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Nicolas Parisey1, Youcef Mammeri2

1 IGEPP, INRAE, Institut Agro, University of Rennes, Rennes, France, 2 ICJ, CNRS, Jean Monnet University,

Saint-Etienne, France

* melen.leclerc@inrae.fr

Abstract

Within-host spread of pathogens is an important process for the study of plant-pathogen

interactions. However, the development of plant-pathogen lesions remains practically diffi-

cult to characterize beyond the common traits such as lesion area. Here, we address this

question by combining image-based phenotyping with mathematical modelling. We con-

sider the spread of Peyronellaea pinodes on pea stipules that were monitored daily with visi-

ble imaging. We assume that pathogen propagation on host-tissues can be described by

the Fisher-KPP model where lesion spread depends on both a logistic growth and an homo-

geneous diffusion. Model parameters are estimated using a variational data assimilation

approach on sets of registered images. This modelling framework is used to compare the

spread of an aggressive isolate on two pea cultivars with contrasted levels of partial resis-

tance. We show that the expected slower spread on the most resistant cultivar is actually

due to a significantly lower diffusion coefficient. This study shows that combining imaging

with spatial mechanistic models can offer a mean to disentangle some processes involved

in host-pathogen interactions and further development may allow a better identification of

quantitative traits thereafter used in genetics and ecological studies.

Author summary

The study of plant diseases often rely on the measurement of quantitative traits that

describe the development of a pathogen into a host plant. When the pathogen causes

growing lesions, phenotyping is actually more difficult and usually summarized into

lesions sizes. By considering the spread of Peyronellaea pinodes in two pea cultivars with

contrasted level of quantitative resistance we show how visible image-based phenotyping

combined with a spatial mathematical model can improve the phenotyping of interactions

with growing lesions. It provides new life-history traits of the pathogen that cannot be

identified without using spatial models and better describe pathogen spread into host tis-

sues. The comparison of these quantitative traits among cultivars provides better insight

into the possible mechanisms involved in quantitative host resistance. Our results point

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011627 November 20, 2023 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Leclerc M, Jumel S, Hamelin FM,

Treilhaud R, Parisey N, Mammeri Y (2023)

Imaging with spatio-temporal modelling to

characterize the dynamics of plant-pathogen

lesions. PLoS Comput Biol 19(11): e1011627.

https://doi.org/10.1371/journal.pcbi.1011627

Editor: Benjamin Althouse, University of

Washington, UNITED STATES

Received: December 9, 2022

Accepted: October 23, 2023

Published: November 20, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011627

Copyright: © 2023 Leclerc et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The authors confirm

that all data underlying the findings are fully

available without restriction. All relevant data are

https://orcid.org/0000-0002-5314-461X
https://doi.org/10.1371/journal.pcbi.1011627
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011627&domain=pdf&date_stamp=2023-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011627&domain=pdf&date_stamp=2023-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011627&domain=pdf&date_stamp=2023-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011627&domain=pdf&date_stamp=2023-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011627&domain=pdf&date_stamp=2023-12-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011627&domain=pdf&date_stamp=2023-12-04
https://doi.org/10.1371/journal.pcbi.1011627
https://doi.org/10.1371/journal.pcbi.1011627
http://creativecommons.org/licenses/by/4.0/


out the relevance of going further than usual traits like lesion size or lesion growth rate to

characterize diseases with growing lesions and support the idea of promoting model-

based phenotyping in works aiming to understand the adaptation of pathogen to plant

resistances and breed for resistance.

Introduction

Assessing quantitative life-history traits of pathogens on host plants, also called quantitative

traits of pathogenicity or aggressiveness by plant pathologists, is central for the study of plant

diseases. These quantitative traits describe the essential stages of pathogens life-cycle into their

hosts and are used to understand the adaptation of pathogens to plant resistance and to iden-

tify quantitative trait loci for both host resistance and pathogen aggressiveness [1]. In the par-

ticular case of fungal plant pathogens, the most frequently measured traits are incubation and

latency periods, spore production and lesion size [2]. In practice, they are often obtained after

inoculating a host, monitoring the development of the lesions caused by the pathogen and

finally estimating the traits of interest. However, phenotyping the dynamics of host-pathogen

interactions remains challenging and is often performed through inaccurate traits that, though

they already contrast phenotypes, poorly describe the processes and can hide or skew differ-

ences between individuals [3]. The lesion size is a good example to illustrate this as there is an

infinity of spatial dynamics than can produce identical size at a given time. Considering the

lesion growth rate is more informative but again, it ignores lesions shapes and depends on pro-

cesses such as local growth and diffusion. Mechanistic models offer a mean to decipher the

processes involved in host-pathogen interactions but are still seldom considered for analyzing

plant disease phenotypic data [3, 4]. In this case the model should remain parsimonious

enough so that the parameters can be identified from the data.

