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Abstract

We analyzed a quantitative multiscale model that describes the epigenetic dynamics during

the growth and evolution of an avascular tumor. A gene regulatory network (GRN) formed

by a set of ten genes that are believed to play an important role in breast cancer develop-

ment was kinetically coupled to the microenvironmental agents: glucose, estrogens, and

oxygen. The dynamics of spontaneous mutations was described by a Yule-Furry master

equation whose solution represents the probability that a given cell in the tissue undergoes

a certain number of mutations at a given time. We assumed that the mutation rate is modi-

fied by a spatial gradient of nutrients. The tumor mass was simulated by means of cellular

automata supplemented with a set of reaction diffusion equations that described the trans-

port of microenvironmental agents. By analyzing the epigenetic state space described by

the GRN dynamics, we found three attractors that were identified with cellular epigenetic

states: normal, precancer and cancer. For two-dimensional (2D) and three-dimensional

(3D) tumors we calculated the spatial distribution of the following quantities: (i) number of

mutations, (ii) mutation of each gene and, (iii) phenotypes. Using estrogen as the principal

microenvironmental agent that regulates cell proliferation process, we obtained tumor

shapes for different values of estrogen consumption and supply rates. It was found that he

majority of mutations occurred in cells that were located close to the 2D tumor perimeter or

close to the 3D tumor surface. Also, it was found that the occurrence of different phenotypes

in the tumor are controlled by estrogen concentration levels since they can change the indi-

vidual cell threshold and gene expression levels. All results were consistently observed for

2D and 3D tumors.

Author summary

We introduce and analyze in detail a 2D and 3D quantitative multiscale model that

describes the growth and epigenetic evolution of an avascular breast tumor. We obtain
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series of microarrays that describe the activation/inhibit levels of a group of genes that

respond to the occurrence of oxygen and estrogen concentration gradients. We identify

three cell phenotypes: normal, precancer and cancer, that are crucial to understand the

tumor structure, the spatial distribution of mutations and the tumor heterogeneity.

Finally, we found that the estrogen concentration gradients are related to the variation of

gene expression levels and phenotypes occurrence. These findings strongly suggest that it

is possible to develop epigenetic cancer treatment alternatives to either stop or reverse

tumor evolution.

Introduction

In the past decades the number and variety of quantitative models for cancer evolution has

increased significantly. They have been aimed at addressing important aspects of cancer devel-

opment such as tumor initiation and progression, tumor-structure, intra-tumor-heterogeneity

as well as genetic evolution [1–6]. Nonetheless, the high complexity of cancer poses challenges

and new opportunities for novel approaches and more elaborated quantitative models. Quanti-

tative modeling has the ability to reveal unknown and/or unexpected biological as well as phys-

ical features and predictions that can be validated experimentally and clinically. Currently

there is no consensus over how cancer is initiated, however, it is known that tumor growth

happens in several different stages. The general accepted view is that a cell must undergo series

of gene mutations before it becomes cancerous. That is, cancer development is the result of the

gradual accumulation of mutations that enhance cell proliferation rate and inhibit cell death

leading to tumor progression [7–9]. The detailed factors that drive these mutations are

unknown; nonetheless, it is generally accepted that environment and heredity play important

roles in cancer initiation. The external environmental effect upon genes can dramatically influ-

ence cell behavior and phenotype that can be inherited. Epigenetics is the study of changes in

organisms due to the modification of gene expression that do not involve alterations in the

DNA sequence. That is, epigenetic changes can influence gene expression without a change in

genotype, the complete set of genes in an organism, and determine which proteins are tran-

scribed. While different genotypes can give rise to different phenotypes, the microenviron-

ment in which the cell or organism develops can also change the expressed phenotype. It has

been observed that even genetically identical individuals growing in the same microenviron-

ment can be very different [10].

Phenotypic plasticity is the ability of an organism to change in response to stimuli or inputs

from the environment. Some studies suggest that cell adaptation to specific microenvironment

is achieved by regulating the expression of genes that encode the enzymes and proteins needed

for survival. In multicellular animals, the same principle is observed in cascades of genes that

control the organism shape. Every time a cell divides, it gives rise to two cells; however, they

may differ in the genes that are activated in spite of the fact that their complete genome is the

same. Frequently, a “self-sustaining feedback loop” ensures that a cell maintains its identity

and transmits it to its descendants.

The mechanisms that integrate signal transduction and cell metabolism are largely con-

served between normal and cancer cells. Nonetheless, normal cells require a structured mecha-

nism that involves extracellular stimulation, growth factors and downstream signaling

pathways, for proliferation and conserved gene expression as well as cell physiology. Mean-

while, cancer cells can increase metabolic autonomy and frequently undergo mutations that

chronically enhance these pathways, allowing them to maintain a metabolic phenotype of
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biosynthesis independently of normal physiologic constraints. A more complete understand-

ing of the metabolic phenotype of cell proliferation is still to be discovered.

The most important epigenetic factors in breast cancer development are: metabolism [11–

16] and estrogen production [17–21]. The former contributes to reprogramming several meta-

bolic pathways that are essential for cancer cell survival and tumor growth while the latter

affects significantly the cell proliferation process. However, there are other features that allow

tumor cells to take up abundant nutrients and use them to produce ATP, generate biosynthetic

precursors, and tolerate stresses associated with malignancy, for instance, redox stress and

hypoxia. In addition, there is an emerging class of reprogrammed pathways that involve those

allowing cancer cells to tolerate lack of nutrients by catabolizing macromolecules from inside

or outside the cell, for example, autophagy, macropinocytosis, and lipid scavenging. This

reprogramming may be regulated intrinsically by tumorigenic mutations in cancer cells or

extrinsically by the influence of the microenvironment [16]. On the other hand, estrogens play

a major role in promoting the proliferation of both, normal and neoplastic breast epithelium.

However, there is no clear understanding of the mechanisms through which estrogen causes

cancer [18]. The most widely acknowledged mechanism of estrogen carcinogenicity is its bind-

ing to its specific nuclear receptor alpha (ER-α) for exerting a potent stimulus on breast cell

proliferation through its direct and/or indirect actions on the enhanced production of growth

factors [18, 22, 23].

The incorporation of epigenetics and estrogen production into a quantitative model of can-

cer evolution allows the integration of both intrinsic (biochemical) and extrinsic (microenvi-

ronmental) signals into the genome dynamics during the development of breast cancer. This

paper proposes and analyzes a quantitative model that incorporates these two processes by

considering some metabolic aspects and the role of estrogen during cell proliferation. The for-

mer are believed to be the biochemical triggers of many signaling pathways during breast can-

cer evolution while the latter promotes proliferation of normal and neoplastic cells. To the best

of our knowledge, up to now, there is no quantitative model that considers such integration in

breast cancer evolution.

In the present paper we simulate the growth of the tumor mass by means of a cellular

automata and consider a model that describes the epigenetic dynamics during the growth and

evolution of an avascular tumor. The model also involves a set of genes that are believed to

play an important role in breast cancer development and assembled them in a Gene Regula-

tory Network (GRN). The GRN dynamics is modeled with a set of nonlinear kinetic equations

that describe the interactions of estrogen, and oxygen with the genes as well as the interactions

between genes themselves. To understand the tumor diversity that drives cancer development,

we analyze the role of the intrinsic and extrinsic cell plasticity. We also describe the gene muta-

tion dynamics by using the Tau-Leaping Gillespie Algorithm. The simulations and analysis of

the tumor growth and the mutation dynamics take place in two and three spatial dimensions

to illustrate that the malignant cells are located on the tumor periphery. We also demonstrate

that the results are fully consistent regardless of the simulated tumor spatial dimensionality.

Materials and methods

The growth and development of an avascular tumor is analyzed by considering a cellular

automaton together with a set reaction-diffusion equations [24, 25] that describe the transport

of essential nutrients: glucose, oxygen and estrogens. It is assumed that tissue is made of four

types of cells, namely: normal, precancer, cancer, and tumor necrotic cells that live in either a

2D square lattice or a 3D cubic lattice. With the aim at emulating the crowding of cancer cells

and cell migration we considered the possibility that cancer cells could pile up in one lattice
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cell. According to this, normal and necrotic cells may occupy one lattice site; however, more

than one precancer or cancer cell can accumulate at a given lattice site. Thus, three state vari-

ables are defined at each lattice site: snð~r; tÞ; sdð~r; tÞ 2 0; 1, for normal and necrotic cells. For

precancer or cancer cells scð~r; tÞ 2 N. The vector~r has two integer components, (i, j) in 2D

or three integer components (i, j, k), in 3D with 0� i, j, k� L. They denote the cell position

coordinates in the lattice. An initial cancer cell is placed at about the middle of the lattice and a

nutrient supply –horizontal capillary vessel– is located at the upper boundary. It was assumed

that essential nutrients, glucose, oxygen as well as estrogen, diffuse from the capillary vessel

throughout the tissue. Essencial nutrients and estrogen are critical for DNA synthesis as well

as for cell proliferation [18, 22, 26–28]. Thus, it can be considered that essential nutrients play

the role of catalysts during the expression of genes whereas estrogen regulate the cell cycle and

different signaling pathways. Additionally, it is assumed that there is a competition between

normal and cancer cells for essential nutrients. The abundance of these substances around

cells yields fluctuations and asymmetries in gene propensities, which in turn play a role in the

development of heterogeneity. On the other hand, the growth of tumor cells is typically limited

to a region of approximately 10 cells from a blood vessel that supplies the tumor. As a result,

there are glucose, oxygen, and estrogen spatial gradients [29]. Taking this fact into consider-

ation, the transport of essential nutrients and estrogen in the tissue is described by the follow-

ing set of three dimensionless reaction-diffusion equations [24, 25]:

@Clð~r; tÞ
@t

¼ r2Clð~r; tÞ � a2
l ½snð~r; tÞ þ llscð~r; tÞ�Clð~r; tÞ;

with l ¼ 1; 2; 3:

ð1Þ

The quantities Clð~r; tÞ, represent the glucose (l = 1), oxygen (l = 2) and estrogen (l = 3) con-

centration, respectively. The parameters a2
l and λl represent the cells glucose (l = 1), oxygen

(l = 2), and estrogen (l = 3), consumption and supply rates, respectively. The ability of the nor-

mal and cancer cells to compete for glucose, oxygen, and estrogens are represented by the

product, a2
l � ll. A transport equation for estrogen has also been included in Eq (1) since we

have assumed that estrogen enhances the production of growth factors promoting cell prolifer-

ation of both normal and neoplastic breast cells. The source term in Eq (1) is considered in the

boundary condition as a capilar vessel. The processes of cancer cell division and death that

depend on the local concentration of essential nutrients and estrogen, are described indepen-

dently in the next subsections. The details of how the numerical solutions of Eq (1) were calcu-

lated and their coupling to the other parts of the model are presented in the section of

simulation details and numerical integration.

