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Abstract

The computational simulation of human voluntary muscle contraction is possible with

EMG-driven Hill-type models of whole muscles. Despite impactful applications in numer-

ous fields, the neuromechanical information and the physiological accuracy such models

provide remain limited because of multiscale simplifications that limit comprehensive

description of muscle internal dynamics during contraction. We addressed this limitation

by developing a novel motoneuron-driven neuromuscular model, that describes the force-

generating dynamics of a population of individual motor units, each of which was

described with a Hill-type actuator and controlled by a dedicated experimentally derived

motoneuronal control. In forward simulation of human voluntary muscle contraction, the

model transforms a vector of motoneuron spike trains decoded from high-density EMG

signals into a vector of motor unit forces that sum into the predicted whole muscle force.

The motoneuronal control provides comprehensive and separate descriptions of the

dynamics of motor unit recruitment and discharge and decodes the subject’s intention.

The neuromuscular model is subject-specific, muscle-specific, includes an advanced and

physiological description of motor unit activation dynamics, and is validated against an

experimental muscle force. Accurate force predictions were obtained when the vector of

experimental neural controls was representative of the discharge activity of the complete

motor unit pool. This was achieved with large and dense grids of EMG electrodes during

medium-force contractions or with computational methods that physiologically estimate

the discharge activity of the motor units that were not identified experimentally. This neu-

romuscular model advances the state-of-the-art of neuromuscular modelling, bringing

together the fields of motor control and musculoskeletal modelling, and finding applica-

tions in neuromuscular control and human-machine interfacing research.
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Author summary

Neuromuscular computational simulations of human muscle contractions are typically

obtained with a mathematical model that transforms an electromyographic signal

recorded from the muscle into force. This single-input single-output approach, however,

limits the comprehensive description of muscle internal dynamics during contraction

because of necessary multiscale simplifications. Here, we advance the state-of-the-art in

neuromuscular modelling by proposing a novel mathematical model that describes the

force-generating dynamics of the individual motor units that constitute the muscle. For

the first time, the control to the population of modelled motor units was inferred from

decomposed high-density electromyographic signals. The model was experimentally vali-

dated, and the sensitivity of its predictions to different experimental neural controls was

assessed. The neuromuscular model, coupled with an image-based musculoskeletal

model, includes a novel and advanced neuromechanical model of the motor unit excita-

tion-contraction properties, and is suited for subject-specific simulations of human volun-

tary contraction, with applications in neurorehabilitation and the control of

neuroprosthetics.

Introduction

During voluntary skeletal muscle contractions, the pool of alpha-motoneurons (MNs) and the

muscle fibres they innervate, constituting the muscle’s population of motor units (MUs),

transform in a series of chemical-mechanical events the neural message from the spinal cord

into molecular forces [1]. These forces sum across the multiscale architecture of the muscle to

build the individual MU forces and the whole muscle force. Extensive experimental investiga-

tions in animals in vivo have advanced our understanding of the neuromechanical dynamics

responsible for voluntary muscle contraction. For example, the force generated by skeletal

muscles is modulated by the discharge frequencies of the innervating MNs [2], and by the

number of discharging MUs, which are sequentially recruited in the increasing order of their

size and the force they can generate [3,4]. Because invasive in vivo practices in humans are

reduced to specific electrode insertions [5,6] or challenging surgeries [7–9], our understanding

of human voluntary muscle contraction mainly relies on non-invasive in vivo techniques, such

as bipolar (bEMG) and high-density (HDEMG) surface electromyography [10–12], imaging

[13,14], and joint torque recordings. These non-invasive techniques are however challenging

to apply during real-time contractions on multiple muscles, provide limited information that

is usually not easily interpreted, or are commonly constrained to simple tasks like isometric

contractions. When some neuromuscular properties and dynamics cannot be measured in

humans, they are often extrapolated from animals, despite important limitations [9,15,16].

To support experimental investigations into understanding and simulating the interplay

between human motor control and force generation, mathematical models of skeletal muscles

were developed to mimic the dynamics of muscle contraction. Hill-type neuromuscular mod-

els are popular solutions which have been extensively reviewed recently [17]. They rely on few

parameters, are computationally cheap and conceptually simple, while complex enough to

describe the chain of neuromechanical events responsible for muscle force generation, which

makes them accurate, flexible and capable of refinement [18]. Hill-type models have been used

to explore voluntary neuromuscular control with EMG-driven forward simulations of muscle

contraction [19–23]. With these methods, the recorded EMG signals are processed to provide

a unique neural control to a single Hill-type actuator that phenomenologically describes whole
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muscle dynamics. This approach is well-established and implemented in automated tools [21]

and has had important applications, for example in human-machine interfacing [24–27].

However, and despite attempts to address this limitation [28–32], this single-input

approach lumps the recruitment and discharge dynamics of the muscle’s individual MUs into

a unique phenomenological neural control for the whole MU population, the resulting force-

generating events of which are hence lumped into single representative quantities for the

whole MU pool. These representative quantities usually overlook the continuous distribution

of the MUs’ neuromechanical properties across the MU pool and are difficult to calibrate and

interpret [32]. Consequently, this single-actuator macroscopic approach does not provide an

adequate structure to physiologically describe the independent and inter-related [33–35]

dynamics of a muscle’s MU pool. These limitations hinder the investigation of human neuro-

muscular control with computational tools. In response to this limitation, other studies devel-

oped more physiological muscle models described as populations of Hill-type actuators, each

of which simulated the dynamics of individual MUs [36–38]. Yet, those models received syn-

thetic motoneuronal signals and were not tested, and most of them not validated in conditions

of voluntary neuromuscular control. Recent advances in the recording and decomposition of

surface HDEMG signals [39,40] allow the non-invasive identification of trains of action poten-

tials for large samples of MUs discharging during human voluntary contraction. To date, those

vectors of identified MU spike trains were systematically compiled into single neural controls

to drive single Hill-type muscle actuators [22,23]. Consequently, the experimental spiking

behaviour of the identified discharging MNs was never used to control Hill-type-like models

of individual MUs in the simulation of human voluntary contraction.

To address this gap, in this study a novel MN-driven neuromuscular model was developed

and validated. The model was described as a population of Hill-type actuators, each of which

simulated the neuromechanical and force-generating dynamics of individual MUs. In forward

simulations of human voluntary contraction, the MN-driven model transformed an experi-

mental vector of MN spike trains decoded from HDEMG signals [40], that comprehensively

described the dynamics of MU recruitment and rate coding, into a vector of simulated MU

forces that summed into the predicted whole muscle force. Sampling the muscle into individ-

ual MUs provided an adequate structure for proposing robust multiscale simplifications,

advanced models of the MU activation dynamics, and physiological muscle-specific distribu-

tions of the MU’s neuromechanical properties across the MU pool, that were scaled to subject-

specific values derived from a subject-specific musculoskeletal (MSK) model. It was shown

that accurate muscle force predictions were obtained when the experimental motoneuronal

controls accurately described the real discharge activity of the MU pool. This was obtained

with experimental samples of MN spike trains derived from large and dense grids of EMG

electrodes, and, to some extent, when the discharge activity of the complete MU pool was

reconstructed from experimental data with computational methods [41]. By proposing novel

solutions for controlling and designing Hill-type-like neuromuscular models, this study

advances the state-of-the-art of neuromuscular modelling, opens avenues for investigating the

interplay between the central nervous system and the neuromuscular machinery during

human voluntary contraction, reconciles the complementary fields of motor control and MSK

modelling, and finds applications in numerous fields, including the investigation of the human

neuromuscular dynamics and neural synergies [35] during voluntary contractions, and the

design and control of neuroprosthetics [42,43]. The implementation of the method is publicly

available at https://github.com/ArnaultCAILLET/MN-driven-Neuromuscular-Model-with-

motor-unit-resolution. The segmented medical images and the subject-specific MSK model

are publicly available at https://zenodo.org/records/10069266.
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Methods

1. Overview of MN-driven neuromuscular modelling

We developed an experimental and computational method (Fig 1) for simulating, with a MN-

driven neuromuscular model, the neuromechanical dynamics of a subject-specific population

of individual MUs during human voluntary isometric muscle contraction. From surface

HDEMG signals recorded on the Tibialis Anterior (TA) muscle (Fig 1A and 1B), we decoded

the experimental discharge activity of the population of identified MUs (Fig 1C), which was

extended to the complete MU pool (Fig 1D) using an open-source computational method [41],

available at https://github.com/ArnaultCAILLET/Caillet-et-al-2022-PLOS_Comput_Biol. The

accuracy of both the experimental and reconstructed populations of spike trains spi(t) in esti-

mating the neural drive to muscle DðtÞ was validated (Fig 1E). We described the MN-driven

neuromuscular model (Fig 1F) as a collection of in-parallel Hill-type Force Generators (FGs),

each of which was controlled by a dedicated spike train spi(t). Each FG described the neurome-

chanics of a MU and included a Neuromechanical Element (NE) and a Contractile Element

(CE) to describe the excitation-contraction coupling properties (MU excitation and activation

dynamics) and mechanical properties (MU contraction dynamics) of the MU, respectively [17].

The FGs individually transformed the spike trains spi(t) into the MU forces f MU
i ðtÞ that collec-

tively generated the whole muscle force FM(t) (Fig 1G). We further scaled the MN-driven neu-

romuscular model to be subject-specific with muscle-tendon properties derived from a subject-

specific MSK model obtained from segmented magnetic resonance images (MRIs) (Fig 1H and

1I). We finally validated the predicted force FM(t) against a reference muscle force FTA(t) (Fig

1G), that was estimated (Fig 1J) from the recorded ankle torque T(t) and the bipolar EMG

(bEMG) activity of the TA’s agonist and antagonist muscles crossing the ankle joint.

In the following, when subject-specific properties could not be measured in vivo, the coeffi-

cients of the mathematical equations describing the model were tuned with experimental data

from the literature, considering in turn and decreasing order of preference experimental stud-

ies on individual human MUs or bundles of fibres, human fibres and sarcomeres, cat fibres,

rodent fibres, rodent muscles, and amphibian fibres or muscles. Any experimental quantity

measured at the sarcomere and/or fibre scales was directly assigned to the MU scale.

2. Experimental data and subject-specific neuromusculoskeletal quantities

2.1. Contraction tasks, force and EMG recordings, and subject-specific spiking activ-

ity. The experimental approach represented in Fig 1A was described elsewhere [40] and is

briefly summarized here. One healthy male participant (age: 26 yr; height: 168 cm; body

weight: 52 kg) volunteered to participate in the experimental session of the study. The partici-

pant sat on a massage table with the hips flexed at 30˚, 0˚ being the hip neutral position, and

his knees fully extended and strapped to the massage table to avoid any knee and hip motion

and co-contraction of the thigh muscles during the ankle dorsiflexion. The ankle torque signals

T(t) were recorded with a load cell (CCT Transducer s.a.s, Turin, Italy) connected in-series to

the pedal of a commercial dynamometer (OT Bioelettronica, Turin, Italy), to which the partici-

pant’s foot was fixed at 30˚ in the plantarflexion direction, 0˚ being the foot perpendicular to

the shank. The effects of gravity, including the rig weight, were cancelled by removing the ini-

tial measured offset during the experiments. After registering the participant’s maximum vol-

untary contraction (MVC) in dorsiflexion, the participant performed two trapezoidal

isometric contractions at 30% and 50% MVC with 120 s of rest in between, consisting of linear

ramps up and down performed at 5%/s and a plateau maintained for 20 s and 15 s at 30% and

50% MVC, respectively.
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To derive subject-specific motoneuronal controls to the neuromuscular model, HDEMG

signals were recorded over the TA muscle during a first experimental session with a total of

256 EMG electrodes (Fig 1B), distributed between four rectangular grids of 64 electrodes, with

4 mm interelectrode distance covering 36 cm2 of the muscle surface (10 cm x 3.6 cm; OT Bioe-

lettronica). HDEMG and force signals were recorded using the same acquisition system

(EMG-Quattrocento; OT Bioelettronica) with a sampling frequency of 2,048 Hz. As previously

described [40], the 256-electrode grid was downsampled by successively discarding rows and

columns of electrodes and artificially generating two new grids of lower electrode density (Fig

1B). The two grids covered the same muscle area with interelectrode distance of 8 mm and 12

mm, involving 64 and 36 electrodes, respectively. After visual inspection and band-pass filter-

ing, the HDEMG signals recorded with the three grids were decomposed into MUs spike trains

Fig 1. Description of the steps involved in the forward prediction and validation of the TA muscle force during isometric contractions using the

developed subject-specific MN-driven neuromuscular model. During trapezoidal isometric ankle dorsiflexions (A), HDEMG signals were recorded from the