The recent development of image-based phenotyping methods enables in vivo non-destruc-

tive longitudinal monitoring of infected tissues. Besides allowing precise and automated quan-

tification of necrotic plant tissues, that already improved disease phenotyping (e.g. [5–7]),

imaging opens new possibilities to further investigate the spatial dimension of host-pathogen

interactions. As illustrated by works on the development of human lesions, imaging data can

be particularly interesting for fitting spatially explicit process-based models [8, 9]. It provides

new insights into the main mechanisms involved in lesion development in relation with host

immunity but also modelling tools for phenotyping. Perhaps surprisingly, although the main

physiological mechanisms of plants and their parasites have been described by mathematical

models (e.g. [10, 11]) the spread of lesions has received little attention by modellers [3, 12–14]

and is rarely validated against images [15].

In this study we consider the fungal pathogen Peyronellaea pinodes (formerly Mycosphaer-
ella pinodes and Didymella pinodes) on pea as an example pathosystem to analyze its spread

using modelling and imaging. With the two fungi Phoma medicaginis and Ascochyta pisi, P.
pinodes belongs to the Ascochyta blight of pea disease complex that causes substantial yield

losses worldwide [16]. In Europe, P. pinodes is generally the predominant and the most

destructive species, though P. medicaginis is also prevalent and tends to develop later in the

growing season [17, 18]. P. pinodes is able to infect all aerial parts of its host plant and induces

necrotic growing lesions. The development of resistant cultivars to P. pinodes has been central

for the integrated management of this disease, but difficult as only quantitative (or partial)

resistance was available [16, 19]. For most fungal pathogens, quantitative host resistance

reduces pathogen fitness by altering spore production, infection and within-host growth [1–3,
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20]. The evaluation of quantitative host resistance on pathogen life-history traits is often per-

formed in controlled conditions with ad hoc protocols. In the case of P. pinodes partial resis-

tance of pea can be assessed on inoculated detached leaflets, or stipules, by measuring necrotic

lesions either manually [21] or with imaging [17].

We begin by presenting the experiment, including the image acquisition protocol and the

processing framework, that allowed the longitudinal monitoring of lesions on inoculated pea

stipules. Then, we consider the Fisher-KPP reaction-diffusion model to describe the spread of

necrotic lesions on host tissues which is fitted to image sequences (Fig 1). We show that com-

bining imaging and spatially explicit models enables a finer description of within-host spread

of pathogen, including lesions coalescence, and allows one to disentangle local growth and dif-

fusion of the necrosis. The comparison of estimated parameters obtained on two cultivars pro-

vides new insights into how the partially resistant cultivar reduces pathogen development. It

highlights the potential of combining image-based phenotyping with spatial mechanistic mod-

els to further improve our understanding of host-pathogen interactions.

Materials and methods

Host inoculation experiment

The aggressive isolate of P. pinodes named Mp 91.31.12 was inoculated on two pea cultivars

previously tested in our laboratory: Solara, a common susceptible reference, and James, that

reduces symptom development in controlled conditions [21]. These two cultivars are semi-

leafless without conventional leaves but extended pairs of hypertrophied stipules below each

stem node. For each cultivar, leaf stipules were inoculated according to a standard biotest pro-

tocol developed in our laboratory [17, 21]. Plants were grown in a climate chamber, kept at

18˚C and with a 12h photoperiod, in 9cm diameter pots containing vermiculite and five pea

seeds. When they reached the 6 leaf stage, stipules from nodes 3 and 4 were sampled and

placed on tap water in a compartmented square Petri dish. The inoculum consisted in a pycni-

diospore suspension whose concentration was determined with a haemocytometer and

adjusted at 5 × 104 spores ml-1 following [21] protocol. For both cultivar, 16 pairs of attached

stipules were inoculated by placing a 10μl droplet at their center. Afterwards, the Petri dishes

containing the inoculated stipules were placed into transparent plastic containers to avoid

drop evaporation and incubated in a climatic chamber kept at 20˚C and with a 14 h photope-

riod. The protocol is summarized into a schematic diagram given in S1 Appendix.

