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Abstract

In computational neuroscience, hypotheses are often formulated as bottom-up mechanistic

models of the systems in question, consisting of differential equations that can be numeri-

cally integrated forward in time. Candidate models can then be validated by comparison

against experimental data. The model outputs of neural network models depend on both

neuron parameters, connectivity parameters and other model inputs. Successful model fit-

ting requires sufficient exploration of the model parameter space, which can be computa-

tionally demanding. Additionally, identifying degeneracy in the parameters, i.e. different

combinations of parameter values that produce similar outputs, is of interest, as they define

the subset of parameter values consistent with the data. In this computational study, we

apply metamodels to a two-population recurrent spiking network of point-neurons, the so-

called Brunel network. Metamodels are data-driven approximations to more complex mod-

els with more desirable computational properties, which can be run considerably faster than

the original model. Specifically, we apply and compare two different metamodelling tech-

niques, masked autoregressive flows (MAF) and deep Gaussian process regression

(DGPR), to estimate the power spectra of two different signals; the population spiking activi-

ties and the local field potential. We find that the metamodels are able to accurately model

the power spectra in the asynchronous irregular regime, and that the DGPR metamodel pro-

vides a more accurate representation of the simulator compared to the MAF metamodel.

Using the metamodels, we estimate the posterior probability distributions over parameters

given observed simulator outputs separately for both LFP and population spiking activities.

We find that these distributions correctly identify parameter combinations that give similar

model outputs, and that some parameters are significantly more constrained by observing

the LFP than by observing the population spiking activities.

Author summary

In computational neuroscience, mechanistic models are used to simulate networks of neu-

rons. These models exhibit complex dynamics, and the parameters of the neurons and

connections between neurons shape the model’s behaviour. Due to the model complexity,
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running the simulations and fitting the model to experimental data can be computation-

ally demanding. In this study, we train and compare different metamodelling techniques,

data-driven approximations that are much faster to run, to two different signals generated

by a two-population recurrent network model, the population spiking activities and the

local field potential (LFP). Further, we invert the metamodels, and demonstrate that it can

reliably find the different combinations of parameters that can give rise to an observed

simulation output. We compare the accuracy of the metamodels on both the forward and

inverse problem, and investigate to what degree the parameters are constrained by observ-

ing the two different signals.

1 Introduction

Mechanistic modelling of neurons and networks of neurons based on the underlying biophysi-

cal principles is a well-established field and is an important part in bridging the scales between

individual neurons and higher-level brain function [1–4]. Neuron models range in complexity

from rate-based models, where spikes are not explicitly modelled, to point-neurons, where the

detailed morphology of the individual neurons are collapsed into a single point, and further to

multi-compartment models where the full morphology is accounted for. At the network level,

even simple models exhibit complex dynamic behaviours depending on both neuron dynam-

ics and network connectivity [5]. A question modellers face is how the network model can be

parameterized in order to produce a specific behaviour, and how sensitive the behaviour is to

changes in model parameter values. As mechanistic models can be expensive to run and typi-

cally have many parameters, that is, high-dimensional parameter spaces, accurately sampling

the space of model behaviours is a nontrivial problem.

Mechanistic models of dynamical systems typically consist of a set of differential equations

that can be integrated forward in time. The modeller may be interested in a subset of the mod-

el’s behaviours, e.g. the state variables of the model, such as membrane potentials, synaptic

conductances or currents, individual neuron behaviours such as spike times, or aggregated sta-

tistics such as population firing rates, local field potentials [6], or current source densities. The

user specifies a set of parameters, which will determine the model’s behaviour. If the model is

deterministic (no random variables are involved), the output will be a unique function of its

parameters and initial conditions. If the model is probabilistic (one or more random variables

affect the model), the output will no longer be a unique function of the parameters and initial

conditions, but will instead follow a probability distribution over possible outputs.

Conceptually, a mechanistic model can be thought of as a function M that takes input val-

ues and returns output values,

output ¼MðinputÞ :

If the model is stochastic, there is a distribution over possible outputs, which typically does

not have a closed-form expression, since explicitly evaluating it would require integrating over

all possible internal model states. Metamodels are data-driven statistical models that take a set

of inputs and outputs generated by a mechanistic model, and learn an approximation of M
over a restricted part of its domain [7]. The metamodel can provide either a point-estimate of

the model output, or a distribution over possible outputs. In the case of stochastic models, the

latter case has the advantage of providing an approximation of the intractable probability dis-

tribution over simulator outputs. The number of samples needed to achieve sufficient accuracy

over the domain of interest will depend on the dimensionality of the inputs, on how the
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function M changes with respect to the input dimensions, and on whether it has a structure

that the metamodel is able to capture.

The inputs can in principle be anything that changes the model behaviour, e.g. model

parameters or some other specific model input. As the volume of the parameter space increases

exponentially with the number of parameters, densely sampling high-dimensional parameter

spaces is very costly. Metamodels can provide a compact representation of the model over the

domain, where the density of sampling required can be determined by evaluating the model

on a test data set. Metamodels can also provide simpler interpretations of the model, identify

the importance of individual input dimensions, and give an overview of the original model’s

behavioral repertoire, i.e. a statistical depiction of the possible outputs the model can produce

under a range of input conditions [8]. Metamodels can be applied in either direction, from

model input to model output, or vice versa, directly approximating the inverse model.

For stochastic models, the distribution over model outputs will depend on the parameter

values and possibly other model inputs, giving a conditional probability p(x|θ), often called the

model likelihood, where x is the model output and θ represents model parameters and other

types of inputs. Since different model inputs possibly can give rise to the same model outputs,

there is also a distribution over model inputs that can give rise to the same model outputs, p(θ|

x), often called the posterior distribution.

Estimating this posterior distribution by running simulations, without direct access to the

model likelihood, has been the focus of work such as Approximate Bayesian computation

(ABC) [9, 10], Sequential Neural Posterior Estimation (SNPE) [11, 12] and Sequential Neural

Likelihood Estimation (SNLE) [13]. SNPE directly models the posterior, typically as a normal-

izing flow parameterized by a neural network, while SNLE models the likelihood, and infers

the posterior in a separate step. The present work focuses on creating an approximation to the

likelihood, as in the first step in SNLE, and can thus also be used to infer posterior distribu-

tions in the same manner. These methods can also be focused on estimating the posterior

probability p(θ|x0) for a specific observed output x0, and generating a local model of the poste-

rior distribution around that point by iteratively running simulations where the posterior den-

sity is believed to be high. This approach can be viewed as a metamodel that is trained locally

around a specific point of interest in the parameter space. In this case, the metamodel will not

have to be as flexible as in the case where one is interested in a much larger volume of the

parameter space.

Neuronal networks typically exhibit stochastic dynamics, where input currents and firing

may be stochastic, and the network connectivity and initial conditions can be drawn ran-

domly. The network activity is also nonlinearly dependent on the precise history of the activity

[14]. This makes direct metamodelling of time series data challenging, as different instantia-

tions of the same model will produce different results, which the metamodel will have to

account for. Simplified mechanistic models of population rates have been developed, ranging

from models based on mean-field theory [5, 14] where the number of neurons is assumed to

be infinite and finite-size effects are disregarded, to ones where finite-size effects are fully

accounted for [15], but where stochastic firing of neurons and full connectivity between all

neurons are assumed.