TA muscle with a grid of 256 EMG electrodes, built with four grids of 64 electrodes (B), which was artificially downsampled into two grids of lower electrode

density. Using convolutive blind-source separation, the HDEMG signals were decomposed into Nr identified motor unit spike trains (C), from which the

discharge activity of the complete MU pool was inferred and reconstructed (D) [41]. The experimental and reconstructed populations of spike trains spi(t) were

validated for their accuracy in estimating the normalized effective neural drive DðtÞ to muscle (E). The MN-driven neuromuscular model developed in this

study (F), consists of a collection of in-parallel Hill-type MU Force Generators (FGs), each including a Neuromechanical Element (NE) and a Contractile

Element (CE), that collectively generate the whole TA muscle force FM. FM was predicted (G) from the experimental spi(t) trains in a blind approach (blue

dotted lines), after location of the identified MUs into the MU pool (green dashed lines), and from the completely reconstructed population of spike trains

(solid red lines). The neuromuscular model was scaled with subject-specific muscle-tendon properties derived from a subject-specific MSK model (I), obtained

from segmented MRI scans (H). The predicted TA force FM
Nr;1
; FM

Nr;2
, or FM

N , depending on the type of neural control, was finally validated (G) against the

experimental TA force FTA (J). FTA was estimated from the recorded ankle torque T and the estimated co-activity of the TA’s agonist and antagonist muscles

crossing the ankle joint.

https://doi.org/10.1371/journal.pcbi.1011606.g001

PLOS COMPUTATIONAL BIOLOGY Motoneuron-driven muscle modelling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011606 December 7, 2023 5 / 39

https://doi.org/10.1371/journal.pcbi.1011606.g001
https://doi.org/10.1371/journal.pcbi.1011606


using convolutive blind-source separation, as previously described [39]. After the automatic

identification of the MUs duplicates were automatically removed according to a threshold of

30% of discharge times in common between identified spike trains [40], and all the MUs spike

trains were visually checked for false positives and false negatives [11]. Only the MUs which

exhibited a pulse-to-noise ratio > 28 dB were retained for further analysis. The final Nr spike

trains spi(t) identified experimentally (Fig 1C) were stored as binary vectors of zeros and ones

identifying the sample times when a discharge occurred. The ankle torques Tth at which the Nr

MUs were recruited, also called torque recruitment thresholds in the following, were calculated

as the average of the recorded T values over a 10 ms range centred around the MUs’ first iden-

tified discharge time. In the following, the Nr MUs identified experimentally were ranked in

the ascending order of measured recruitment torques Tth
i with the index i2⟦1; Nr⟧. According

to the Henneman’s size principle [3,4], these MUs were therefore also ranked in the same

order of current recruitment threshold Ith, maximum isometric forces f MU
0

, and innervation

ratios IR according to Eq 1.

8j; k 2 ⟦1;Nr⟧; j < k()IthðjÞ < IthðkÞ()TthðjÞ < TthðkÞ

()f MU
0
ðjÞ < f MU

0
ðkÞ()IRðjÞ < IRðkÞ

ð1Þ

In a second session where the isometric contractions were repeated following the same pro-

tocol, bEMG signals were recorded from the pair of agonist extensor digitorum longus (EDL)

and extensor hallucis longus (EHL) muscles, and from the antagonist Gastrocnemius Medialis

(GM) and Lateralis (GL), and Soleus (SOL) muscles with adhesive bipolar electrodes (OT Bioe-

lettronica). During this second session, the participant additionally produced two MVCs in

plantarflexion. The bEMG signals were band-pass filtered (10–450 Hz), full-wave rectified,

and then low-pass filtered (2 Hz) [22], before the resulting envelopes were normalized with

respect to the peak processed EMG values obtained in the MVC trials.

2.2. MRI scans, subject-specific MSK quantities, and experimental force estimation.

To develop a subject-specific model of the MSK system to couple with the neuromuscular

model, a 3D T1-weighted VIBE (volumetric interpolated breath-hold examination) sequence

was used to acquire high resolution images (0.45 x 0.45 mm pixel size, 1 mm slice thickness

and increment) from the knee joint to mid-foot of the participant’s dominant leg. The

sequence consisted in three blocks with 50 mm overlap, during which the participant was

asked not to move to facilitate a successful merging of the adjacent blocks.

The volumetric shapes of the tibia, fibula, and foot bones, and of the TA muscle belly and

tendon were carefully identified by manual segmentation (Fig 1H) using ITK-SNAP [44] and

an anatomical atlas as support [45]. Slices of the agonist EDL and EHL and antagonist SOL,

GM, and GL muscle bellies were segmented at regular intervals along the tibial length so that

their centroidal lines of action could be outlined. All the main tendons crossing the ankle joint

could be clearly identified and were fully segmented. An expert radiologist confirmed the accu-

racy of the segmentation. The segmented shapes were manually adjusted on the transversal

plane to avoid inconsistency of the muscle geometry in correspondence of the MRI sequence

blocks using Netfabb (https://www.autodesk.com/products/netfabb/) and Meshlab [46]. The

TA muscle volume VM computed from the segmentation was found consistent with the rela-

tionships between anthropometry and muscle volumes proposed in [47] from a cohort of seg-

mented MRI scans. Therefore, the volume VM of the EDL, EHL, SOL, GM, GL muscle bellies

was estimated with the volume-height-mass relationship provided in the supplementary mate-

rial of [47].

A subject-specific skeletal model of the ankle joint compatible with OpenSim (version 4.4)

[48,49] was automatically generated from the segmented bone volumes (Fig 1I) using the
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open-source automated toolbox STAPLE [50]. With this approach, the ankle joint was mod-

elled as a hinge joint, the axis of rotation of which was personalised based on the shape of the

articular surfaces of the segmented talus bone. Using another automated approach [51], the

centroidal line of action of TA was automatically computed from the segmented muscle geom-

etry. Similarly, the centroidal lines of action for EDL, EHL, SOL, GM, and GL were manually

outlined from the segmented muscle slices. The muscle tendons paths were manually defined

in NMSBuilder [52] with an approach previously proposed [53] that uses the segmented ten-

dons as reference.

To reproduce the experimental conditions, the plantarflexion angle of the final subject-spe-

cific MSK model was set to 30˚. At this angle, the subject-specific muscle-tendon length lMT of

the six muscles and their moment arm L with respect to the ankle joint were computed using

OpenSim. The subject-muscle-specific optimal length lM
0

and the tendon slack length lTs of the

six muscles were estimated from the muscle-specific values lM
0;Raj and lTs;Raj proposed in a generic

published model [54], which were scaled with Eq 2 by maintaining their ratio with respect to

the entire musculotendon lengths lMT
Raj and lMT in the neutral ankle position.

lM
0
¼

lMT

lMT
Raj

� lM
0;Raj

lTs ¼
lMT

lMT
Raj

� lTs;Raj

ð2Þ

8
>>><

>>>:

Considering a specific tetanic tension of σ = 60 N/cm2 [54], the subject-specific maximum

isometric force FM
0

of the six muscles was obtained from the known muscle volumes VM with

Eq 3.

FM
0
¼

VM

lM
0

� s ð3Þ

Combining these subject-muscle-specific properties with the bEMG signals recorded from

the co-contracting flexor muscles during the second experimental session (Fig 1A), the experi-

mental force FTA(t) developed by the TA during the first experimental session was inferred

(Fig 1J) from the measured experimental ankle torque T(t) with Eq 4. In Eq 4, LTA is the

moment arm the TA tendon makes with the ankle joint, and ΔT(T) relates the level of mea-

sured ankle torque T(t) to the algebraic amount of ankle torque ΔT taken by the group of ago-

nist EHL and EDL and antagonist SOL, GM, and GL muscles. The continuous ΔT(T)

relationship was obtained by trendline fitting the (T; ΔT) cloud of points measured during the

second experimental session. Details on the calculation of ΔT(T) are provided in S1 Text (Sec-

tion 1).

FTA tð Þ N½ � ¼
TðtÞ � DTðTðtÞÞ

LTA
ð4Þ

3. Generic properties of the MU pool in the human TA muscle

From an extensive review of the experimental human TA literature performed elsewhere [41],

it was assumed that a typical adult TA muscle included Ntot
f = 200,000 muscle fibres gathered

into N = 400 MUs. This review also returned that the TA MU torque recruitment thresholds

Tth, expressed in percentage of the maximum recorded torque (% MVC), followed the generic

linear-exponential continuous distribution in Eq 5 and displayed in Fig 2A. In Eq 5, j is an

integer identifying the jth MU in the entire pool ranked in the ascending order of MU torque
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recruitment thresholds.

Tth jð Þ ¼ 0:50 � 58:12 �
j
N
þ 120

j
Nð Þ

1:83
� �

; j 2 ⟦1;N⟧ ð5Þ

The Nr MUs identified in the experimental trials were ranked with the index i (i2⟦1; Nr⟧,
with Nr<N) in the ascending order of measured Tth

i . Using the Tth(j) distribution in Eq 5, these

experimental MUs were mapped into the complete Tth-ranked pool of 400 MUs, where they

were assigned a new index Ni (Ni2⟦1; N⟧), as shown in Eq 6. To do so, the equation Tth
i ¼

TthðNiÞ was solved for the unknown Ni for the Nr experimental MUs.

i 2 ⟦1;Nr⟧! Ni 2 ⟦1;N⟧ ð6Þ

Never measured in human muscles in vivo, the continuous distribution of the normalized

MU maximum isometric forces f MU
0 ðjÞ in the TA was here approximated from a continuous

distribution f twðjÞ of MU twitch force normalized to the muscle maximum isometric force FM
0

.

Fig 2. In a generic human TA muscle, distributions in the pool of N = 400 MUs of the MU torque recruitment thresholds Tth (A), MU maximum isometric

forces f MU
0

(B), MU twitch forces f tw normalized to the muscle maximum isometric force FM
0

and expressed in percentage (C), and MU innervation ratios IR
(D), calculated with Eq 5 to Eq 9. (A) As identified by the dashed line, 231 TA MUs, i.e., 58% of the MU pool is recruited below 20% MVC, which is consistent

with previous conclusions [2]. (B) The normalized distribution in Eq 8 was scaled to Newtons with the subject-specific maximum isometric force of the TA FM
0

derived previously. From the subject-specific moment arm of the TA derived previously, TA MUs are expected to produce 20 to 230�1−3 Nm twitch torques

with this distribution, which is consistent with the measurements reported in [5]. (D) As identified by the dashed line, the 359 smallest TA MUs gather 72% of

the fibre constituting the muscle and are assumed slow-type MUs. According to Eq 1, the MUs are ranked in the same ascending order of Fth, f MU
0
; f tw ; and IR.

https://doi.org/10.1371/journal.pcbi.1011606.g002
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Processing published experimental TA data [5,55,56] with the same method as used for Eq 5,

Eq 7 was obtained. In Eq 7, a 16.3-fold range was taken for the f tw values, consistently with Fig

3A in [5] for a single subject, as opposed to a 250-fold range proposed in a recent review [57]

that relied on the same figure, but considering unnormalized merged data from ten subjects.

f tw jð Þ ¼ 6:07 � 4:52 �
j
N
þ 11:96

j
Nð Þ

4:66
� �

; j 2 ⟦1;N⟧ ð7Þ

The normalized f MU
0 ðjÞ distribution in Eq 8 was then estimated by scaling the coefficients in

Eq 7 to obtain a 11-fold range for the f MU
0 values in the TA MU pool, to account for the differ-

ent twitch-tetanus ratios obtained between slow and fast fibres in the rodent literature [58]. In

Eq 8,
PN

j¼1
f MU
0 ðjÞ ¼ 1. The f MU

0
ðjÞ distribution in Newtons, displayed in Fig 2B, is finally

obtained by multiplying Eq 8 by the FM
0

value obtained with Eq 3.

f MU
0 jð Þ ¼ 7:86 � 10� 4 � 3:00 �

j
N
þ 8:20

j
Nð Þ

5:29
� �

; j 2 ⟦1;N⟧ ð8Þ

Human muscles also display a continuous distribution of slow-to-fast MU types in the MU

pool. It is known that, in a human TA of N = 400 MUs, 72% of the Ntot
f = 200,000 TA fibres are

Type 1 ‘slow’ fibres [59]. Considering that the innervation ratio IR of a MU is roughly propor-

tional to the amplitude of the MU force twitch f tw [4], Eq 9 gives the continuous distribution

of IR, displayed in Fig 2D.

IR jð Þ ¼
f twðjÞ

P400

k¼1
f twðkÞ

� Ntot
f ; j 2 ⟦1;N⟧ ð9Þ

Although it is debated [4] whether the MU type, currently determined by the MU twitch

force f tw, is also correlated or not to the MU size, i.e., to the MU Force recruitment threshold

in humans, it was here assumed that the small low-threshold MUs were of the ‘slow’ type, and

the large high-threshold MUs of the ‘fast’ type. Therefore, from the cumulative summation of

the MU IRs, the 359 lowest-threshold MUs that have the lowest innervation ratios were consid-

ered to account for 72% of Ntot
f and to be of the ‘slow’ type in the following.