Oxygen and death

Over the past decades, evidence has been accumulated showing that 50%-60% of advanced

solid tumors develop hypoxic and/or anoxic tissue regions that are heterogeneously distributed

within the tumor mass. Oxygen-sensing mechanisms have been developed in mammals to

maintain cell and tissue homeostasis, as well as to adapt to the chronic low-oxygen conditions

found in cancer. It involves the capture, binding, transport, and delivery of molecular oxygen.

One of the crucial features of this network is its ability to sense and respond to low-oxygen

concentration conditions. The poor vasculature in the early tumor development –avascular

tumor– alters its metabolism [30]. As a result there are too many tumor regions that undergo

hypoxic stress because they are located at relatively large distances from blood vessels [31].

Therefore, tumor cells have to adapt their metabolism to this unusual and harsh microenviron-

ment that contains very small concentrations of glucose and oxygen [32].
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Under these conditions, hypoxia inducible factors (HIFs) activate for the maintenance of

cellular oxygen homeostasis and hypoxia adaptation [33, 34]. Oxygen is crucial in controlling

vascularization, glucose metabolism, survival and tumour spread. This pleiotropic action is

orchestrated by HIF, which is a master transcriptional factor in nutrient stress signalling [35].

In a hypoxic environment accelerated glycolysis ensures ATP levels that are compatible with

the demand of the fast proliferating tumor cells. This shift in cellular metabolism from mito-

chondrial respiration to glycolysis is linked to tumor malignancy. Sustained tumor hypoxia

also gives rise to adaptations which allow cells to survive and even thrive. As a consequence, a

more malignant phenotype may develop due to the following factors: (i) HIF-1α-mediated

mechanisms favoring tumor growth and malignant progression, (ii) HIF-1α-independent up-

regulation and down-regulation of genes, and (iii) effects via genome changes, that produce

hypoxia-induced apoptosis resistance, genomics instability which in turn lead to clonal hetero-

geneity, and selection of resistant and/or aggressive clonal variants [36]. On the other hand, it

has been found that the rate of cell death increases when supply of glucose and nutrients are

very low and cellular ATP is increasingly depleted. The most striking proof of hypoxia-induced

apoptosis is the suppression of the electron transport chain on the inner membranes of the

mitochondria [37].

Taking these observations into consideration one can assume that in the regions where

there is a high cancer cell population density and a small supply of oxygen, the probability of

cell death, Pd, increases significantly. As suggested in [24] cancer cell death due to hypoxia can

be modeled with a Gaussian probability distribution which argument depends on the ratio of

the local oxygen concentration to the local cancer cells concentration at a point~r at time t.

Pd C2ð~r; tÞð Þ ¼ exp �
C2ð ~r; tÞ
ydscð ~r; tÞ

� �2
" #

: ð2Þ

The variance of this probability distribution can be tuned by adjusting the steepness of the

curve given by the value of θd. Thus, for low local oxygen concentration and high local cancer

cell density population this argument is small and the probability of cell death is:

PdðC2ð~r; tÞÞ � 1 � ½C2ð ~r; tÞ=ydscð ~r; tÞ�
2
, close to one. On the contrary, for high local oxygen

concentration and small local cancer cell density population this argument is much greater

than one, and the the probability of cell death becomes negligible. Note that when a cancer cell

dies, scð~r; tÞ ! scð~r; tÞ � 1 and sdð~r; tÞ ¼ 1 as an indication that a cancer cell has become a

necrotic cell. By including the local oxygen concentration C2ð~r; tÞ at a given time in the argu-

ment of Eq (2) we establish an intrinsic coupling with the reaction-diffusion Eq (1), which

solution describes the oxygen concentration at that location.

These assumptions may also explore the fact that exposure to cycling hypoxia leads to high

levels of reactive oxygen species (ROS) from cell mitochondria. This is because several oxygen-

dependent enzymes function as primary cellular oxygen sensors, and change in their activity

during hypoxia, influencing important adaptive signaling pathways. In particular, several

mitochondrial enzymes are capable of ROS production [38]. On the other hand, it has been

demonstrated that reoxygenation induces significant amounts of DNA damage and malignant

progression because of the presence of ROS during reoxygenation [39, 40]. Thus, ROS influ-

ences the tumor microenvironment and is known to initiate cancer angiogenesis, metastasis,

and survival at different concentrations [41]. However, the detailed molecular mechanisms of

how cancer cells respond to oxidative stress are still to be determined.
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Estrogen and cell cycle

Estrogen gives rise to diverse biological effects as a result of its direct interaction with an intra-

cellular receptor that activates the expression of genes encoding proteins with important bio-

logical functions [42–45]. In terms of the molecular mechanism estrogen induces gene

expression and synthesis of specific proteins, activation of specific enzymes, and proliferation

in certain cell types. All of these actions appear to require the binding of the hormone to a spe-

cific receptor protein [46]. In particular, one of the most notable estrogen effects is its potential

mitogenic action in hormone sensitive breast epithelial tissues [47, 48]. Because of this, the

establishment of estrogen concentration gradients is crucial for cell proliferation and cancer

progression. By contrast, nutrient availability facilitates nutrient cell consumption which

favors mutation rates, whereas limited or lack of nutrient leads to latent cell states with small

mutation rates. This latter hypothesis was modeled in [25], as a stochastic process which was

coupled to the nutrients transport reaction-diffusion equations. The dynamics described with

this coupling yielded genetic spatial heterogeneity as a result of mutations accumulation dur-

ing tumor growth, a hallmark of most cancers.

Clinical and animal studies suggest that risk factors associated with breast cancer reflect

cumulative exposure of the breast epithelium to estrogen [49]. During the cell cycle estrogens

regulate the expression and function of cyclins, c-Myc, cyclin D1 and cyclin E-Cdk2 which are

considered important in the control of G1/S phase progression [50, 51]. Furthermore, Cyclin

E shows a periodic expression pattern, being synthesized during the G1-phase of the cell cycle,

with sharp increasing levels during the late G1 phase, followed by the accumulation of cyclin E

protein and then down regulated in the S-phase. Other CDK complexes, such as cyclins A and

B, undergo opposite periodic patterns to those of cyclin E [51]. Taking all the previous state-

ments into consideration one can surmise that the period of the cell division cycle is mainly

regulated by the local concentration of estrogen C3ð~r; tÞ.
This antagonistic process leads to out–of phase non-linear oscillations with maxima related

to the transitions of the cell cycle G phases [52]. Bearing this in mind, we assumed that cyclins

E and B are the two key players responsible for the out of phase oscillations. To describe these

periodic oscillation patterns of the relative concentrations of cyclins B and E that drive the cell

cycle, we have chosen the following relatively simple non-dimensional Lotka-Volterra system

of equations.

@uð~r; tÞ
@t

¼ uð~r; tÞ½1 � vð~r; tÞ�;

@vð~r; tÞ
@t

¼ �ð~rÞvð~r; tÞ½uð~r; tÞ � 1�;

ð3Þ

where uð~r; tÞ and vð~r; tÞ represent the concentrations of cyclins E and B, of a cell located at

point~r at time t, respectively. The wave shape solution depends only on the local parameter

�ð~rÞ and on the boundary conditions for each cell. This system of equations describes out of

phase oscillations with period, Tð~rÞ ¼ 2p=
ffiffiffiffiffiffiffiffi
�ð~rÞ

p
.

Experimental data has shown that the cell cycle is arrested if the estrogen concentration is

below or above certain threshold values [53]. This allows one to assume that the growth rate

depends on the estrogen consumption rate. This quantity is directly related to the reaction

term in the reaction-diffusion equation for estrogen, third equation in Eq (1). For that reason

the time scale of the oscillations can be related to the estrogens local concentration through the
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local parameter �ð~rÞ which can be expressed as

�ð~rÞ � ða2
3
½snð~rÞ þ l3scð~rÞ�C3ð~rÞÞ

2
: ð4Þ

This equation makes a distinction of the cell cycle duration of a normal and a cancer cell. Note

that when snð~rÞ ¼ 1, then, scð~rÞ ¼ 0, and vice versa. In principle, one can assume that normal

and cancer cells follow a similar synchrony during the cell cycle. Notwithstanding, the cell pro-

liferation rate depends on cell estrogen consumption rate. Therefore, as estrogen consumption

rate increases, the cancer cells growth factor concentration increases as well.

Cell lineage and microenvironment

A single cell cannot influence significantly its immediate surroundings. Nonetheless, a rela-

tively large number of cells can change significantly their microenvironment through the

expression of cooperative phenotypes [54]. Tumors are made of multiple subpopulations of

cells with different phenotypes, some of them are able to self renew, seed, maintain tumors,

and provide a reservoir of resistant cells [55]. In this way many cell phenotypes contribute to

the growth and division processes of nearby cells by changing their local environment [53].

In cancer, there are two major phases of phenotypic plasticity: initiating and maintaining

plasticity. Initiating plasticity refers to the influence of the cell of origin and the specific driver

mutations that occur during tumor formation. Maintaining plasticity is the result of genetic

evolution and hierarchical and plastic interconversion between cellular phenotypes. These two

forces collaborate to generate the tumor phenotypes that are diverse even within the same tis-

sue [56]. Furthermore, cellular mechanisms that govern lineage proliferation and survival dur-

ing development might also underlie tumorigenic mechanisms. Somatic genetic alterations

show lineage-restricted patterns across human tumors, which indicate that genetic changes in

cancer might be conditioned by the lineage programs embedded in the tumor precursor cells

[57]. The interaction among genetically related individuals increases the propensity for coop-

erative phenotypes to evolve. In addition, different cell lineages segregate in space with the aim

of cooperating and benefiting each other. Because of this, local populations of cancer cells

often times aggregate in groups of progenitors that proliferate leading to large clusters with

similar lineages [58].

Here, we apply the concept of lineage cell segregation that has been applied to analyze the

evolution of bacterial colonies [54], as a measure of cell heterogeneity during tumor develop-

ment. Considering that estrogen induces gene expression, synthesis of specific proteins, and

activation of specific enzymes which require the binding of the hormone to a specific receptor

protein, one can model the lineage production rate with a metabolic Michaels-Menten kinet-

ics. In doing so, the segregation index, b̂, at position~ri can be expressed as,

b̂ð~ri; tÞ ¼
1

m

Xm

j¼1

g ~að~rj; tÞ
� �

�
C3ð~rj; tÞ

C3ð~rj; tÞ þ k�
; with j~ri � ~rjj � Ro; ð5Þ

where gð~að~rj; tÞÞ is the genetic activity defined by

g ~að~rj; tÞ
� �

¼

0; if ~að~rj; tÞ ¼~að~ri; tÞ

1; if ~að~rj; tÞ 6¼~að~ri; tÞ:

8
<

:
ð6Þ

and C3ð~rj; tÞ is the local estrogen concentration, κ� is the saturation constant or the estrogen

carrying capacity at the neighboring cells with positions~rj with j = 1, 2, 3, . . .‥,m, andm is the

total number of neighboring cells within a given distance Ro from~ri. Note that the genetic

PLOS COMPUTATIONAL BIOLOGY A multiscale model in breast cancer development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011673 November 22, 2023 7 / 35

https://doi.org/10.1371/journal.pcbi.1011673


activity discourages the interaction between cells of the same genotype because they do not

lead to genetic diversity. The vector~að~rj; tÞ represents the genotype of the cell located at posi-

tion~rj at time t, it is formed by the set of breast cancer genes that are believed to play a major

role in cancer development. The gene set that defines the entries of vector~að~rj; tÞ will be dis-

cussed in detail in the Gene Regulatory Network subsection. The form of the segregation

index directly measures the spatial assortment of genetic cell lineages and ranges from 0 to 1,

where 1 denotes complete lineage segregation within the spatial scale Ro.