Image acquisition

The spread of lesions caused by the pathogen was assessed daily from 3 to 7 days after inocula-

tion following a standardized acquisition protocol developed for plant disease phenotyping [6,

17, 22]. Image acquisition was performed using two FotoQuantum LightPro 50 × 70 cm soft

boxes, placed on both sides of the Petri dish with four daylight bulbs each (5400 K, 30 W). Pic-

tures were taken with a Nikon D5300 digital camera equipped with an AF-S DX Micro Nikkor

40 mm 1:2.8G lens, on a Kaiser Repro stand, and with computer control using DigiCamCon-

trol software ver. 2.1.1.0. Aperture was set at F22 for maximal depth of field, iso 125, daylight

white balance. Initial pictures were saved as RGB images with a resolution of 6000 × 4000

pixels.

Image processing

As illustrated in Fig 1, several processing steps were required to enable model fitting to image

sequences. First, stipules (i.e. our region of interest) were extracted from raw images using the
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Simple Interactive Object Extraction algorithm [23] (Fig 1a). At this step we saved images with

stipules on a white background instead of stipules masks (i.e. binary images). Second, images

were registered (i.e. aligned to each other) using the Coherent Point Drift method [24], assum-

ing rigid transformations and the first image (3 days after inoculation) as the reference (Fig

1b). Third, images were segmented by classifying pixels in either healthy, symptomatic or

background states. The prediction of each pixel-class was based on several nonlinear image

features that captured local image characteristics. In particular we computed features for

Fig 1. Schematic representation of lesion growth monitoring through imaging. The initial RGB images (a) are first registered to align stipules in time (b).

Afterwards, a supervised segmentation is performed to produce probability maps indicating the probability of each pixel to be in either healthy, symptomatic or

background classes. Probability images of the symptomatic state (c) are used for fitting the Fisher-KPP model. Images of day 3 are used as initial conditions while the

remaining 4 images are used to estimate the pathogen local growth rate â and diffusion coefficient D̂ that are actually two distinct life-history traits of within-host

pathogen spread.

https://doi.org/10.1371/journal.pcbi.1011627.g001
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colours (e.g. Gaussian blur), edges (e.g. Laplacian), and textures (e.g. Hessian) at different

scales using spherical filters with radii varying from 1 to 16 pixels. Based on these features,

Random Forest classifiers were trained for each date of observation using the Trainable Wai-

kato Environment for Knowledge Analysis (Weka) [25]. They were tested on ground truth

images from an independent study [17] and showed good performances to classify pixels (i.e.

balanced accuracies above 0.82, S2 Appendix), and thus separate background, healthy leaf and

symptomatic areas. Afterwards, these classifiers were used to process the full dataset and to get

three probability images giving the probabilities of each pixel to be in each state (e.g. Fig 1c

and S3 Appendix for state symptomatic). The predicted state probabilities correspond to the

mean predicted state probabilities of the trees in the forest. For each pixel the sum is 1 and the

state (or class) obtained in the pixel-based segmentation is given by the class with the highest

probability (soft voting). To finish with, we considered the Jaccard index (i.e. the intersection

over the union of the two sets, that can vary between 0 and 1) as a measure of stipules deforma-

tion, that was computed for each date assuming the 3rd day as the reference set. All the images

and classifiers are available in an open dataverse [26, 27].

Spatial lesion growth model

Most existing models for the spread of plant pathogens within host tissues are rather spatially

implicit and generally assume a constant radial growth rate and a simplified geometry of the

host organ [12–14]. Yet, these models were able to fit non-spatial lesion size data [3], including

for the particular P. pinodes-pea pathosystem [17].