4. Development of a MN-driven neuromuscular model described as a

population of Hill-type MU actuators

4.1. Rheological description and preliminary simplifications. The MN-driven neuro-

muscular model developed in this study (Fig 1F) consists of a population of n in-parallel FGs,

that describe the force-generating activity of the MU pool with mathematical models of the

individual MU’s force-generating dynamics (Fig 3). n is the length of the vector of available

input spike trains controlling the model and takes the values Nr or N in this study. Using step-

by-step simplifications justified in detail in S1 Text (Section 2), {1} the TA tendon was assumed

rigid (tendon length set to the tendon slack length lTs [60]) and the in-series elastic element

(SEE, in grey in Fig 1F) and its passive force dynamics were neglected, {2} all the MU actuators

were assigned the same optimal length, set as the muscle’s lM
0

, and the same normalized con-

stant length, set as l ¼ 1:16 according the subject-specific MSK measurements, {3} the Force-

Velocity properties of the MUs were therefore neglected, and {4} the passive force of the CE

was found negligible, so that the passive elastic element (PEE, in grey in Fig 1F) was neglected.

With these assumptions, and after normalizing the force FM and MU length l state variables to

the FM
0

and lM
0

parameters and reporting them with a bar, as described in S1 Text (Section 2),
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the whole muscle dynamics in isometric contractions were described with Eq 10. In Eq 10, at

time t and for a population of n modelled MUs, FM is the whole muscle force in Newtons, f MU
k

is the normalized force developed by the kth MU (k2⟦1; n⟧), and f MU
k;0 is the MU-specific nor-

malized maximum isometric force that the kth MU can develop. In Eq 10, the MU active states

akðlÞ and Force-Length (FL) scaling factors fFLðak; lÞ were derived from the input spike trains

spk(t) and the common MU length l with six cascading mathematical models of the MU’s exci-

tation, activation, and contraction dynamics summarized in Fig 3. Finally, because the MUs

build force upon the discrete activity of their IRk ¼ Ntot
f � f MU

k;0 fibres that receive the same MN

action potential with a random time delay αc, the calculation of the normalized MU forces f MU
k

in Eq 10 was updated to FMU
k to account for this non-simultaneous twitch activity, which acts

as a low-pass filter.

FMðtÞ ¼ FM
0
� FMðtÞ

FMðtÞ ¼
Xn

k¼1

FMU
k ðtÞ

FMU
k tð Þ ¼

1

IRk
�
XIRk

c¼0

f MU
k ðt þ acÞ; ac 2 �

Dt
2

;
Dt
2

� �

f MU
k ðtÞ ¼ f MU

k;0 � ðakðt; lÞ � fFLðt; ak; lÞÞ

l ¼ 1:16 ð10Þ

Fig 3. For a representative motor unit (MU) of the pool of Hill-type MUs in Fig 1F, description of the cascading dynamics that transform an input spike

train sp(t) into a normalized MU force f MU
ðtÞ. The time-history of f MU ðtÞ is obtained with Eq 10 by product of the scaling factor fFL(t), the MU active state a

(t), and the MU normalized isometric force f MU
0 . fFL is obtained with a normalized FL relationship (Fig 4A) that entirely describes the Contraction Dynamics of

the Contractile Element (CE) in isometric conditions. The Neuromechanical Element (NE) is controlled by the binary spike train sp(t), which predicts during

the MU’s Excitation Dynamics the trains of motoneuron (MN) and muscle Unit (mU) Action Potentials (APs) in Volts (Fig 4B), identified with the e(t) and u
(t) state variables, respectively. The discharge activity u(t) triggers the MU’s activation dynamics by successively controlling, with the c(t), P(t) and a(t) state

variables, the concentration in Mols of free calcium ions ([Ca2+]) in the sarcoplasm (Fig 4C–4F), the concentration in Mols of the Calcium-Troponin complex

(CaTn) in the sarcomeres, and the MU active state a. The interplay between the MU’s NE and CE is modelled with a nonlinear dependency (dashed arrows) of

the MU’s Activation and Contraction Dynamics to the MU’s length lðtÞ and activation a(t), respectively. The MU’s force-generating capacities also depend on

some MU-specific properties (dotted lines), including its type (slow/fast) and its normalized isometric force f MU
0 .

https://doi.org/10.1371/journal.pcbi.1011606.g003
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For improved readability, the subscript k was discarded in the following of the Methods sec-

tion to refer to the dynamics of a representative MU of the pool.

4.2. Contractile element and contraction dynamics—MU force-length scaling factor

fFL. The MU fFL scaling factor in Eq 10 was defined with a normalized FL relationship and

entirely describes the MU’s contraction dynamics (Fig 3). To the authors’ knowledge, no FL

relationship was measured at the MU scale in humans. Despite limitations related to the multi-

scale approach [17], a human Force–Sarcomere Length relationship obtained from measure-

ments in skinned human fibres [7] was here considered the most suitable option. The

sarcomere-to-MU multiscale assumption is here acceptable as muscles modelled as a scaled

sarcomere for their normalized isometric FL properties can provide accurate Hill-type model

predictions for mammalian whole muscles [61]. Other available solutions were considered less

appropriate, such as torque-length and torque-angle measurements in humans which are

affected by muscle-tendon dynamics and muscle co-contraction, or FL measurements from

fibre bundles in cat, rabbit and rat specimens, that have different optimal sarcomere lengths

than humans [62]. Rather than a piecewise linear relationship consistent with the sliding fila-

ment theory at the sarcomere scale [63], a gaussian mathematical description in Eq 11 was fit-

ted to the FL experimental data (red curve and black dots in Fig 4A) to account for the

smoother relationship with larger plateau observed at larger scales [36,64]. For higher physio-

logical credibility and improved prediction accuracy [65], the MU FL relationships were made

nonlinearly dependent to the MU activation states a(t) [20] in Eq 11 at submaximal contrac-

tion levels (dashed lines in Fig 4A).

fFL l; a
� �

¼ exp �
l � l0ðaÞ

0:45

� �2
 !

l0ðaÞ ¼ 0:15ð1 � aÞ þ 1 ð11Þ

4.3. MU excitation dynamics. Dynamics of MN AP elicitation. The time-history of the

MU active state a(t) in Eq 10 was inferred by first transforming the input binary train of MN

spikes sp(t) into a train e(t) of MN action potentials (APs) (Fig 3). The MN APs were phenom-

enologically modelled with Eq 12 as analytical sine waves [28] of half period T
2

and voltage

amplitude Ve. The waves are triggered at the discharge times ti when sp(t = ti) = 1, while the

MN membrane remains at equilibrium, i.e., e(t) = 0 for t=2 ti; ti þ T
2

� �
. The individual AP shapes

recorded in the literature of anesthetized and dissected cats previously reviewed [17] were fit-

ted with Eq 12, yielding Ve = 90mV and T = 1.4ms (Table 1). T is here shorter (Fig 4B) than the

amphibian T = 2ms [66] used in a previous neuromuscular model [28].

spðt ¼ tiÞ ¼ 1

e tð Þ ¼ Vesin
2p

T
t � tið Þ

� �

for ti � t � ti þ
T
2

eðtÞ ¼ 0 otherwise

ð12Þ

8
>>><

>>>:

Dynamics of fibre AP elicitation. The train of the fibre APs (u(t) in Fig 3) was modelled in

Eq 13 as the 2nd-order response [28] to the train e(t) of MN APs. In Eq 13, when the fibre

receives an isolated MN discharge, a1 determines the peak-to-peak amplitude Ap of the fibre

AP, while a2 and a3 respectively determine its time-to-peak duration ttp and exponential decay

time constant τd. The fibre APs simulated with the tuned ai coefficients in Table 1 matched
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typical experimental cat values for Ap (77 mV), ttp (0.6 ms) and τd (0.6 ms) [67–77], and were

five times shorter (Fig 4B) than previously proposed for amphibians at low temperature [28].

d2u
dt2
¼ a1e tð Þ � a2uþ a3

du
dt

� �

ð13Þ

4.4. MU activation dynamics. Dynamics of free calcium concentration. The MU excitation

state u(t) was modelled to control the level c(t) of calcium concentration [Ca2+] in the MU sar-

coplasm (Fig 3) with the 2nd-order ordinary differential equation (ODE) in Eq 14, although

alternative reviewed approaches were previously proposed [17]. In Eq 14, when the fibre

receives an isolated fibre AP, b1 determines the peak-to-peak amplitude Ac of the [Ca2+]

twitch, and b2 and b3 its time-to-peak duration ttp and decay time constant τd. The equation

proposed in [28] was modified to introduce the length-dependent scaling factors f1ðlÞ and

f2ðlÞ, defined in Eq 15 and Eq 16, that respectively make Ac and τd nonlinearly dependent to

the normalized MU length l. The procedure taken to tune the ci coefficients and derive the fiðlÞ
scaling factors to match available experimental data for amphibian and mammal slow and fast

Fig 4. Contraction, Excitation, and Activation Dynamics (Fig 3) of the slow and fast motor units (MUs) constituting the

MN-driven neuromuscular model. (A) Normalized FL relationship describing the scaling factor fFL. The experimental data

points (dots), obtained from human skinned fibres [7], were fitted (solid red curve) with Eq 11. fFL is nonlinearly dependent

on the MU active state a at submaximal levels (dashed lines) [20], where the apparent optimal MU length lM
0

increases by up

to 15% (dotted line). (B) Time-history of the MN (black curves) and fibre (blue curves) normalized APs simulated with Eq 12

and Eq 13, respectively. The solid lines were obtained after tuning the coefficients in those equations (Table 1) to fit cat

experimental data, while the dotted lines, reported for comparison, were obtained from simulations using the original

amphibian data as in Hatze’s work [28]. (C-F) Time-course of the free calcium concentration c in μM for slow (C, E) and fast

(D, F) MUs. The calcium transients simulated after tuning the coefficients in Eq 14 to match experimental rodent data

(Table 1) are displayed with solid black lines. The simulated transients were validated against other experimental [78,79]

traces (green dotted lines) at 67Hz (C) and 125Hz (D) stimulation, respectively. In (E, F), the simulated transients were

compared against those proposed in Hatze’s work [28] for amphibians (red dotted curves). (G, H) Relationship between the

amplitude of the simulated active state a and the MN firing frequency in Hz. (G): for slow-type MUs, time-history of the

active state a(t) with increasing MN firing frequency at 2 (blue), 10 (orange), 15 (green), 20 (red), 25 (purple), 30 (brown)

and 50 Hz (pink) where the activation twitches fuse to reach 1.0 at steady-state. (H) Activation-Frequency relationship in the

steady-state. Simulations for slow and fast-type MUs are displayed in blue triangles and red symbols respectively.

Experimental torque-frequency relationships obtained from FDL (dotted trace, [87]), EDB (solid trace, [86]) and thenar

(dashed trace, [85]) muscle fibres are superimposed. (I, J) The bottom row displays the time-course of the five state variables

describing the dynamics of the Neuromechanical Element when the MU receives a unique nerve impulse (I) and a train of

nerve impulses at 30Hz (J). Black and blue solid curves: trains of MN and muscle unit action potentials e(t) and u(t). Green

dashed curve: free calcium concentration c(t). Red dotted curve: CaTn concentration P(t). Purple solid curve: MU active state

a(t). Except for the MU active state, the quantities were normalized to their maximum physiological values for visual

purposes.

https://doi.org/10.1371/journal.pcbi.1011606.g004

Table 1. Coefficients scaling Eq 12 to Eq 18 that describe the MUs’ Excitation and Activation dynamics for both slow-type and fast-type MUs. Those coefficients

were tuned to match contemporary experimental data on mammals at body temperature.

slow fast Unit slow fast Unit

Eq 12 T 1.4 s Eq 17 c1 6�1012 1�1012 M−2�s−1

Ve 90 V c2 21 41 s−1

Eq 13 a1 9�107 s−2 P0 1.7�10−4 3.8�10−4 M
a2 5�107 s−2 Eq 18 d1 1.00�105 M−1�s−1

a3 2�104 s−1 d2 0.024 s−1

Eq 14 b1 0.4 0.9 M�V−1�s−2 d3 270 M−1�s−1

b2 1.5�105 4.3�105 s−2

b3 2.5�103 2.4�103 s−1

https://doi.org/10.1371/journal.pcbi.1011606.t001
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fibres in vitro is reported in S1 Text (Section 3).

