PR curve (AUPR) to evaluate the model performance. The ROC curve is obtained

by TPR and FPR under different scoring thresholds, and the PR curve is obtained by precision
and recall under different scoring thresholds. TPR, FPR, precision and recall are calculated by

Eq 1. The AUC is not sensitive to whether the sample category is balanced. The performance

under the condition of highly unbalanced data is still too ideal to show the actual situation

well. Under extremely unbalanced data (fewer positive samples), PR curve may be more practi-

cal than ROC curve. We use AUC and AUPR as the main evaluation indicators.

In addition, we adopt Precision, Recall, Accuracy (ACC) and F1_score to show the results of

the model, which are defined as follows respectively:

TPR ¼
TP

TP þ FN

FPR ¼
FP

FP þ TN

Precision ¼
TP

TPþ FP

Recall ¼
TP

TP þ FN

ACC ¼
TP þ TN

TN þ FPþ TPþ FN

F1 score ¼
2� Precision� Recall
Precisionþ Recall

ð1Þ

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

Adjustment of parameters

In RMDGCN, many parameters need to be adjusted, including PU learning threshold, similar-

ity parameter λ, penalty factor α and β, and the embedding dimension. The purpose of PU

learning is to obtain more positive samples, but PU learning only obtains predictive scores for

the relationships between m1A modification sites and diseases. In order to obtain the corre-

sponding adjacency matrix, it is necessary to obtain a 0–1 relationship matrix based on the set

threshold. In general, we set the classification threshold to 0.5. In order to obtain higher confi-

dence results, we set the threshold = [0.5,0.6,0.7,0.8,0.9]. Then, we compared the results of

learning with PU learning and without PU learning, and the results of PU learning were

achieved through different thresholds. When not performing PU learning, only the standard

adjacency matrix A obtained from the beginning is used. When performing PU learning, a

new adjacency matrix ~A is obtained based on the set threshold. If the score of PU learning is

greater than the threshold, it is 1, otherwise it is 0. From Fig 1, it can be seen that the results of

learning with PU learning are significantly better than those without PU learning. When

threshold = 0.6, all results are optimal except for Recall. Therefore, we set the threshold to 0.6.

When threshold = 0.6, the positive samples (i.e. ~Aij = 1) in the adjacency matrix ~A are 11034.

Then we discussed the disease feature fusion parameter λ, and set λ =

[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]. When λ = 0, disease similarity features are only com-

posed of semantic similarity, and when λ = 1, disease similarity features are composed of

symptom similarity. From Fig 2, it can be seen that when λ = 0.9, AUC and AUPR can achieve

the maximum value, and the performance of the whole model is optimal. This shows that the

symptom characteristics of diseases play a more important role in building heterogeneous net-

works using disease similarity features.
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Penalty factors α and β are mainly used to control the contribution of similarity in GCN

propagation. We let α and β both as [0.5,1,2,3,4]. Because the AUCs are not very different, we

only show the AUPRs. As a result, RMDGCN (α = 0.5 and β = 0.5) gained the highest AUPR

of 0.8682 in 5CV as shown in Fig 3.

Finally, we analyzed the impact of embedding dimensions on the experimental results. We

set the embedding dimension as [8,16,32,64,128], and the experimental results (see Fig 4)

show that the optimal experimental results can be obtained when the embedding dimension

is 16.

Comparing with other methods

In order to analyze the performance of RMDGCN in predicting the relationships between

m1A modification sites and diseases, we compared it with the commonly used methods of rela-

tionship prediction, RWR and non-negative matrix factorization (NMF), under the five-fold

cross-validation. The RWR and NMF used here are basic models without any improvement.

In addition, we also compared RMDGCN with existing m7G-disease associations prediction

method BRPCA [14], drug and disease prediction methods SCMDDF [20], and miRNA-dis-

ease associations prediction method LOMDA [26]. RWR can use the multi-faceted

Fig 1. The results of the different thresholds.

https://doi.org/10.1371/journal.pcbi.1011677.g001
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information of nodes to obtain the correlation score between nodes by capturing the global

information of the graph. Since the same molecule may cause many different diseases, we

believe that the potential factors controlling the molecular disease associations are highly cor-

related. NMF decomposes the association matrix into base matrix and weight matrix. The base

matrix describes the relative contribution of potential regulatory factors, and the weight matrix

describes the relative contribution of diseases. The predicted score of the relationships between

the modified sites and the diseases is obtained by multiplying the two matrices. BRPCA per-

forms singular value decomposition on heterogeneous networks to recover missing items in

the adjacency matrix of heterogeneous networks. SCMDDF is a method of using similarity

constraint matrix factorization to predict the relationships between drugs and diseases, while

LOMDA is a linear prediction method based on linear optimization methods for predicting

the associations between miRNA and diseases.

