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Abstract

The powerful combination of large-scale drug-related interaction networks and deep learn-

ing provides new opportunities for accelerating the process of drug discovery. However,

chemical structures that play an important role in drug properties and high-order relations

that involve a greater number of nodes are not tackled in current biomedical networks. In

this study, we present a general hypergraph learning framework, which introduces Drug-

Substructures relationship into Molecular interaction Networks to construct the micro-to-

macro drug centric heterogeneous network (DSMN), and develop a multi-branches Hyper-

Graph learning model, called HGDrug, for Drug multi-task predictions. HGDrug achieves

highly accurate and robust predictions on 4 benchmark tasks (drug-drug, drug-target, drug-

disease, and drug-side-effect interactions), outperforming 8 state-of-the-art task specific

models and 6 general-purpose conventional models. Experiments analysis verifies the

effectiveness and rationality of the HGDrug model architecture as well as the multi-branches

setup, and demonstrates that HGDrug is able to capture the relations between drugs associ-

ated with the same functional groups. In addition, our proposed drug-substructure interac-

tion networks can help improve the performance of existing network models for drug-related

prediction tasks.

Author summary

Drugs containing the same functional groups may have similar pharmacochemical prop-

erties. However, how to effectively combine chemical information of drugs from molecu-

lar fragments containing functional groups into the biomolecular network is challenging

and rarely explored. we decompose drugs’ SMILES string and construct a drug-centric

heterogeneous network that integrates drug substructure and molecular interactions
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information. Based on the heterogeneous network, we proposed an end-to-end hyper-

graph attention network framework for the drug multi-task predictions, termed as

HGDrug. The efficiency and generalization of the proposed HGDrug have been demon-

strated by the state-of-the-art performance in four drug-related interaction predictions

tasks with huge improvement compared to previous general-purpose classical models and

task-specific models. In addition, HGDrug can effectively identify potential drug-related

interactions and the drug-sub-structure networks are able to help to improve the perfor-

mance of other GNN models. These conclusions present important insights on how to

introduce the drug’ substructure information for multiple drug-related interactions tasks

on biomedical networks. In summary, HGDrug offers a general and powerful tool for the

identification of drug-related interactions by constructing the micro-to-macro drug-cen-

tric heterogeneous network.

This is a PLOS Computational Biology Benchmarking paper.

Introductions

Drug design and development are important research areas for pharmaceutical companies and

chemical scientists, yet traditional new drug R&D (research and development) costs an average

of over $1 billion and can take up to 12 years or more, while still yielding low success rates [1].

With the development of Deep Learning (DL) techniques and the acccessible availabilities of

various data resources, there is now a greater interest in applying computational methodolo-

gies to expedite drug discovery and development processes. Among them, the graph neural

networks (GNNs) have become a powerful tool to promote the drug development process as

they can model the structural information of drug molecules and the interactive relationships

between biomolecules, therefore attracting growing interest in drug design and development

process.

Drugs can exploit interaction with biomolecules and may act on specific targets and pro-

teins in order to treat the disease. Therefore, identifying the interactions between drug-target

and drug-disease is of great significance for drug development. At the same time, the interac-

tion between drug-target or drug-disease also provides a higher-level point of view for better

understanding the drug-side effects and drug-drug associations [3]. In recent years, drug-

related molecular interaction networks, e.g., drug-drug interactions (DDIs), drug-target inter-

actions (DTIs), drug-disease interactions (DDiIs), and drug-side-effect interactions (DSIs) are

continuously expanded, which have greatly increased the computational power used to aid

drug discovery (Table A in S1 Text displays the abbreviation list in this study for ease of read-

ing). However, there is a great number of undiscovered associations in the existing drug-

related interaction networks. An increasing number of GNN models have been proposed to

explore these unknown associations. The initial GNN models for the prediction of molecular

interactions take only network data into account [4–7]. As available network information is

continuously enlarged, researchers have also begun to integrate a growing number of related

interaction networks to explore more effective features of the biomolecular nodes [8–11]. Yue

et al. [12] select 11 representative graph embedding methods and conduct a systematic com-

parison on 3 important biomedical link prediction tasks and 2 node classification tasks. In
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addition, more research efforts have been put on including more attributes or meta informa-

tion besides network data, such as the combination of network and text information for the

prediction of association between drugs and diseases [13]. The drugs’ sequence or graph struc-

ture information are also used to improve the performance of drug-related interactions predic-

tion [14, 15]. However, we have observed that most existing network models have certain

drawbacks. For example, methods proposed in [13, 16, 17] require a separate model to learn

the drug’s information, leading to an increased complexity in the overall model structure.

Moreover, the non-end-to-end method can degrade the prediction performance since it fails

to optimize the learned features according to downstream tasks. On the other hand, chemical

structure that play important role in drug properties is neglected in current biomedical net-

works. Liu et al. [18] present a subcomponent-guided deep learning method for accurate and

interpretable CDR prediction, named SubCDR, to recognize the most relevant subcomponents

driving response outcomes. However, this method only considers the substructure informa-

tion of the drug without combining this substructure with biomedical network information.

Moreover, conventional network models rely too much on pairwise links and cannot reveal

high-order interactions between nodes with similar topology of the neighborhoods, therefore

not able to capture the chemical structure information related to the drugs.