Random mutations

The instability of the genome of cancer cells leads to a state that increases the spontaneous

mutation rate that gives rise to a mutations cascade some of which enable cancer cells to bypass

the regulatory processes that control cell location, division, expression, adaptation and death

[59]. Mutations either arise from copying a repaired DNA damage or from errors that happen

during DNA synthesis [60, 61]. To describe quantitatively the cascade of spontaneous muta-

tions, we assumed a birth-and-death process that considers that cell population consists of

cells within a genus where the creation of a new cell is due to mutations without considering

the probability of dying out and the size of the species [62]. These processes are characterized

by the property that whenever a transition occurs from one state to another, the transition hap-

pens to a neighboring state only. Thus, we modeled the mutation dynamics by means of a

Yule-Furry Markovian process which is described by the following master equation [63].

dPxð~r; tÞ
dt

¼ � gð~r; tÞxPxð~r; tÞ þ gð~r; tÞðx � 1ÞPx� 1ð~r; tÞ;

with x � 1:

ð7Þ

Here Pxð~r; tÞ is a geometric probability distribution with argument, pð~r; tÞ [63] and represents

the probability that a given cell in the tissue at position~r undergoes, x (x = 0, 1, 2, . . .) muta-

tions at a given time t with a hopping probability gð~r; tÞ > 0, that one new mutation, x = x + 1,

will happen in the time interval [t, t + dt). It has been found that cancer cells remodel tissue

microenvironment and specialized niches to their competitive advantage [64, 65]. Here we

assume that the essential nutrients spatial gradients change the tissue microenvironment and

cell niches somehow modifying the acquisition rate of new spontaneous mutations [66, 67].

For simplicity one can surmise a direct relationship between the glucose concentration and the

hopping probability of acquiring new mutations, namely, pð~r; tÞ ¼ expð
R t

0
gð~r; tÞdtÞ. There-

fore, one can propose the following ansatz, pð~r; tÞ ¼ expð
R t

0
gð~r; tÞdtÞ ¼ exp � C1ð~r ;tÞ

ydiv

� �2
� �

,

where C1ð~r; tÞ represents the glucose concentration at the cell position~r at time t, and ydiv is an

adjustable parameter that controls the shape of the sigmoidal curve. Thus, there is an intrinsic

nonlinear coupling between the master Eq (7) that describes the mutation dynamics of a given

cell located at position~r at time t with the first of the reaction-diffusion Eq (1) that describes

the glucose concentration at that location.

On the other hand, spontaneous mutations can be randomly activated by one of the follow-

ing mechanisms: structural alterations resulting from mutation or gene fusion, by juxtaposi-

tion of enhancer elements, or by amplification acquisition of random mutations. This random

activation can be modeled with a Poisson probability distribution [26, 68–70]. Thus, the total

probability distribution that a cell in the tissue located at~r at time t, undergoes a mutation is

written as the product:

Prmð~r; tÞ ¼ Gðpð~r; tÞ; zjÞNlðl; kjÞ: ð8Þ
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Here, Gðpð~r; tÞ; zjÞ is a geometric probability distribution with mean ð1 � pð~r; tÞÞ=pð~r; tÞ,
where pð~r; tÞ is given by the ansatz indicated above, and zj is the number of viable mutations

of gene j. The Poisson probability distribution Nλ(λ, kj) with mean λ represents the probability

of occurrence of kj mutations of gene j at a given cell. This factorization has proven to be very

useful in the implementation of the stochastic simulations that describe tumor gene dynamics

[25]. In the forthcoming subsection a brief description of the stochastic mutation dynamics is

presented.

Stochastic dynamics

To simulate the stochastic mutation dynamics we used the Tau-Leaping Gillespie algorithm

[71] which has demonstrated its usefulness in the simulations of different processes in molecu-

lar biology. Let us assume that at a given time t, the state of the system formed by N genes is

defined by the vector x(t) = (x1(t), . . ., xN(t)), in which each coordinate represents the number

of mutations in each gene. Then, the change of this state vector in the time interval [t, t + τ) is

given as

xðt þ tÞ ! xðtÞ þ
X

j

kjnj; ð9Þ

where kj is a vector of random numbers generated from a Poisson distribution with mean aj×τ
and νj is the vector that changes the mutations of gene j, by 0, or 1. The selection of gene j is

made by choosing a random number from a set of numbers distributed according to the nega-

tive binomial distribution. Let aj(x) be the propensity functions that represent the probability

of having one mutation of gene j at time t. Since mutations occur with equal probability

regardless of the chosen gene the values of aj(x) can be set equal to one for every gene. There-

fore, the time τ required for the number of mutations to increase by one unit is:

t ¼
1

a0ðxÞ
ln

1

rj

 !

; ð10Þ

where a0ðxÞ ¼
Pn

j¼1 ajðxÞ and rj is a random number uniformly distributed in the interval

[0, 1] corresponding to gene j. Since tumor evolution dynamics is the result of the coupling of

gene mutations, essential nutrient and estrogen dynamics, an extended version of the tau-leap-

ing method was applied to obtain an effective sampling of the biophysical relevant quantities

[72–75]. Thus, the change of the system’s state x(t) during a time τ occurs in accordance with

the following equation

xðt þ tÞ ! xðtÞ þ
X

j

X

i

kizinj; ð11Þ

where zi is a column vector formed with random numbers obtained from a geometric distribu-

tion, and ki is a row vector with random numbers generated from a Poisson distribution. We

chose these random numbers distributions because mutations dynamics is described by the

product of these two probability distributions. See Eq (8).

Mutations induced by microenvironmental factors

There is a growing evidence suggesting that tumor microenvironment per se constitutes a sig-

nificant source of genetic instability. The induction of mutagenesis and numerous types of

DNA damage, including DNA strand breaks and oxidative base damage are associated with

the adverse and harsh conditions of the microenvironment [66, 76]. In this way, many solid
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tumors, including breast cancer, are composed of heterogeneous cell lineages that interact

with the microenvironment through complex networks [77]. In the following paragraphs we

consider the influence of essential nutrients and estrogen on mutations. According to the

above proposed ansatz, the probability Pxð~r; tÞ ¼ pð~r; tÞ, in the master Eq (7), represents the

probability of occurrence of genetic mutations as a result of glucose concentration gradients.

On the other hand, most of the estrogen actions on the normal and neoplastic mammary cells

are mediated via estrogen receptors, mainly for controlling cell proliferation. The probability

of mutations P(B) can be increased by a failure of estrogen receptors as a consequence of geno-

toxic estrogen metabolites driven by estrogen concentration gradients [78]. By assuming that

Pxð~r; tÞ ¼ PðAÞ, we obtain the probability that glucose and estrogen concentration gradients

influence mutations simultaneously but independently, that is, P(A [ B) = P(A) + P(B) − P(A)

× P(B). Unfortunately, the mathematical expression for probability of mutations P(B) is

unknown and it is very difficult to estimate. In spite of this limitation, here we explore its role

by considering it as a varying parameter. To elaborate more on the probability P(A [ B) let us

recall that tumor cells interact with diverse cellular lineages and regulate the hierarchy of

tumorigenic cells [79]. Because of this, the local segregation index, b̂ð~ri; tÞ, can be thought of

as a probabilistic measure of the occurrence of mutations due to genetic instability induced by

metabolic and micro-environmental conditions. In addition, estrogen controls cell prolifera-

tion so that it can be considered as the main source of cell lineage. Then the total probability of

mutations can be written as the product: b̂ð~r; tÞ � PðBÞ. Therefore, the probability that segre-

gation as well as glucose and estrogen concentration gradients lead to mutations can be written

as:

PðA [ BÞ � Prmð~r; tÞ ¼ pð~r; tÞ þ b̂ð~r; tÞð1 � pð~r; tÞÞ � PðBÞ: ð12Þ

Notice that when estrogen spatial gradients become negligible, P(B) = 0, then mutations are

directly related to glucose spatial gradients as has been analyzed in a previous model [25].

Gene Regulatory Network

Gene Regulatory Networks (GRN) are effective and useful models that are commonly used to

study the complex regulatory mechanisms of a cell. A GRN is the collection of molecular species

and their interactions which control gene-product abundance [80]. GRN’s encode the patterns

of interacting signals responsible for the up-and downregulation of genes. GRN’s integrate

internal and external signals to ensure that a cell develops an appropriate response for its cur-

rent environment [81]. Due to the network interactions, each gene changes its expression level

and the GRN dynamics changes as a whole leading to different expression patterns [82]. As

GRN dynamics evolves, it eventually settles down into an equilibrium state that complies with

all the regulatory interactions [83]. The most notable topological features of a GRN state space

are its basins of attraction. A basin of attraction is the set of states that moves over time towards

a region called an attractor. Attractor states represent stable equilibrium states analogous to the

lowest energy states at the bottom of a potential well. Attractors encode specific genetic programs
of the cell that are pre-programmed in the GRN, including those which produce a stable cell

type-specific gene expression patterns that lead to cell phenotypes. The basins of attraction are

separated by hills that represent unstable states. Transitions between two attractors represent a

switch between two cell phenotypes. They are triggered by regulatory signals that change the

expression status of a set of genes in a concerted manner or by gene expression noise which pro-

duces random fluctuations in the expression of the genes [83]. The detailed state space topogra-

phy guides the production of distinct cell phenotypes at the right place and time, leading to the
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epigenetic landscape. Therefore, understanding the dynamics of GRN’s is crucial to compre-

hend the development and the occurrence of diseases such as cancer.

The interplay between regulatory networks and metabolism and how an organism adapts to

its microenvironment can also be described by GRNs [80, 84]. In the epigenetic landscape not

all attractors represent physiological cell phenotypes. These unphysiological attractors are bypro-

ducts of the complex dynamics of the GRN, and the majority of them are associated to abnor-

mal, non-viable gene expression patterns that may be the result of conflicting signals. From this

point of view, if an unphysiological attractor is associated with a viable proliferative phenotype it

could represent cancer. Thus, cancer can be viewed as a set of abnormal gene expression pat-

terns that are related to unphysiological attractors in the dynamics of a GRN. A first general

description of this simple but profound idea was proposed fifty years ago by Kauffman [85].