In the present work, we train metamodels to approximate the distribution over the power

spectra of the population spiking activities and local field potential (LFP), based on the model

parameters of the Brunel network [5], comprising an excitatory and an inhibitory population

of recurrently connected point-neurons. The metamodels approximate the conditional proba-

bility distribution p(x|θ), where x is the power spectrum of either the population spiking activ-

ity or the LFP, and θ is the biological parameters of the spiking network. The LFP, the low-

frequency part of extracellular potentials, largely represents how synaptic inputs are processed
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in the dendrites [6, 16, 17], so we chose to include both signals as they in a sense represent the

incoming and outgoing signals for a population, and it offers the opportunity to compare the

information carried by the two different signals. Fig 1 shows an overview of the modelling

scheme we employ.

We train metamodels based on Gaussian process regression (GPR) [18], and compare them

to a masked autoregressive flow (MAF) [19], a model often used for density estimation tasks.

Both models can be trained to approximate the conditional probability densities of the simula-

tor. Due to advances in sparse approximations to Gaussian process (GP) models, allowing

them to be used on much larger data sets [20, 21], and extensions to deep models (DGPRs)

[22–24], which gives them increased flexibility, GPs provide a powerful class of nonparametric

regression and classification models. MAF is a type of normalizing flow, a parametric model

based on making successive invertible transformations, typically based on neural networks, to

a simple base distribution, typically assumed to be Gaussian. It can be trained either as a condi-

tional distribution, where the neural networks take an additional input representing the condi-

tion, or as a simpler distribution without any conditioning. Models representing conditional

distributions are particularly useful as a metamodel for systems with stochastic dynamics,

since that implies that there is a distribution over possible outputs that has to be modelled. We

additionally train a Hierarchical Cluster-based Partial Least Squares Regression [25]

Fig 1. Model overview: Given a set of parameters θ, a network of point-neurons are simulated, from which the population spiking activities ν(t) are computed

(top). With morphological neurons spatially extended in a column, the synaptic spiking activities from the point-neuron network can be ‘replayed’ on the

morphological neurons, and the resulting local field potential ϕ(r, t) at 6 locations is computed (bottom). Note that only one excitatory and one inhibitory

neuron is shown, in simulation there is one for each point-neuron. The power density spectra Pν(t) and Pϕ(r, t), of the population spiking activities and local

field potential respectively, are also computed. The metamodel M directly models the power spectra given the parameter set, or the parameters given observed

power spectra.

https://doi.org/10.1371/journal.pcbi.1011625.g001
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(HCPLSR), a model that has been used previously for metamodelling of biological systems but

only gives a point-estimate of the simulator output [8, 26].

We show that the simulator can be accurately captured by metamodels trained on around

1000 example simulations, and that for the present situation, the DGPR metamodel is able to

more accurately estimate the function described by the simulator, compared to the MAF meta-

model. We find that posterior distributions estimated from the DGPR metamodel is more

accurate compared to the ones estimated from the MAF metamodel, but takes longer to com-

pute. We estimate the posterior distributions separately for DGPR metamodels trained on the

population spiking activities and the LFP, for a variety of different simulation outputs, and

find that some parameters are significantly more constrained by observing the LFP compared

to the population spiking activities, while for others both signals are roughly equally informa-

tive. We also investigate the pairwise correlations of the posterior distributions over the

domain on which the metamodels were trained.

2 Methods

2.1 Simulations

The network considered in this study consists of two populations, one with excitatory neurons

and one with inhibitory neurons, of size NE and NI respectively. The neurons are modelled as

leaky integrate-and-fire neurons, connected with alpha-shaped current-based synapses

described by Eq 2 in Table 1. The sub-threshold dynamics are described by a first-order differ-

ential equation given by Eq 1 in Table 1. When its membrane potential reaches a firing thresh-

old Vthr, the neuron fires and and the synapses on all its postsynaptic neurons are activated

after a time td. After firing, the membrane potential of a neuron is clamped to a voltage Vreset

for a refractory period tref. Each neuron receives synapses from a fraction � of all other local

neurons in the network. Post-synaptic currents from excitatory synapses have a peak ampli-

tude J, and post-synaptic currents from inhibitory synapses have a peak amplitude of −gJ. Both

types of synapses share a synaptic time constant of τsyn. Additionally, each neuron receives

independent excitatory input from an external population modelled as a Poisson process with

fixed rate νext. This rate is determined by the parameter Z ¼
next
nthr

, where νthr = VthrCm/(Jτmeτsyn),

the minimum constant input rate that will drive the neuron to its threshold. Since the synaptic

strength and synaptic time constant both contribute multiplicatively to the total charge trans-

fer during a synaptic event, we opted to parameterize the synaptic strength in terms of the total

charge transfer during a synaptic event Qs = τsynJ. A complete description of the point-network

model is given in Table 1.

Ten model parameters were uniformly randomly sampled, using Latin Hypercube sampling

[27], which is a stratified sampling strategy suitable for sampling in high-dimensional systems.

A complete list of model parameters and their values and ranges are given in Table 2. 10000

simulations were run using the NEST simulator [28, 29], comprising both the training data set

and the test data set. The regions of the parameter space giving strongly synchronous firing,

discussed in [5, 30], were avoided by avoiding unbalanced regimes caused by low inhibition,

and high external input (η> 3.5). Additionally, a small number of simulations, which were

found to be strongly synchronous were removed, making up roughly 3% of the total simula-

tions. These were found by the following ad hoc criteria: more than 150 time bins of 1 ms in

which more than 10% of the neurons fire, as well as more than 500 time bins in which fewer

than 0.25% of the neurons fire. See Section 3.1 and Section 4 for further discussion. For 100 of

the simulation outputs in the test data set, an additional 50 simulations were run with parame-

ters sampled from the estimated posterior distributions (see Sections 2.4 and 3.4). For each

simulation, the LFP was computed as described in the next section.
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The population spiking activities were saved at a resolution of 1 ms as the sum of all spike

trains in the populations. The power spectrum, defined as [ψ](f)*[ψ](f)/T for some signal ψ(t),
where [ψ](f) denotes the Fourier transform of ψ, and T is the window length, was estimated

using Welch’s method [31] for both the population spiking activities and the LFP. The imple-

mentation in the Python SciPy [32] package (scipy.signal.welch) was used, with a

Hann window of length 256 and an overlap of 128. The metamodels are trained on the base 10

logarithm of these power spectra.

2.2 Forward-model predictions of LFPs

In order to compute local field potentials (LFPs) from the point-neuron network, we utilized

the hybrid LFP scheme [34] (github.com/INM-6/hybridLFPy), which allows for the decou-

pling of the simulation of spiking dynamics (here computed using point neurons) and

Table 1. Description of point-neuron network following the guidelines of [33].

A Model summary

Populations One excitatory, one inhibitory

Network

model

Fixed in-degree, random convergent connections

Neuron model Local populations: leaky integrate-and-fire, external: Poisson generator

Synapse

model

Current-based alpha-shaped, fixed strength for each population

B Populations

Names Excitatory: E

Inhibitory: I

C Network model

Connectivity Fixed number of incoming connections CE = �NE from excitatory population and CI = �NI from

inhibitory population

Input Poissonian synaptic input with fixed rate νext for each neuron

D Neuron model

Type Leaky integrate-and-fire neuron

Description Dynamics of membrane potential Vi(t) (neuron i 2 [1, N]):

- Spike emission at times til with ViðtilÞ � Vthr

- Subthreshold dynamics:

tm
dViðtÞ
dt
¼ � ViðtÞ þ RmIiðtÞ 8l : t =2 ðtil ; t

i
l þ tref � 1ð Þ

where τm is the membrane time constant, V the membrane potential, Rm the membrane

resistance, and I the synaptic inputs.