The ROC curves and PR curves of the several methods are shown in the Fig 5. It can be

seen from the figure that RMDGCN performs best in predicting the relationships between

m1A modification sites and diseases, which is 0.053 higher than the AUC of BRPCA, 0.0904

higher than SCMFDD, and 0.0955 higher than LOMDA. In addition, AUPR is 0.704 higher

than BRPCA and 0.543 higher than LOMDA. Although the ACC of RMDGCN is lower than

Fig 2. The AUCs and AUPRs between different λ.

https://doi.org/10.1371/journal.pcbi.1011677.g002
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NMF and SCMFDD, and the Recall is lower than LOMFDA and BRPCA, all indicators of

RMDGCN are relatively balanced and high. It proves that the performance of RMDGCN is

superior to other methods. The detailed results of all evaluation indicators are shown in

Table 1.

Case study

In order to further verify the performance of the model, RMDGCN was used to predict the

potential m1A sites associated with breast cancer, which is a disease with a very high prevalence

rate among women worldwide. We further performed gene ontology (GO) analysis on the

host genes of these predicted new sites.

In case study, all known associations between the breast cancer and m1As were assumed to

be unknown. Then the prediction scores were calculated by RMDGCN between the breast

cancer and m1A modifications. According to the prediction scores, the candidate m1A sites

related to breast cancer will be sorted, and the top 500 candidate sites will be selected, and

their host genes will be found. Because some sites have common host genes, we finally

obtained 174 host genes for GO analysis, then, by removing redundancy, we obtained 150 host

genes with unique gene symbols. GO analysis includes cell composition (CC), biological pro-

cess (BP) and molecular function (MF). Then, DAVID describes these host genes from these

three aspects. Among them, the p-value cutoff is set to 0.05. In order to control the error

Fig 3. The AUPRs results of α and β.

https://doi.org/10.1371/journal.pcbi.1011677.g003
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detection rate, the adjusted p-value is set to 0.1. When this condition is met, it indicates that

the correlation between host gene and GO terms is statistically significant.

Ana et al. [27] showed that nucleolar protein was overexpressed in breast tumors, mainly in

the nucleus, but cytoplasmic staining was observed in some cells. The CC enrichment term of

genes related to breast cancer is shown in the Fig 6. The larger the circle, the richer the gene in

this term. It can be seen that many genes related to breast cancer disease are enriched in the

nucleus and cytoplasm, indicating that these sites may participate in the formation of nucleus

and cytoplasm.

Fig 4. The results of embedding dimension.

https://doi.org/10.1371/journal.pcbi.1011677.g004
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Research shows that the occurrence of breast cancer is related to a variety of biological pro-

cesses. We analyzed the relationship between the BP terms and the enriched host genes, and

the results are shown in the Fig 7. It can be seen from the figure that a gene may participate in

multiple biological processes, and a biological process is the result of the interaction of multiple

genes. For example, CHD5 [28] gene can inhibit the proliferation of breast cancer cells in vitro

and slow down the process of cell cycle. Missense mutation in LONP1 and gene mutation in

TRMT61B [29] are related to m1A modification level in a large number of tissues. The genetic

variation related to the level of RNA modification is related to a variety of disease related phe-

notypes, including blood pressure, breast cancer and psoriasis, suggesting the role of mito-

chondrial RNA modification in complex diseases.

Next, we analyzed the MF enriched by GO, and the results are shown in the figure. It can be

seen from Fig 8 that GO is mainly enriched in protein binding on MF. For example, p53 bind-

ing plays an important role in the repair of radiation-induced DNA double strand breaks

(DSBs) [30]. As a tumor suppressor, it has a far-reaching effect on inhibiting breast cancer,

and has become an important new biomarker to judge the prognosis of breast cancer.

Conclusion

In this study, a RMDGCN method was developed to predict the associations between the m1A

sites and various diseases, aiming to reveal the regulatory pathways of diseases regulated by the

Fig 5. The ROC curves and PR curves for 5CV. (A) ROC curves (B) PR curves.

https://doi.org/10.1371/journal.pcbi.1011677.g005

Table 1. Performance comparison of different methods.