Kinetic model– In this paper, we consider a kinetic model of molecular regulatory interac-

tions between a set of ten genes that are believed to play a relevant role in breast cancer devel-

opment since they control cell cycle progression, DNA repair, metabolism reprogramming

and control growth factors and apoptosis signaling. The set of genes TP53, ATM, HER2,

BRCA1, AKT1, ATR, CHEK1, MDM2, CDK2 and P21 with transcriptional positive and nega-

tive regulations can be assembled as a GRN at the level of a single cell [86]. Tumor suppressor

gene TP53 controls the cellular genome’s integrity and is an important regulator of cell cycling,

proliferation, apoptosis and metabolism. The loss of control over the cell cycle, results in the

acceleration of cell proliferation and facilitates metabolic reprogramming, giving the pre-

malignant cells numerous advantages over healthy cells. Genes ATR, ATM, CHEK1, AKT1,

and CDK2 are kinases, their main function is to maintain genome integrity by regulating cell

cycle progression and DNA repair. Gene ATM is part of many signaling networks that include

cell metabolism and growth, oxidative stress, and chromatin remodeling, all of which favor

cancer progression. Gene CHEK1 is important for the initiation of cell cycle checkpoints, cell

cycle arrest, DNA repair and cell death to prevent damaged of cells from progressing through

the cell cycle. Gene AKT1 regulates many processes including metabolism, proliferation, cell

survival, growth, and angiogenesis by phosphorylating a range of downstream substrates in

response to growth factor stimulation. Gene CDK2 regulates cell progression through the cell

cycle. The activity of this gene is especially critical during the G1 to S phase transition. Onco-

gene BRCA1 controls cellular pathways that maintain the genome stability, including DNA

damage-induced cell cycle checkpoint activation, as well as transcriptional regulation and apo-

ptosis. Oncogene HER2 responds to the growth factors and their overexpression is important

for stroma-to-epithelium signaling, increasing its responsiveness and creating many ligands

that originate primarily in the stroma or in the tumor cells that eventually leads to malignant

growth. Oncogene MDM2 regulates the transcriptional and post-translational levels. MDM2

phosphorylation leads to changes in protein function and stabilization of p53.Tumor suppres-

sor gene P21 mediates cell cycle arrest in the G1 phase and cell senescence in response to sev-

eral stimuli, including oncogene-induced proliferation. Gene P21 is responsible for a

bifurcation in CDK2 activity following mitosis, cells with high P21 enter a G0/quiescent state,

whilst those with low P21 continue to proliferate. P21 may inhibit apoptosis in response to rep-

lication fork stress, however, it does not induce cell death on its own. A more detailed descrip-

tion on the role of each gene is presented in the Section A in S1 Appendix.

The assembled GRN shown in Fig 1 with its regulatory links uncovers interesting macro-

scopic phenotypic dynamics at the physiological level such as the phenotypic equilibrium in pop-

ulations of breast cancer cell lineages. The genes related to protein kinases, ATR, ATM, CHEK1,

and CDK2 have a direct effect on estrogen production and on cell cycle. On the other hand, the

BRCA1 and HER2 oncogenes can change their expression levels and modify the cell cycle when-

ever estrogen concentration gradients are established in the microenvironment. Additionally,
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tumor suppressor genes and oncogenes TP53, AKT1, MDM2 and P21 are associated to the oxi-

dative stress as a result of oxygen concentration gradients in the microenvironment. The GRN

includes the positive feedbacks: MDM2-TP53 which modulates metabolic regulation; ATR-TP53

that is necessary for oxidative stress; TP53-P21 which responds to pathogenesis of cancers, and

HER2-TP53 that is related to the regulation of estrogen tolerance. On the other hand, assuming

that the active and inactive parts of a gene state are important for the GRN dynamics, then we

can write, Xa + Xh = X0 where Xa represents the gene active part and Xh is the gene inactive part,

and X0 represents the full gene state. Then, the GRN evolution can be described in terms of rela-

tive variables (Xa + Xh)/X0 = 1. By writing xa = Xa/X0 or equivalently xh = Xh/X0 we can express

either xa = 1 − xh or xh = 1 − xa in the GRN dynamics. Therefore, the assembled GRN describes

the interactions between genes as well as between genes and the microenvironmental agents.

These interactions are described by the following nonlinear system of kinetic equations:

dxi
dt

¼ agi
yi
Zi
� 1

� �

1 � xið Þ þ Rðxi; lgi ; diÞHð~xi;
~bi; ~n i; ~g iÞ

þ
X

j

xiHðxj; bj; nj; gjÞ � mixi;
ð13Þ

Fig 1. Gene regulatory network for breast cancer. Microenvironmental agents, estrogen (pink) and oxygen (blue) affect gene states transcription. The

arrows indicate activation whereas the short bars represent inhibition interactions between genes.

https://doi.org/10.1371/journal.pcbi.1011673.g001
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The function xi represents the state of gene i in Fig 1, with i = 1, 2, . . .10, while the parameters agi
represent the interaction rate constants between gene states and microenvironment and is the

main temporal scale of system dynamics. The action of the microenvironmental agents estrogen

and oxygen on gene activation is represented by yi. The quantity ηi represents the gene activa-

tion-inhibition (A-I) threshold parameter and μi is the self-degradation constant. The parameters

of Eq (13) were estimated by constructing and analyzing the Boolean representation of the GRN.

The details are presented in the Section B in S1 Appendix. In the same Section B in S1 Appendix,

continuous model subsection, a summary of the specific values of these parameters together with

a brief explanation about how and why these values were chosen is presented in a table already

included there.

The self-regulatory positive and negative feedback genes interactions are given by the fol-

lowing equation,

Rðxi; lgi ; diÞ ¼

lgi
xi þ di

xi; positive feedback

lgi
xi þ di

di; negative feedback

8
>>>>>><

>>>>>>:

ð14Þ

where lgi is the activation constant and δi is the activation threshold parameter. Finally, the

genetic interaction strength between genes is modeled by the Hill function.

Hðxj; bj; nj; gjÞ ¼ bj
ðnjxjÞ

gj

kj þ ðnjxjÞ
gj : ð15Þ

where βj is the A-I strength, νj is the activation rate at which gene j affects the state of gene i.
On the other hand, kj represents the threshold of the sigmoidal function, γj is the Hill coeffi-

cient which defines the steepness of the sigmoidal function representing the cooperativeness of

the transcription factor that regulates the binding to the genes. In the present case kj = 1/2 for

all genes, this means that all genes have the same possibility to activate or inhibit each gene

state. Moreover, the value of γj depends on the number of neighboring genes that affect the

state of gene j.
Microenvironmental action– We consider that oxygen and estrogen are the main microen-

vironmental agents that affect the GRN dynamics. In this context the variables y1, y6, y8 and y9

are determined by the normalized oxygen concentrations, while the remaining ones are pro-

portional to the estrogen expression levels as,

C3ð~rj; tÞ=ðC3ð~rj; tÞ þ k�Þ; ð16Þ

where κ� is one half the estrogen carrying capacity. The last equation emphasizes the presump-

tion that changes in the GRN dynamics are the result of gene activation by estrogen concentra-

tion levels. In this case, κ� regulates the threshold at which genes are expressed. For the

analysis wild type threshold values were considered.

Intrinsic and extrinsic plasticity– To understand the intratumoral diversity that drives can-

cer development, the known facets of the disease can be categorized into cell-intrinsic and cell-

extrinsic components. Intrinsic cell components are the inherent properties of a cell that con-

tribute to its oncogenic phenotype as a result of collective molecular changes, stochastic

genetic alterations as well as selective pressures. Extrinsic cell components are features related

to microenvironmental variations that influence its phenotype perturbing the course of
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neoplastic disease [87]. These intrinsic and extrinsic cell factors can be categorized as cell

intrinsic and extrinsic plasticity [87, 88].

A cell lineage is the developmental history of a differentiated cell as traced back to the cell

from which it arose. Thus, cell linage depends on the ability to active or inhibit genes as a result

of these two types of plasticity. As a first estimation of cell plasticity one can propose that gene

A-I is a linear superposition of the intrinsic and extrinsic plasticity. The former is proportional

to the A-I parameter ηi while the latter is proportional to the segregation index b̂ð~ri; tÞ. Thus,

one can write down the following relationship for the variations of the threshold A-I parameter

DZið~r; tÞ.

DZið~r; tÞ ¼ Zið~r; tÞ � Zoið~r; tÞ

¼ �
�
xð~ri; tÞZoið~r; tÞ þ b̂ð~ri; tÞwið~r; tÞ

�
;

ð17Þ

where Zoið~r; tÞ is initial threshold value, xð~ri; tÞ and wð~r; tÞ are the intrinsic and the extrinsic

(quorum sensing) susceptibilities, respectively. The minus sign in the right side of the equa-

tion indicates that there is certain opposition of the cell to change its plasticity and the mini-

mum value of Zið~r; tÞ is zero. Within this context Eq (17) accounts for the collective

mutation changes and quorum sensing on the expression levels of a given gene. Conse-

quently, the increase of cancer cells is the result of genetic heterogeneity which in turn

increases the segregation index. Therefore, the positive feedback between cell lineage and

cell proliferation modifies the development of mutations, as is indicated in the diagram of

Fig 2. The structure of the multiscale model for breast cancer. The diagram illustrates the processes that take place at each spatial scale. The colored

arrows illustrate the coupling between the scales. At each spatial scale the corresponding equations that were solved are indicated.

https://doi.org/10.1371/journal.pcbi.1011673.g002
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Fig 2. Eq (17) has two limits, (i) when intrinsic plasticity (linear heritage) dominates genetic

dynamics so that ξ becomes important, and quorum sensing susceptibility becomes negligi-

ble, and (ii) when extrinsic plasticity (epigenetic inheritance) dominates genetic dynamics

and segregation becomes important whereas intrinsic plasticity can be considered negligible.

Here we study how the combination of both plasticities contribute to the development of

breast cancer.

Simulation details and numerical integration

The quantitative model that we analyze involves different types of nonlinear interactions that

scale from the molecular level to subcelular to cellular and to tissue levels. The integration

across spatial, temporal, and functional scales is highly nontrivial. Fortunately, it has been

shown that multiscale computational models are very useful to gain insight into biological sys-

tems [89–92]. Many authors have used a combination of agent and cellular automata models

together with ordinary and partial differential equations to model cells on the discrete scale as

well as diffusible molecules on the continuous scale [93–96]. Here we implement and simulate

a computational multiscale model that couples continuous, discrete and stochastic degrees of

freedom that best capture tumor evolution across spatial and time scales including the positive

feedbacks. The simulations describe the random mutations, cell proliferation, gene regulatory

network, cell lineages and phenotypes as well as the transport of essential nutrients and estro-

gen during tumor evolution. The purpose of this approach is to obtain celular lineage and

tumor spatial evolution as emergent properties. To this end, we introduced different positive

feedbacks among some cancer hallmarks that lead to direct consequences in tumor develop-

ment. To develop the numerical simulations a combination of different programming lan-

guages has been used. The complete multiscale evolution, where the equations were

integrated, has been implemented in the programming language Julia version 16.1. The data

processing to construct the microarray and average figures was carried out in the program-

ming language Matlab version 2021. To characterize the attractor states of the network, we

have used the Boolnet package in the programming language Rstudio version 3.6. Finally, the

stability analysis of the GRN was also carried out using the programming language Rstudio

language and the grind.R routine version 7-10-20. All the programming codes are allocated in

github.com/jrromeroarias repository. In Fig 2, we illustrate schematically the coupling of the

temporal and spatial scales of the model and the equations that were solved. The arrows

among the scales indicate a dynamic update of the system variables. The GRN is crucial in this

multiscale model since it contains the cell fate dynamics and the coevolution of the system. We

analyzed the Boolean representation of the GRN to identify the attractors that are related with

the normal, precancer and cancer phenotypes. Then, in order to comprehend the development

and the occurrence of different cell phenotypes, we used the dynamics of GRN kinetic model

with a combination of microenvironmental pressures to modulate the gene activation thresh-

olds that yield the GRN Boolean attractors. A detail analysis is presented in Section B in S1

Appendix.