- Reset + refractoriness: Vi(t) = Vreset 8l : t 2 ðtil ; til þ tref �

Exact integration with temporal resolution dt
Uniform distribution of membrane potentials Vi 2 [Vreset, Vthr) at t = 0

E Synapse model

Type Alpha-shaped postsynaptic current

Description
RmIiðtÞ ¼ tm

P
j

Jij
ts

X

l

Hðt � tjl � tdÞte
1� ðt� tjl � tdÞ=tsyn ; 2ð Þ

where the first sum is over all the presynaptic neurons j, including the external ones, and the

second sum is over the spike times of those neurons. tjl is the lth spike of presynaptic neuron j, and

td is the synaptic delay. H denotes the Heaviside step function.

Jij ¼
J; j 2 fE;Eextg

� gJ; j 2 fIg

(

Multapses and autapses are allowed.

https://doi.org/10.1371/journal.pcbi.1011625.t001
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predictions of extracellularly recorded LFPs. The latter part relies on reconstructed cell mor-

phologies and multi-compartment modelling in combination with an electrostatic forward

model. A complete description of the scheme (including the biophysics-based forward model)

can be found in [34], and a concise description of the multi-compartment neuron model is

given in Table 3. The parameters used are given in Table 4.

Current-based synapses and morphologies with passive membranes in the multi-compart-

ment neuron models give a linear relationship between any presynaptic spike event and contri-

butions to the LFP resulting from evoked currents in all postsynaptic multi-compartment

neurons. Thus the LFP contribution �
j
Yðr; tÞ at position r from a single presynaptic point-neu-

ron j in population Y can, in general, be calculated by the convolution of its spike train

n
j
Y ðtÞ �

P
k dðt � t

k
j Þ with a unique kernel Hj

Yðr; tÞ as �
j
Yðr; tÞ ¼ ðn

j
Y∗H

j
YÞðr; tÞ. This kernel

encompasses effects of the postsynaptic neuron morphologies and biophysics, the electrostatic

forward model, the synaptic connectivity pattern, conduction delay and post-synaptic cur-

rents. This kernel can be further decomposed as a convolution between the LFP response of a

unit current for a single time step, and the post-synaptic current. The resulting LFP due to

spikes in a presynaptic population Y is then given by

�Yðr; tÞ ¼
X

j2Y

ðn
j
Y∗h

j
Y∗I

j
YÞðr; tÞ ; ð9Þ

where IjYðtÞ is the post-synaptic current given by Eq 7 in Table 3, and ðhjY∗I
j
YÞðr; tÞ ¼ Hj

Yðr; tÞ.

Table 2. Point-neuron network parameters.

Point-neuron parameters

Symbol Description Value

η relative amount of external input [1.0, 3.5]

g relative strength of inhibitory synapses [4.5, 8.0]

Qs total synaptic charge transfer [25 − 100] fC

τm membrane time constant [15–30] ms

Cm membrane capacitance [100 − 300] pF

td synaptic delay period [0.1 − 3.0] ms

tref absolute refractory period [0.1 − 4.0] ms

τsyn synaptic time constant [1.0 − 8.0] ms

Vthr firing threshold [15 − 25] mV

Vreset reset membrane potential [0 − 10] mV

EL passive leak reversal potential 0 mV

NE number of excitatory neurons 8000

NI number of inhibitory neurons 2000

� connection probability 0.1

CE number of incoming excitatory synapses 800

CI number of incoming inhibitory synapses 200

Simulation parameters

Training and test data

Tsim simulation duration 10500 ms

Ttransient start-up transient duration 500 ms

dt time resolution 0.1 ms

https://doi.org/10.1371/journal.pcbi.1011625.t002
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Table 3. Description of multi-compartment neuron populations.

A Model summary

Populations Local excitatory and inhibitory populations

Neuron

model

Multi-compartment neurons with passive cable formalism

Synapse

model

Current-based alpha-function shaped, fixed strength for each population

Topology Cylinder of 1 mm2 cross-section with somas of both populations positioned in single layer of

thickness 0.1 mm.

B Neuron models

Type Reconstructed multi-compartment morphologies with passive electrical properties

Description For each neuron, the membrane potential Vn of compartment n connected to m other

compartments k, with a surface area an, length ln and diameter dn is given by:
Xm

k¼1

gaknðVk � VnÞ ¼ Cmn
dVn

dt
þ Imn 3ð Þ

Cmn ¼ cman ð4Þ

gakn ¼ pðd2
n þ d2

kÞ=ð4raðln þ lkÞÞ ð5Þ
Imn ¼ gLnðVn � ELÞ þ

P
j Ijn ; ð6Þ

where for compartment n, Cmn is the membrane capacitance, gakn the axial conductance from

compartment k, Imn the membrane current, gLn the membrane leak conductance, EL the

extracellular reversal potential, and Ijn the synaptic current from presynaptic neuron j.
C Synapse model

Synapse type α-function shaped postsynaptic current

Description IðtÞ ¼ Hðt � taÞJCte1� t=tsyn ð7Þ

HðtÞ ¼ 0 for t � 0; otherwise 1 : ð8Þ

Here, ta is the activation time of the synapse, J the synaptic strength, and τsyn is the synaptic time

constant. C is a constant chosen so that JC
R1

0
te1� t=tsyn dt ¼ CmJ, assuring that the same total charge

is transferred as in the δ-function synapse in the point-neuron network.

D Topology

Type Cylinder with radius 1=
ffiffiffi
p
p

mm and height 0.5 mm containing two vertical sections

Description - Cylinder extends from z = −500 μm to z = 0

- All somas are randomly placed with a uniform distribution within the boundaries r� 564 μm and

−450 μm� z� −350 μm

- Two regions separated by the plane z = −300 μm

- Synapses on inhibitory neurons are placed in lower region

- Inhibitory synapses on excitatory neurons are placed in lower region

- Excitatory synapses on excitatory neurons are split equally between regions

https://doi.org/10.1371/journal.pcbi.1011625.t003

Table 4. Multi-compartment neuron parameters.

Multi-compartment neuron parameters

Symbol Description Value

τm membrane time constant [15, 30] ms

cm membrane capacitance [0.6, 1.4] μF/cm2

rm membrane resistivity τm/cm

Ra axial resistivity 150 Ocm

τsyn synaptic time constant [1.0, 8.0] ms

EL passive leak reversal potential 0 mV

Vinit membrane potentials at t = 0 ms 0 mV

σe extracellular conductivity 0.3 Sm−1

https://doi.org/10.1371/journal.pcbi.1011625.t004
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As shown in [30, 34], a good approximation can be made by convolving the population fir-

ing rates nYðtÞ �
P

j2Yn
j
YðtÞ with averaged kernels HYðr; tÞ � 1=NY

P
j2Y H

j
Yðr; tÞ, that is,

�Yðr; tÞ ¼ ðnY∗HYÞðr; tÞ : ð10Þ

As in [30, 34] these averaged kernelsHYðr; tÞ were computed using the full hybrid-scheme.

This was done by computing the LFP resulting from a fully synchronous activation of all the outgo-

ing synapses from all neurons in the presynaptic population. Thus for the computation of the LFP

kernel, we have n
j
YðtÞ � dðt � tYÞ where tY is the timing of the synchronous event in population Y.