Here, we consider the Fisher-KPP equation as a model for the spatio-temporal dynamics of

lesions. Because pathogen density cannot be directly inferred from common observations of

symptoms in biotests, we describe the spread of the probability of infection, and thus the

appearance of symptomatic host tissues, rather than pathogen load. The Fisher-KPP equation

was introduced in 1937 by Fisher [28] and Kolmogorov-Petrovsky-Piskunov [29] as a semi-

linear parabolic partial differential equation (PDE) combining Fick’s diffusion with logistic

growth. Let O � R2 be the stipules area, the Fisher-KPP equation reads as the following reac-

tion-diffusion equation, for the position x ¼ ðx; yÞ 2 O and the time t> t0

@u
@t
ðx; tÞ ¼ DDuðx; tÞ þ auðx; tÞ 1 � u x; tð Þð Þ: ð1Þ

where u(x, t) the probability that the host is infected at location x and time t, D> 0 is the diffu-

sion coefficient, a� 0 the growth rate. As P. pinodes is a necrotrophic pathogen, we can

assume that the probability of being necrotic is similar to the probability of being infected. The

initial conditions are given by an initial image u0 as

uðx; t ¼ t0Þ ¼ u0ðxÞ in O:

Assuming the pathogen cannot move out of the leaf, homogeneous Neumann boundary

conditions are imposed

@u
@n
ðx; tÞ ¼ 0 on @O:

This model exhibits traveling waves with asymptotic speed 2
ffiffiffiffiffiffi
aD
p

which is coherent with

the assumption of a constant radial growth rate considered in several studies and supported by

non-spatial lesion data [3, 17].

Numerical solutions of the model are obtained by computing the spatial domain O with a

level-set formalism so the boundaries @O match those of the leaves in the image [30, 31], and
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solving the partial differential equations using explicit Euler finite differences in time and sec-

ond order centered finite differences in space. More details on these numerical aspects are pro-

vided in S4 Appendix.

Parameters estimation from image sequences

For each inoculated stipule, the observations consisted in a set of registered images ureg(x, t)

for times after inoculation t = {t3, t4, t5, t6, t7} (Fig 1). Parameters identification consisted in

seeking estimates ŷ such that the output of the spatial model u(x, t, θ) matches these observa-

tions. Depending on the estimation problem, inverse problems or statistical inference of reac-

tion-diffusion can be addressed by several methods such as mathematical analysis, maximum

likelihood or non-linear least-squares [32]. When observations are image sequences, parame-

ter estimation can be performed using some data assimilation methods used to fit models to

image data, for instance in fluid dynamics [33] or biomedical modelling [9]. We consider a

variational data assimilation approach based on optimal control theory [34]. The estimation

procedure is based on the nonlinear least-squares cost function:

JðyÞ ¼
1

2

X

t2t

X

x2O

ðuðx; t; yÞ � uregðx; tÞÞ
2
: ð2Þ

Following the variational assimilation framework [34], estimates ŷ are found by minimizing

J(θ) thanks to the Lagrangian function LðyÞ and a numerical procedure both detailed in S4

Appendix. This approach enables a more efficient numerical optimization and thus a faster

parameter estimation.

In our case, the probability images (Fig 1) were considered as the observation ureg(x, t) in

the cost function Eq (2) for parameters estimation [8]. For each image sequence, the image of

the 3rd day provides the initial conditions (t0 = t3 and u0(x) = ureg(x, t3))) while the remaining 4

images at times {t4, t5, t6, t7} enables stable estimation of parameters [35]. Even if pixel data are

spatially and temporally correlated we did not consider any structure of the errors to fit the

model to the image data. While accounting for correlated observation errors would improve

parameters estimation it remains challenging in image data assimilation [36].

As the diffusion coefficient depends on image size, we rather consider the relative diffusion

(in cm2.day−1) obtained from the raw diffusion coefficient and the stipules area previously

extracted from the original images with dedicated landmarks used in the acquisition setup.

The model was fitted to the 2 × 16 inoculated stipules and we compared the two cultivars

through one-way ANOVAs on the estimated diffusion coefficient D̂ and growth rate â. The

adequacy of the Fisher-KPP model to the data was assessed by comparing observations against

fitted models’ predictions and by viewing the raw residuals for each date, i.e. ½uregðx; tiÞ �

uðx; ti; ŷÞ� for ti 2 t (S3 Appendix). In order to evaluate the ability of the model to capture

lesions sizes rather than probabilities of infection, we estimated symptomatic surfaces for each

image by counting the number of pixels with probabilities higher than 0.5 in probability maps

and model outputs, and then compared the estimated values.