We consider that normal, cancer, and necrotic cells live on the sites of a 2D square lattice of

size L2 = 5002 or on the sites of a 3D cubic lattice of size L3 = 2253. At the beginning of the sim-

ulations all cells are normal except for one that has developed cancer and is located at around

the lattice center. We assumed that this initial cancer cell has suffered mutations in the gene

TP53, which is the gene that plays a crucial role in tumor’s growth. Once this initial cancer cell

begins to proliferate its descendants undergo mutations in all the other genes according to the

probability distribution given in Eq (8). Nutrients, oxygen, and estrogens, were continuously

supplied trough a capillary located at the top of the lattice, simulating the bloodstream. The
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solutions of the reaction-diffusion system, Eq (1), together with the probability of death, Eq (2)

and cell cycle period for division obtained from Eq (4) were calculated numerically. Every time

that a cell cycle for the cancer cell is completed, the system of Eq (13) for the dynamics of the

GRN is solved.

The time scale of the Tau-Leaping Gillespie algorithm is of the order of tens of seconds

while the GRN evolution happens in a temporal scale of the order of minutes. In addition, the

temporal diffusion scale of essential nutrients and estrogen is at least of the order of hours.

According to these time scales, essential nutrients were taken as field variables that change

very slowly, so that we numerically calculated the stationary solutions of the reaction-diffusion

equations and then performed the analysis of the GRN dynamics which determines kinetically

the cell phenotypic states. The system of reaction-diffusion Eq (1), were integrated using zero

flow boundary conditions at the left, right, and lower sides of the 2D domain and on the four

vertical and bottom sides of the cubic domain. To avoid steep nutrient concentration gradients

we carried out a homogenization diffusion procedure for essential nutrients by solving the

equations locally. We used a grid of size 202 units for 2D lattices, or a grid of size 203 units for

3D lattices, with zero flow boundary conditions, and swept the lattice by randomly choosing

the nodes populated with cancer cells until the steady state of the subsystem was attained.

Once the homogenization procedure was carried out the reaction-diffusion equations were

solved globally in 2D or 3D lattices until a simulation cycle was completed. A simulation cycle

consists of a complete swap of the lattice, that is, once each site of the lattice has been visited.

Once a cell cycle is completed and cell division has happened, the daughter cell position is

chosen randomly with equal probability as one of the four nearest neighbor sites in the 2D
array or one of the six nearest neighbors sites in the 3D array. If the site is already occupied by

a normal cell, it is replaced by the cancer cell; however, if the site is occupied by cancer cell,

they pile up. Then, a random number r distributed uniformly in the interval [0, 1] is chosen,

and it is compared with the probability Prmð~r; tÞ. A mutation happens whenever, r > Prmð~r; tÞ
otherwise no mutation occurs, afterwards, another cell is randomly chosen and the procedure

for mutation dynamics described above is repeated. Because metastasis was not considered in

the model, we ran simulations to estimate the time in which the tumor reached the domain

border. To simulate the stochastic mutation dynamics for the probability, Prmð~r; tÞ we used the

Tau-Leaping Gillespie algorithm [71] which has demonstrated its usefulness in the simulations

of different processes in molecular biology. In the present case we used the Tau-Leaping algo-

rithm because the time scale of the random mutations is smaller than the time scale of cell pro-

liferation. To figure out the statistical meaning of the results we calculated the time evolution

of representative quantities of the system for 20 realizations. We found that the results for aver-

ages over 2, 4,6,. . .20 realizations. were very close to each other and followed a similar trend.

These results will be shown in the following section with a brief discussion.

For 2D arrays the largest tumor size was 4502, whereas for 3D arrays the largest tumor size

was 2003. According to this, it was found that the required time to obtain the largest tumor

was Tmax� 800 simulation cycles in both, 2D and 3D lattices. By using Eq (4), one can estimate

the length of a simulation cycle, T� 12 − 15 hours. One should recall that during the cellular

automaton evolution the cancer cell cycle increases as estrogen concentration grows until it

reaches a value that drives the cell division. One should note that the biological cell cycle for

cancer cells lasts 35 hours [97–99]. Once the biological cell proliferation happens the cellular

automaton clock is reset to zero. In this way several cells can proliferate even during the cellu-

lar automaton cycle. This procedure mimics a more realistic approximation of cell prolifera-

tion. The values of the simulations parameters were chosen in accordance with [25]. That is,

we considered, θd = 0.01, θdiv = 0.3, λi = {50, 100, 200} and αi = {2/L, 4/L, 8/L}, with L the linear

lattice size. By recalling that in the present model the probability P(B) is considered as a
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varying parameter, simulations were carried out for P(B) = 0.05, 0.1, 0.25, 0.5, 0.75, and 1.0. A

summary of the model parameter values is presented in Table 1.

Results and discussion

Microarrays may be used to measure gene expression in many ways, but one of the most popu-

lar applications is to compare the expression of a set of genes from a cell maintained at a partic-

ular condition to the same set of genes from a reference cell maintained under normal

conditions (wild type). Bearing this in mind, here we present our findings for gene expressions

in terms of a series of microarrays that facilitate the characterization of different states of the

GRN shown in Fig 1. These states were obtained from the numerical solutions of the set of dif-

ferential Eqs (13)–(16) coupled to the transport Eq (1). An exhaustive analysis of the state

space dynamics was carried out and the details are presented in Section B in S1 Appendix. As a

starting point, we analyze the response of the GRN to three initial values of the activation-inhi-

bition (A-I) threshold parameter: (A) ηoi = 0.25, low activation, (B) ηoi = 0.50, medium activa-

tion, and (C) ηoi = 0.75, high activation. The results are shown in Fig 3. The microarray left

vertical axis shows the GRN genes while the right vertical axis indicates the microenvironmen-

tal agent, oxygen or estrogen, that leads to each gene expression. The microarray horizontal

axis indicates the normalized concentration values of these microenvironmental agents. The

minimum normalized concentration (NC) value of the microenvironmental agent needed for

a gene to be expressed depends on which gene is being considered. For instance, in Fig 3A,

genes HER2, MDM2, AKT1, P21 and CDK2 need a NC higher than 30% to be expressed. The

NC values increase in about the same proportion as the initial A-I threshold parameter is

increased. Observe that genes TP53, ATR, ATM and BRCA1 are expressed at relatively low

Table 1. Model Parameter values.

Name Parameter Values

Grid size in 2D L2 5002

Grid size in 3D L3 2253

Consumption rates αi {2/L, 4/L, 8/L}

Supply rates λi {50, 100, 200}

Steepness of dead propability θd 0.01

Steepness of hopping probability θdiv 0.3

Estrogen carrying capacity κ� {0.05, 0.1, 0.25, 0.5, 0.75, 1.0}

Intrinsic susceptibility ξ {0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0}

Extrinsic susceptibility χ {0.5, 1.0, 2.0, 4.0, 8.0, 12.0}

Local size neighborhood Ro 20

Probability of mutations by estrogen P(B) {0.05, 0.1, 0.25, 0.5, 0.75, 1.0}

Agent interaction rates agi {−1.0, 1.0}

Microenvironment agents yi [0, 1]

Activation-inhibition threshold ηi [0.05, 1.0]

Agent self-degradation μi 0.2

Activation-inhibition strength βi {0.2, 2.0, 3.0, 9.0, 20.0}

Activation rates νi {0.5, 1.0, 1.2, 1.5}

Agent carrying capacity ki 0.5

Hill coefficients γi {1.0, 2.0, 3.0, 4.06.0}

Agent self-activation lgi 0.4

Activation threshold δi {0.1, 1.0}

https://doi.org/10.1371/journal.pcbi.1011673.t001
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values of the NC in a well defined concentration window which size increases as the initial A-I

threshold parameter increases. Note that for Zoi ¼ 0:25 genes AKT1, P21 and CDK2 are fully

expressed for oxygen and estrogen NC values greater than 0.25, whereas for Zoi ¼ 0:50 and

0.75 these genes are fully expressed for NC values greater than 0.50. Nonetheless, genes ATR,

ATM, BRCA1, MDM2 and CHEK1, are expressed for oxygen and estrogen NC values smaller

than 0.50. The expression of each gene is shown in the microarray of Fig 3B when the initial

value of the threshold parameter is set at the middle saturation value Zoi ¼ 0:5, for all genes.

There, one sees that genes TP53, ATR, ATM, BRCA1, CHEK1 and CDK2 become active for

oxygen and estrogen NC values less than 0.5. However, genes HER2 and MDM2 become active

for estrogen and oxygen NC values greater than 0.75, respectively. Similarly, genes AKT1, P21

and CDK2 become activated for oxygen and estrogen NC values greater than 0.50. These

results indicate that the first four genes dominate the GRN dynamics for Zoi ¼ 0:50. On the

other hand, the microarray of Fig 3C obtained for Zoi ¼ 0:75 shows that genes TP53, ATR,

ATM, BRCA1, CHEK1 and CDK2 become activated for oxygen and estrogens NC values less

than 0.75. Nonetheless, genes HER2, MDM2, ATK1,P21 and CDK2 become activated for

Fig 3. Gene expression levels in terms of the normalized concentrations of oxygen (O) and estrogen (E) for three initial values of the activation/

inhibition (A-I) threshold parameters. (A) Z0i
¼ 0:25 low, (B) Z0i

¼ 0:5 medium, and (C) Z0i
¼ 0:75 high.

https://doi.org/10.1371/journal.pcbi.1011673.g003
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estrogen and oxygen NC values greater than 0.80, respectively. These results suggest that for

high values of Zoi genes TP53, ATR, ATM, BRCA1 and CHEK1, dominate, once more, the

GRN dynamics.