After the single time-step kernel has been computed, the full kernel can easily be computed

for any post-synaptic current, and hence synaptic parameters. In order to account for the

membrane parameters τm and cm, where cm is the per-area capacitance, we compute the kernel

for a single time step on a grid of different values of τm and Cm, and adjust this kernel by linear

interpolation. We compute the kernels at the values [0.4, 0.6, 0.8, 1.0, 1.2] for cm and [15, 18,

21, 24, 27, 30] for τm. Since the membrane capacitance for morphological neurons is depen-

dent on the area of the neuron, we choose a baseline value of cm = 1.0, and adjust it by the

same proportion as Cm for the point-neuron network. The synaptic parameters can subse-

quently be accounted for in a separate step.

2.3 Gaussian process regression

Here we give a brief overview of Gaussian process regression models, their training procedures

and the extension to deep models.

Gaussian process regression models are probabilistic non-parametric models that provide

distributions over arbitrary functions, and are trained using supervised learning. A Gaussian

process (GP) is a collection of random variables such that any finite number of them follow a

joint Gaussian distribution, and a GP is completely specified by a mean function m(θ) and a

covariance function k(θ, θ) [18]. Consider a data set consisting of n inputs of dimension d con-

tained in the matrix Θ, and corresponding outputs x, which are assumed to be one-dimen-

sional for notational simplicity in this section. A Gaussian process regression model assumes a

distribution over an underlying latent function f(θ) which is modelled as a Gaussian process.

Evaluating this distribution at the set of input points Θ gives a joint Gaussian distribution

f ðYÞ � N ð0; kðY;YÞÞ, where the covariance function k(Θ, Θ) must return a positive semi-

definite covariance matrix between all the data points contained in Θ. The mean function is

usually assumed to be 0 without loss of expressiveness. The covariance function encodes the

properties of the function, and there are many different covariance functions available with

different properties. In the present work, we use the Matérn 5/2 kernel

C5=2ðθ; θ
0
Þ ¼ s2 1þ 5d þ

5

3
d2

� �

expð� 5dÞ; d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5
X

i

y
i
� y

0

i

li

 !2
v
u
u
t

; ð11Þ

where l and σ are learnable parameters.

The model of the observed outputs x is given by the underlying latent function f(Θ) cor-

rupted by some noise � � N ð0; s2
nIÞ such that pðxjfÞ ¼ N ðf; s2

nIÞ. The marginal likelihood of

the data is obtained as

pðx;YÞ ¼

Z

pðxjf;YÞpðf;YÞdf ¼ N ð0; ðKðY;YÞ þ snIÞ
� 1
Þ; ð12Þ

which can be found analytically in the case of a Gaussian likelihood p(x|f, Θ), and is used to

optimize the model parameters.
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Given a new set of inputs Θ* on which we would like to evaluate the model, the GP specifies

a joint distribution over x and x*, and the predictions are made as the distribution over x* con-

ditioned on the training data x [18]

pðx∗jx;Y∗;YÞ ¼

Z

pðx∗jf∗;Y∗Þpðf∗jf;Y;Y∗Þpðfjx;YÞdfdf∗ ð13Þ

¼ N ðx∗jKn∗K � 1
nn x; K∗∗ � KT

f ∗ðKnn þ s
2
nIÞ
� 1Kf ∗ þ s

2
nIÞ; ð14Þ

where we use the shorthand notation Knn = k(Θ, Θ), Kn* = k(Θ, Θ*) and K** = k(Θ*, Θ*). The

semicolon indicates the input points corresponding to the distributions, on which the covari-

ance function is evaluated. We can immediately see that the mean value of the distribution at

the predicted locations Θ* are linear combinations of the training values x.

Deep, or composite, GP models are constructed by iteratively defining GPs with the previ-

ous GP as inputs. A joint prior distribution over all layers is given by

pðx; ff l; gLl¼1
Þ ¼

YN

i¼1

pðxijf
L
i Þ
YL

l¼1

pðf l; f l� 1
Þ ; ð15Þ

where f0 = θ. As in standard GP models, we would like to marginalize out the latent functions

in all layers for optimization. For predictions, we would like to condition the latent functions

on the training data and then marginalize them. This is obviously not possible analytically, and

approximations have to be used. We do not go in to details, but refer the readers to [35] for an

excellent tutorial.

For multi-dimensional outputs, one can either assume the outputs to be independent, or

correlated. In the former case, a separate GP is indepedently trained for each output dimen-

sion. For the latter case, one simple way of introducing correlations between output channels

is to make a linear combination of independent GPs. If the number of independent GPs is

lower than the number of output dimensions, a low-dimensional representation of the output

is achieved, with a linear mapping between the latent space and the output. The model can be

written as

gðθÞ ¼ fgpðθÞg
P
p¼1
; fðθÞ ¼WgðθÞ; ð16Þ

where gp(θ) forms a set of independent GPs, and W is an n × p matrix used to linearly con-

struct the output f(θ) [36].

This can be viewed as an input-dependent linear latent space model, where we assume a lin-

ear mapping between a latent space and the output, but the coefficients of this mapping can

change in a non-linear fashion. If we choose P to be a small number, a low-rank representation

of the output is achieved.

We used a DGPR model based on the framework by [23]. We use 2 layers, and do a parame-

ter scan in order to find the number of GPs to use in each layer. The final output is constructed

by a linear transformation from the GPs in the second layer as given by Eq 16.

2.4 Posterior distribution over parameters

The metamodels provide a distribution p(x|θ), which is an approximation to the distribution

over the outputs given by the simulations, where x is the simulation output, and θ is the simu-

lation inputs. Introducing a prior distribution over the inputs p(θ), which we take to be uni-

form over the ranges of input values used to train the metamodels, the unnormalized posterior

distribution over parameters given a specific observed model output x0 is given by p(θ|x0)/ p
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(x0|θ)p(θ). We sampled from this distribution using an adaptive Metropolis algorithm [37].

The adaptive Metropolis algorithm is a random walk Markov Chain Monte Carlo algorithm,

where a multivariate Gaussian proposal distribution is used, and where its covariance matrix is

iteratively estimated by the sample covariance. We only estimated the covariance during the

burn-in period, and kept it constant during sampling. Additionally, we used a separate scaling

factor for the covariance matrix which was tuned during the burn-in period to give an accep-

tance ratio of around 0.3. Five chains were run in parallel, and run for a total of 40000 evalua-

tions of the proposals, where the samples from the first 12000 proposals were discarded and

considered the burn-in period. For each example in the test data set, the posterior distribution

was sampled separately for both the metamodel of the population spiking activities and the

metamodel for the LFP. The Gelman-Rubin statistic [38] was computed independently for

each parameter, for each distribution, in order to assess the convergence properties of the

chains.

2.5 Technical details

2.5.1 Reproducibility. The simulations were run using Python v3.10.5. All point-network

simulations were run with the NEST simulator v3.3 [28, 29]. The forward-modeling of the LFP

was done using hybridLFPy v0.2 [34] with LFPy v2.3 [39]. The DGPR metamodels were

trained using GPyTorch v1.9.1 [40] with PyTorch v1.13.1. The MAF metamodels were trained

using SBI v0.21.0 [41]. The metamodels were trained on NVIDIA Quadro RTX 8000 GPUs.

All simulation and analysis code for this study is available on Github: https://github.com/

janskaar/Skaar_bioRxiv_506616v1

3 Results

The aim of this study was to apply metamodelling techniques to simulations of neuronal net-

works. Specifically, we applied Deep Gaussian process regression (DGPR) and masked autore-

gressive flow (MAF) models to approximate the likelihood of the network simulator model. In

all cases, we consider the output of the simulator to be the power spectrum of either the

summed population spiking activity, or the local field potential generated by the network. We

compare the accuracies of the forward predictions of all three models on the population spik-

ing activities. The DGPR metamodel is trained on both the LFP and the population spiking

activities in order to evaluate the differences in information in the two signals. For the DGPR

and MAF metamodels, we also estimate the posterior distribution for 100 examples in the test

data set, and evaluate the accuracy of these based on the posterior predictive distribution.