To address the aforementioned problems and capture the higher-order information of drugs

associated with the same functional groups or molecular interactions, we introduce drugs’ sub-

structure (functional group fragments) into biomedical networks and construct the micro-to-

macro drug-centric heterogeneous network (DSMN) in this work (Fig 1). Specifically, we

design a method to construct drug-substructures interaction networks, which utilize the BRICS

(breaking of retrosynthetically interesting chemical substructures) [2] algorithm to decompose

Fig 1. A micro-to-macro drug-centric heterogeneous network DSMN construction. An example of segmenting drug SMILES using the BRICS [2] rules to construct

the drug-substructure network, and the heterogeneous network DSMN is reconstructed by assembling all drug-related networks.

https://doi.org/10.1371/journal.pcbi.1011597.g001
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drugs’ SMILES string and obtain all functional group fragments contained in a drug. We con-

struct drug-fragment and fragment-fragment interaction networks with the functional group

fragments as nodes, and fuse these drug-substructures networks and molecular interaction net-

works to construct a micro-to-macro drug-centric heterogeneous network. As hypergraph [19]

generalizes the concept of edge to make it connect an arbitrary number of nodes, it provides a

natural way to model complex high-order relations among drugs. We then propose a novel

hypergraph-learning framework for the prediction of multiple drug-related interactions

(termed as HGDrug) based on the DSMN (Fig 2). We carefully design triangular and quadrilat-

eral motifs with underlying semantics to construct hypergraphs, and define multiple categories

of motifs that formulate different types of high-order relations, e.g.,“having same chemical

structures” or “having same molecular interactions” between drugs depending on whether they

are directly related or not. To fully inherit the rich information present in the motif-driven

hypergraphs, we incorporated a self-supervised task [20] into the training of the multi-branches

hypergraph attention network. In summary, HGDrug exploits the multi-branches hypergraph

attention network as the feature encoders of different motifs-driven hypergraphs and uses the

self-supervised auxiliary task to avoid the loss of high-order information when aggregating mul-

tiple branches drug embeddings to identify potential drug-related interactions.

We conduct extensive experiments to compare our model with 8 state-of-the-art task spe-

cific models and 6 general-purpose conventional methods. On the 4 drug-related interactions

prediction tasks (Table 1), namely, DDIs, DTIs, DDiIs, and DSIs, the performance of HGDrug

is significantly improved compared to the state-of-the-art task specific models (Fig 3).

HGDrug achieves also an average of 7.18% and 7.78% improvement in AUROC (the area

under the receiver operating characteristic curve), and AUPR (the area under the precision-

recall curve) over the second best result of the general methods, respectively as depicted in

Table 2. We investigate the effectiveness of multi-branches hypergraph and neural network

architectures through ablation study and illustrate that our proposed drug-substructure net-

works can be used to improve the performance of existing drug-related interaction prediction

GNN models (Figs 3 and 4). The biomedical dataset records of our predictions support that

HGDrug excels at predicting potential interactions (Table 3). The main contributions of this

paper are summarized as follows:

• We propose the micro-to-macro drug-centric heterogeneous network (DSMN) construction

method, which introduces drugs’ substructure (functional group fragments) into biomedical

networks.

• We design drug-related motifs with latent semantics to construct hypergraphs and develop a

multi-branches hypergraph learning framework, which can efficiently capture the high-

order relations between drugs with important local structural features.

• We perform extensive experiments to compare our model with the state-of-the-art task specific

and general models, and prove our model’s effectiveness on multiple drug interaction predic-

tions. The drug-substructure network can also help improve the performance of other existing

GNN models, which provides a new perspective for network model-based drug discovery.

Related work

Heterogeneous graph

In recent years, multi-omics technologies and approaches to systems biology have created

large heterogenized biological networks that provide significant opportunities for graph neural
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Fig 2. The framework of HGDrug. The sub-figure (a) depicts all the motifs presented in our work. DRSS(Ij), DISS(Ip), DRSM (Ii), DISM(Iu) denote the four motif-

driven hypergraphs constructed on drug related and have the same substructure, drug independent and have the same substructure, drug related and have the same
molecular interactions, and drug independent and have the same molecular interactions motifs groups, respectively. The sub-figure (b) is a real example of driving the

hypergraph base on triangular motif. It shows that the hypergraph method will make the relation between some nodes with high-order relations closer. The sub-figure

(c) draws the process of multi-branches hypergraph attention and graph convolutional networks inferring new drug-related interactions.

https://doi.org/10.1371/journal.pcbi.1011597.g002
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networks (GNN) to accelerate the progress of drug discovery. The heterogeneous graph-based

GNN methods are used to predict various potential interactions related to drugs. Drug-drug

interactions (DDIs) and drug-side-effect interactions (DSIs) predictions can help pharmacolo-

gists discover the potential combinations of drugs and the possible side-effects. Zhao et al. [21]

use a graph attention network (GAT) to integrate three different features for DSIs prediction.

Yu et al. [22] propose a hybrid GNN framework composed of graph and node embedding to

Table 1. Statistical information for the four interactions datasets: The number of drugs, drug-related nodes, fragments and interaction pairs.

Dataset #Node 1 #Node 2 #Edges #Fragments #DFI #FFI

Drug-drug 1,514 1,514 48,514 15,032 7,993 83,811

Drug-target 5,017 2,324 15,138 46,855 28,453 816,918

Drug-disease 1,519 1,229 6,677 12,982 7,509 70,574

Drug-side-effect 1,223 5,734 153,663 11,135 6,330 58,083

https://doi.org/10.1371/journal.pcbi.1011597.t001

Fig 3. Prediction results of HGDrug and tasks-specific baseline models on the four tasks.

https://doi.org/10.1371/journal.pcbi.1011597.g003
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Table 2. Prediction results of HGDrug and general baselines models on 4 drug-interactions interactions datasets. The best performance is marked in bold and the sec-

ond best is underlined to facilitate reading.

Model DDIs DTIs DDiIs DSIs

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

SVM 0.613 0.591 0.670 0.621 0.602 0.580 0.655 0.603

Katz 0.665 0.643 0.672 0.644 0.701 0.722 0.750 0.732

Deepwalk 0.722 0.701 0.723 0.759 0.801 0.799 0.852 0.833

GCN 0.858 0.830 0.883 0.888 0.839 0.861 0.929 0.934

GAT 0.831 0.791 0.840 0.851 0.818 0.828 0.931 0.932

SkipGNN 0.858 0.834 0.839 0.856 0.811 0.839 0.929 0.932

HGDrug 0.976 0.977 0.908 0.928 0.952 0.960 0.962 0.963

https://doi.org/10.1371/journal.pcbi.1011597.t002

Fig 4. Ablation experiments explore the contribution of neural network framework and different category hypergraph branches.