AUC AUPR Precision ACC Recall F1_score
RWR 0.6343 0.0694 0.1041 0.9036 0.1900 0.1345

NMF 0.7120 0.2926 0.1038 0.9949 0.0843 0.0754

BRPCA 0.9362 0.1624 0.0579 0.9304 0.7847 0.1079

SCMFDD 0.8988 0.0499 0.0582 0.9915 0.162 0.0856

LOMDA 0.8937 0.3252 0.0172 0.3540 0.9431 0.0338

RMDGCN 0.9892 0.8682 0.799 0.9836 0.7809 0.7897

https://doi.org/10.1371/journal.pcbi.1011677.t001
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epitranscriptome layer. Using disease related mutations as links, the associations between m1A

sites and diseases were extracted, and a m1A-disease associations network was constructed. In

order to further improve the accuracy of prediction, PU learning is used to increase the num-

ber of associations.

RMDGCN is conducted on a heterogeneous network of m1A-disease associations, which is

composed of m1A similarity network, disease similarity network, and m1A-disease associa-

tions network. In terms of predictive performance, the AUC of RMDGCN in 5CVs is as high

as 0.9892, and the AUPR is as high as 0.8682. In addition, in the case study of breast cancer,

we verified the effectiveness of RMDGCN through GO analysis. In summary, RMDGCN is a

powerful tool for predicting the associations between methylation modification sites and

diseases.

Material and methods

The whole flowchart of RMDGCN is shown in Fig 9.

Fig 6. The CC enrichment term of genes related to breast cancer.

https://doi.org/10.1371/journal.pcbi.1011677.g006
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Dataset

The associations between m1As and diseases used by RMDGCN come from the RMVar data-

base(http://rmvar.renlab.org) [31], which is specially used to collect RNA data of functional

variants, and is designed to help reveal the potential function of RNA modified variants. In

order to link RM-related variants with human genetic diseases, RMVar collected disease-

related variants from GWAS queue and ClinVar database. In RMVar, we downloaded the

dataset which is human related m1A information with “genetype = m1A” and

“assembly = hg38”, including 62285 mutation related m1A methylation modification sites

information. In the dataset, it includes modification sites location information, corresponding

SNP information, tumor disease information, etc.

Known associations between RNA Methylations and diseases

Due to the associations prediction of m1A modifications and diseases, we only focus on the

sites information of m1A and the corresponding tumor diseases information. In the dataset we

downloaded, it collected 62285 mutations related to m1A methylation modification sites and

424 diseases. In order to make the data have a higher confidence level, we reserve the modified

Fig 7. The relationship between the BP terms and the enriched host genes.

https://doi.org/10.1371/journal.pcbi.1011677.g007
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sites with a high confidence level and diseases with corresponding DOID in the Disease ontol-

ogy database (http://www.disease-ontology.org/) [32]. Finally, we obtained 3618 m1A modifi-

cation sites, 116 diseases and 5100 associations. For convenience, we express the associations

between m1A modification sites and diseases as a binary matrix A2R3618×116. If there is interac-

tion between m1A modification site ri and disease dj, A (i, j) = 1; Otherwise, A (i, j) = 0.

Similarity calculation

m1A RNA methylation similarity. In order to calculate the similarity of m1A modifica-

tion, we first take the modification sites as the center, and lengthen the upstream and down-

stream by 250 bp. For each modification site, we finally obtain a sequence with the length of

501 bp based on the four AGCT bases. Word2vec [33] is a statistical method for learning word

embedding. It can express a word into vector form quickly and effectively through the opti-

mized training model according to the given corpus. It builds word embedding from the text

corpus based on neural network training through two models, skip-gram and continuous

Word Packet (CBOW). Skip-gram model can predict the surrounding words through the

Fig 8. The MF enrichment term of genes related to breast cancer.

https://doi.org/10.1371/journal.pcbi.1011677.g008
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current words, while CBOW model can predict the current words through the context words.

Both models focus on learning the context within the adjacent word window of a given word.

We regard the length of three RNA nucleotides as an RNA word in the way of sliding window,

and analyze their sequence content as an RNA corpus, and then use word2vec in the Gensim

toolkit to learn the vector relationship of these RNA words, and finally generate a 100-dimen-

sional feature vector for each sequence [34]. In the end, the sequences of all modified sites are

Fig 9. The flowchart of RMDGCN.

https://doi.org/10.1371/journal.pcbi.1011677.g009
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converted into a data set r = Rn×e, where n is the number of m1A methylation sites, and e is the

dimensional of feature vector by word2vec.