Fig 4 shows microarrays associated to three cell phenotypes during cancer development: (i)

normal, (ii) precancer, and (iii) cancer cells. These phenotypes were identified as attractors in

the space states of the dynamics described by the GRN shown in Fig 1. GRN dynamics was

analyzed with both, a continuous model, Eq (13), and a Boolean representation of the genes

(see Section B in S1 Appendix) yielding consistent results. Attractor states a and c were identi-

fied with normal phenotypes because in a all genes are inhibited while in c only genes TP53,

ATM and CHECK1 are over-expressed. However, attractor states b, d, e, f, g, h, and i were

identified in the Boolean GRN representation with a precancer phenotype in which some

genes are either over-expressed or inhibited permanently. Finally, the state j is the only

attractor that was identified with cancer phenotype because genes HER2, ATK1, P21, and

CDK2 are over-expressed. These results are in complete agreement with a previous GRN anal-

ysis [86]. On the other hand, we estimated the effect of estrogen on gene expression levels by

varying proportionally the activation thresholds, ηoi, for each gene and by making a variation

of only the gene HER2 (see Section B in S1 Appendix). These results show that the precancer

phenotype depend on the initial threshold value, Z0i
, associated to estrogen that occurs in gene

HER2 rather than in the other genes. One observes that the variations in Z0i
are proportional

to the amount of precancer phenotypes that are represented by the length of the horizontal

fringe in the microarrays. These results are in agreement with the speed up of tumorigenesis

when HER2 is overexpressed as reported in Ref. [23]. They also reaffirm the importance of

estrogen concentration in changing gene expression levels and the occurrence of different phe-

notypes as previous research has shown [17, 18, 20, 56, 76].

Fig 5 shows the spatial distribution of cell phenotypes obtained from simulations of a 2D

tumor that incorporates the mutation dynamics described above, together with the GRN

Fig 4. Microarray showing gene expression and cell phenotypes. Phenotypes were identified with attractors in the state space of the GRN dynamics.

Normal cell phenotypes are represented by the states a and c while precancer phenotypes are represented by the states b, d, e, f, g, h, and i. Cancer

phenotype was represented by the state j, which corresponds to the over-expression of genes HER2, ATK1, P21, and CDK2. The dotted line of the state

h means that there is an overlap with state i. The initial threshold parameters for each of the ten genes from top to bottom are: ηoi = (0.3, 0.45, 0.15, 0.45,

0.15, 0.45, 0.3, 0.15, 0.3, 0.5). Phenotypes were identified through the analysis of the GRN boolean dynamics as well as from an analysis of the dynamics

of a GRN continuous model. (For details see Section B in S1 Appendix).

https://doi.org/10.1371/journal.pcbi.1011673.g004
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dynamics obtained with the A-I threshold values of all genes set at the medium saturation val-

ues Z0i
¼ 0:5. The values of the kinetic parameters were carefully selected from an extensive

and exhaustive analysis of the dynamics of the set of kinetic differential Eqs (13)–(16) (see Sec-

tion B in S1 Appendix) so that three attractor states associated with the cell phenotypes were

identified. In Fig 5A we observe tumor regions populated with: (i) cells in a normal state, pur-

ple regions, (ii) cells in a precancer state, green regions, and (iii) cells in a cancer state, yellow

regions. Fig 5B shows the genetic cell lineage spatial distribution identified through their segre-

gation index values. The color scale of the segregation index is shown on the right side of the

figure. One should recall that the segregation index directly measures the spatial assortment of

genetic cell lineage and ranges from 0 to 1, where 1 denotes complete lineage segregation on a

given spatial scale. The segregation index b̂ was calculated for 2D and 3D tumors using Eq (5)

on grids of size 202 and 203, respectively. Notice that the tumor upper region is populated with

cancer cells and it is precisely in this region where the segregation index values are greater

than 0.8 as an indication of cancer cell segregation and genetic heterogeneity. On the contrary,

the tumor lower region is mostly populated by normal cells with relatively low segregation

index values, b̂≲ 0:2. Precancer cell phenotype appears for moderate values of the segregation

index values, b̂ � 0:25; it is located at the middle of the tumor, occupying a smaller region as

compared to the size of the regions populated with the other two cell phenotypes.

Fig 6 shows the spatial distribution of mutations for 2D –panel (A)– and for 3D –panel

(B)– tumors at two times of their evolutionary stage. The upper figures of both panels repre-

sent tumors at about two months of development while the lower figures correspond to the

same tumors after one year of evolution. Notice that cancer cells of both tumors lead a fractal-

like structure at the early stages whereas they developed a solid-like structure at the later stages.

This increase in fractal dimension is because the presence of cancer results in a higher cell

Fig 5. (A) Spatial distribution of cell phenotypes and (B) segregation index for a 2D tumor. These results were obtained for parameters values: P(B) = 1,

κ� = 0.1, ξ = 0.5, χ = 4, α1 = α2 = α3 = 8 × 10−3, λ1 = 100, λ2 = 50, and λ3 = 200.

https://doi.org/10.1371/journal.pcbi.1011673.g005
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replication rate and is consistent with recent findings [100] as well as with those found in a

previous version of the present model [25].The color bar indicates the spatial distribution of

the number of mutations in the cancer cells. One should also observe that genetic heterogene-

ity is more marked at the early stage of development as compared to the later stage. The

regions where the number of mutations is maximum are relatively small and they occur at the

tumor surface. These results were obtained using the same kinetic parameter values as in Fig 5.

Fig 7 shows four microarrays that illustrate the fraction of cancer cells for a 2D tumor and

estrogen carrying capacity κ� versus genetic inheritance ξ in panel (A), κ� versus epigenetic

inheritance χ in panel (B), and κ� versus estrogen receptor probability P(B) in panel (C). It is

also shown the genetic inheritance ξ versus epigenetic inheritance χ in panel (D). They were

obtained by applying Eq (17) and from an analysis of the continuous dynamics of the GRN.

See Section B in S1 Appendix. The microarray of Fig 7A shows that, for certain ranges of κ�
and ξ there occurs a full estrogen expression that leads to an increasing fraction of cancer cells

in the tumor. Nonetheless, for the complementary ranges of these parameters there is a full

estrogen inhibition. The microarray of Fig 7B indicates that epigenetic inheritance, χ, follows a

similar genetic heritage behavior as a function of κ�. These results demonstrate that genetic

and epigenetic inheritance may change the emergence of cancer phenotype. Because of this,

one would expect that there exists a mechanism that can revert epigenetic changes. The micro-

array presented in Fig 7C, shows the importance of the probability P(B) of failure of estrogen

receptors (ER-α) for different values of κ�. This microarray suggests that if cells developed the

ability to keep a high number of estrogen receptors activated, then emergence of cancer

Fig 6. Spatial distribution of the number of mutations for (A) 2D and (B) 3D tumors. These results were obtained for the same parameters values as

in Fig 5.

https://doi.org/10.1371/journal.pcbi.1011673.g006
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phenotype would be reduced. The microarray presented in Fig 7D suggests that the occurrence

of cancer phenotype in the tumor is the result of epigenetic changes rather than genetic

changes. Because of this, one may think of the possibility of decreasing epigenetic changes, and

therefore, the number of cancer cells by manipulating the concentrations of microenviron-

mental substances –nutrients, estrogen and drugs–.

In Fig 8, the microarrays explore the importance of genetic versus epigenetic heritages in

the development of 2D tumors. The microarray in Fig 8A shows the mean value of the segrega-

tion index when genetic and epigenetic inheritance change. The results of this microarray indi-

cate that the changes in the segregation index are more susceptible to epigenetic heritages.

This suggests that genetic expression thresholds are more sensible to changes in quorum sens-

ing rather than to random mutations derived from glucose and estrogen concentration gradi-

ents. Fig 8B shows that the fraction of normal cells in a tumor is relatively high when

epigenetic and genetic inheritances are small, suggesting that these inheritances play similar

roles in the proliferation of normal cells. Microarrays in Fig 8C show the variations in the

Fig 7. The microarrays show the fraction of cancer cells in a 2D tumor for (A) Estrogens expression levels versus genetic inheritance values. (B)

Estrogens expression levels versus epigenetic inheritance values. (C) Estrogens expression levels versus estrogen receptors probability. (D) Genetic

inheritance versus epigenetic inheritance. The microarrays were obtained with the following parameter values: (A) P(B) = 1 and χ = 0; (B) P(B) = 1 and

ξ = 0; (C) χ = 4 and ξ = 0.5; (D) P(B) = 1 and κ� = 0.1. The consumption parameter values were α1 = α2 = α3 = 8 × 10−3, λ1 = 100, λ2 = 50, and λ3 = 200.

https://doi.org/10.1371/journal.pcbi.1011673.g007
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accumulation of mutations and heterogeneity for different values of the genetic and epigenetic

heritages. One observes that epigenetic changes are more relevant for the occurrence of ran-

dom mutations, in accordance to what is observed in Fig 8A. Microarray presented in Fig 8D

shows the variations of the Shanon diversity index which measures intratumoral heterogeneity

and can be used as a prognostic factor in breast cancer [101, 102]. The Shannon index is

defined as H ¼ �
P

iPilnPi, where Pi is the probability that imutations occurred in the whole

cancer tissue. To compute Pi we counted the number of cells that underwent one mutation,

two mutations, three mutations, etc., and then, we divided this quantity by the total number of

cancer cells. Therefore, high values of this index ðH > 3:5Þ indicate that diverse genes have

underwent a relatively large number of mutations leading to genetic heterogeneity in the

tumor. Genetic heterogeneity leads to the proliferation of somatic cells which favors malignant

cancer phenotype [103–105]. The results shown in Fig 8D strongly indicate that variations in

epigenetic inheritance define the degree of tumor malignancy rather than random mutations,

in agreement with previous results [25]. These findings also suggest that it should be possible

to reverse cancer phenotype by manipulating the microenvironmental agent concentrations,

as suggested previously by several authors [17, 18, 20, 56, 76].

Fig 8. The microarrays corresponding to a 2D tumor and represent: (A) Mean segregation index. (B) Fraction of normal cells in a tumor, (C) Average

number of mutations. (D) Shannon index that measures tumor heterogeneity. The axes show low to high gradient levels of the genetic and epigenetic

contributions. They were obtained for the following parameter values: P(B) = 1, κ� = 0.1, α1 = α2 = α3 = 8 × 10−3, λ1 = 100, λ2 = 50 and λ3 = 200.

https://doi.org/10.1371/journal.pcbi.1011673.g008

PLOS COMPUTATIONAL BIOLOGY A multiscale model in breast cancer development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011673 November 22, 2023 23 / 35

https://doi.org/10.1371/journal.pcbi.1011673.g008
https://doi.org/10.1371/journal.pcbi.1011673


In Fig 9 is shown the time evolution of different quantities averaged over 2,4,6. . .20 system

realizations. In panel (A) is presented the percentage of precancer cells, in panel (B) is shown

the percentage of cancer cells, in panel (C) is the segregation index mean value and in panel

(D) the activation-inhibition threshold mean value for gene expression is plotted. These quan-

tities were calculated for several values of the genetic and epigenetic inheritances parameters,

while the remaining parameter values were kept as in Fig 8. Thin lines correspond to averages

over 2,4,6. . .20 system realizations while thick lines represent the averages over 10 system real-

izations. It is observed that the average over 2 realizations follows a similar trend as the average

results for 4,6. . .20 system realizations. This behavior suggests that the multiscale modeling

yields a robust quantitative statistical representation of tumor evolution. The trend in the time

evolution of the measured quantities suggests that statistical fluctuations about the average val-

ues are no significant. Therefore, there is no need to perform statistics with large samples to

Fig 9. Averages carried out over various system realizations for different quantities as a function of time evolution for several values of the genetic and

epigenetic inheritances parameter values that represent moderate epigenetic (Moderate EP) and high epigenetic levels (High EP) as well as low genetic

(Low G) and moderate genetic levels (Moderate G). The remaining parameter values are the same as in Fig 8. (A) Percentage of precancer cells, (B)

Percentage of cancer cells, (C) segregation index mean value, and (D) activation-inhibition threshold mean value for gene expression. Thin lines

correspond to averages over 2,4,6. . .20 system realizations. Thick lines represent the averages over 10 system realizations.

https://doi.org/10.1371/journal.pcbi.1011673.g009
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illustrate the behavior of the measured quantities. Panel (A) shows that by maintaining a low

genetic inheritance level (ξ = 0.5) and varying from moderate to high epigenetic inheritance

levels (χ = 2, 10) –green and purple lines—a minor percentage of precancer cells is obtained.