We start by showing some example simulation outputs, and discuss the accuracy of the for-

ward predictions of the metamodels. We then evaluate the number of training samples needed

for the metamodels to obtain high prediction accuracy, before we discuss the inverse model-

ling and the posterior distributions. A HCPLSR metamodel was also trained on the same task.

We refer to S3 Supplementary Section. for the results from that model.

3.1 Simulations

A total of 10000 simulations were run, with parameters sampled as described in Section 2.1. A

network consisting of one excitatory and one inhibitory population can produce a variety of

activity states, characterized by whether the neurons fire in synchrony, and how regularly they

fire, that is, whether the inter-spike intervals for individual neurons have a wide or narrow dis-

tribution. The behaviour of the present two-population network was analyzed in the frame-

work of mean-field theory in [5] for integrate-and-fire neurons where the synaptic currents

were modelled as delta functions. Brunel [5] found that the network spiking activity could be
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described by distinct regimes, classified as synchronous regular (SR), asynchronous irregular

(AI) and synchronous irregular (SI, fast and slow), depending on which specific parameter val-

ues were used, and arise by different mechanisms. As described in Section 2.1, we avoided

activity states characterized by strongly synchronous behaviour, which produces sharp peaks

in the power spectrum. Fig 2 shows three examples of different states of network activity. Col-

umn A shows the synchronous regular regime, characterized by runaway excitation, where the

synaptic strengths of inhibitory neurons are not strong enough to overcome the excitation,

and the neurons fire regularly and synchronously with very high rates. Column B shows an

example of a synchronous irregular state, produced in some cases when the network receives

high amounts of external input and the inhibitory synaptic strengths are high. Column C

shows asynchronous irregular activity. This is the regime in which most of the simulations

used for training and validation were, although there is of course much variation within this

regime. Columns A and B show the type of activity we avoided, with sharply peaked spectra.

We will not attempt to give a full description of all possible network states or the effects of

all different parameters in this paper, but show these examples to make clear the states we have

actively avoided, as described in Section 2.1.

Fig 2. Example activity states. Each column shows, from top to bottom, a raster plot, population firing rates, the power spectrum of the population averaged firing

rates, the LFP, and the power spectrum of the LFP. The raster plot and firing rates are taken from the excitatory population. A: Synchronous regular activity. B:

Synchronous irregular activity. C: Asynchronous irregular activity.

https://doi.org/10.1371/journal.pcbi.1011625.g002
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3.2 Forward predictions

The metamodels were tested on a data set containing 1681 examples, jointly sampled with the

training data using Latin Hypercube sampling. Models were trained on data sets ranging from

100 to 8000 examples in order to examine the density of samples needed to adequately repre-

sent the simulation output space. For all other experiments, the metamodels used were trained

on the full 8000 example simulations. A grid search of hyperparameters was run for each meta-

model in order to find a suitable model for the problem at hand, which can be found in S1 Sup-

plementary Section. The metamodel obtained from the hyperparameter search was used for all

subsequent experiments, and where we trained new metamodels, the hyperparmeters were the

kept the same. Fig 3A and 3B show examples of simulated outputs and corresponding outputs

from the metamodels for two different sets of parameter values, for the population spiking

activities and LFPs respectively. Only the outputs for the excitatory population spiking activity

and the topmost LFP channel are shown. 10 simulations run with different seeds are shown in

black lines, and the colored lines show the output given by the metamodels. The shaded area

shows two standard deviations above and below the mean for the DGPR and MAF metamo-

dels. Visually inspecting the top example in panel A, both metamodels accurately capture the

mean of the simulations for all frequencies, but slightly overestimate the variance, particularly

for the lower frequencies. In the bottom example, there is a larger discrepancy between the

MAF metamodel and the simulator for the middle frequencies, while the DGPR metamodel is

accurately able to capture both the mean and variance. Note that the covariance between fre-

quency channels is not considered at all in this figure. In panel B, the LFP for the same simula-

tions and the DGPR prediction are shown. Generally, the LFPs are smoother and the variance

is lower compared to the population spiking activity. Fig 3C and 3D show the distribution

over maximum (over frequencies) absolute errors on the test data set, where the expectation of

the metamodel is used as the prediction value. We show the maximum error over frequencies

since the large number of output channels make the mean small even in the presence of a few

large deviations. Moreover, as the simulation output itself is random, we are mainly interested

in finding any larger deviations, rather than small deviations, which are expected to occur. The

expectation of the distribution given by the DGPR metamodel more closesly matches the sim-

ulated values compared to the MAF metamodel. Fig 3E and 3F show the mean standard devia-

tion of the metamodel distributions evaluated at the test data parameters. The DGPR

metamodel produces narrower distributions over the simulator output compared to the MAF

model.

In terms of computational cost, evaluating the log probability of 50 example outputs takes

around 4 seconds with the DGPR metamodel, and 0.014 seconds with the MAF metamodel.

Generating 50 samples from the metamodels takes 1.6 seconds for the MAF metamodel, and

0.07 seconds with the DGPR metamodel. By contrast, running a single simulation took on

average 4.4 CPU-minutes.

The training time for the metamodels depends on the model parameters and learning rate,

as well as the random seed. A full epoch of the 8000 training examples takes around 4.4 sec-

onds for the DGPR metamodel, and 1.4 seconds for the MAF model. Generally, the training

converged after a few hundred epochs for both models, giving a training time (not counting

the periodic train/test evaluation) on the scale of an hour for the DGPR model and around a

third of that for the MAF model.

3.3 Number of training samples needed to represent the model

The DGPR metamodel was trained on data sets ranging from 100 to 8000 examples of the pop-

ulation spiking activities, and the performances on the same test data set were evaluated. Fig 4
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shows the maximum (over frequencies) absolute prediction errors, averaged over the test data

set for each trained metamodel. As the number of training samples increases, the prediction

errors on the test data set decreases, as the metamodel starts to generalize better. The predic-

tion errors on the training data set increases, as it becomes more heterogeneous and the model

is less able to overfit to it. After a sharp decrease in errors as the number increases to a few

hundreds, the benefit of increasing the number of training samples decreases significantly

after on the order of 1000 is reached, indicating that the parameter space is sufficiently densely

sampled.

Fig 3. A: For two different parameter sets, the power spectrum of the population spiking activity from 10 simulations (black lines), and metamodels (blue

and orange lines) are shown. The shaded area shows two standard deviations of the distribution given by the metamodels. B: Same as A, but for the LFP.

Only the DGPR metamodel was trained on the LFP. C: Distribution over maximum (over frequencies) absolute errors for both metamodels, on the

power spectrum of the population spiking activity. D: Same as for C, but for the LFP. E: Mean standard deviation of the metamodel outputs, evaluated at

the parameters in the test data set. F: Same as E, but for the LFP.

https://doi.org/10.1371/journal.pcbi.1011625.g003

PLOS COMPUTATIONAL BIOLOGY Metamodelling of a two-population spiking neural network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011625 November 30, 2023 14 / 26

https://doi.org/10.1371/journal.pcbi.1011625.g003
https://doi.org/10.1371/journal.pcbi.1011625


3.4 Inverse modelling

Using the conditional distribution over simulation outputs given parameter values, estimated

by the metamodels, posterior distributions for 100 simulations in the test data set were esti-

mated. Separate posterior distributions for both metamodels conditioned on the population

spiking activities, and for the DGPR metamodel conditioned on the LFP, were estimated using

an adaptive Metropolis algorithm as described in Section 2.4.