https://doi.org/10.1371/journal.pcbi.1011597.g004
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identify potential drug-side-effects interactions. HAN-DDI [23] is a heterogeneous graph

attention model consisting of an attention-based heterogeneous graph node encoder for

obtaining drug node representations and a decoder for DDIs prediction. In addition, drug-tar-

get interactions (DTIs) and drug-disease interactions (DDiIs) prediction are becoming more

and more important for researchers as an integral part of drug repurposing. DTINet [24]

learns features of drugs and targets from heterogeneous networks, and then adopts inductive

matrix completion to predict novel DTIs and repurpose existing drugs. NeoDTI [25] integrates

diverse information from the heterogeneous network and automatically learns representations

of drugs and targets for DTIs prediction. Zeng et al. [9] integrate large biomedical network

datasets and employ positive-unmarked matrix completion to predict previously unknown

DTIs. Prior to that, the researchers constructed a heterogeneous network by integrating 10

networks and learning high-level features of drugs to predict drug-disease interactions [8]. Li

et al. [26] propose inductive matrix completion with heterogeneous graph attention network

for the prediction of DTIs. Zhao et al. [15] integrate the heterogeneous networks information

from the topological and biological perspectives to predict unknown DDiIs. Fu et al. [27]

develop a novel link prediction model, multi-view graph convolutional network (MVGCN)

for link prediction in biomedical bipartite networks.

These methods, which are based upon heterogeneous networks, have utilized most available

network information and learned about the characteristics of the nodes by the associated

information on the network topology, in order to identify possible relations between the

nodes. However, to the best of our knowledge, most existing methods do not take drug sub-

structure information into account and are only effective for a single task.

Hypergraph

A hypergraph is a generalization of a graph, where an edge can connect any number of vertices

and has been widely used in the various fields due to its ability to capture higher-order correla-

tions between nodes in ordinary network data [28–32]. In the field of bioinformatics, hyper-

graph has also begun to attract more research interest. HypergraphSynergy [33] is a multi-way

relation-enhanced hypergraph representation learning method to predict anti-cancer drug

synergy. EMPHCN [34] is a drug repositioning method, which is based on enhanced message

passing and hypergraph convolutional networks to predict DDiIs. WHGMF [35] uses the gen-

eralized matrix factorization based on a weighted hypergraph learning model for microbial-

drug association predictions. HHDTI [36] is a heterogeneous hypergraph-based framework

Table 3. Top 20 novel DDIs predictions and their validation. If the DrugBank drug interaction records the interaction information between the two drugs, the “label” is

set as 1, otherwise 0. The Table E in S1 Text describes the details of DDIs.

Rank Drug 1 Drug 2 Label Rank Drug 1 Drug 2 Label

1 Magnesium salicylate Liothyronine 1 11 Picosulfuric acid Mycophenolate mofetil 1

2 Aliskiren Dipyridamole 1 12 Ceritinib Fosaprepitant 1

3 Silodosin Diltiazem 1 13 Dabrafenib Budesonide 1

4 Calcium carbonate Levothyroxine 1 14 Canagliflozin Sitagliptin 1

5 Netupitant Zopiclone 1 15 Metamizole Adalimumab 0

6 Calcium carbonate Alfacalcidol 1 16 Simeprevir Propafenone 1

7 Acenocoumarol Ciprofloxacin 1 17 Lithium cation Amiloride 0

8 Dabrafenib Propafenone 1 18 Dasatinib Bortezomib 1

9 Dabrafenib Domperidone 1 19 Dabrafenib Bromocriptine 1

10 Dasatinib Escitalopram 1 20 Fosphenytoin Chloramphenicol 1

https://doi.org/10.1371/journal.pcbi.1011597.t003
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and fuses the key embeddings from a generative model and side embeddings from hypergraph

neural networks for drug-target interaction (HHDTI) predictions. Saifuddin et al. [37] decom-

pose the SMILES of drugs to construct a hyperedge and propose the HyGNN model. In their

method, different decomposition methods of a drug are regarded as hyperedges and drug rep-

resentations are learned from different hyperedges. It shares the same concept as learning the

representation of a drug from different perspectives to predict DDI, which indicates the poten-

tial effectiveness of incorporating drug substructure networks. Still, it does not explore the full

characteristics of the hypergraph.

Preliminary and problem formulation

In this section, we present preliminary concepts and give a formal definition of our target

problem.

Definition 1 (Heterogeneous Network) The heterogeneous network is denoted G = (V, E)

associated with a node type mapping functionF : V! O, where O represents the set of all node
types, and an edge type mapping functionC : E! R, where R represents the set of all edge types.
Each node v 2 V belongs to a particular node type, and each edge e 2 E belongs to a particular
edge type. If |O| + |R|> 2, the network is called a heterogeneous network.

This paper studies three heterogeneous networks (DTIs, DDiIs, DSIs), and one homoge-

neous network (DDIs). We integrate the 4 aforementioned networks with drug substructure

networks (DFIs, FFIs) obtained from decomposing the drug, to construct the comprehensive

drug-centric heterogeneous network DSMN.

Definition 2 (Network Motifs) Amotif represents a small pattern of interconnections that
occurs in complex networks at a frequency significantly higher than in randomized networks,
thereby characterizing higher-order network structures [38, 39]. Amotif M is defined on n nodes
by a tuple (T, A), where T is a n × n binary matrix and A� {1, 2, . . ., n} is a set of anchor nodes.

In this paper, we construct motifs related to formulate the high-order relation information

centered on the drug, which capture the features of the drug in the heterogeneous network. Fig

2(a) shows all the used motifs.

Definition 3 (Hypergraph) A hypergraph can be denoted as G ¼ ðV; EÞ, the vertex set is V
including N unique nodes and the edge set is E including H hyperedges. Each hyperedge � 2 E
can connect multiple nodes, which means each hyperedge can be represented as a subset of nodes
� ¼ fB1; B2; � � � ; Bkg, B 2 V, k is the size of hyperedge �. The hypergraph can be represented by an
incidence matrix H 2 {0, 1}N×H, where H(i, j) = 1 if node Bi 2 V is in hyperedge �j 2 E. LetDB

and D� be two diagonal matrices, which denote the degrees of nodes and hyperedges, respectively.
TheDBði; iÞ ¼

PH
j¼1

U�ðj; jÞ �Hði; jÞ is the degree of node Bi, where U� 2 R
H�H is a diagonal

matrix, and the diagonal entries are hyperedge weights. In this work, all weights are assigned
with 1, thus U� becomes an identity matrix. TheD�ðj; jÞ ¼

PN
i¼1

Hði; jÞ is the degree matrix of
hyperedge �j.