Cosine similarity [35] is a measure of the difference between two individuals which uses the

cosine value of the angle between two vectors in vector space. Compared with distance mea-

surement, cosine similarity pays more attention to the difference between two vectors in the

direction rather than the distance or the length. In order to measure the similarity of the two

modification sites and construct the m1A-m1A similarity matrix, we use cosine similarity to

calculate the similarity of the two m1A modification sites. The similarity between m1A ri and

m1A rj can be defined as:

RRS ri; rj
� �

¼
ri � rj

krik � krjk
¼

Pe
m¼1

ri;m � rj;m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPe

m¼1
ðri;mÞ

2
q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPe
m¼1
ðrj;mÞ

2
q ð2Þ

where RRS(ri, rj) is the similarity between m1A ri and m1A rj, and the dimensions of similarity

matrix RRS are 3618×3618, k•k denotes the L2 norm. Due to the range of cosine similarity

being [–1,1], in order to keep the RRS similarity matrix within the range of [0,1], min-max

normalization [36] is used to normalize the RRS similarity matrix.

Disease similarity

RMDGCN constructs a disease-disease similarity network by calculating the semantic similar-

ity and symptom similarity of diseases. The semantic similarity of diseases is calculated by

using the DOID corresponding to diseases in the DOSE package of R language, and is

recorded as DOS. According to the work of Zhou et al. [37], we can measure the disease simi-

larity and build a symptom-based disease similarity network. Here, the symptom-based disease

similarity matrix DDS is obtained from the disease symptom profile. Finally, the integrated

disease similarity is regarded as the disease feature. The integrated disease similarity is calcu-

lated as follows:

DDSðdi; djÞ ¼ DOSðdi; djÞ þ ð1 � lÞDSSðdi; djÞ ð3Þ

where DOS(di, dj) is the semantic similarity between disease di and dj, DSS(di, dj) is the symp-

tom similarity between disease di and dj, DDS(di, dj) is the integrated similarity between dis-

ease di and dj, λ is an adjusting parameter. The dimensions of similarity matrix DDS are

116×116.

Positive-unlabeled learning

When the positive and negative samples are extremely unbalanced and the number of negative

samples is far more than the positive samples, the effect of the model is very poor. In other

words, the performance of the algorithm depends largely on a large number of known m1A

modification sites and diseases associations. However, currently the known m1A modification

sites and diseases associations are few, which means that the adjacency matrix A contains a

large number of 0 elements. This will affect the performance of the model to a certain extent.

In order to reduce the impact of sample imbalance caused by few positive samples on model

performance, RMDGCN uses positive unlabeled learning to increase the number of positive

samples to improve the predictive performance of the model.

We use RRS and DOS as features, randomly select the same number as the positive samples

from the negative samples each time, and combine them with all positive samples to form

training samples. Then the remaining negative samples are predicted to get the prediction

score by XGBoost [38]. The detailed process is shown in Fig 10. We repeat the process (See
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Fig 10) 100 times. After repeating the process 100 times, for each negative sample, the average

score of all predicted results is taken as the final score of the negative sample, while the score of

the positive sample is still 1. Sample labels are confirmed based on a given threshold. If the

score is greater than the threshold, then ~Aði; jÞ ¼ 1; otherwise, ~Aði; jÞ ¼ 0. Thus, a new adja-

cency matrix ~A is constructed.

Heterogeneous networks construction

Based on RRS, DDS and the new adjacency matrix ~A after PU learning, the adjacency matrix

representing heterogeneous networks is defined as follows:

X ¼
RRS ~A
~AT DDS

 !

ð4Þ

where X is the m1A-disease heterogeneous matrix, RRS is the similarity matrix between sites,

DDS is the similarity matrix between diseases and diseases, ~A is the adjacency matrix after PU

learning, and ~AT is the transposition of ~A.

In order to construct a low dimensional representation of the relationships between m1As

and diseases using GCN, we introduced penalty factors α and β on heterogeneous graph X to

Fig 10. The flowchart of PU-learning.

https://doi.org/10.1371/journal.pcbi.1011677.g010
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control the contribution of similarity in GCN propagation, and deployed GCN to combine

node similarity and m1A-disease associations information.

G ¼
aRRS ~A

~AT bDDS

 !

ð5Þ

Graph convolution network with multilayer attention mechanism

Due to the ability of GCN to effectively extract spatial features of topology maps in non Euclid-

ean structures, we choose GCN to extract features in the constructed heterogeneous network.