d2c
dt2
¼ b1 � u tð Þ �

1

f1ðlÞ
b2 � f2ðlÞ � cþ b3 �

dc
dt

� �

ð14Þ

f1ðlÞ ¼ 0:8 if l � 1:0

f1ðlÞ ¼ 0:8þ 1:33ðl � 1:0Þ if l � 1:15

f1ðlÞ ¼ 1:0 if l � 1:30

f1ðlÞ ¼ 1:0 � 0:6ðl � 1:3Þ if l > 1:30

ð15Þ

8
>>>><

>>>>:

f2ðlÞ ¼ 1:0 if l � 1:15

f2ðlÞ ¼ 1:0 � 0:4 � ðl � 1:15Þ if l > 1:15
ð16Þ

(

As reported in Fig 4D for fast fibres, the calcium transients simulated with the tuned bi coef-

ficients (Table 1) compared well with the experimental trace at 125 Hz stimulation from [78]

once steady-state was reached. The calcium twitches at steady-state returned the expected ttp =

2.0ms, τd = 6.6ms, and Ac = 20μM with less than 5% difference. As Eq 14 does not account for

some physiological mechanisms, such as receptor saturation and the CASQ-Traidin-RYR1

action, the typically larger Ac and τd of the first experimental [Ca2+] twitch [79] were underes-

timated. Experimental data for slow type rodent fibres were available in [79] at 16˚C, but not

at 35˚C body temperature. In [78], Ac, ttp and τd respectively increased by 26%, remained con-

stant, and decreased by 56% when increasing the temperature from 16˚C to 35˚C for fast-type

fibres. The Ac, ttp and τd coefficients reported at 16˚C [79] were scaled to 35˚C using the same

scaling factors. As shown in Fig 4C, the simulated calcium transients at 35˚C for slow fibres

under 67Hz stimulation compared well with the scaled experimental data with similar ttp, and

τd of 19 and 44ms and an average underestimation of Ac of 20%. The calcium twitches simu-

lated at optimal fibre length with Eq 14 and the parameter values in Table 1 have ten times

shorter half-widths and 2.3 times lower amplitudes (Fig 4E and 4F) than the twitches obtained

with Hatze’s model [28], which was calibrated on frog data at 9˚C.

Dynamics of Calcium-Troponin concentration. The sarcomeric calcium-troponin (CaTn)

binding-unbinding process was described with Eq 17 to predict from the free calcium concen-

tration c the time-course of the concentration P of the Ca-Tn structures in the sarcomeres

(Fig 3). The initial description [80] was extended to account for the nonlinear length-depen-

dency of the CaTn transients with the f3;4;5ðlÞ scaling factors. In Eq 17, P0 is the total troponin

concentration in the myoplasm, and c1, c2 are respectively the forward and backward reaction

rates of the Ca-Tn binding-unbinding process. When triggered by a unique calcium twitch,
P0

f4ðlÞ

scales the peak-to-peak amplitude At of the CaTn twitch, and
c1

f3ðlÞ
and

c2
f5ðlÞ

determine its time-

to-peak ttp and decay constant τd. The P0, c1, c2 coefficients, originally calibrated to match

experimental force data with a neuromuscular model [80], were here tuned to match contem-

porary experimental data [79,81] following a method described in S1 Text (Section 4).

dP
dt
¼

c1

f3ðlÞ
�

P0

f4ðlÞ
� P

 !

� c2 �
c2

f5ðlÞ
� P ð17Þ

The tuned P0, c1, c2 coefficients reported in Table 1, with which the experimental At, ttp, and

τd quantities could be reproduced with Eq 17 with less than 5% error at all experimentally
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measured lengths and for both fibre types, are strongly consistent with the typical coefficient

values reported in the cited literature c1 = 3.6�1012 M−2�s−1, c2 = 100 s−1, and P0 = 2.2�10−4 M.

Dynamics of MU activation. The MU active state can be defined as the normalized instanta-

neous ratio of formed cross-bridges in the force-generating state in a population of myosin

heads from a representative sarcomere [17]. Although semi-phenomenological models of

multi-state cross-bridge attachments [82] are available, a phenomenological model [83] was

used to infer the MU active state a from the CaTn concentration P (Fig 3) to reduce the

computational cost, the number of parameters to tune, and the overall model complexity. In

Eq 18, d1, d2 and d3 respectively control the amplitude Aa of the activation twitch, its time-to-

peak ttp and its time of half-relaxation t0.5, and were tuned to match, lacking more suitable

experimental measurements in the literature, the normalized experimental twitch torque or

force recorded in individual human MUs in the TA muscle [5,55,56] following a method

described in S1 Text (Section 5).

da
dt
¼ d1 � P �

a
d2 þ d3 � P

ð18Þ

Because of the MU type-specificity of the [Ca2+] and CaTn dynamics modelled previously,

a unique set of values was obtained for the tuned d1, d2 and d3 coefficients (Table 1) for both

slow and fast MUs, with less than 7% error in reproducing the experimental At, ttp and t0.5

quantities when simulating single activation twitches for both slow and fast MUs.

When receiving artificial excitatory spike trains at 2, 10, 15, 20, 25, 30, and 50 Hz, the NE of

a slow-type MU at optimal length l ¼ 1 produced the activation traces in Fig 4G. As supported

by previous findings in mammals [2], the simulated activation twitches fused for MN firing

frequencies above 2Hz and the initial rate of increase of the MU active state was independent

from discharge frequency, while the 0-to-0.8 rate of increase increased with higher firing fre-

quencies from 3.5/s at 15Hz and 5.8/s at 50Hz. Consistent with previous findings [84], every

new elicited activation twitch increased the MU activation level at steady-state by 100% at 5Hz,

and only by 1% at 50Hz, following a negative exponential tendency with increasing MN dis-

charge frequency.

Fig 4H displays the simulated steady-state activation-frequency relationship for both slow-

type MUs (blue triangles) and fast-type MUs (red symbols). Despite obvious limitations but

lacking experimental measurements of human activation states in the literature, those results

were compared to the literature of experimental human muscle force and torque twitches. In

Fig 4H, simulated twitch-tetanus ratios of 0.30 and 0.19 were obtained at steady-state for the

simulated slow and fast-type MU active states, respectively. These ratios are of the same order

of magnitude as those experimentally obtained for human hand muscles (range 0.1–0.3, [85–

87]). The activation-frequency results for the simulated slow-type MUs compared relatively

well with the findings from these experimental studies with a maximum difference of 30% at

15Hz with the extensor digitorum brevis (EDB) muscle data [86] and less than 10% at all phys-

iological frequencies above 5Hz with the data obtained from thenar muscles [85]. Yet, the sim-

ulated rate of increase in a with firing frequency largely underestimated the available

experimental data for the fast-type MUs with up to 200% difference. The lack of available

experimental human data of fast MU twitches prevents for now from deriving more advanced

conclusions on the accuracy of the simulated MU active states.

4.5. Solving the dynamics of the MU pool. Working at fixed MU length l ¼ 1:16 for

each of the n modelled MUs, the cascading ODEs in Eq 12 to Eq 18, that describe the MU-spe-

cific excitation and activation dynamics, were first numerically solved at each time step, yield-

ing a vector of MU active state time-histories ai(t). Fig 4I and 4J displays the time-histories of
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the five state variables that describe the NE’s activity at 1 and 30 Hz, respectively. An estima-

tion of the MU normalized forces and of the whole muscle force was then obtained with Eq 10.

5. Neural control to the MN-driven neuromuscular model

5.1. Neural controls to the neuromuscular model. In this study, we assessed the MN-

driven neuromuscular model (Fig 1F) with two different types of neural controls, i.e., the

experimental samples of Nr identified spike trains (Fig 1C) and the complete population of N
MU spike trains (Fig 1D) obtained with a MU pool reconstruction method [41]. Both

approaches were tested with the sets of spike trains identified with the three electrode densities

(Fig 1B) at both contraction intensities up to 30% and 50% MVC.

When directly inputting the Nr experimental spike trains to the neuromuscular model, the

Nr MUs were assigned with Eq 19 representative maximum isometric forces f MU
k;0 , necessary

parameter in Eq 10, to account for the force-generating capacities of their neighbouring MUs,

in the sense of their recruitment thresholds, that were not identified experimentally. The mus-

cle force FM
Nr ;1
ðtÞ (blue dotted line in Fig 1G) was first predicted when the Nr identified MUs

were assumed to be homogeneously spread across the Tth-ranked MU pool, in which case the

f MU
0
ðiÞ distribution in Eq 8 was evenly split in Nr domains along the x-axis (Fig 2B). A second

TA force FM
Nr ;2
ðtÞ (green dashed line in Fig 1G) was predicted after assigning to the Nr MUs

representative maximum forces with Eq 19 after a physiological mapping of these MUs to the

complete Tth-ranked MU pool using Eq 6. For example, when Nr = 30 MUs are identified at

30% MVC, where Na = 300 MUs are supposed to be recruited (Eq 5), the 9th, 10th, and 11th

identified MUs in the Tth-ranked experimental sample are mapped into the complete Tth-

ranked pool to the 90th, 100th, and 110th MUs with the first method (considering even steps of

b
Na
Nr
c ¼ b300

30
c ¼ 10 MUs) and to the 90th, 120th, and 180th MUs with the second method (using

Eq 6). The 10th identified MU represents 10 MUs and produces the combined force f MU
0;10
¼

P105

j¼96
f MU
0
ðjÞ ¼ 13 N with the first method, while it represents 45 surrounding MUs and gen-

erates f MU
0;10
¼
P150

j¼106
f MU
0
ðjÞ ¼ 71 N with the second method.

i! Ni ¼ i � b
Na

Nr
c; or from MU mapping

� �

; i 2 ⟦1;Nr⟧;Ni 2 ⟦1;N⟧

Ni;1 ¼ b
Ni� 1 þ Ni

2
c þ 1

Ni;2 ¼ b
Ni þ Niþ1

2
c

f MU
0;i ¼

XNi;2

j¼Ni;1

f MU
0
ðjÞ ð19Þ

The TA force FM
N ðtÞ (red solid line in Fig 1G) was predicted from a comprehensive cohort

of N = 400 simulated spike trains, that described the discharge activity of a completely recon-

structed MU population (red solid line in Fig 1E). The complete population of N MUs was

obtained from a validated computational method [41] that maps with Eq 6 the Nr MUs into

the MU pool and infers from the Nr identified spike trains a continuous distribution of the

MN electrophysiological properties across the MU pool to physiologically scale a cohort of

N = 400 models of motoneurons that predicts the discharge activity of the N−Nr MUs that

PLOS COMPUTATIONAL BIOLOGY Motoneuron-driven muscle modelling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011606 December 7, 2023 16 / 39

https://doi.org/10.1371/journal.pcbi.1011606


were not identified experimentally. The implementation of the method is publicly available at

https://github.com/ArnaultCAILLET/Caillet-et-al-2022-PLOS_Comput_Biol. Here, the distri-

bution of MU maximum forces f MU
0
ðiÞ in Eq 8 was directly applied to the reconstructed popu-

lation of N MUs.

5.2. Neural drive to muscle and quality of the experimental neural control. Cumulative

spike trains were computed as the temporal binary summation of the pools of spike trains and

were low-pass filtered in the bandwidth [0–4] Hz relevant for force generation [88] to approxi-

mate the effective neural drive to muscle D(t). As suggested for isometric contractions [33], the

normalized effective neural drive DðtÞ was compared for validation against the normalized

experimental TA force FTAðtÞ (black trace in Fig 1E) with calculation of three metrics: the error

in seconds in identifying the onset of the neural drive Δ1, the normalized root-mean-square

error (nRMSE) and the coefficient of determination r2. Of note, FTAðtÞ was obtained by normal-

ization to the average of the FTA(t) values over the plateau of contraction and not to the maxi-

mum registered FTA value to minimize the impact of possible discharge artefacts onto the

interpretation of the nRMSE metric. To discuss the importance of the quality of the experimen-

tal data in deriving a reliable neural control to the MN-driven neuromuscular model developed

in this study, the validation between the DðtÞ and FTAðtÞ traces was performed for both the

pools of Nr experimental and N reconstructed spike trains (blue dotted and plain red traces in

Fig 1E, respectively) derived from the three grids of increasing electrode density (Fig 1B).

6. Validation of the predicted forces

The TA forces FM(t) predicted with the MN-driven neuromuscular model (Fig 1F) were vali-

dated against the experimental TA force FTA(t) (solid black trace in Fig 1G), that was estimated

from the recorded ankle torques T(t) with Eq 4. The FM(t) versus FTA(t) validation was per-

formed with calculation of {1} the error in seconds in identifying the onset Δ1 of generated

force, i.e. when 2% of the max generated force was produced, {2} the experimental force D
F
1

developed after the Δ1 delay, {3} the maximum error (ME) in Newtons, {4} the nRMSE in per-

centage, and {5} r2. The nRMSE was calculated for the complete contraction, the ascending

ramp (nRMSEr1), the plateau (nRMSEp), and the descending ramp (nRMSEr2). Δ1 and D
F
1

assess the delay in predicting the onset of force and only depends on the first discharge time

identified experimentally [41], ME identifies the maximum error in predicting the whole mus-

cle force and is related to the Δ1 and D
F
1

metrics in the regions of low generated force, the

nRMSE metric evaluates the accuracy in predicting the amplitude of the predicted whole mus-

cle force, which mainly relies on both the distribution of MU tetanic forces and the accurate

prediction of the MU active states, and r2 evaluates the time-course of the variation of the mus-

cle force, which mainly relies on the distribution of the MU neuromechanical properties across

the MU pool.