Problem 1 (Drug-related Interactions Prediction) Given a drug-centric heterogeneous net-
work G, which is composed of molecular and drug-substructure interactions networks. Consider
a task-specific drug-related interactions network Gt, containing Nt nodes v of one type of biomed-
ical entity such as drugs, diseases, proteins, or side effects, etc., and Et edges e representing interac-
tions between drug and entity nodes. We denote the adjacency matrix of Gt as W, where W(i, j)
is 1 if nodes vi and vj are connected in the network and otherwise 0. Our goal is to learn a map-
ping function f of the probability of interaction between nodes vi and vj based on the heteroge-
neous network G. We wish to predict whether vi and vj have a given type of pair-wise relation,
which has not been observed.
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Result

Description of DSMN and HGDrug

As shown in Fig 1, we first use the reaction information of BRICS to decompose the drugs’

SMILES into fragments and further decompose the fragments to the smallest indivisible frag-

ment, and retain reaction information between these fragments to construct the drug-frag-

ment interactions (DFIs), and fragment-fragment interactions (FFIs) network. Then, we

construct the micro-to-macro drug-centric heterogeneous network DSMN by assembling

DFIs, FFIs networks, and four molecular interaction networks, namely, drug-drug interactions

(DDIs), drug-target interactions (DTIs), drug-disease interactions (DDiIs), and drug-side-

effect interactions (DSIs) networks. As shown in Fig 2, we propose a hypergraph learning

framework, termed HGDrug, for drug multi-task interaction predictions. The pipeline of

HGDrug includes two key steps:(1) hypergraph construction: to formulate the high-order rela-

tion information among drugs, we carefully design the triangular and quadrilateral network

motifs with underlying semantics, and these motifs are divided into four specific categories

according to the latent semantic relationship to guide the construction of hypergraphs over

the heterogeneous network (Fig 2(a)). (2) Multi-branches hypergraph attention and graph

convolutional networks inferring drug-related interactions: the hypergraph attention network

are used to encode different motifs-guided hypergraphs, and the attention mechanism is used

to selectively aggregate information from different branch-specific drug embeddings to form

the comprehensive drug embeddings. A graph convolution network on the drug-related inter-

action graph encodes the drug-related nodes information and complements the drug feature

information for task-special drug-related interaction prediction (Fig 2(c)). To thoroughly eval-

uate the prediction capability of HGDrug, we conduct a variety of experiments, including per-

formance comparison of ours with 8 task specific models and 6 general models, the ablation

study to examine the contribution of different category branches, the network visualization,

case studies and comprehensive analysis to reveal whether HGDrug can better capture the

drug substructure features and predict novel interactions on multiple tasks.

Datasets and experimental setup

In this section, we provide details on molecular interaction datasets, baseline methods, and

experimental setup.

Datasets. We construct the drug-related heterogeneous network by assembling 4 com-

monly-available drug-related interaction networks which are: (a) drug-drug interactions

(DDIs) network; (b)drug-target interactions (DTIs) network; (c) drug-disease interactions

(DDiIs) network; (d) drug-side-effect interactions (DSIs) network. In the work, each drug is

converted to DrugBank ID from the DrugBank database (v4.3) [40]. In addition, for each drug

in these datasets, we use the reaction information of BRICS [2] to decompose the drugs’

SIMLES into fragments that contain functional groups, and further decompose these frag-

ments into smaller fragments until they were indivisible. We construct the drug-fragment

interactions (DFIs) and fragment-fragment interactions (FFIs) networks with fragments as

nodes in the network. One example is illustrated in Fig 1 showing one drug and the corre-

sponding heterogeneous networks. For the specific task of drug-related interaction prediction,

we expand the specific task network by decomposing the drug of the network and construct

novel two drug substructure networks, namely, drug-fragment interactions (DFIs) network

and fragment-fragment interactions (FFIs) network, to perform the associated prediction of

downstream tasks.
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DDIs network. We collect the drug-drug interactions from the BIOSNAP dataset [41] and

collect a total of 48,514 interactions connecting 1,514 drugs. We use the reaction information

of BRICS to decompose the SMILES string of these drugs into fragments that contain func-

tional groups, and continue to decompose these fragments into indivisible fragments contain-

ing functional groups. In the end, 15,016 fragments, 7,974 DFIs, and 83,811 FFIs are retained.

DTIs network. We collect the drug-target interactions from the BIOSNAP dataset [41]. The

interaction network contains information on which genes (i.e., proteins encoded by genes) are

targeted by drugs available on the U.S. market. We collect a total of 15,138 interactions con-

necting 5,017 drugs and 2,325 targets. Using the same decomposing strategy, finally 46,855

fragments, 28,453 DFIs, and 816,918 FFIs are retained.

DDiIs network. We use the drug-disease network constructed by previous research [8]. The

network assembles clinically reported or experimentally validated DDiIs network by assem-

bling data from DrugBank [40] and repoDB [42]. We colelct a total of 6,677 interactions con-

necting 1,519 drugs and 1,229 targets. Using the same decomposing strategy, finally 12,982

fragments, 7,509 DFIs, and 70,574 FFIs are retained.

DSIs network. The known drug-induced side-effects are acquired from SIDER [43], which

contains information on marketed medicines and their recorded adverse drug reactions. All

side effect items are annotated by UMLS [44] vocabularies and converted to Concept Unique

Identifier (CUI). In the end, 153,663 DSIs connecting 1,223 drugs with 5,734 side effects are

collected in this study, Using the same decomposing strategy, finally 11,135 fragments, 6,330

DFIs, and 58,083 FFIs are retained.

The statistics of the datasets are described in Table 1.