A Python code for fitting the Fisher-KPP on image sequences is available in an open reposi-

tory [37].

Results

The Fisher-KPP model and its numerical resolution were able to describe the spread and the

coalescence of lesions caused by P. pinodes on pea stipules as observed in standard biotests

(Fig 2, S1 and S2 Movies). The image processing framework associated with the data
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assimilation method allowed us to fit the reaction-diffusion model that captured the essential

patterns of the spatio-temporal data (S3 Appendix). Except for one stipule (James N˚27), for

which only one lesion was detected in the image at day 3, used for initial conditions, the model

always described the joint spread of the two lesions. In detail, the comparison between the fit-

ted models and the image data suggests that the model tends to underestimate the probability

of infection, especially at days 5 and 6. The discrepancy between the reaction-diffusion model

and the data may be mostly explained by patterns observed in the probability images (S3

Appendix). Even if the trained Random Forest classifiers showed good performances to clas-

sify pixels (S2 Appendix), classification became less certain over time with lower probabilities

(Fig 1c). While this may not impact pixel classification through soft voting (the probability of

the symptomatic class is still the highest), it can introduce some noise and residual errors in

mechanistic model fitting. At days 5 and 6 the contours of the lesions are relatively easy to

draw and the segmentation exhibits high probabilities in the symptomatic areas. On the con-

trary for the last two days the appearance of the lesions changes and it becomes more difficult

for an expert (or annotator), and for an algorithm, to separate healthy and symptomatic parts

of the stipules. As a consequence, within lesions some pixels had lower probabilities of being

symptomatic on the last dates than for the first ones which induced discrepancy with the

Fisher-KPP model (S3 Appendix). Moreover, in this study we assumed a fixed (non-moving

or deforming) domain for the reaction diffusion using the leaf contours in the first image (day

3). Although stipules deformation remained limited (S5 Appendix) with Jaccard indexes above

Fig 2. Visualization of model prediction against image data. The solution of the fitted Fisher-KPP equation, i.e. with optimal estimated parameters ŷ, is represented

through time by contours (0.2, 0.3, 0.4, 0.5) overlying the probability images of the symptomatic class for example stipules of both cultivars, i.e. Solara n˚1 (a) and

James n˚17 (b). This comparison between the spatial model and the data is also available in S1 and S2 Movies.

https://doi.org/10.1371/journal.pcbi.1011627.g002
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0.8 for all individuals (Fig 3), it occurred and could have induced some errors between the

PDE model and images as illustrated in Fig 2b at day 7. To finish with, when looking at symp-

tomatic surface instead of infection probability, the model exhibited a better adequacy with the

image data (i.e. relationship close to the first bisector (Fig 4)). Overall, despite some discrep-

ancy between the model and the probability images, the Fisher-KPP model appeared to be rel-

evant for describing the evolution of symptomatic areas.

We successfully estimated the growth rate â and the diffusion coefficient D̂ for the 32 moni-

tored individuals (S6 Appendix). James cultivar was characterized by smaller stipules than

Solara with average surfaces of 4.49 and 7.93 cm2 respectively. The spread of the pathogen on

James cultivar was characterized by mean growth rate â and diffusion coefficient D̂ of respec-

tively 0.55 and 1.33 against 1.26 and 1.54 on the more susceptible Solara. As suggested by the

distributions of parameters estimates (Fig 5), analyses of variance pointed out a significant dif-

ference between cultivars for the diffusion coefficient D̂ (p-values <0.05, S6 Appendix)

whereas the analysis does not support the hypothesis different growth rates â (p-values > 0.1,

S6 Appendix). These results suggest that the partial resistance of James, previously observed in

controlled conditions, may only due to mechanisms that slow down pathogen diffusion into

host tissues. Therefore, for inoculated stipules with identical areas and shapes, lesions caused

by P. pinodes will spread at a higher speed, and thus coalesce and reach edges earlier, on Solara

than on James.