Results

1. Subject-specific MSK quantities and experimental TA force

The subject-specific MSK model (Fig 1I) yielded the subject-muscle-specific properties in

Table 2 for the TA muscle and for its agonist EDL and EHL, and antagonist muscles SOL, GM,

and GL in ankle dorsiflexion. By reapplying with Eq 4 the exponential ΔT(T(t)) relationship

derived from the bEMG and torque recordings obtained during the second experimental ses-

sion to the torque traces T(t) recorded during the first experimental session, the experimental

TA force FTA(t) (solid red traces in Fig 5) was estimated (see S1 Text (Section 1) for details of

the calculation). In the normalized space (bottom row in Fig 5), FTAðtÞ compared well to the
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muscle force that would be computed if the TA alone produced the total recorded ankle torque

T (black dashed traces in Fig 5), with a maximum error� 15%, nRMSE� 7%, and r2� 0.98.

Yet, ignoring the co-contracting activities of the EDL, EHL, SOL, GM, and GL muscles would

Table 2. Summary of the subject-muscle-specific MSK properties of the six flexor muscles when the ankle joint is set to a 30˚ plantarflexion angle. The moment arm

L made by the tendons with the ankle joint and the muscle-tendon lengths lMT were identified by MRI segmentation and measurements in NMSBuilder [52] and OpenSim

[48,49]. The optimal length lM
0

and the tendon slack length lTs were scaled from the generic values reported in [54] with the ratio of generic to subject-specific muscle-tendon

lengths lMT at default 0˚ plantarflexion angle. The muscle maximum isometric force FM
0

was estimated from the muscle volume VM, which was obtained from MRI segmen-

tation for the TA, and from anatomical relationships [47] for the other muscles. The normalized muscle lengths l , at 30˚ angle in ankle plantarflexion and assuming a rigid

tendon, were calculated with Eq S1 in S1 Text (Section 1).

Muscle L[mm] FM
0 ½N� lMT[mm] lM0 ½mm� lTs ½mm� l

TA 25.5 1046 319 68.2 240 1.16

EDL 26.1 403 525 80.5 462 0.78

EHL 25.9 176 487 87.6 382 1.20

SOL 51.1 3822 373 54.1 340 0.60

GM 51.8 2232 447 52.6 411 0.68

GL 52.2 1058 448 62.4 398 0.80

https://doi.org/10.1371/journal.pcbi.1011606.t002

Fig 5. Estimation of the force developed by the TA muscle during the trapezoidal dorsiflexions up to 30% (left) and 50% MVC (right) performed during the

first experimental session. The TA forces (first row: in Newtons, second row: normalized), displayed in solid red traces, were estimated by correcting the

recorded torque T for co-contraction with the relationship in Eq 4 (See S1 Text (Section 1) for details about the calculation). The black dashed traces display the

TA force calculated without considering the co-contraction of surrounding muscles (as if the TA alone produced the entire recorded ankle torque T).

https://doi.org/10.1371/journal.pcbi.1011606.g005
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underestimate the TA force FTA by up to 49 N and 283 N, i.e., 18% and 60% of the maximum

FTA value, at 30% and 50% MVC respectively (upper row in Fig 5).

2. Experimental neural control

For the contractions up to 30% and 50% MVC, 81, 32, and 14 MUs, and 55, 15, and 3 MUs

(Fig 1C) were respectively identified [40] with the EMG grids of 4, 8, and 12 mm interelectrode

distance (Fig 1B). The dataset of three identified MUs was disregarded in the following results

because too few and only high-threshold MUs were identified in this dataset, which therefore

provided a highly inaccurate description of the full spectrum of MU properties and discharge

activity of the real MU pool [41]. The histogram distribution of the identified MUs across the

MU pool according to their recruitment threshold Tth in %MVC is displayed in Fig 6. Impor-

tantly, the denser the EMG grid and the lower the generated force, the more homogeneous the

distribution of the identified MUs across the MU pool [40]. For example, 12% to 20% of the

MUs decoded with the densest grid at 30% MVC were systematically identified in each of the

5% ranges sampling the recruitment range (histogram in Fig 6C). Higher heterogeneity and

lower representation of low-threshold MUs were obtained with shallower grids and at 50%

MVC. Classically, the decomposition algorithms converge towards the large MUs that

Fig 6. For the three grid configurations of increasing electrode density (in columns) and for both contractions up to 30% MVC (first row: A, B, C) and 50%

MVC (second row: D, E), validation against the experimental normalized force trace FTA ðtÞ (solid dark trace) of the normalized effective neural drive to muscle

DðtÞ estimated from the completely reconstructed population of N = 400 MUs (solid red traces) and from the experimental samples of Nr identified MUs

(dotted blue traces). The TA force FTA(t) (Fig 5) was estimated from the recorded ankle torque T with Eq 4. The histogram distributions of the identified MUs

across the recruitment range Tth in %MVC were normalized to the number of MUs identified experimentally.

https://doi.org/10.1371/journal.pcbi.1011606.g006
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contribute most to the EMG signals, while action potentials of the small MUs of lower energy

are masked by the potential of larger units, more of which are recruited at 50% MVC than at

30% MVC. At 30% MVC, increasing the electrode density better samples the action potential

profiles of the low-threshold unmasked MUs across multiple electrodes, enabling their identi-

fication. The normalized effective neural drive to muscle DðtÞ (Fig 1E) was computed with

these cohorts of spike trains and was validated against the experimental normalized TA force

FTAðtÞ (black solid traces in Fig 6) with the three validation metrics reported in Table 3.

The normalized effective neural drive DðtÞ estimated from the experimental samples of Nr

MUs (blue dotted lines in Fig 6) was always better approximated when the electrode density

increased, especially in the regions of low generated forces. For example, at 30% MVC, it was

obtained Δ1 = 0.07 s, nRMSE = 8.0%, and r2 = 0.97 from the 81 discharging MUs identified

with 4 mm interelectrode distance, while the 14 MUs identified with 12 mm interelectrode dis-

tance returned Δ1 = 0.14 s, nRMSE = 17.5%, and r2 = 0.89 (Table 3). The effective neural drive

DðtÞ estimated from the experimental MU samples was always better approximated at 30%

MVC than at 50% MVC (blue dotted traces in upper row versus lower row in Fig 6), with two

to three times lower nRMSE values, and strongly lower Δ1 and higher r2 values, respectively

(Table 3).

Complete populations of N = 400 MNs (Fig 1D) were also reconstructed from the discharge

activity of the Nr identified MNs by estimating the discharge activity of the MUs not identified

experimentally [41]. In this case, the DðtÞ estimated at 30% MVC (solid red lines, upper row,

in Fig 6) was accurately predicted and was unrelated to the quality of the input experimental

samples, with nRMSE<7%, and r2 = 0.98 for the three EMG grid configurations (Table 3). At

50% MVC, the DðtÞ derived from the N MNs (solid red lines, bottom row, in Fig 6) was better

estimated when the MU pool was reconstructed from denser grids of electrodes, with lower

nRMSE and higher r2 values (Table 3). As for the experimental MU samples, DðtÞ estimated

from the N = 400 MUs was better approximated at 30% MVC than at 50% MVC (solid red

traces in upper row versus lower row in Fig 6). At 50% MVC, the reconstructed populations of

discharging MUs returned inaccurate estimations of the onset and ascending ramp of force,

with Δ1>1s, nRMSE>12%, and r2�0.95. Overall, the normalized effective neural drive DðtÞ
was systematically better approximated by the reconstructed pool of N = 400 MUs than by the

experimental samples of Nr identified MUs (solid red versus blue dotted traces in Fig 6) with

lower nRMSE and higher r2 values (Table 3).

Therefore, DðtÞ was best approximated by samples of MU spike trains of identified MUs

that spanned across the whole recruitment range and followed a homogeneous distribution

across the MU pool. Obtaining such representative description of the discharge behaviour of

the real MU pool was possible with EMG signals recorded at 30% MVC with high electrode

Table 3. Validation of the normalized effective neural drive to muscle DðtÞ for both contractions up to 30% and 50% MVC, computed from the spike trains

obtained with the three grid configurations of 4, 8, and 12 mm interelectrode distance that involve 256, 64, and 36 EMG electrodes respectively. The validation was

performed for both the experimental samples of Nr identified MUs, and for the completely reconstructed pool of N MUs.

Nr MNs (experimental) N MNs (simulated)

Contraction Electrode density (mm) Δ1(s) nRMSE (%) r2 nRMSE (%) r2

30% MVC 4 0.1 8.0 0.97 5.3 0.98

8 0.1 10.5 0.95 5.3 0.98

12 0.1 17.5 0.89 6.3 0.90

50% MVC 4 1.2 16.4 0.87 12.9 0.95

8 5.2 24.2 0.77 16.4 0.89

https://doi.org/10.1371/journal.pcbi.1011606.t003
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density (4 mm interelectrode distance) or, to some extent, with the computational reconstruc-

tion of the complete MU pool, both of which aimed to correct for the systematic bias of

HDEMG decomposition towards identifying the higher-threshold MUs (histograms in Fig 6)

of the discharging MU pool [40].

Activation and Contraction dynamics of the MU pool and TA Force

validation

The neuromuscular model was built as populations of Nr or N in-parallel FGs, whether it

received as neural control the experimental samples of Nr identified spike trains (Fig 1C) or

the completely reconstructed populations of N MU spike trains (Fig 1D). According to Fig 2,

around 298 and 355 MUs were recruited over the trapezoidal contractions up to 30% and 50%

MVC, respectively, in which case all the modelled discharging MUs were assigned slow-type

properties for their activation dynamics (Fig 3).

Fig 7A displays the distribution of the maximum values of the modelled MUs’ activation

states over the contraction up to 30% MVC, that were estimated from the cohorts of Nr = 81

(green triangles) and N = 400 (red dots) spike trains with Eq 12 to Eq 18. Consistent with the

onion skin theory [89] where MN discharge rate and recruitment threshold are negatively

related, the estimated MU activation was overall negatively related to recruitment threshold,

with low-threshold MUs reaching maximum activation states up to a = 0.80 and higher-

threshold MUs as low as a = 0.18. Because of trendline fitting during the reconstruction pro-

cess of the MU pool [41], the monotonically decreasing distribution of active states of the N-

population did not account for the physiological variability in MN discharge rate with recruit-

ment threshold (green triangles in Fig 7A). The same conclusions were obtained with the neu-

ral controls obtained with the grids of lower EMG electrode densities and at 50% MVC.

Fig 7B–7D displays the distribution of the maximum forces (blue crosses, green triangles,

red dots) developed by the modelled MUs over the contraction up to 30% MVC, that were esti-

mated with Eq 10 from the MUs’ active states a(t), the common MU length l, and the MU-spe-

cific maximum isometric forces f MU
k;0 (black dots), for cohorts of Nr = 81 (Fig 7B and 7C) and

N = 400 (Fig 7D) MUs. Depending on the modelling approach, the modelled MUs were

assigned maximum MU forces f MU
k;0 (black dots in Fig 7B–7D) by either blindly assuming the

Nr MUs to be evenly distributed across the MU pool (Fig 7B), mapping the Nr MUs to the real

MU pool with Eq 6 (Fig 7C), or directly applying the f MU
0
ðkÞ distribution in Eq 8 to the com-

plete MU pool (Fig 7D). Depending on the approach, the individual MUs produced maximum

forces f MU
k over the contraction up to 30% MVC in the range 1.8–6.6 N, 0.4–16.5 N, and 0.5–

1.5N (blue crosses in Fig 7B, green triangles in Fig 7C, and red dots in Fig 7D, respectively),

and in the range 4.2–16.2 N, 1.5–136.7 N, and 0.7–2.2 N at 50% MVC. Only the reconstructed

pool of N = 400 MUs (Fig 7D) provided a window onto the continuous distribution of the

dynamics of the MU pool with physiological generated MU forces.

The simulated MU forces were processed and linearly summed with Eq 10 to yield the three

predicted whole muscle forces in Fig 8A–8E FM
Nr ;1
ðtÞ (experimental MU population with blind

f MU
k;0 distribution—blue dotted traces), FM

Nr ;2
ðtÞ (experimental MU population with MU map-

ping—green dashed traces), and FM
N ðtÞ (reconstructed MU population—solid red traces),

which were validated against the experimental TA force FTA(t) (solid black traces) with the val-

idation metrics in Table 4.