The Gelman-Rubin statistic was computed for all the distributions, and was below 1.1 for

over 90% of the posterior distributions for the population spiking activities, and over 95% of

the posterior distributions for the LFP, indicating that the chains converged for most of the

distributions. In the computation of average values over the test data set, all distributions were

used, regardless of the value of the Gelman-Rubin statistic. For each of the estimated posterior

distributions of both the population spiking activities and the LFP, 50 additional simulations

were run with parameters drawn from the posterior distributions in order to evaluate the accu-

racy of the posterior distribution.

Fig 5A shows an example of a posterior distribution generated by the outputs of one simula-

tion in the test data set. The 1D and 2D posterior marginal distributions of a subset of the

parameters are shown. On the left-hand side, the posterior distribution generated by the popu-

lation spiking activities are shown, and the corresponding posterior distribution from the LFP

is shown on the right-hand side. The red bars and dots show the values of the parameters used

in the simulation from which the posterior is generated. Qualitatively, the distributions from

both the population spiking activities and the LFP appear similar for the first three parameters

shown.

For this particular example, the 1D marginal distributions of both posteriors are wide for

the membrane time constant τm, quite narrow for g, and somewhere in between for η. Wide

marginal distributions entail that, lacking information about all other parameters, the value of

the parameter cannot be determined with certainty, while narrow marginal distributions entail

that the parameter can be accurately determined even without knowledge of other parameters.

There is a positive correlation between η and τm in the posterior distribution, i.e. if the value of

η is increased the value of τm must also be increased for the model to produce similar outputs.

Fig 4. Mean (over test data set and training data set) of the maximum (over frequencies) errors, in absolute scale, as a function of the

number of examples used to train the metamodels on the population spiking activities.

https://doi.org/10.1371/journal.pcbi.1011625.g004
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Equivalently, if you know the specific value of either η or τm, the uncertainty in the other

parameter would decrease. Note that because we only see 1D and 2D marginals, there may be

higher-order interactions present that cannot be easily visualized. For the synaptic strengths,

the distribution is much wider for the model trained on the population spiking activities com-

pared to the model trained on the LFP.

Fig 5. In A, C and D, the left-hand and right-hand side show equivalent plots for the population spiking activities and LFPs respectively. The DGPR

metamodel is used in both cases. A: 1D and 2D marginal posterior distributions over a subset of the parameters, for an example in the test data set. The

red dots and bars show the parameter values corresponding to the simulation output the posterior distribution was computed for. B: Left: mean (across

test data set) of standard deviation of the 1D marginal distributions for each parameter. Right: Absolute error of the parameter predictions based on the

expectation. C: Metamodel predictions for the power spectra of excitatory population spiking activity (left) and the uppermost channel of the LFP

(right) in orange. Black lines show 50 simulation outputs run with parameters drawn from the posterior distribution. D: Distribution of maximum

distance between the ground-truth simulation output from which the posterior distribution was computed, and the simulation output from the

posterior distributions (black lines in C). Left plot shows the errors from the population spiking activities, right plot shows the errors from the LFP. The

black lines show the simulations from the posterior conditioned on the population spiking activities, the gray lines show the simulations from the

posterior conditioned on the LFP.

https://doi.org/10.1371/journal.pcbi.1011625.g005
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The left-hand side of Fig 5B shows the mean (over all test examples) standard deviations of

the 1D marginal distributions. Generally, the parameters related to the synaptic inputs have

the narrowest marginal distributions, while the neuron parameters have much wider marginal

distributions, indicating that changes to neuron parameters can largely be compensated for by

adapting other parameters, while changes to synaptic and input parameters have a larger effect

that cannot be compensated for to the same degree. The right-hand side of Fig 5B shows the

mean (over all examples in the test data set) absolute distance in standard deviations of the

parameters of the simulation used to generate the posterior (i.e. red dots in Fig 5A) and the

expectation of the posterior distribution. For all the parameters, the mean absolute distance is

smaller than the standard deviation of the approximate marginal posterior distributions, indi-

cating that the approximate posteriors generally covers the parameters of the simulation the

posterior distribution is conditioned on.

One notable difference between the posterior distributions computed from the metamodel

of the population spiking activities and the posterior distributions computed from the meta-

model of the LFP is that the overall synaptic strength, Qs, and the membrane capacitance, Cm,

are significantly more constrained by observing the LFP than by the population spiking activi-

ties, with a standard deviation more than three times as large for the population spiking activi-

ties. This can also be observed in the example distributions shown in Fig 5A. For the rest of the

parameters, the standard deviations of the 1D marginal distributions are roughly the same

when computed for the population spiking activities and the LFP. The full posterior distribu-

tion from Fig 5A is shown in S1 Supplementary Section.

Fig 5C shows the metamodel output (orange) corresponding to the same simulation as in

A, and 50 individual simulation outputs (black) run with parameter values sampled from the

posterior distribution of the example shown in A. Only the spectra from the excitatory popula-

tion spiking activity and the topmost LFP channel are shown. The mean of the metamodel dis-

tribution is shown in dashed orange, and the shaded area shows ± 2 standard deviations. The

simulations run with parameters from the posterior distribution fit nicely with the distribution

over the outputs given by the metamodel, suggesting that the posterior distribution is reason-

able. Fig 5D shows the distribution of the maximum (taken over frequencies and simulations

for a given posterior) distance between the simulation outputs run with parameters drawn

from the posterior distributions, and the simulation output the posterior is conditioned on, for

the 100 posterior distributions for which the extra simulations were run.

The black line shows the errors for the simulations run with parameters drawn from the

posterior generated by the population spiking activities, while the gray distribution shows

the distances for the simulations run with parameters drawn from the posterior generated

by LFPs. The left-hand side shows the distances of the population spiking activities, while

the right-hand side shows the distances for the LFP. For both the population spiking activi-

ties and the LFP, the simulations from the posterior distributions are very similar to the sig-

nal they were conditioned on. Simulations from the posterior distributions conditioned on

the LFP, also give population spiking activities very similar to the ground-truth. Simulations

from the posterior distributions conditioned on the population spiking activities, on the

other hand, do not give as similar LFPs to the ground-truth, which again shows that observ-

ing the LFP constrains the parameters to a greater degree than observing the population

spiking activities.

Fig 6 shows a comparison between the posteriors obtained by the DGPR metamodel and

the MAF metamodel. Panel A shows the marginal standard deviations, averaged over all poste-

rior distributions. For both metamodels, they are similar, but the DGPR is generally slightly

wider. Panel B shows the same plot, but for the posterior predictive distribution, i.e. the distri-

bution over outputs when parameters are sampled from the posterior distribution. The
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posterior predictive distributions from the DGPR metamodel are significantly narrower than

those from the MAF metamodel, even with wider posterior distributions, indicating that the

posterior distributions are more correct compared to those from the MAF metamodel. Panels

C and D show the mean absolute distance between the expectation of the posterior distribution

and posterior predictive distribution respectively, and the simulations they are conditioned

on. For both models, the errors are on the same scale as the standard deviations, indicating

that neither systematically misses the simulation it is conditioned on.