On the contrary, for moderate levels of the genetic inheritance (ξ = 4.0) and varing the levels of

the epigenetic inheritance from moderate to high levels(χ = 2, 10) –blue and red lines—the

percentage of precancer cells increases. These results suggests that both genetic and epigenetic

variations contribute significantly to the formation of precancer cells. In panel (B) we observe

that by maintaining low the genetic inheritance level (ξ = 0.5) and varying the epigenetic inher-

itance values(χ = 2, 10) –green and purple lines—a major percentage of cancer cells is

obtained. Similarly, when the genetic inheritance increases to a moderate value(ξ = 4.0) and

the epigenetic inheritance is varied from moderate to high values (χ = 2, 10) –blue and red

lines—the percentage of cancer cells increases. This suggests that genetic inheritance variations

contribute significantly to the formation of cancer cells. In panel (C) we see that epigenetic

and genetic inheritances follow a similar trend for evolution times less than two years. How-

ever, for larger times there appears an important difference since the lines representing the <

b̂ > tend to diverge as is shown in the inset of this panel. These results indicate that by main-

taining the genetic inheritance (ξ = 0.5) and varying the epigenetic inheritance (χ = 2, 10) –

green and purple lines—the segregation index < b̂ > increases. Similarly, when the genetic

inheritance increases (ξ = 4.0) and the epigenetic inheritance varies (χ = 2, 10) –blue and red

lines—the segregation index< b̂ > increases slightly. This means that the genetic inheritance

contributes significantly to the tumor heterogeneity. On the other hand, the epigenetic changes

can yield a reduction of heterogeneity and strongly suggest that a change from cancer to pre-

cancer phenotypes is feasible. In panel (D) we observe that by maintaining the genetic inheri-

tance (ξ = 0.5) and varying the epigenetic inheritance (χ = 2, 10) –green and purple lines—a

reduction of the activation threshold is achieved. Similarly, when genetic inheritance increases

(ξ = 4.0) and the epigenetic inheritance is varied (χ = 2, 10) –blue and red lines—the activation

threshold diminishes. This suggests that epigenetic inheritance conserves the activation thresh-

old values as compared to the genetic inheritance. The results presented in Fig 9C and 9D indi-

cate that the linear relationship proposed in Eq (17) between the intrinsic and extrinsic cell

susceptibilities reinforce the idea of reducing cell genetic alterations by implementing epige-

netic therapies, as we already pointed out in previous paragraphs. This is in agreement with

findings reported in papers where epigenetic mechanisms are used as cancer therapies [17, 18,

20, 56, 76, 106]. Our findings clearly indicate that epigenetic variations control the activation

threshold values and diminish the segregation index which lead to a decrease in the tumor

heterogeneity.

Fig 10 shows the fraction of cancer cells, the segregation index spatial distribution, different

tumor shapes, as well as the fractal and Shannon index values obtained for a 2D tumor. Micro-

arrays (A), (C) and (D) show a main lattice (heavy lines) that indicates the estrogen consump-

tion rate, α3 (vertical axis) and the estrogen supply rate, λ3 (horizontal axis). Inside each cell of

the main lattice there is a sublattice that indicates the distribution of cancer cells in terms of

nutrient consumption rate, α1 (vertical axis) and nutrient supply rate, λ1 (horizontal axis).

Panel (A) shows how the fraction of cancer cells is distributed throughout the tumor. This

microarray suggests that the cancer phenotype is mostly driven by estrogen consumption

rather than glucose consumption. Nonetheless, the precancer phenotype happens for low

(lower left square) and intermediate (centered square) values of estrogen consumption and

supply rates. The normal phenotype is present for relatively high (upper left square) and inter-

mediate (upper centered square) values of estrogen consumption and supply rates. Panel (B)

shows the spatial distribution of the segregation index throughout the tumor as well as
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different tumor shapes that differ depending on the values of estrogen and glucose consump-

tion and supply rates. It is observed that segregation is maximum in the regions where the

estrogen gradient concentration is large. In addition, it can be observed that genetic diversity

increases at the tumor center and contour. The parameter values in panel (B) correspond to

the central values of the microarrays in panel (A). Note that the fractal tumor shapes shown in

the third column, top and middle rows, correspond to α1 = 8 × 10−3, and λ1 = 100 and α3 =

8 × 10−3, 16 × 10−3 with λ3 = 200. The fractal dimension (FD) can be used to characterize the

tumor structure and can be measured in histopathology slides of tissue samples using trans-

mission optical microscopy. FD is an important quantity that is used in the diagnosis of cancer

[107–110]. It has been found recently that in samples of pancreatic, breast, colon, and prostate

cancer the FD increases with the progression of cancer through the different stages [100].

Because of these observations one can conclude that biological tissues in cancer progression

develop intrinsic roughness. In addition, the change in texture or appearance of distortions in

breast cancer tumors can be detected from mammograms by estimating the FD. In fact, it has

been suggested a classification of benign and malignant tumors according to their FD values

Fig 10. Microarrays corresponding to a 2D tumor. (A) Fraction of cancer cells in the tumor. (B) Tumor shape and spatial distribution of segregation

index. (C) Fractal index, D) Shannon index. They were obtained for the following parameter values: P(B) = 1, κ� = 0.1, ξ = 0.5 and χ = 4.

https://doi.org/10.1371/journal.pcbi.1011673.g010
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[111]. Taking these observations into account in panel (C) is shown the tumor FD distribution.

It is observed that its higher values occur for α1 * 4 × 10−3 and for 100� λ3� 200, pointing

to a cancer phenotype, while the lower values happen for α1 * 16 × 10−3 and for values of λ3

* 50 suggesting the presence of a precancer phenotype. These results are consistent with

those shown in panel (A) and those reported in [25]. The Shannon index distribution is shown

in panel (D). The higher values of this index occur for α1 * 4 × 10−3 and for 100� λ3� 200,

pointing to a malignant or cancer cell phenotype. The results shown in this panel suggest that

during cancer evolution the estrogen consumption is more relevant than the nutrient con-

sumption rate which means that the increase in tumor diversity is mainly due to the presence

of estrogen concentration gradients. The results in the sublattice are also consistent with those

shown in panels (A)-(C) and those reported for nutrient consumption in [25].

Fig 11 presents four panels corresponding to three microarrays that explore the importance

of genetic and epigenetic heritages, and the spatial distribution of random mutations in the

development of 3D tumors. The microarray in Fig 11A shows that the increase in the fraction

of cancer cells is correlated with epigenetic changes, suggesting that genetic expression is more

susceptible to quorum sensing rather than to random mutations. Fig 11B shows the spatial

Fig 11. Microarrays obtained for 3D tumors that show: (A) Fraction of cancer cells in the tumor, (B) The spatial distribution of mutations for different

values of α3 and λ3. (C) Average threshold values and (D) tumor heterogeneity. The axes show low to moderate gradient levels of the genetic and

epigenetic contributions. The results shown in (A), (C) and (D) were obtained for the parameter values: P(B) = 1, κ� = 0.1, α1 = α2 = α3 = 8 × 10−3, λ1 =

100, λ2 = 50, and λ3 = 200.

https://doi.org/10.1371/journal.pcbi.1011673.g011
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distribution of random mutations in 3D tumors under different microenvironmental condi-

tions defined by the estrogen consumption and supply rate values. There one sees that for α3 =

16 × 10−3 and λ3 = 50, 100, there are relatively small regions in the tumor where the number of

mutations is of the order of one thousand. However, for α3 = 8 × 10−3 and 16 × 10−3 and λ3 =

200, there are large regions in the tumor where the number of mutations is of the order of hun-

dreds. For α3 = 4 × 10−3 and λ3 = 100, 200, there are relatively large regions in the tumor that

undergo between one thousand and fifteen hundred mutations. It was also found that cells

that underwent more mutations were located close to the tumor surface. This result is consis-

tent with that found for the 2D model in which most mutations were found at the perimeter of

the tumor. One can also observe that the interior regions of the 2D and 3D tumors were mostly

populated with necrotic cells. This is in agreement with the suggestion that HIF’s maintain cel-

lular homeostasis and favor malignant progression leading to an increase in heterogeneity in

the tumor periphery [33, 34].

The microarray in Fig 11C shows the effect of varying the genetic and epigenetic heritage

threshold values whereas the panel in Fig 11D shows the distribution of the Shannon index val-

ues. It is seen that low values of the threshold value lead to an increase in mutations and as a

consequence a larger Shannon index value. As seen in panel Fig 11A, epigenetic effects are

more relevant, in agreement with what was found in panels (C) and (D) where a decrease in

the epigenetic threshold values leads to an increase in tumor heterogeneity. By examining the

features presented in Fig 8 for a 2D tumor and in Fig 11 for an equivalent 3D tumor, it can be

concluded that all their characteristics are consistent with each other.

Fig 12 presents the distribution of phenotypes, for a 2D tumor in panel (A) and for a 3D

tumor in panel (B), for different values of the estrogen consumption α3 and supply λ3 rates,

while the other parameters values are the same as in Fig 11. The first column of panel (A)

shows that the tumor looks compact and its size increases as α3 decreases. In the second and

third columns one observes that the tumor grows as α3 decreases. Precancer and cancer phe-

notypes can be observed as λ3 increases, and also the tumor develops a fractal-like structure.

For the highest values of the estrogen consumption and supply rates normal, precancer and

cancer phenotypes can be clearly observed. Panel (B) shows 3D tumor structures and pheno-

type spatial distributions for different values of the estrogen consumption α3 and supply rates

λ3 which are consistent with those observed in panel (A). The third column corresponds to the

highest value of λ3, and three values of α3, the distributions of normal, precancer and cancer

phenotypes as well as the tumor fractal-like structure are more evident. The tumor surface is

mostly populated by cancer and precancer phenotypes whereas smaller regions are populated

by normal cells. In Fig 12C and 12D, we show the growth of 2D tumors by varying the con-

sumption rates of oxygen and glucose, respectively. In panel (C) we observe that low oxygen

consumption rates generate many cancer phenotypes while high oxygen consumption rates

reduce cancer phenotypes and increase the production of precancer phenotypes. The previous

results indicate that microenvironmental conditions with higher oxygen consumption rate

favor the reduction of the amount of cancer cells. On the other hand, in panel (D) we show the

influence of glucose consumption rate on tumor growth and different phenotypes formation.