When high numbers of MUs were homogeneously identified over the full range or recruit-

ment (Nr = 81 MUs, 30% MVC, 4 mm interelectrode distance), i.e., when DðtÞ was accurately

estimated from the experimental samples of spike trains (Fig 6C), FTA was predicted by
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FM
Nr ;1
; FM

Nr ;2
, and FM

N with the same level of accuracy (Fig 8C) for the eight validation metrics in

Table 4 with r2�0.98, all nRMSE values below 10%, and ME in 36–66%, irrespective from the

three choices of f MU
0;k assignment (black dots in Fig 7B–7D).

In all other cases, FTA(t) was the most accurately predicted by both FM
N ðtÞ when the com-

plete MU pool was modelled (solid red traces in Fig 8A–8E, nRMSE in range 8–13% and r2 in

range 0.97–0.99 at 30% MVC, and nRMSE in range 15–16% and r2 in range 0.90–0.95 at 50%

MVC) and FM
Nr ;2
ðtÞ when the population sample of Nr MUs was assigned representative f MU

0;k

values according to a MU mapping (green dashed traces in Fig 8A–8E, nRMSE in 6–11% and

r2 in 0.97–0.99 at 30% MVC, and nRMSE in 14–20% and r2 in 0.92–0.95 at 50% MVC). The

least accurate predictions were systematically obtained with FM
Nr ;1
ðtÞ when the population sam-

ple of Nr MUs received experimental neural inputs and was blindly assigned f MU
0;k values (blue

Fig 7. Distribution across the Tth-ranked MU population of the maximum values at 30% MVC of the MU activation states ak (A) and MU forces f MU
k (B-D)

simulated with the MN-driven neuromuscular model. The model either received as neural input the Nr = 81 experimental spike trains (green triangles in A for

ak; plots B and C for f MU
k ) or the discharge activity of the complete pool of N = 400 MUs (red dots in A for ak; plot D for f MU

k ). In B-D, the black dots represent

the distribution of the MUs’ maximum forces f MU
k;0 , which is continuous for the completely reconstructed pool (D). In B and C, the Nr identified MUs were

assigned representative maximum forces f MU
k;0 (black dots) to account for the force-generating properties of the MUs not identified experimentally. To do so, in

B, the Nr identified MUs were assumed to be homogeneously distributed across the Tth-ranked MU pool, while they were accurately mapped to the real pool

with Eq 6 in C. In B, the non-continuous distribution of the f MU
k;0 values is explained by the fact that N

Nr
is not an integer value in Eq 19.

https://doi.org/10.1371/journal.pcbi.1011606.g007
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dotted traces in Fig 8A–8E, nRMSE in 7–18% and r2 in 0.89–0.98 at 30% MVC, and nRMSE in

27–32% and r2 in 0.86–0.92 at 50% MVC). FM
N ðtÞ and FM

Nr ;2
ðtÞ performed better than by FM

Nr ;1
ðtÞ

especially over the ramps of force with around 1.5–3 times lower ME, nRMSEr1, and nRMSEr2
values (nRMSEr1 and nRMSEr2 metrics calculated over the ramps of force—Table 4), because

the blind distribution of f MU
0

values in FM
Nr ;1

(Fig 7B) did not correct, contrary to the two other

approaches, for the experimental bias towards identifying relatively more high-threshold MUs

with decomposed HDEMG signals and overestimated their force-generating activities in the

MU pool. As long as the Nr decoded MUs were homogeneously spread across the identified

portion of the MU pool, FM
Nr ;2

returned slightly more accurate predictions of FTA than FM
N , with

slightly lower nRMSE and maximum error values over the whole contraction. Mainly, FM
N

returned higher nRMSEp values (Table 4) calculated over the plateau of force because of the

noisy force-generating activity of the highest-threshold recruited MUs modelled with the

reconstruction method [41]. With experimental samples of lesser quality (50% MVC, 8 mm

interelectrode distance, Fig 6), FM
N performed better than FM

Nr ;2
.

Fig 8. For the three grid configurations of increasing electrode density (in columns) and for both contractions up to 30% MVC (first row: A, B, C) and 50%

MVC (second row: D, E), validation against the experimental force trace FTA(t) (solid dark trace) of the TA force FM(t) estimated with the MN-driven

neuromuscular model in Fig 1F. FM(t) was estimated from the completely reconstructed population of N = 400 MUs (FM
N ðtÞ, solid red traces) and from the

experimental samples of Nr identified MUs when ‘blind’ (FM
Nr ;1
ðtÞ, blue dotted traces) and Tth-informed (FM

Nr ;2
ðtÞ, green dashed traces) distributions of the MU

maximum isometric forces f MU
0
ðiÞ were assigned to the MU samples. The experimental TA force FTA(t) was estimated from the recorded ankle torque T with

Eq 4.

https://doi.org/10.1371/journal.pcbi.1011606.g008
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For all three modelling approaches at both contraction levels, FTA was more accurately pre-

dicted according to all the validation metrics when the electrode density increased, especially

during the ramps of force. For example, at 30% MVC, it was obtained Δ1 = 0.1 s, DF
1

in 11 � 18

N, nRMSE in 6–8%, and r2 in 0.98–0.99 from the 81 discharging MUs identified with 4 mm

interelectrode distance, while the 14 MUs identified with 16 mm interelectrode distance

returned Δ1 = 0.3 s, DF
1

in 22 � 28 N, nRMSE in 11–18%, and r2 in 0.89–0.98 (Table 4).

As expected from the neural drive estimation in Fig 6, for all the modelling approaches and

EMG grid configurations, FTA was more accurately predicted at 30% MVC than at 50% MVC

(upper row versus lower row in Fig 6), with two to three times lower nRMSE values, and

strongly lower Δ1 and D
F
1

and higher r2 values, respectively (Table 4).

Discussion

Summary of the work

This study reports a novel approach, summarized in Fig 1, to develop a MN-driven neuromus-

cular model, that is controlled at the level of the individual MU with experimental motoneuro-

nal data. This model advances the recently reviewed [17] state-of-the-art of neuromuscular

modelling on multiple aspects, and finds later-discussed applications in the complementary

fields of motor control and MSK modelling. The population of Hill-type MU actuators

(Fig 1F) transforms, with advanced models of the MU’s excitation, activation, and contraction

dynamics (Figs 3 and 4), a vector of MN spike trains into a vector of transient MU forces that

sum across the modelled MU population to yield the whole muscle force (Fig 8). The neuro-

muscular model and the continuous distribution of the MU’s recruitment and force-generat-

ing properties across the MU pool were respectively made subject-specific using a subject-

specific MSK model derived from medical images (Fig 1H and 1I), and muscle-specific, using

results from the literature (Fig 2). The neural control to the MN-driven model is also subject-

Table 4. Validation against the experimental force trace FTA(t) of the predicted TA force FM(t) at 30% and 50% MVC. FM(t) was predicted from the spike trains

obtained at 4-, 8-, and 12-mm electrode density. FM(t) was estimated from the completely reconstructed population of N = 400 MUs (FM
N ) and from the experimental sam-

ples of Nr identified MUs when ‘blind’ (FM
Nr ;1

) and Tth-informed (FM
Nr ;2

) distributions of the MU maximum isometric forces f MU
0
ðiÞ were assigned to the MU samples.

nRMSE, nRMSEr1, nRMSEp, nRMSEr2 were calculated for the whole contraction, and over the ascending ramp, plateau, and descending ramp, respectively.

Contraction Electrode density (mm) Validated Forces FM(t) Δ1 (s) ΔF
1ðNÞ ME (N) nRMSE (%) nRMSEr1 (%) nRMSEp (%) nRMSEr2 (%) r2

30% MVC 4 FM
Nr ;1

0.1 11 71 7 8 5 10 0.98

FM
Nr ;2

0.2 18 47 6 6 7 6 0.99

FM
N 0.1 14 74 8 6 10 4 0.99

8 FM
Nr ;1

0.3 28 94 11 14 5 16 0.96

FM
Nr ;2

0.3 22 51 7 6 8 6 0.99

FM
N 0.3 28 57 8 5 10 4 0.99

12 FM
Nr ;1

0.3 28 158 18 26 6 25 0.89

FM
Nr ;2

0.3 22 72 11 9 8 8 0.97

FM
N 0.3 28 86 13 11 15 8 0.97

50% MVC 4 FM
Nr ;1

2.9 164 320 27 18 33 28 0.92

FM
Nr ;2

1.3 96 200 14 4 21 9 0.96

FM
N 1.4 100 214 15 6 21 8 0.95

8 FM
Nr ;1

5.4 268 415 32 23 35 35 0.86

FM
Nr ;2

5.3 262 258 20 16 23 20 0.92

FM
N 5.4 268 255 16 17 15 17 0.90

https://doi.org/10.1371/journal.pcbi.1011606.t004
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specific as the vector of input MN spike trains is derived from HDEMG signals recorded dur-

ing the participant’s voluntary task (Fig 1A and 1B). The experimental vector of Nr identified

spike trains resulting from HDEMG signal processing was either directly input to the neuro-

muscular model of Nr MUs (Fig 1C) or first extrapolated to an estimation of the discharge

activity of the complete population of N MNs [41], which was then input to the neuromuscular

model of N MUs (Fig 1D). The accuracy in estimating the neural drive to muscle of this novel

MN-driven approach was assessed using experimental datasets of varying quality (Fig 6), with

the control vectors of Nr and N MN spike trains (Fig 1E). Finally, the whole muscle force pre-

dicted by the MN-driven neuromuscular model was validated against an experimental muscle

force (Figs 1G and 8), that was estimated from measured joint torque and bEMG signals

recorded from agonist and antagonist muscles (Figs 1J and 5).

Advancing the state-of-the-art in neuromuscular modelling

The neuromuscular model developed in this study was built as a collection of in-parallel MU

actuators, which proved beneficial for advancing the recently reviewed [17] state-of-the-art of

neuromuscular modelling on several aspects.

For the first time in Hill-type modelling, we controlled the individual MUs of a modelled

MU population with a vector of dedicated experimental motoneuronal controls. The vector of

MN spike trains obtained from HDEMG signals provided a comprehensive description of

both the dynamics of MU recruitment and MU rate coding for the modelled population of

MUs. Conversely in EMG-driven models of whole muscle actuators, the recruitment and dis-

charge dynamics of the MU pool are lumped into a single phenomenological macroscopic

neural control where they become indistinguishable, that is either obtained from bEMG enve-

lopes [19,20,90] or from the temporal summation of filtered cumulative spike trains and signal

residuals from HDEMG signals [22,23,91]. Besides, in multiscale models of single representa-

tive MUs, the dynamics of MU recruitment were either overlooked or accounted for with

phenomenological models [28–32,36]. A few studies also assigned motoneuronal controls to

modelled populations of MUs [36–38,92–94] but used synthetic data and/or phenomenologi-

cal models, such as Fuglevand’s formalism [95], to describe the discharge and recruitment

dynamics of the MU pool. Consequently, these models of MU populations were not used in

conditions of voluntary muscle contraction and the force they predicted was indirectly vali-

dated against results from other models and not against synchronously recorded experimental

data like performed in this study. A recent study [96] implemented a neuromechanical model

of a population of twitch-type models of MUs controlled by experimental vectors of MU spike

trains. This model was tested with limited samples of few experimental MN spike trains (i.e.,

2–22 identified MUs per contraction per muscle); such samples are typically not representative

of the real neural drive to muscle, which is a key challenge in MN-driven neuromuscular

modelling, as discussed in the present study (Fig 6). In this perspective, it is worth highlighting

that our study did not perform a calibration step of the muscle model parameters, contrary to

[96], to avoid any kind of error cancellation that would non-physiologically correct for this

experimental limitation when validating the model. Then, [96] proposes a linear summation of

the fusing twitches in a MU, that contradicts some experimental evidence discussed in the

present study. The physiological nonlinear summation of the MU twitches during muscle con-

traction, classically modelled in twitch-type models with a nonlinear gain that is MU-specific

and depends on the instantaneous firing rate [95], is in our study predicted by the detailed

models of the MU activation dynamics described in Eqs 14–18 (Fig 4G and 4H). Finally, the

inter-relation in a MU pool proposed in [96] between MU firing properties, MU twitch con-

traction time, and MU type, as well as their bimodal distribution in the MU pool, remain

PLOS COMPUTATIONAL BIOLOGY Motoneuron-driven muscle modelling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011606 December 7, 2023 25 / 39

https://doi.org/10.1371/journal.pcbi.1011606


unproven in human muscles with contradictory findings [5,55,84,97], as reviewed [98] and

discussed [4] previously. For these reasons, the MN-driven approach developed in the present

study is the first that can control with experimental vectors of inputs, that are representative of

the real neural drive to muscle, a population of physiologically accurate models of the individ-

ual MUs’ force-generating dynamics in the forward prediction of human voluntary muscle

contraction. Moreover, the proposed MN-driven model while also relies on a detailed descrip-

tion of the excitation-contraction dynamics of the active muscle tissue and on a set of experi-

mental spike trains that is more easily interpretable than the phenomenological neural

controls used in single-input multiscale models of whole muscle actuators in the literature.