Implementation details. We implement HGDrug by the TensorFlow deep learning

framework (The code and data of HGDrug are available at: https://github.com/stjin-XMU/

HGDrug). We illustrate the results of each experiment with 5-fold cross-validation and the fol-

lowing metrics are applied to evaluate the performance: AUROC and AUPR. Note that all

baseline comparison models are configured to their default setting or best parameter values

reported in the previous study. The neural network model was developed and trained utilizing

the TensorFlow framework, specifically version 2.2.0. The trainable parameters of our model

consist of three parts: drug and drug-related node embeddings, gate parameters, and attention

parameters. Regarding drug and drug-related node embeddings, the HGDrug only need to

learn the 0-th layer drug embeddings D0 2 R
b�c and drug-related node embeddings

M0 2 R
t�c. In the HGDrug architecture, a total of nine gates are employed. Each of the gate

has parameters of (c + 1) × c, while the attention parameters are of the same size. For the defi-

nition of formula symbols, see Methods. During our model training, the dimension of latent

factors (embeddings) is empirically set to 100, the depth of the neural network layer is set to 2,

the regularization coefficient σ is set to 0.01, the hyper-parameter λ is set to 0.001, and the

batch size is set to 2000. We use the adaptive learning rate to train HGDrug with a initial learn-

ing rate 0.001, and all experiments are run up to 200 epochs. The HGDrug framework is

trained on 4 × 2080Ti GPUs with 32 Intel(R) Xeon(R) CPU E5–2620 v4 @ 2.10GHz on

Ubuntu 18.04 platform.

Baseline comparison models

We evaluate HGDrug on 4 distinct types of drug-related interactions, including DDIs, DTIs,

DDiIs, and DSIs. To explore the generality of the HGDrug model and its excellent perfor-

mance for each drug-related interactions tasks, we select 14 models of 2 types as baseline com-

parison models, which are 8 task specific models and 6 general models.
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To select 8 task specific models for 4 tasks, we pick up 2 up-to-the-date graph neural net-

work models for each task, as illustrated in following:

DDI predictions task. MIRCLE [45] treats a DDIs network as a multi-view graph and uti-

lizes the graph contrastive learning to capture inter-view molecule structure and intra-view

interactions between molecules simultaneous for DDIs prediction; HyGNN [37] is a hyper-

graph neural network model, which predicts the DDIs by generating and using the representa-

tion of hyperedges as drugs.

DTI predictions task. IMCHGAN [26] is an inductive matrix completion with heteroge-

neous graph attention network, which adopts a two-level neural attention mechanism to learn

drug and target feature representations and uses the inductive matrix completion to predict

DTIs score; HHDTI [36] captures key embeddings and side embeddings via generative model

and hypergraph neural networks respectively, and fuses these embeddings to predict DTIs.

DDiI predictions task. DeepDR [8] constructs the heterogeneous network by integrating

10 networks and learns high-level features of drugs from the heterogeneous networks by a

multi-modal deep auto-encoder to predict drug-disease interactions; HINGRL [15] integrates

the information of heterogeneous biological networks and the biological knowledge of drugs

and diseases to obtain node features, and adopts a random forest classifier to predict unknown

DDiIs.

DSI predictions task. Timilsina et al. [46] integrate the bipartite graph and the semantic

similarity graph using a matrix factorization method and a diffusion-based model to discover

the DSIs. In this work, we use MFD to refer to this model; MGPred [21] uses graph attention

network to integrate three different types of features, which includes similarity information,

known DSIs information, and word embedding for DSIs prediction.

The 6 general models suitable for all tasks including the classic machine learning algorithm

SVM [47], Katz [48], the direct network embedding methods Deepwalk [49], the deep graph

neural network model GCN [50] and GAT [51], and the latest model SkipGNN [52] for

molecular interaction association prediction. For these models details see Details about “Gen-

eral models baselines” in S1 Text.

Performance of HGDrug on the cross-validation

We firstly select the task-specific model for each task for comparison, including comprehen-

sive network models, path-based models, hypergraph models, and considering drug substruc-

tures models. For models that can expand network data, we add the DFIs network data as a

variant of the original model to verify whether or not the chemical structure information can

effectively improve the performance for drug-related interactions prediction. We discover that

HGDrug outperforms each of these competitive baseline models, by consistently achieving the

highest prediction accuracy for all 4 tasks. HyGNN model [37] is not able to capture high-level

information between drugs since it simply uses the different decomposition schemes of each

drug as a hyperedge, and constructs a hypergraph of each drug to learn the feature of the drug.

It is worth noting that the performance of the original network-based model will be improved

by incorporating the dataset from DFIs network, especially for the path-based model. By treat-

ing drug substructures that contain pharmacophore information as node types and integrating

them into heterogeneous networks, we can enhance the GNN model’s ability to discern rela-

tionships between drugs with potential similar efficacy, thereby improving the prediction per-

formance in drug-related tasks. For example, the IMCHGAN [26] model, which introduces

meta-path-based neighbors to learn connections between nodes from different semantic per-

spectives, yields a performance improvement of increasing AUROC from 0.800 to 0.890, and

AUPR from 0.796 to 0.902 on the DTIs dataset respectively when the DFIs network is added.
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These experiments also show that for drug-related interaction prediction tasks, adding DFIs

network can learn information about the same functional group fragments between drugs,

which helps to improve the performance of drug-related interaction prediction based on net-

work models. Since the HGDrug makes full use of the higher-order relations between nodes in

heterogeneous networks and the information of drug substructures, it outperforms other

state-of-the-art methods in drug-related interaction prediction performance, even if these

methods add substructure networks.