There are two main types of graph convolutional neural networks, one based on spatial or ver-

tex domains, and the other based on frequency or spectral domains. The essence of spatial

graph convolution is to continuously aggregate the neighboring information of nodes, that is,

directly accumulate the neighboring information of nodes to achieve graph convolution. Spec-

tral domain based graph convolutional networks mainly rely on graph theory, correlated Fou-

rier transform to achieve mutual conversion between spatial and spectral domains, and

convolutional operation properties in spectral domains to complete the research of topological

graph properties. In spectral-based graph neural networks, graphs are assumed to be undi-

rected graphs, and one robust mathematical representation of undirected graphs is the regular-

ized graph Laplacian matrix:

L ¼ In � D� 1
2AD� 1

2 ð6Þ

where A is the adjacency matrix of the graph, D is the diagonal matrix and

Dii ¼
X

j
Aði; jÞ ð7Þ

Regularized graph Laplacian matrix has the property of being real symmetry semi-positive

definite. Using this property, the regularized Laplacian matrix can be decomposed into

L ¼ ULUT ð8Þ

where U ¼ fu1
!; u2
!; . . . ; un

!2 RN�Ng, U is a matrix consisting of the eigenvectors of L, and Λ is

a diagonal matrix, and the values on the diagonal matrix are the eigenvalues of L. The eigen-

vectors of the regularized Laplacian matrix form a set of orthogonal bases.

In graph signal processing, the signal x2RN of a graph is an eigenvector consisting of indi-

vidual nodes of the graph, with xi is thus defined as

FðxÞ ¼ UTx ð9Þ

The inverse Fourier transform is:

F� 1ðx̂Þ ¼ UTx̂ ð10Þ

where x̂ is the result of the Fourier transform.

In processing graphs, the discrete form of the Fourier transform is used. Since the Laplace

matrix, after spectral decomposition, yields n linearly independent eigenvectors that form a set

of orthogonal bases in space, the eigenvectors of the normalized Laplace matrix operator form

the basis of the graph Fourier transform. The graph Fourier transform projects the signal of

the input graph into the orthogonal space, which is equivalent to representing any vector

defined on the graph as a linear combination of the eigenvectors of the Laplace matrix.
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Specifically, given a network with the corresponding adjacency matrix G, the hierarchical

propagation rule of the GCN is:

Hðlþ1Þ ¼ f HðlÞ;G
� �

¼ s D� 1
2GD� 1

2HðlÞWðlÞ
� �

ð11Þ

where H(l) is the embedding of the node at layer l, D = diag(∑j Gij) is the degree matrix of G,

W(l) is the layer-specific trainable weight matrix, σ(•) is the nonlinear activation function, and

D� 1
2GD� 1

2 is the normalized adjacency matrix. The left multiplication of the normalized adja-

cency matrix by the feature matrix is the aggregation process of neighbors, and then the right

multiplication of W is the feature weighted summation process, and finally the nonlinear

transformation is performed by the activation function.

In addition, considering that the contributions of different embeddings at different levels

are inconsistent, we introduce attention mechanisms to combine these embeddings and ulti-

mately obtain methylation modifications and disease embeddings:

ZR

ZD

" #

¼
X

alH
l ð12Þ

where ZR is the final m1A methylation modification embedding, ZD is the final disease embed-

ding, a is the weight of each layer.

After the encoder processing, we obtain the potential feature vectors of m1As and diseases.

Then we construct the m1A-disease network based on the potential feature vector ZR and ZD,

and expressed the predicted probability of the associations as follow:

Â ¼ sigmoidðZRW
sZT

DÞ ð13Þ

where Â is the reconstructed adjacency matrix, in which the element represents the predicted

score of relationship between the ith m1A and the jth disease. Ws is a trainable weight matrix.

The detailed procedures of using GCN with multilayer attention mechanism to predict the

associations between m1As and diseases are shown in Fig 11.

Model training

RMDGCN consists of a multi-source heterogeneous network construction module and a GCN

module. We obtained relevant information on the associations between m1As and diseases,

using known associations as positive samples and unknown associations as negative samples.

Fig 11. The detailed procedures of using GCN to predict the associations between m1As and diseases.

https://doi.org/10.1371/journal.pcbi.1011677.g011
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We divide it into five parts, with four parts serving as the training set and the rest part as the

testing set.

Then we use the weighted cross entropy as the loss function:

L ¼ � ðW
X

i;j
yijlogŷij þ

X

i;j
ð1 � yijÞlogð1 � ŷij ÞÞ ð14Þ

where ij represents the relationship pair between the ith m1A and the jth disease, yij represents

the true label of the relationship between the ith m1A and the jth disease, ŷij represents the pre-

dictive score of the relationship between the ith m1A and the jth disease, and ϑ represents the

cross entropy weight, which equals to the ratio of negative samples to positive samples.

To minimize the loss function, we use the Xavier method to initialize all the trainable

weight matrices, and use the Adam optimizer [39] to minimize the loss function. The Adam

optimizer can update the weights of the network according to the training data. We added a

discard layer to avoid overfitting to achieve regularization effect [40]. In addition, we improve

the convergence effect by cycling the learning rate [41] between the maximum and minimum

values.
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