Discretely sampling the active muscle tissue into individual MUs provided a convenient

framework for the precise distribution of the muscle’s properties across the MU pool, includ-

ing the novel experimental distributions in Fig 2 of MU recruitment threshold, maximum iso-

metric forces, and type, some of which were never included in neuromuscular models. This

description of the muscle as a cohort of MUs also provided a convenient structure for deriving

physiological assumptions and simplifications to the rheological structure of the model (see

S1 Text (Section 2) for details).

This MU-scale approach was ideal for developing advanced models of the MU’s excitation,

activation, and contraction dynamics (Fig 4). Experimental data from the literature was used

in this study to derive adequate mathematical equations (Eq 11 to Eq 18), identify fitting physi-

ological parameters (Table 1), and validate the modelled dynamics (Fig 4). Importantly, the

identification of the parameter values in Eq 11 to Eq 18 and the validation of those mathemati-

cal descriptions were performed using different sets of experimental data from the literature

that were measured at different discharge rates (see Appendices A.1 and A.1 for details). Fur-

thermore, we limited the amount of multiscale and inter-species scaling inaccuracy, which is

an important limitation of single-actuator Hill-type models [17], by considering source experi-

mental data, in turn and decreasing order of preference, from studies on individual human

MUs or bundles of fibres, human fibres and sarcomeres, cat fibres, rodent fibres, rodent mus-

cles, and amphibian fibres or muscles. In doing so, the simulated MN APs, fibre APs, and free

calcium twitches were more physiological and consistent with mammalian dynamics than pre-

vious approaches based on experimental amphibian data at low temperature (Fig 4B, 4E and

4F). For the first time in Hill-type-like modelling, the dynamics of calcium-troponin concen-

tration in the sarcoplasm were described according to experimental data (Eq 17) (see S1 Text

(Section 4) for details) and the free calcium transients were made nonlinearly dependent to

both MU length and MU type based on experimental measurements (Eq 14 to Eq 16). Hence,

this model further reconciled the phenomenological Hill-type modelling approach with the

real physiological mechanisms responsible for muscle force generation it describes.

While this study presents novel techniques to develop state-of-the-art neuromuscular mod-

els as MN-driven pools of MU Hill-type actuators, it remains to assess the performance of

these more physiological and complex models compared to the more common phenomeno-

logical single-input single-actuator approaches, like the standard bEMG-driven Hill-type mod-

els [21]. Almost no studies that proposed models of MU pools performed this comparative

assessment, which was therefore never reviewed [99]. Only three studies compared, for limited

contraction tasks, the force outputs of a model of MU pool and of a single muscle-scale model,

using Hill-type [100] and twitch-type [91,96] approaches. [91,100] reached the same conclu-

sions. The models of MU pool and the single-actuator muscle-scale models can yield equally

accurate predictions of muscle force in the time domain, although the MU pool model always

performs better in the frequency domain. Contrary to single-actuator models, models of MU

pool can predict the higher frequency force fluctuations, crucial in the analysis of steadiness

for example. This is explained by the superiority as control signals of vectors of MU spike
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trains, immune to waveform cancellation, over rectified and smoothed bEMG signals. It is

worth noting that the single-actuator Hill-type model in [100] is significantly more complex

and elaborate in its phenomenological description of the MU dynamics than traditional EMG-

driven Hill-type models, as reviewed [17], while the single-actuator twitch-type model in [91]

was fully calibrated to match the force traces. It is therefore possible that MN-driven models of

MU pool behave more accurately than more standard single-actuator bEMG-driven

approaches, especially between contractions where the neural strategy changes, e.g., between

different contraction intensities or when fatigue occurs, considering that calibrated bEMG-

driven models are known to behave poorly at other activation levels [101]. In this respect,

cumulative spike train driven single-actuator models [22], that describes the MU pool recruit-

ment and firing strategies, were shown to more accurately predict muscle forces than classic

bEMG-driven Hill-type approaches.

Consequently, the field requires a systematic assessment of the comparative performance of

standard single-actuator neuromuscular models and models of MU pools in a variety of con-

traction tasks and in generic, subject-specific, and calibrated approaches. Finally, beyond the

prediction accuracy, MN-driven models of MU pools provide detailed insights into the mus-

cle’s internal dynamics and finds practical applications that standard single-actuator bEMG-

driven models cannot provide, as later discussed.

Modelling limitations

Although the approach presented in Fig 1 provides a state-of-the-art approach for investigat-

ing and modelling the dynamics of the MU pool in forward simulations of human voluntary

muscle contraction, it suffers from the following modelling limitations. First, the muscle

model was simplified to account for a rigid tendon. This approach was acceptable for the TA

and decreased the computational load. Yet, the force equilibrium between the elastic tendon

and the active muscle tissue should be considered with Eq S9 in S1 Text (Section 2) for muscles

with more compliant tendons or higher
lTs
lM
0

ratios, in which case l would vary and the PEE

would not be neglected anymore. Second, physiologically describing the TA muscle with a

MU resolution required assigning to the MU pool physiological distributions of neuromecha-

nical parameters (Fig 2) obtained from TA-specific experimental measurements from the liter-

ature. Although multiple studies also investigated these parameters in the human thenar, ankle

extensor, and masseter muscles, those properties remain mostly unknown for the other

human muscles, as recently reviewed [57]. Third, the pipeline in Fig 1 was only applied to one

subject in this study. Yet, the approach is general and can be reapplied to other subjects follow-

ing the same method. Fourth, we had to correct a limitation of our reconstruction method

[41] for the simulated MUs recruited during the plateau of constant recorded torque. When

the discharge frequency of such simulated MU was below 7 Hz in average over the plateau, the

predicted MU force was set to zero to avoid adding random noise to the predicted whole mus-

cle force at the highest developed force levels.

Experimental neural control and prediction accuracy

The accuracy of the whole muscle force predictions in Fig 8 was mainly related to the accuracy

of the experimental neural control in approximating the neural drive to muscle (Fig 6). It is

currently impossible to identify the discharge activity of the complete MU pool of a muscle

with surface EMG because of the filtering effect of the volume conductor. It is however possi-

ble to increase both the number of identified MUs and the ratio of identified low-threshold

MUs by increasing the size and the electrode density of HDEMG surface grids to obtain
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experimental samples of identified MUs that are representative of the discharge activity of the

complete MU pool [40].

The experimental sample of Nr = 81 MUs, that was obtained at 30% MVC with a dense and

large grid of 256 electrodes with 4 mm interelectrode distance, was representative of the dis-

charge activity of the complete MU pool because the identified MUs both spanned across the

entire recruitment range, with the lowest-threshold identified MU recruited at 0.6% MVC,

and were homogeneously distributed across the recruited MU pool, with 12% to 20% of the

identified MUs in each of the 5% ranges sampling the recruitment range, as displayed with the

histogram in Fig 6C. Consequently, the neural drive to muscle was accurately estimated with

the discharge activity of the Nr = 81 MUs (Fig 6C and Table 3), which produced the most accu-

rate force estimations in this study when input to the neuromuscular model (Fig 8C and

Table 4). Consistent with previous conclusions [40], the experimental samples obtained at 30%

MVC with lower electrode density (8 and 12 mm interelectrode distance) provided a less accu-

rate description of the discharge activity of the complete MU pool. At this force level, increas-

ing the electrode density better samples the action potential profiles of the low-threshold MUs

across multiple electrodes, enabling their identification. In these datasets, although the identi-

fied MUs also spanned across the entire recruitment range, fewer MUs were identified and

their distribution across the MU pool shifted towards relatively larger sub-population of high-

threshold MUs (histograms in Fig 6A and 6B). Consequently, the neural drive to muscle (Fig

6A and 6B and Table 3) and the predicted muscle force (Fig 8A and 8B, higher nRMSEr1 and

nRMSEr2 values in Table 4) were underestimated in the regions of low-force generation when

low-threshold MUs are recruited. This experimental under-representativity of the low-thresh-

old MUs was corrected using a computational method [41] by deriving the continuous distri-

bution of the MN’s electrophysiological properties across the entire MN pool and

reconstructing the discharge activity of the MUs that were not identified experimentally (Fig

1D). The reconstruction method populated the two experimental samples with simulated pop-

ulations of low-threshold MUs, in which case the accuracy in predicting both the neural drive

(blue dotted versus solid red traces in Fig 6A and 6B) and the muscle force (Fig 8A and 8B) sys-

tematically increased (Tables 3 and 4). As expected, this reconstruction step did not improve

the accuracy of the predictions for the experimental sample of Nr = 81 MUs, which was already

representative of the discharge activity of the MU pool.

The discharge activity of the low-threshold MUs was not identified during high-force con-

tractions up to 50% MVC, even with high electrode density. Classically, the decomposition

algorithms converge towards the large MUs that contribute most to the EMG signals, while

action potentials of the small MUs of lower energy are masked by the potential of larger units,

more of which are recruited at 50% MVC than at 30% MVC [40]. Beyond shifting the MU

identification towards the highest-threshold MUs and yielding imbalanced MU distributions

(histograms in Fig 6D and 6E), the two experimental samples of identified MUs at 50% MVC

did not span across the entire recruitment range, the identified MUs being first recruited

above 5% and 20% MVC. Consequently, those experimental samples inaccurately predicted

the onsets of the neural drive (Fig 6D and 6E) and of the whole muscle (Fig 8D and 8E) with

1.2 to 5.2 seconds delay and initial underestimations of the muscle force up to 268 N (Δ1 and

D
F
1

in Table 4). Because the reconstruction method relies on the neural drive estimated from

the experimental sample (Fig 6D and 6E), it could not correct for this source of inaccuracy

(solid red traces in Figs 6 and 8), although it improved the predictions by better distributing

the MU’s discharge activity across the identified MU pool, as discussed. It is worth noting that

low-threshold MUs are usually not identified with grids of low electrode density at 30% MVC

either, as hinted with the histograms in Fig 6A and 6B, and the resulting experimental samples

PLOS COMPUTATIONAL BIOLOGY Motoneuron-driven muscle modelling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011606 December 7, 2023 28 / 39

https://doi.org/10.1371/journal.pcbi.1011606


of MUs hence identified usually do not span across the entire recruitment range, yielding simi-

lar prediction inaccuracies. To address this limitation when controlling single whole muscle

actuators with HDEMG signals, previous studies [22,23,91] summed the experimental cumula-

tive spike train with the EMG signal residual that was not explained by the identified MU

spike trains to approximate the neural control to muscle. Consequently, the accuracy of the

predictions made by the neuromuscular model developed in this study are sensitive to the

number, the span, and the distribution across the MU pool of the experimental sample of iden-

tified MUs, which can, to some extent, be extrapolated to the discharge activity of the complete

MU pool using our published reconstruction method [41].

As displayed in Fig 8A–8E, the accuracy of the predicted forces FM(t) also depended on the

assignment of the maximum MU isometric forces f MU
0;k to the modelled MU pool. The f MU

0;k val-

ues were obtained from the muscle-specific f MU
0
ðkÞ distribution in Eq 8, which was directly

mapped to the N modelled MUs when the complete MU pool was reconstructed. This physio-

logical approach implemented the continuous distribution of the MU forces across the MU

pool (Fig 7D) and almost systematically returned the most accurate FM(t) predictions (Fig 8A–

8E and Table 4). When the muscle was described as populations of Nr MUs controlled by the

experimental vector of MN spike trains, representative f MU
0;k values were derived from the

f MU
0
ðkÞ distribution and assigned to the experimental MUs to account for the force-generating

properties of the MUs not identified experimentally. In such case, the distribution of simulated

MU forces (Fig 7B and 7C) was not physiological and interpretable. We showed that locating

the Nr MUs into the real Tth-ranked MU pool with Eq 6 before assigning representative f MU
0;k

values (Fig 7C) corrected for the non-homogeneous distribution of the experimental samples

across the MU pool, which was previously discussed, and allowed predictions accuracies of

FM(t) close to those obtained with the complete population of N MUs (green dashed versus

solid red traces in Fig 8 and Table 4). For example, the few low-threshold MUs identified with

grids of low electrode density were assigned high representative f MU
0;k values to represent the

force-generating properties of the large population of small MUs that were not identified

experimentally. When the representative f MU
0;k values were assigned under the assumption of a

homogeneous distribution of the Nr MUs across the MU pool (Fig 7B), the predictions of the

whole muscle force were systematically less accurate, again under-evaluating the force-gener-

ating activity of the low-threshold MU population.