In addition, we compare HGDrug’s performance with 6 general baseline methods. The

experimental results are reported in Table 2. It can be seen that HGDrug is the top-performing

method out of 6 general methods across all drug-related interaction networks. In the DDIs

and DDiIs tasks, HGDrug has achieved a significant performance improvement than the base-

line methods. Compared to the second-ranked baseline method, the AUROC and AUPR of

the DDIs task are improved by 11.8% and 14.3%, respectively, and the AUROC and AUPR of

the DDiIs task are improved by 11.3% and 9.9%, respectively. Note that mining potential

drug-drug associations for the DDIs task might be helpful since drug substructure networks

brings extra complexities to the network. Drugs with the same basic structure are more likely

to have similar pharmacological effects, which indicates that incorporating drug substructure

networks can help identify new drug indications. Compared to classical machine learning and

the direct embedding methods, the AUROC of HGDrug has up to 36.3% increase over SVM,

31.1% increase over Katz, and 25.4% increase over DeepWalk on DDIs task. These results also

reflect that deep graph neural networks can learn to capture more effective features than gen-

eral machine learning methods and direct embedding methods. It is interesting to observe that

the well-performing benchmark, SkipGNN, has worse performance than GCN on the DTIs

and DDiIs tasks, which might be due to the fact that DTIs and DDiI have fewer known interac-

tions, while skipGNN skips similarity thus losing its performance advantage. For more evalua-

tion metrics results, see “More evaluation metrics” in S1 Text.

Performance of HGDrug by ablation analysis

We implement 5 simplified variants of HGDrug to exam the effects of each component in our

HGDrug in the 4 distinct types of prediction tasks. We run all the experiments with the 5-fold

cross-validation, same model parameters and evaluation protocol (see the Implementation

details) for a fair comparison. The result is presented in Fig 4. The 5 simplified variants of

HGDrug are denoted as:

• HGDrug_0: removing the 1*4-th all hypergraph branches.

• HGDrug_2f: removing the 3-th and 4-th molecular interactions hypergraph branches and

retaining the 1-th and 2-th drug-substructure hypergraph branches.

• HGDrug_2m: removing the 1-th and 2-th drug-substructure hypergraph branches and

retaining the 3-th and 4-th molecular interactions hypergraph branches.

• HGDrug_ac: obtaining the drug representation by hypergraph convolutional network.

• HGDrug_self: removing the self-supervised auxiliary task.

Fig 4 shows only minor difference obtained by using drug-substructure hypergraph

branches or molecular interactions hypergraph branches alone, which proves that the drug

information captured by the drug-substructure networks can rival the drug feature informa-

tion obtained from the drug-related interaction network. For DDiI tasks with fewer known

interactions, a large difference can be observed whether all hypergraph branches are utilized to
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obtain features (HGDrug_ac, HGDrug_self, HGDrug) or not (HGDrug_0, HGDrug_2m,

HGDrug_2f). It illustrates the importance of obtaining more reliable side information when

there are insufficient known interactions for the association prediction of molecular interac-

tions. HGDrug uses the hypergraph attention network architecture to focus on the differences

of neighbor features in the hypergraph, and uses a self-supervised auxiliary task to weigh the

contribution of different types of high-order information in interaction predictions. Therefore,

HGDrug can learn higher-quality drug features information from the hypergraph, which is

superior to the HGDrug_ac that obtains drug representation through the hypergraph convolu-

tional network and HGDrug_self that removes the self-supervised auxiliary task. These studies

also show that additional feature information can be captured by the proposed HGDrug to

enhance drug-related interaction predictions, which may provide new insights into under-

standing interaction mechanisms among drugs, drug substructure, and molecules. To more

thoroughly evaluate the significance of utilizing fragments as a basis for hypergraph construc-

tion in drug feature learning, we verify the contribution of the four motifs (M2, M3, M5, M6),

the results see Table C in S1 Text.

HGDrug identifies novel associations

The main goal of the HGDrug model is to discover potential novel interactions based on exist-

ing known interactions. To further demonstrate the ability of HGDrug for discovering novel

interactions, we select the prediction results of DDiIs and DDI tasks for analysis.

Network visualization of the DDiI predictions. We remove the known DDiIs used in

the prediction model and retain the novel top 100 DDiIs with the highest drug-disease associa-

tion score predicted by HGDrug (Fig 5(a)). Among the top 100 predicting DDiIs, HGDrug

can capture the experimental or clinically reported drug-disease associations. For example, the

five results with the highest association score predict that drug DB01413 (Cefepime) can act on

indications C0178299 (Infection of skin AND/OR subcutaneous tissue) and C0276026 (Hae-

mophilus influenza pneumonia), DB00535 (Cefdinir) can also act on C0178299, DB00833

(Cefaclor) can act on C0554628 (Streptococcus pyogenes infection), and DB01331 (Cefoxitin)

can act on C0149725 (Lower respiratory tract infection). As a widely known fact, Cefepime is a

fourth-generation cephalosporin antibiotic, which can treat uncomplicated skin and skin

structure infections [53–55] and pneumonia caused by susceptible bacteria [56]; Cefdinir is a

third-generation cephalosporin, which can also be used to treat uncomplicated skin and skin

structure infections [57]; Cefaclor is a second-generation cephalosporin that can be used to

treat streptococcus pyogenic infection [58]; Cefoxitin is a semi-synthetic, broad-spectrum anti-

biotic that can be used to treat lower respiratory tract infection [59]. The above results prove

the effectiveness of our model in finding novel potential associations. If properly utilized, it

can assist medicinal chemistry learning to discover new associations of approved drugs.

HGDrug predicts novel interactions by learning more effective drug features. To verify the

hypothesis and interpret the results of our HGDrug model, we analyze the above 5 novel asso-

ciations from the perspective of drug features learned by HGDrug. We extract the drug fea-

tures obtained in the DDiIs task and calculate the similarity scores between drugs. The result

shows that the most similiar drugs for 4 drugs DB01413 (Cefepime), DB00535 (Cefdinir),

DB00833 (Cefaclor), and DB01331 (Cefoxitin) are DB01330 (Cefotetan), DB00833 (Cefaclor),

DB01416 (Cefpodoxime), and DB01330 (Cefotetan), respectively. We give the top 20 highest

similarity score DDIs of these 4 drugs (see Table D in S1 Text). We discover that these 4 drugs

with the most similiar drug all are the approved drugs for the predicted corresponding indica-

tions (see Fig 5(b)). These results demonstrate that our model can make full use of features
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Fig 5. Network visualization and analysis of the drug-disease associations predicted by HGDrug. (a) In the network, the predicted

novel top 100 DDiI network is visualized. The pink nodes are diseases and the green nodes are drugs. The label of the node represents

the ID of the drugs (Drugbank_ID) or diseases (UMLS_ID). The node size denotes the degree. The weight of edges (drug-disease

associations) denotes the predicted score by HGDrug. (b) Analysis of top 5 drug-disease associations predicted by HGDrug. Four

drugs are included in the top 5 predicted potential associations. The similarity between drugs comes from the drug features learned by
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information to capture approximate relations between drugs, and reveal potential drug-disease

associations based on the relations and the approved drug-disease interactions.