In all cases, we observe that higher glucose concentration leads to the spread out of the tumor

mass. Also, a higher glucose consumption rate produces more cancer phenotypes as compared

to low consumption rate. The combination of the panels results strongly suggests that the con-

trol of cancer phenotypes can be reached by lowering glucose and estrogen consumption rates

and by increasing the oxygen consumption rate for cancer cells. Finally, note that precancer

phenotype decreases while normal cells increase which indicates tumor remission could be

achieved with the correct regulation of consumption rates.
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Summary

We have introduced and analyzed in detail a quantitative model that describes the growth and

epigenetic evolution of an avascular tumor. The epigenetics was described through the dynam-

ics of a GRN formed by the set of ten genes: TP53, ATM, HER2, BRCA1, AKT1, ATR,

CHEK1, MDM2, CDK2, P21 that are believed to play an important role in breast cancer devel-

opment. The GRN dynamics was analyzed using a Boolean representation of the genes and

their interactions as well as by means of a continuous model described by ten kinetic equations

that involve transcriptional positive and negative regulations. The tumor growth was simulated

with a cellular automaton coupled to a set of reaction-diffusion equations that described the

Fig 12. Spatial distribution of phenotypes. (A) 2D tumor and (B) 3D tumor for different estrogen consumption rate values α3 and supply rate values

λ3. (C) 2D tumors representation for different values of oxygen consumption rate values and (D) 2D tumors for different glucose consumption rate

values. In all figures we set the model parameters as in Fig 11, except in panel (C), where we set α1 = α3 = 16 × 10−3 and λ1 = λ3 = 100. In panel (D), we

set α2 = α3 = 16 × 10−3 and λ2 = λ3 = 100.

https://doi.org/10.1371/journal.pcbi.1011673.g012
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transport of the microenvironmental glucose, oxygen and estrogens that changed the genes

expression levels. Random mutations were simulated by means of a Markovian process mod-

eled with a master equation that involved the local concentrations of the microenvironmental

agents. The role of cell segregation was also incorporated by modeling the lineage production

rate –cell segregation index– with a metabolic Michaelis-Menten kinetic equation. The lineage

production rate was introduced as a factor in the mutation probability associated to the geno-

toxic metabolites driven by estrogen concentration gradients. This approach led us to find

three attractors in the GRN dynamics which are related to three phenotypes: (i) normal cells,

(ii) precancer cells and (iii) cancer cells. With these ingredients the tumor structure, the spatial

distribution of mutations and phenotypes for 2D and 3D tumors were calculated. From the

simulations we obtained a series of microarrays that show the activation levels of each of the

ten genes in response to the glucose and estrogen concentration gradients. In addition, we

obtained the spatial distributions of: (i) the number of mutations, (ii) segregation index, (iii)

phenotypes, (iv) shape and, (v) the Shannon index, that is a measure of the heterogeneity for

2D and 3D tumors. These quantities were also analyzed for different values of the estrogen

consumption and supply rates. It was found that the regions where number of mutations max-

imize are relatively small and occur at the tumor surface. whereas genetic heterogeneity was

more marked at the early stage of development. The segregation index spatial distribution

throughout the tumor as well as the tumor shapes were different depending on the values of

the estrogen and glucose consumption and supply rates. It was also found that segregation

maximizes in the regions where estrogen gradient concentrations are large.

Tumors developed a fractal-like structure at the early stages whereas at later stages they

tended to develop a solid-like structure. On the other hand, we studied the role of estrogen

concentration in changing gene expression levels and the results reaffirm that the phenotypes

can be controlled directly by estrogen concentration. All these results were found to be consis-

tent for both, 2D and 3D tumors. The findings reported here strongly suggest that it is possible

to develop epigenetic cancer treatment alternatives. Finally, we would like to emphasize that

the results obtained for the fractal structure and heterogeneity of tumors are in complete

agreement with those found in a previous paper [25].

Supporting information

S1 Appendix. Gene functions and epigenetic attractors. This appendix describes the func-

tional actions of each of the ten genes that are part of the GRN for breast cancer. Also, it has a

full description of Boolean and continuous GRN dynamics including multistability analysis.

(PDF)
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91. Folguera-Blasco N, Pérez-Carrasco R, Cuyàs E, Menendez JA, Alarcón T. A multiscale model of epi-

genetic heterogeneity-driven cell fate decision-making. PLOS Computational Biology. 2019; 15(4):1–

27. https://doi.org/10.1371/journal.pcbi.1006592

92. Stepanova D, Byrne HM, Maini PK, Alarcón T. A multiscale model of complex endothelial cell dynam-

ics in early angiogenesis. PLOS Computational Biology. 2021; 17(1):1–44. https://doi.org/10.1371/

journal.pcbi.1008055

93. West J, Robertson-Tessi M, Anderson ARA. Agent-based methods facilitate integrative science in

cancer. Trends in Cell Biology. 2022.

94. Soheilypour M, Mofrad MRK. Agent-Based Modeling in Molecular Systems Biology. BioEssays. 2018;

40(7):1800020. https://doi.org/10.1002/bies.201800020

95. Rejniak KA, Anderson ARA. Hybrid models of tumor growth. WIREs Systems Biology and Medicine.

2011; 3(1):115–125. https://doi.org/10.1002/wsbm.102

96. Ghadiri M, Heidari M, Marashi SA, Mousavi SH. A multiscale agent-based framework integrated with a

constraint-based metabolic network model of cancer for simulating avascular tumor growth. Mol Bio-

Syst. 2017; 13:1888–1897. https://doi.org/10.1039/C7MB00050B

97. Cooperman J, Neely R, Teachey DT, Grupp S, Choi JK. Cell division rates of primary human precursor

B cells in culture reflect in vivo rates. Stem Cells. 2004; 22(6):1111–1120. https://doi.org/10.1634/

stemcells.22-6-1111

98. Iborra FJ, Kimura H, Cook PR. The functional organization of mitochondrial genomes in human cells.

BMC Biol. 2004; 2:9. https://doi.org/10.1186/1741-7007-2-9

99. Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer

prevention. Science. 2017; 355(6331):1330–1334. https://doi.org/10.1126/science.aaf9011 PMID:

28336671

100. Liam Elkington PA, Pradhan P. Fractal Dimension Analysis to Detect the Progress of Cancer Using

Transmission Optical Microscopy. Biophysica. 2022; 2:59–69. https://doi.org/10.3390/

biophysica2010005

101. Chung Y, Kim H, Kim Y, Chang M, Hwang K, Park S. Diversity index as a novel prognostic factor in

breast cancer. Oncotarget. 2017; 8(57):97114–97126. https://doi.org/10.18632/oncotarget.21371

102. Inga HR, Trinh A, Sætersdal AB, Nebdal D, Lingjærde OC, Almendro V, et al. Intratumor heterogeneity

defines treatment-resistant HER2+ breast tumors. Molecular Oncology. 2018; 12(11):1838–1855.

https://doi.org/10.1002/1878-0261.12375

103. Magurran AE. Measuring Biological Diversity. Hoboken, NJ: Wiley-Blackwell; 2004.

104. Park SY, Gönen M, Kim HJ, Michor F, Polyak K. Cellular and genetic diversity in the progression of in

situ human breast carcinomas to an invasive phenotype. The Journal of Clinical Investigation. 2010;

120(2):636–644. https://doi.org/10.1172/JCI40724

105. Almendro V, Kim HJ, Cheng YK, Gönen M, Itzkovitz S, Argani P, et al. Genetic and phenotypic diver-

sity in breast tumor metastases. Cancer research. 2014; 74(5):1338–1348. https://doi.org/10.1158/

0008-5472.CAN-13-2357-T

106. Huang S, Ingber DE. A Non-Genetic Basis for Cancer Progression and Metastasis: Self-Organizing

Attractors in Cell Regulatory Networks. 2007; 26:27–54.

107. Kothari S, Phan JH, Stokes TH, Wang MD. Pathology imaging informatics for quantitative analysis of

whole-slide images. Journal of the American Medical Informatics Association: JAMIA. 2013; 20

(6):1099–1108. https://doi.org/10.1136/amiajnl-2012-001540

108. Veta M, Pluim JPW, Van Diest PJ, Viergever MA. Breast Cancer Histopathology Image Analysis: A

Review. IEEE Transactions on Biomedical Engineering. 2014; 61:1400–1411. https://doi.org/10.1109/

TBME.2014.2303852

109. Pike R, Lu G, Wang D, Chen ZG, Fei B. A Minimum Spanning Forest Based Method for Noninvasive

Cancer Detection with Hyperspectral Imaging. IEEE transactions on bio-medical engineering. 2016;

63(3):653–663. https://doi.org/10.1109/TBME.2015.2468578

110. Yoshioka H, Shimoda T, Oikawa S, Morohashi S, Hasegawa Y, Horie K, et al. Usefulness of Fractal

Analysis of Kirsch Edge Images for the Tissue Fragment Inner Structure in Breast FNAB. Acta Cytolo-

gica. 2021; 66:149–158. https://doi.org/10.1159/000519490

111. Dobrescu R, Ichim L, Crişan D. Diagnosis of Breast Cancer from Mammograms by Using Fractal Mea-

sures. International Journal of Medical Imaging. 2013; 1(2):32–38. https://doi.org/10.11648/j.ijmi.

20130102.14

PLOS COMPUTATIONAL BIOLOGY A multiscale model in breast cancer development

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011673 November 22, 2023 35 / 35

https://doi.org/10.1146/annurev-bioeng-071811-150104
https://doi.org/10.1371/journal.pcbi.1006592
https://doi.org/10.1371/journal.pcbi.1008055
https://doi.org/10.1371/journal.pcbi.1008055
https://doi.org/10.1002/bies.201800020
https://doi.org/10.1002/wsbm.102
https://doi.org/10.1039/C7MB00050B
https://doi.org/10.1634/stemcells.22-6-1111
https://doi.org/10.1634/stemcells.22-6-1111
https://doi.org/10.1186/1741-7007-2-9
https://doi.org/10.1126/science.aaf9011
http://www.ncbi.nlm.nih.gov/pubmed/28336671
https://doi.org/10.3390/biophysica2010005
https://doi.org/10.3390/biophysica2010005
https://doi.org/10.18632/oncotarget.21371
https://doi.org/10.1002/1878-0261.12375
https://doi.org/10.1172/JCI40724
https://doi.org/10.1158/0008-5472.CAN-13-2357-T
https://doi.org/10.1158/0008-5472.CAN-13-2357-T
https://doi.org/10.1136/amiajnl-2012-001540
https://doi.org/10.1109/TBME.2014.2303852
https://doi.org/10.1109/TBME.2014.2303852
https://doi.org/10.1109/TBME.2015.2468578
https://doi.org/10.1159/000519490
https://doi.org/10.11648/j.ijmi.20130102.14
https://doi.org/10.11648/j.ijmi.20130102.14
https://doi.org/10.1371/journal.pcbi.1011673