Interfacing the fields of subject-specific motor control, neuromuscular

modelling, and MSK modelling

The neuromuscular model developed in this study brings together state-of-the-art experimen-

tal and modelling techniques from the three complementary fields of motor control, neuro-

muscular modelling, and MSK modelling.

The subject-specific neural control was obtained from recently developed experimental and

processing techniques (Fig 1A–1C) that yielded the identification of much larger samples of

discharging MUs from recorded HDEMG signals than commonly obtained in the literature

[11], i.e., up to 81 MUs in the TA muscle, and high ratios of low-threshold MUs [40].

The neuromuscular model, the modelling novelty of which was discussed previously, was

scaled with the muscle-specific distribution of MU maximum isometric forces f MU
0
ðkÞ derived

from the literature (Fig 2) and from the muscle architectural parameters (Table 2), that were

obtained from a subject-specific MSK model (Fig 1H and 1I) built from the segmentation of

MRI scans using state-of-the-art automated tools [50,51]. MSK model predictions can be sen-

sitive to the uncertainties in parameter identification and MSK architecture [102,103]. The
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subject-specific properties of the TA muscle used in this study were compared to those from a

generic published model [54], and the same model scaled to the anthropometry of the subject

with the Opensim built-in tools [48,49]. The values of the optimal length lM
0

and tendon slack

length lTs did not vary between the three models (<3% variation). The subject-specific muscle-

tendon length lMT at 30˚ plantarflexion was 3% shorter and 12% longer than in the scaled and

generic models, respectively. Considering the simplification of rigid tendon, these differences

in length linearly propagate to the estimation of the normalized MU length l and nonlinearly

to the FL and length-dependent activation dynamics of the MUs (Fig 4). The subject-specific

MRI-based maximum isometric force FM
0

was 15% lower than proposed in the generic model.

This difference linearly propagates to the linear scaling of the distribution of MU isometric

forces f MU
0

in Eq 8 (Fig 7B–7D) and to the amplitude in N of the predicted whole muscle force

(Fig 8). The highest difference was obtained for the muscle moment arm with the ankle joint

in dorsiflexion, where the subject-specific quantity was 33% and 40% lower than the scaled

and generic ones. This difference linearly propagates to the estimation of experimental muscle

force from experimental joint torque (Fig 5) that was used for model validation (Fig 8).

The model proposed in this study and the predictions displayed in Fig 8 did not rely on any

parameter calibration that would minimize external cost functions, like commonly proposed in

EMG-driven approaches where some subject-muscle-specific properties are, for example, cali-

brated by minimizing the difference between predicted and experimental joint torques [20,21].

Beyond the MSK parameters directly measured with the subject-specific MSK model, it is

worth noting that the remaining parameters in the equations that define the model’s force-

generating properties (Eq 8 and Eq 11 to Eq 18) are fitting experimental data from the litera-

ture, that are independent from the EMG and torque signals that were used in this study to

control and validate the model.

With this subject-specific and MN-driven approach, the accurate prediction of the whole

muscle force amplitude at 30% MVC in Fig 8E–8G were consequently obtained without

parameter calibration owing to a physiological and comprehensive description of the neural

drive (Fig 6), which the bEMG envelopes normalized by MVC signals cannot achieve, an ade-

quate distribution of the MU’s maximum isometric forces f MU
0;k across the modelled MU popu-

lation (Fig 7), and an estimation of muscle co-contraction during ankle dorsiflexion (Fig 5), as

discussed.

In cases for which subject-specific measurements are not possible or muscle-specific data

are not as available in the literature as for the TA, which is the case for most human muscles

[57], missing muscle architectural parameters or the coefficients in Eq 8 could be included in

an optimization routine aiming to minimize the difference between experimental and pre-

dicted joint torques, for example.

The only calibrated parameter in the pipeline in Fig 1 was the size of the experimentally

identified MNs, that was required for the specific test case of complete reconstruction of the

MN pool (Figs 6 and 8, red traces) to derive the continuous distribution of electrophysiological

properties across the population of MN LIF models. Again, this parameter identification was

independent from the experimental measurements of joint torque used in this study to validate

the model. The two other approaches taken to predict the muscle force solely relied on the

experimental samples of identified MNs (Fig 8, blue and traces) and did not require the cali-

bration of the MN size parameter.

Applications and future perspectives

The MN-driven multi-MU model proposed in this study comprehensively describes the

recruitment and firing strategy of the MU pool during human voluntary muscle contractions.
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For these reasons, this detailed model finds applications in answering scientific questions

where the lump dynamics of the classic single-actuator bEMG-driven Hill-type models pro-

vide limited help.

For example, current research [42,43] aims for a new generation of high-performance

multi-articulating prosthetic limbs, which, besides relying on direct skeletal attachment via

osseointegration, muscle reinnervation, and implanted sensors, also require advanced MU-

based algorithms, like the one proposed in this study, that implements the mechanistic rela-

tionship between the individual motoneuronal activity and motor function.

In the field of biomechanics, the presented MU-based model can actuate the recently devel-

oped volumetric representations of muscles in MSK models [51] by mapping the modelled

population of MUs to the volumetric population of lines of action, that are consistent with the

segmented muscle geometry. Volumetric representations of Hill-type-actuated muscle models

have only rarely been proposed in the literature [36,104]. Beside addressing the current limita-

tions of modelling muscles as single rectilinear segments, this volumetric mapping would also

provide a solution to the indeterminacy in in S1 Text (Section 2) by assigning MU-specific

lengths lk to the modelled MU actuators and would shift the current approach towards a more

physiological nonlinear summation of the MU forces based on muscle architecture. Modelling

the interaction between individual MU lines of action with the tendon and skeletal structures

would further bridge the gap in modelling the interplay between motor control and resulting

human motion.

In the study of the human muscle architecture, by combining the aforementioned mapping

of the MU pool in volumetric muscle representations with recently developed ultrasound mea-

surement techniques for tracking MU twitches and mechanical properties [34,105], one could

gain insights into the distribution of MU territories within human muscles, which remains an

open question. The volumetric mapping of MUs also provides a convenient framework for

modelling the transversal mechanical interactions between MUs [106], and the resulting force-

varying load path within the muscle tissue, that results in a nonlinear summation of the indi-

vidual MU forces.

In the field of neurophysiology, the MN-driven model of MU population proposed in this

study is suited for integrating MN synergies in simulations. Contrary to single-input Hill-type

models that lump the dynamics of synaptic input, MN recruitment, and MN discharge into a

single phenomenological signal, the MU pool modelled in Fig 1 can be divided into functional

clusters and receive different common inputs to reduce the dimensionality of the control [35].

For example, in multi-muscle MSK models with MU-actuated volumetric representations of

muscles, the model proposed in Fig 1 is also suited for the investigation of neural synergies

between muscles, where MN clusters span across muscles [35], with strategies specific to the

muscle groups [107]. In the field of neurophysiology, the model of MU population proposed

in this study is also applicable for the computational generation of surface EMG signals during

voluntary movement [108].

In the study of human muscle contraction dynamics, the model developed in this study pro-

vides a credible window onto the distribution of the excitation-contraction dynamics of individ-

ual MUs across the MU pool (Fig 4) that cannot be measured in human in vivo, and advances

our understanding of the muscle-specific neuromechanical strategies for muscle force genera-

tion. For example, Fig 4 suggests that, at 30% MVC, the highest-threshold recruited MUs with

the largest force-generating capacities are not those producing the highest forces within the

recruited pool due to low activation states explained by the onion skin theory (Fig 8A and 8D).

As the model integrates realistic descriptions of the MU-specific firing, recruitment, excitation,

and activation dynamics responsible for muscle force generation, it also provides a convenient
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framework for integrating and investigating MU-related mechanisms, such as the effect of

fatigue on the MU firing and recruitment strategies [109] or other fatigue-induced changes in

MU activation dynamics as already proposed in single-MU models [110,111].

However, some currently investigated limitations can prevent the proposed MN-driven

MU-based model from being readily applicable to the aforementioned scientific questions.

First, although the pipeline in Fig 1 is fully suited for dynamic contractions, the study proposed

here was constrained to isometric tasks due to current experimental limitations in the decom-

position of HDEMG signals into MU spike trains during motion. New computational

approaches are emerging to identify individual spike trains in quasi-static [112] and dynamic

[113] tasks, where 7–20 MUs can be currently identified. Second, data acquisition remains

challenging and time-consuming. As opposed to straightforward bEMG recording and filter-

ing, the pipeline in Fig 1 requires decomposing HDEMG signals and manually editing the

identified spike trains editing, while taking precautions to identify the full spectrum of dis-

charging MUs for accurate predictions (Fig 6), as discussed. These challenges should be

addressed with the rapid emergence of guidelines for manufacturers on HDEMG grid design

[40], open-source tools for automatic HDEMG decomposition and spike trains edition [114],

automated spike train identification approaches based on machine learning [115] and blind-

source separation methods [116], and MU pool reconstruction methods [41].

Finally, with four ODEs to solve at each time step for each of the modelled MUs, the model

proposed in this study is currently computationally too expensive for real-time applications, as

opposed to the classic single-input Hill-type actuators, which usually include zero to two

ODEs. For the simulation of a 40s-long muscle contraction using a standard laptop (RAM: 12

GB, CPU: one Intel Core i7-1165G7 2.80 GHz), the pipeline in Fig 1 implemented in Python

ran in 18 minutes for a MU pool of Nr = 16 MUs (Fig 8A, dotted trace), in 63 minutes for Nr =

81 MUs (Fig 8C, dotted trace), and in 240 to 300 minutes for the complete pool of N = 400

MUs (Fig 8, red traces), that additionally required preliminary MU pool reconstruction. For

comparison, a single-actuator rigid-tendon Hill-type model [60] ran in less than a minute on

the same machine for the same 40s-long trapezoidal isometric contraction where the HDEMG

signals were averaged and normalized to MVC signals. Besides implementations of the model

in a faster compiled programming language (for example C++) and using better performing

machines, the computational speed could be drastically increased by using parallel computing

to solve the independent MU dynamics, by considering smaller reconstructed populations of

50 MUs without loss of accuracy in the estimated neural drive to muscle, as previously dis-

cussed [41], or by, for example, simplifying the current model of MU excitation and activation

dynamics with analytical descriptions of the fibre APs and calcium transients instead of the

two 2nd-order ODEs in Eq 13 and Eq 14.

Conclusion

We developed the first MN-driven neuromuscular model of a population of individual Hill-

type MUs controlled by a vector of dedicated experimental motoneuronal controls (Fig 1).

The model distinguishes the dynamics of MU recruitment from rate coding and produces the

whole muscle force as the summation of the forces generated by the individual modelled MUs.

The model is subject-specific (Table 2), muscle-specific (Fig 2), and includes an advanced and

physiological model of the MUs’ activation dynamics (Figs 3 and 4 and Table 1). The moto-

neuronal controls, derived from HDEMG signals, are experimental and decode the subject’s

intention, which makes the neuromuscular model applicable to the simulation and investiga-

tion of human voluntary muscle contraction. The model’s predictions of the whole muscle

force are sensitive to the quality of the experimental neural control. Accurate force predictions
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were obtained when the effective neural drive to muscle was accurately estimated from the

decoded MN spike trains (Figs 6C and 8G), i.e., when the experimental samples of identified

MUs were representative of the discharge activity of the complete MU pool. This was obtained

when the muscle’s myoelectric activity was recorded with large and dense grids of EMG elec-

trodes during medium-force contractions, in which case the identified MUs span across the

complete range of recruitment and are homogeneously distributed across the MU pool (Figs 6

and 8). Otherwise, the discharge activity of the low-threshold MUs is typically not identified,

especially during high-force contractions, and the force predictions are inaccurate in the

regions of low-force generation (Table 4). Inferring with a computational method the dis-

charge activity of those MUs that were not identified experimentally improves the results to

some extent and provides a window onto the continuous distribution of the MUs’ force-gener-

ating dynamics across the MU pool. The accuracy of the force predictions also relies on a phys-

iological assignment of the MU-specific force-generating properties to the modelled

population of Hill-type MUs (Fig 8B–8D). This MN-driven model advances the state-of-the-

art of neuromuscular modelling, brings together the interfacing fields of motor control and

MSK modelling, and finds applications in numerous fields, including the investigation of the

human neuromuscular dynamics during voluntary contractions, neural synergies, and

human-machine interfacing. The implementation of the method is publicly available at

https://github.com/ArnaultCAILLET/MN-driven-Neuromuscular-Model-with-motor-unit-

resolution. The segmented medical images and the subject-specific MSK model are publicly

available at https://zenodo.org/records/10069266.

Supporting information

S1 Text. Supporting methods and information for the derivation and the validation of the

neuromuscular model.

(PDF)
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