The chemical structures are responsible for specific properties of drugs, and the same basic

chemical structure exist in drugs with the same pharmacological effect. Accordingly, identify-

ing the drug substructure information associated with the target property and adding the

information into the model is vital for drug discovery. To illustrate HGDrug’s learning ability

of chemical structures, we visualize the above 4 pairs of drug with approximate relations. It’s

worth noting that these drug pairs share the same substructures that carry pharmacophore

information, see Fig 6 for more details. This experimental result also shows that HGDrug can

learn the substructure information and capture the same basic chemical structure information

to improve the performance of drug repurposing.

Case study of the DDI predictions. In this part, we remove the known DDIs used in the

prediction model and retain the top 20 novel interactions predicted in the DDIs task. Table 3

displays the top 20 novel predicted DDIs and information showing association between two

drugs recorded in the DrugBank database (https://go.drugbank.com). It can be seen from

Table 3 that among the top 20 novel predicted DDIs, 18 can be found in the DrugBank’s drug

interactions records. The result indicates the HGDrug model can effectively identify potential

novel interactions. To intuitively observe the drug representations that our hypergraph

branches have learned, we envision the representations by mapping them to the two-dimen-

sional space by t-SNE algorithms. The result see Fig A in S1 Text, the implementation details

see “Visualization details” in S1 Text. Remarkably, even without any label information, the

HGDrug in the DDiI task, and the drug most similar to these four drugs are selected respectively. This network was generated by

Gephi (https://gephi.org).

https://doi.org/10.1371/journal.pcbi.1011597.g005

Fig 6. The 4 drugs and their corresponding top 1 drug structures from Fig 5(b). The same substructures of drug pairs are marked in orange.

https://doi.org/10.1371/journal.pcbi.1011597.g006
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representations learned from hypergraph branches follow some kind of pattern that is strongly

related to the drug classes.

Furthermore, we explore the ability of different category hypergraph branches to identify

potential DDIs. We select the top 20 novel interactions based on the predicted highest associa-

tion from the HGDrug_2f and HGDrug_2m. It can be seen that among the top 20 novel inter-

actions of the HGDrug_2f, 19 can be found in the DrugBank’s drug interactions records (see

Table F in S1 Text). And 15 of the top 20 novel interactions in the HGDrug_2m model can be

found in DrugBank’s drug interactions records (see Table G in S1 Text). The experimental

result thus illustrates the importance of drug substructure in identifying potential DDIs.

Comprehensive analysis: Computationally identified the most relevant

entities of paclitaxel

To further illustrate the practical applications of HGDrug, we comprehensively analyze the

prediction potential of HGDrug from the perspective of drug, target, side effect and disease.

As a widely used and promising anticancer drug, paclitaxel is a type of microtubule stabilizer

and used to treat various diseases, including cancers (e.g. breast cancer, ovarian cancer), coro-

nary artery restenosis, renal and hepatic fibrosis [60]. However, severe side effects limit the

effectiveness of paclitaxel in the disease treatment, such as myelosuppression and peripheral

neuropathy [61]. Therefore, we select paclitaxel as a case for further comprehensive analysis,

and predict its potential drugs, targets, side effects, and diseases using HGDrug. For the results

of the DTIs prediction task, we do not consider the CYP series of proteins.

As shown in Fig 7, the most relevant entities predicted by paclitaxel in the four tasks are

P00372 (ESR1), multiple myeloma, dysaesthesia, and cobicistat. The ESR1, multiple myeloma,

and dysaesthesia have almost no drugs shared with paclitaxel, which show that these results

cannot be effectively predicted by GNNs that relying on the pairwise links. Recent studies have

shown that ESR1 methylation may have a protective effect on neurotoxicity induced by pacli-

taxel [62]. Paclitaxel have shown therapeutic effect on advanced breast cancer patients with

ESR1 mutations [63], which indicate HGDrug provided insight into the potential mechanism

for known drug-disease (side effect) interactions. In addations, we analyse the top 10 potential

targets and find that 7 targets indeed associate with paclitaxel validated by literature (see the

Table H in S1 Text). Several studies have shown that paclitaxel induces dysaesthesia, including

pain, allodynia, and numbness [64, 65]. Furthermore, Table I in S1 Text provides the top 10

predicted side effects, and find most side effects are validated to relate to paclitaxel by the liter-

ature. It is generally recognized that the identification of drug-disease interactions is laborious

and expensive. Several studies reported that paclitaxel selectively modifies the expression of

regulatory proteins in the apoptosis signal pathway and can be used to treat multiple myeloma

[66, 67]. Furthermore, Bcl-2 is proved to associate with resistance to paclitaxel in multiple

myeloma cells, which may relate to its influence on paclitaxel-induced apoptosis [68, 69].

These results indicate that HGDrug has the potential to discover new drug-disease interactions

from the perspective of mechanism. To further prove the role of hypergraph and substructure,

we give the substructure of the most relevant cobicistat and paclitaxel, and we can find that

they have the same substructure information, and this information can be captured through

the hypergraph structure with “DISS” semantics.