The Pearson correlation coefficient was computed for all pairwise combinations of

parameters for all sampled posterior distributions. Fig 7 shows the mean of the correlation

coefficients over all examples in the test data set. The upper triangle shows the coefficients

for the samples from the posterior distribution conditioned on the population spiking activi-

ties, and the lower triangle shows the coefficients conditioned on the LFP. The correlations

between most of the parameters are fairly weak, but since only the average is shown, there

could be stronger correlations in individual posterior distributions that the plot does not

capture. For the LFP, there are strong average positive correlations between the synaptic

parameters, i.e. the synaptic strength Qs, the synaptic time constant τsyn and relative inhibi-

tory strength g. Interestingly, the corresponding coefficients for the population spiking

activities are close to 0. This again highlights the difference in the posterior distributions for

Qs between the population spiking activities and the LFP. For the distributions conditioned

on both the LFP and the population spiking activities, there are positive correlations are

present between the parameters η and τm, as well as negative correlations between η, Vreset

and Cm. As these parameters all impact the amount of input required for a neuron to spike,

there are possibly complex interactions between all these parameters yielding manifolds of

similar activities and LFPs.

Fig 6. A: mean marginal standard deviations of the posterior distributions. B: mean marginal standard deviations of the posterior predictive distributions.

C: mean distance between expectation of marginal posterior distribution and the parameters from the simulation the posterior distribution is conditioned

on. D: Same as C, but for the posterior predictive distribution.

https://doi.org/10.1371/journal.pcbi.1011625.g006
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4 Discussion

In the present work we have trained metamodels to estimate the power spectra of population

spiking activities and local field potentials (LFPs) generated by a two-population neuronal net-

work comprising an excitatory and an inhibitory population during stationary activity. Specifi-

cally, we have trained a deep Gaussian process regression (DGPR) model, and a faster masked

autoregressive flow (MAF) model, and used the probabilistic nature of the metamodels to esti-

mate posterior distributions over parameters given observed simulation outputs. DGPR mod-

els have not been much used for statistical modelling in the field of neuroscience before, and

we chose to compare it to the MAF as it is a commonly used model for both forward modelling

in the case of SNLE and inverse modelling in the case of SNPE.

Fig 7. Pearson correlation coefficients between samples from posterior distribution over parameters, averaged over the test

data set. Upper triangle shows the correlation coefficients for the posterior distributions from the simulated power spectra from the

population spiking activities, while the lower triangle shows the same correlation coefficients from the LFP.

https://doi.org/10.1371/journal.pcbi.1011625.g007
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Both the population spiking activities and the LFP were modelled, as this offers an opportu-

nity to compare the information about the parameters that can be gained by observing differ-

ent signals. The LFP was computed separately for each population using Eq 10. This is an

approximation that does not require computing the LFP response from each individual neu-

ron in each simulation, which is computationally costly, but only requires computing a small

number of kernels, which can then be used to approximate the LFP for all simulations. The

synaptic parameters can be fully adjusted for by a single simulation of a kernel, but the neuron

membrane conductance and capacitance, cannot be adjusted for analytically. Kernels were

therefore computed on a grid of these two parameters, and regression was done to approxi-

mate the true kernel for any value of the membrane conductance and capacitance. As shown

in S4 Supplementary Section, the approximation works well, although there are some small

deviations, particularly in channels 4 and 5.

The neuron and synapse parameters of the simulations were varied, with values described

in Table 2, while the number of neurons and number of synapses were fixed. The parameter

values were chosen such that the strongly synchronous regions of the parameter space were

avoided, particularly avoiding relative inhibitory synaptic strengths that lead to an unbalanced

regime. This will also have excluded some AI-like simulations in the vicinity of the boundary

between AI and SR, but we consider the difference (starting at g = 4.5 instead of g = 4.0) to be

sufficiently small as to not significantly diminish the utility of the models. Additionally, a small

number of simulations in the strongly synchronous irregular regime were removed, compris-

ing roughly 3% of the total number of simulations as described in Sections 2.1 and 3.1. The

simulations in the test and training data sets consisted mostly of simulations in the asynchro-

nous irregular (AI) regime. The simulations with strongly synchronous spiking activities were

avoided since sharp peaks that shift continuously in frequency cannot be well approximated

by a low-dimensional representation, and the low-rank approximation was necessary to keep

the size of the DGPR metamodel small. The low-rank approximation is a limiting factor for

the DGPR metamodel, and ideally one would not have to limit the input domain in such a

way. Increasing the dimensionality of the latent space significantly is possible and would possi-

bly also have resulted in better accuracy, even in the case of strongly synchronous activity, par-

ticularly with a larger training data set, but trade-offs have to be made with respect to the

computational cost of training and evaluating the metamodels. The simulations in the AI

regime could be well approximated by a low-dimensional representation, and since one is

often particularly interested in this regime, we consider it reasonable to focus the metamodels

on this.

The power spectra were modelled instead of the time series. Although modelling time series

directly in many cases would be preferable, that would require modelling the complex tempo-

ral dependencies in the neural networks, which are also stochastic due to the external input to

the network modelled as a Poisson process. Since most regression techniques assume a fixed

target, modelling the power spectra is more straightforward. For the present situation, we

found that both the DGPR and MAF metamodels were able to accurately predict the power

spectrum of the population spiking activities, with 10 different model parameters as inputs,

and we found that on the order of around 1000 examples is sufficient to accurately represent

the model in this particular region of the parameter space. In general, the number of examples

needed to train a metamodel will depend on the number of parameters included, the range of

their values and how much they affect the model output. It is difficult to predict a priori, and

the presently used model may not be representative for other, more complex models, which

may require more training examples.

Theoretical approaches based on linear-response theory can provide analytical approxima-

tions to the PSDs [42–45] in the asynchronous irregular regime. The theoretical models
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necessarily make assumptions about the underlying physics of the system, which also makes it

possible to interpret them in ways that are not possible with purely data-driven methods.

Data-driven methods are complementary to theoretical ones in the sense that they do not

make any underlying assumption about the model, but comes at the price of interpretability

and needing to run simulations to train the models.

The forward modelling of the population spiking activities and the LFP is similar in terms

of difficulty, where the errors of the DGPR metamodels are similar. This may not be surpris-

ing, as the LFP is computed as a convolution of the population spiking activities. The low-pass

filtering effects of synaptic and dendritic filtering makes the power spectrum of the LFP

smoother than the population spiking activities, however, which could potentially have made

it an easier target [46, 47].

Comparing the DGPR metamodel to the MAF metamodel, we found that the DGPR meta-

model provided better accuracy, but comes at the price of a higher cost of training. When it

comes to running the trained models, the MAF is significantly faster than DGPR for evaluating

the log probability, and therefore also when estimating posterior distributions. For purely sam-

pling the forward model, the DGPR is faster than the MAF metamodel. This is not surprising,

as the MAF model is designed to be good at evaluating log probabilities, at the cost of being

slow at sampling. The time it takes both to train and evaluate the metamodels will depend

strongly on the available hardware. GPU acceleration makes it significantly faster, and solely

using CPUs would significantly increase the time of training/evaluating the metamodels.

The MAF metamodel suffered significantly more from overfitting compared to the DGPR

metamodel. Simply increasing the number of simulations used to train the models would likely

reduce the differences between the two metamodels. It is also possible that more regularization

techniques could have increased the performance of the MAF, although utilizing dropout did

not significantly improve the model.

For inverse modelling, the benefit of using the more computationally demanding DGPR

will likely be smaller if one is doing sequential inference, and the region in which the metamo-

del must be accurate is smaller. Also depending on the complexity of the simulator one is

approximating, in cases where one wants an accurate model over a larger domain, increased

accuracy may be well worth the increased computational cost.