Discussion

In this study we combined image processing and mathematical modelling to investigate the

dynamics of host-pathogen interactions. We showed that a longitudinal monitoring of inocu-

lated leaves through visible imaging provides data to fit reaction-diffusion models that describe

Fig 3. Visualization of stipules deformation in time. Change in the Jaccard index with time for cultivars James (a) and Solara (b). At each time after

inoculation the Jaccard index was calculated in comparison with the image at day 3, also used as a reference for image registration.

https://doi.org/10.1371/journal.pcbi.1011627.g003
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Fig 4. Comparison of symptomatic surface predicted by the reaction-diffusion models against the surface

obtained after pixel-based image segmentation for all images used to fit the model. For each cultivar, i.e. James

(black points) and Solara (gray points), there are thus 16 stipules × 4 dates points. The black line is the first bisector

that indicates a perfect agreement between values while the red line is the estimated linear relationship between

prediction and observation considering all data (slope = 1.05, intercept = −3392.0). In detail, the relationship for James

cultivar was better (slope = 1.01, intercept = −1418.7) than for James and (slope = 1.14, intercept = −6947.1).

https://doi.org/10.1371/journal.pcbi.1011627.g004

Fig 5. Distributions of the estimated parameters. a) diffusion coefficient D̂ with a mean values of 0.55 for James against 1.54 for the more susceptible

cultivar Solara, b) local growth rate â with mean values of 1.33 and 1.26 for respectively James and Solara. The 32 estimated parameters (16 for each

cultivar) are available in S6 Appendix.

https://doi.org/10.1371/journal.pcbi.1011627.g005
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the spatio-temporal spread of pathogen on host tissues. While such methodological

approaches are common in biomedical sciences (e.g. [9, 38]) they are original in plant pathol-

ogy. Here, we considered the fungal pathogen P. pinodes on pea as an example pathosystem

and used the Fisher-KPP equation to model necrotrophic lesions. Using this PDE model with

a variational data assimilation method we were able to capture the essential patterns of image-

sequences data and disentangle growth and diffusion. These processes are actually two distinct

life-history traits that both explain host colonization by the pathogen through lesions. They

provide a finer description of the interaction but cannot be determined without the use of spa-

tially-explicit models with spatial information, as provided by images, because different growth

rates and diffusion coefficients can lead to identical lesion speed. Furthermore, while lesions

coalescence, different leaves sizes, or lesion saturation at leaves boundaries can be problematic

when comparing lesion sizes in common aggressiveness biotests, the inference of parameters

in parsimonious PDE models can handle properly such situations.

We assessed the development of an aggressive isolate on two cultivars with contrasted level

of partial resistance using a standard protocol developed for screening both pathogen aggres-

siveness and host resistance [21]. Our results were consistent with previous findings as the

spread of lesions caused by P. pinodes was slower on James than Solara. Most interestingly, by

combining image-based phenotyping and mechanistic modelling we found that the partial

resistance of James were explained by a significant lower diffusion coefficient and not by a

decreased growth rate. Although this finding may not be a posteriori surprising it remains

impossible to demonstrate using usual measurements of lesions size without the use of spatial

models and data. The diffusion coefficient and the local growth rate could be considered as

hard traits that capture the function of interest but are difficult to measure [39]. On the oppo-

site, lesion size (or lesion growth rate) are soft traits that are easier to measure and are surro-

gates of the hard traits [1]. Hard traits obtained with the use of mechanistic models provide a

better description of processes involved in pathogen fitness [3, 20]. Although our results are

obtained on only two cultivars, this study demonstrates the potential of combining imaging

with mathematical models to improve the comparison of cultivars (or isolates) and gain new

insights into plant resistance to disease. Optical sensors recently percolated in plant sciences

and contributed to recent development of precision phenotyping for plant diseases [5, 7, 40].

On the other side the usefulness of mechanistic models for analyzing phenotypic data is recog-

nized (e.g. [3, 4]) but remains seldom considered. We think that the combination of these two

approaches would be particularly relevant for investigating host-pathogen interactions in rela-

tion with quantitative or partial resistance.

Although our modelling framework was able to describe the overall visible spread of nectro-

trophic lesions caused by P. pinodes it may be improved and extended on several points.