The HCPLSR metamodel, shown in S3 Supplementary Section, is significantly faster than

both the DGPR and MAF metamodels, but at the cost of only giving a point-estimate of the

simulation output, and less flexibility. For cases where one is only interested in the forward

modelling, such alternatives can also be an option.

4.1 Model inversion

One key motivation for using probabilistic metamodels is that it allows inverting the model

and finding posterior distributions over parameters given observed outputs. We opted to sam-

ple the posterior using an adaptive Metropolis algortihm as it is simple to implement and

worked well for the present problem. The Gelman-Rubin statistic was computed, and for most

of the sampled posterior distributions (> 90%), it was below 1.1, which is often considered to

indicate convergence [48]. For some of the posterior distributions, the chains did not con-

verge, although this was likely only for a minority. Particularly for the examples on which the

forward predictions are poor, we would not expect the estimated posterior distributions to be

accurate, as the metamodel generally will not produce outputs which are similar to the

observed output used to generate the posteriors.

The degree to which the different model parameters were constrained by observing an out-

put varied highly (see Fig 5B). Notably the distribution over most neuron parameters were
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wide, while the distribution over synapse and input parameters were narrower. Interestingly,

the synaptic strength (Qs) and membrane capacitance (Cm) were significantly more con-

strained by the LFP than by the population spiking activities, illustrating the utility of using dif-

ferent signals for model validation. The effect is likely due to the fact that LFP is directly

dependent on both the post-synaptic currents as well as the population spiking activities. The

effect was not seen for the synaptic time constant, which also directly influences the post-syn-

aptic current, something that indicates that the extra information may be in the scale of the

LFP, as that is directly determined by the scale of the post-synaptic currents. The remaining

parameters were similarly constrained by both signals, indicating that for the present situation,

both signals may contain similar information about the parameters.

A previous study on model inversion using the LFP of a similar network using convolu-

tional neural network [30] provided more accurate predictions of parameter values. In that

study, neuron models with delta synapses were used, and it was limited to only three parame-

ters, which likely makes it an easier task. Particularly, wide marginal posterior distributions

might only be possible if there are sufficiently many parameters that are free to vary such that

they can compensate for the effects of other parameters. An interesting question which we did

not pursue here is to what degree keeping the different parameters fixed constrains the

remaining parameters given observed simulation outputs.

Comparing the posterior distributions generated from the DGPR metamodel to the poste-

rior distribution generated from the MAF metamodel, we find that the posterior distributions

from the DGPR metamodel are wider, while simultaneously having a significantly narrower

posterior predictive distribution. In other words, it is able to find a larger region of the parame-

ter space that gives more similar outputs compared to the MAF metamodel. This shows the

importance of accurate forward modelling in order to find good posterior distributions, an

area where DGPR metamodels can be useful also in other settings when dealing with data

from complex simulations.

Methods such as Approximate Bayesian Computation (ABC) and Simulation-based Infer-

ence (SBI) can also be used to estimate posterior distributions over parameters given specific

observed model outputs. Our work is closely related to SBI, particularly SNLE [13]. The

approach in the present work can be considered the same as SNLE run for a single round,

where we use the DGPR metamodel as a likelihood estimator. Thus, in cases where one is

interested in estimating posterior distributions, particularly in cases where one has limited

data and model flexibility is a concern, DGPR metamodels may be of use in the SNLE frame-

work. Methods such as Sequential Neural Variational Inference [49] for estimating the poste-

rior distribution instead of MCMC sampling can also readily be used with the DGPR

metamodel.

4.2 Generalization to more complex network models

The two-population model is fairly simple, and is a useful starting point since the dynamics

are well known, and the simulations are cheap to run. A natural question is how well these

metamodelling techniques generalize to more complex networks such as a multi-population

model of cortical circuitry [50], a multi-area model of the visual system [51, 52], or a large-

scale model of mouse primary visual cortex [53]. Models with more populations will have

more potential model outputs to capture, and richer dynamics, and a larger number of param-

eters will yield a higher dimensional input space. The expressiveness of the metamodels may

have to increase, and the number of samples needed to train a metamodel will likely be much

higher. Of course, the number of parameters one chooses to include is arbitrary, and if one is

only interested in a subset of the parameters, that can be modelled more cheaply. It is
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interesting to note, however, that in the present case, the power spectra mostly in the AI

regime can be accurately captured by a low-dimensional latent representation.

In the present case, we model the external spiking input as a constant rate Poisson process,

parameterised by the variable η. In more realistic networks, the input to the network will gen-

erally be more patterned. The parameters in the network we used were also kept constant,

while in more realistic networks the parameters might follow a statistical distribution instead.

Similar methods can be used to find the parameters of such distributions instead of the con-

stant value as in the present case. Patterned input could also be represented in a metamodel,

either through some continuous input to the model if the input changes in a continuous man-

ner, or possibly discretely, in which case it may be necessary to train multiple metamodels for

each input class separately.

The metamodels can easily be made more flexible, for the DGPR metamodel by increasing

the number of GPs in either layer, and increasing the dimensionality in the latent space, and

for the MAF metamodel by increasing the number of transformations or increasing the num-

ber of hidden features in each transformation. This will lead to higher computational costs,

but more complex neural networks are of course also more costly to run, so the relative benefit

may not change. In the present case, sampling was done using Latin Hypercube sampling,

which ensures that each parameter is uniformly sampled. This can potentially lead to a too

dense sampling in regions of the parameter space where the metamodel performs well, and too

sparse sampling in regions where the metamodel performs poorly. Methods for adaptively

sampling only or mostly in regions where additional sampling is needed would be an interest-

ing direction for future research.

4.3 Use of metamodels

Once a metamodel has been trained, it can be evaluated much more rapidly than the model it

is trained on. If it is well calibrated, it should be able to interpolate accurately inside the volume

of the parameter space which was used to train it, and give a continuous approximation to the

model behaviour. For models which are computationally demanding, trained metamodels

could be distributed for use by others without requiring large computational resources.

For working with experimental data, metamodels could be useful in different ways. In the

context of SBI, metamodels can be used as likelihood estimators in order to find parameters

fitting network models to observed experimental data, in the same manner as in this work.

Depending on which phenomena one is interested in modelling, this might require larger and

more realistic network models than the one used here, but the principle would be the same. In

the context of forward modelling, metamodels could be applied to experimental data to guide

the choice of experimental parameters and their effects on experimental outcomes. How well

this would work in practice, however, is not known. It would require training to specific exper-

imental settings, and could be an interesting direction of future research.

4.4 Conclusion

We have shown that for the present situation, the power spectra of the population spiking

activities and the local field potential can be accurately modelled by the DGPR and MAF meta-

models, over a domain largely consisting of activity in the AI regime. The DGPR metamodel

performed better than the MAF metamodel, but at the cost of higher computational demands

for training and evaluation. The trained metamodels can be used to estimate posterior distri-

butions over simulation parameters given observed simulation outputs. The posterior distribu-

tion estimated from the DGPR metamodel had higher marginal variances compared to the

posterior distributions estimated from the MAF metamodel, while the posterior predictive
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distributions from the DGPR metamodel were narrower compared to the posterior predictive

distributions from the MAF metamodel, indicating more accurate posterior distributions.

When dealing with complex models, utilizing DGPR for forward modelling may therefore be a

good alternative, particularly when the amount of data is a limiting factor, and the increased

training time is not a problem.

Based on the estimated posterior distributions, the LFP was found to contain significantly

more information about the synaptic strength and membrane capacitance, while for the

remaining eight parameters, both signals were equally informative.
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