Firstly, for the sake of simplicity we ignored stipules deformation. This change in the shape of

host organs caused by parasitism frequently occurs in plants and would be worth considering

using existing mathematical and numerical methods for explicit modelling of shapes [30, 41,

42] or plant growth [43]. While such improvement would increase the complexity of the

model, it may contribute to decrease the discrepancy between the model and the data, and per-

haps, help to identify genotypes that are less susceptible to disease-induced deformation. Sec-

ondly, the inoculated host leaves were digitalized through visible imaging and the reaction-

diffusion model was fitted to probability images obtained with trained classifiers [8]. The

appearance models, learned by experts, that transform raw image into an output which match

with the state variable of the process model can have an influence on parameter estimation. In

our case we could improve the classifiers to reduce the noise that occur in time by training

more advanced algorithm for pixel-based segmentation [44] or include some filtering after

predictions (e.g. morphological closing). Comparing different appearance models or
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segmentation algorithms and assessing how they modify parameters estimation would be

interesting, especially for pathosystems that cause unclear lesions that are difficult to annotate.

For practical reasons we ignored any spatial and temporal correlation in pixel data for parame-

ters estimation. As such a strong assumption can bias parameters estimates (mean and vari-

ance) it would be worth considering correlated errors in future works [36]. Yet, for comparing

cultivars and isolates we believe that the bias introduced by the classifier might have a stronger

impact on parameters than the assumption of uncorrelated data. Moreover, because there is

no direct relationship between the appearance of symptoms and pathogen density in infected

tissues we rather considered the spread of the probability of infection. Although this choice

and the interpretation of some parameters could be criticized, it seems to describe well enough

the dynamics of infections. In our case, whereas the estimated diffusion coefficient may

describe well enough within-host spread we believe that the growth rate should be taken with

care. In further studies it would be very interesting to assess the spread of pathogen density

using destructive sampling with real-time quantitative PCR [45, 46] and non-destructive mon-

itoring, e.g. with bioluminescence imaging [47]. Thirdly, as lesions caused by P. pinodes
appeared to spread at a constant speed with quite homogeneous patterns, we choose the

Fisher-KPP equation. Although this first model already described the essential patterns of the

data, it would be interesting to relax some of its assumptions to improve the description of the

observed spatial dynamics. For instance, one could consider a heterogeneous diffusion to cap-

ture the acceleration that seems to occur at the end of the experiment. Moreover, the Fisher-

KPP equation will not be appropriate to describe the spreading processes that occur in all

pathosystems. The spatial dynamics of plant-pathogen lesions remains poorly addressed and

further works could benefit from theoretical knowledge on PDE for propagating systems and

existing models for the spread of invasive organisms [48, 49], microbial populations and fungal

colonies [10], or human lesions [8, 9]. For example, the effect of leaf veins that can guide lesion

spread in some pathosystems could be considered through advection terms or by considering

hybrid reaction-diffusion models with different dynamics on host tissues (2D) and veins (1D)

[49]. On the other side, like microbial populations in controlled media, plant-pathogen lesions

can be an interesting experimental systems to test and feed some mathematical theories [50,

51]. Fourthly, our model ignored any host response to infection and further development

could take into account some key physiological and immune processes. For instance it would

be worth including ontogenetic and disease-induced changes in host susceptibility, e.g. caused

by senescence or hypersensitive responses, that are known to occur in several pathosystems

and can be spatially localized on leaf tissues [52, 53]. Such phenomena may be taken into

account using age-structured PDE considering the age of infection [54] and the physiological

age of host tissues.

From an epidemiological point of view the within-host dynamics of the pathogen is an

important phase that can have strong impact on epidemics at the population level. Scaling-up

the behaviour of epidemics from individuals to populations is still a challenging question for

mathematical and computational epidemiology and, at least in the case of plant diseases, the

within-host spread of pathogens is either ignored or extremely simplified compared to other

epidemiological processes such as spores production [12, 14, 48, 55]. This is mainly due to the

challenges of multiscale and spatial modelling, but perhaps, also to the lack of spatial models

for within-host pathogen development. Thus, we believe that besides providing new funda-

mental knowledge and phenotyping tools, spatial lesions models that describe observable

spread of pathogen on host organs would also contribute to improve modelling works focused

on higher scales. In addition, new insights into the effects of host resistance on within-host

dynamics would also feed models for understanding the durability plant resistance to diseases

[56–58]. For instance, the impact of partial resistance on either the diffusion coefficient or the
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local growth rate may affect differently pathogen fitness and have contrasted impacts on patho-

gen invasion, persistence and evolution.
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