Discussion and conclusion

The biomedical networks which contain domain knowledge and can be used for the prediction

of various tasks such as drug repurposing and drug-drug interaction, however, chemical that

play important role in drug properties is neglected in current biomedical networks.
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Furthermore, previous drug-related interaction prediction methods mostly rely on pairwise

links heavily, without paying attention to local strong connections in complex biological net-

works, and cannot correlation between drugs and chemical structures. In the work, we pro-

pose the micro-to-macro drug-centric heterogeneous network method, and develop a general

framework, called HGDrug, which is a novel hypergraph attention network for predicting

Fig 7. Analysis of the predicted results for the four tasks of paclitaxel. The network contains the known interactions of paclitaxel and the most relevant entity nodes

predicted by HGDrug for paclitaxel in the four tasks. The known related drugs of four nodes are given for visualizing the drugs that these nodes share with paclitaxel.

https://doi.org/10.1371/journal.pcbi.1011597.g007
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drug-related interactions. Firstly, we construct a novel drug-centric network called DSMN

that incorporates information on drug substructures into common drug interaction data. We

then design 12 types of network motifs and divide these motifs into 4 categories based on

whether the drugs are directly related, and whether they are derived from substructure or

molecular interaction networks, based on which 4 motifs-driven hypergraphs are constructed.

HGDrug model applies multi-branches hypergraph attention to learn high-order drug features

representation from motifs-driven hypergraphs, and uses graph convolution network on the

known drug-related interaction graph to obtain the drug-related nodes information and to

complement the drug feature information for task-special drug-related interaction prediction.

The experimental results show that the data supplementation of drug substructure and the

multi-branch hypergraph attention mechanism can better obtain the characteristic results of

drugs and improve the prediction performance of drug-related interaction networks. By com-

paring our work with multi-task general models and specific task models, it can be seen that

HGDrug achieves excellent and robust performance on various prediction tasks of drug-

related interaction networks. Predictive analytics for novel interactions of DDiIs and DDIs fur-

ther prove the effectiveness of HGDrug in finding novel drug-related interactions.

While we have explored the interpretability of the predicted results, not all chemical struc-

tures that embody the physicochemical properties of the drug can be found in all cases. As pre-

viously mentioned, pharmacophore information contained in chemical structures is crucial

for effective drug discovery, and a more comprehensive investigation from this aspect is

planned in our future studies. In addition, fragment-based drug discovery (FBDD) has become

one of the mainstream methods for discovering lead compounds in recent years. Further

exploration of network construction method is also necessary for fragment-based drug discov-

ery, which may help GNN models discover potential molecular fragments for specific diseases

and targets.

In summary, our model can be used as an effective method to predict drug-related interac-

tions, to develop a new idea for drug-related interactions calculation, and to provide com-

puter-aided guidance for biologists in clinical trials. Furthermore, the hypergraph-based

method is not constrained by the size of the network data. It leverages existing network data to

extract strong correlations between drugs, thereby enhancing the predictive accuracy in drug-

related tasks. This approach allows for the expansion of calculations to larger network datasets

without escalating computational complexity. Moreover, HGDrug is adept at handling most

drug-related interaction task predictions, significantly minimizing the consumption of com-

puting resources and facilitating a more convenient and efficient execution of related tasks.

Methods

Motifs-driven hypergraph

We decompose the drugs and construct the interaction network between drugs and substruc-

tures in order to mine the feature information of drugs and capture potential associations

between drugs through the number of drugs with the same substructure and the inclusion rela-

tionship between substructures.

To capture higher-order information among drugs, we first align these heterogeneous net-

works and molecular interaction network for specific prediction task and constructs hyper-

graphs based on the network motifs over heterogeneous networks (Fig 2(a)). In the work, the

DFIs and FFIs networks obtained by decomposing the drugs are directed, the drug-related het-

erogeneous networks are directed, and the DDIs network is undirected (bidirectional). We

focus on triangle and quadrilateral motifs representing high-order relationships between

drugs and carefully designed a set of motifs to guide the hypergraph construction. The M1-M6
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summarizes the common triangle and quadrilateral relations in the DDIs, DFIs, and FFIs net-

works, describing the high-order correlation for drugs that have the same substructure. In

addition to drug substructure networks, we also build hypergraphs based on molecular inter-

action networks, focusing only on triangular motifs in these heterogeneous networks. The M7-

M12 summarizes the common triangles in the molecular interaction networks. Last while not

least, we also take whether the drugs are directly related into consideration, and subdivide the

above 2 groups into following groups: M1-M3 (drug-related and have the same substructure,

DRSS), M4-M6 (drug independent and have the same substructure, DISS), M7-M9 (drug-

related and have the same molecular interactions, DRSM), M10-M12 (drug independent and

have the same molecular interactions, DISM). Fig 2(a) shows all the used motifs, it is worth

noting that for better personal data protection, we only use the task specific training dataset to

build its associated hypergraph in a specific task.

For a motif M, we use the co-occurrence of two nodes in M to capture the higher-order

relations of drugs. Specifically, given a motif Mk where Ak represents the motif-based adja-

cency matrix, Ak(vi, vj) refers to the number of times that vi and vj appear in the same motif

structure of Mk in the global heterogeneous network. The motif-based adjacency matrix for

node type Oi in the heterogeneous is denoted as:

Akðvi; vjÞ ¼
X

vi ;vj2V

1ðvi; vj occur in MkÞ ð1Þ

where i 6¼ j, the F(vi) = F(vj) = Oi is considered as the drug node type, and 1() is the truth-

value indicator function, in a way that when the statement inside () is true, 1() = 1, otherwise

0. The Table 4 shows how the matrix Ak is calculated with respect to Mk motif. Since drug

independent motifs M4-M6 and M10-M12 are believed to contain the corresponding triangular

or quadrilateral drug related motifs M1-M3 and M7-M9, we remove the redundancy and even-

tually make A4 = A4 − A1, A5 = A5 − A2, A6 = A6 − A3,A10 = A10 − A7,A11 = A11 − A8, and A12

= A12 − A9

Table 4. Computation of motif-induced adjacency matrices.

Motifs M Matrix Computation A

M1 A1 = (SS)� S

M2 A2 = (YYT) � S

M3 A3 ¼ Am þ AT
m, Am = (YZYT) � S

M4 A4 = SS

M5 A5 = YYT

M6 A6 ¼ Am þ AT
m, Am = YZYT

M7 A7 = WWT� S

M8 A8 = GGT� S

M9 A9 = VVT� S

M10 A10 = WWT

M11 A11 = GGT

M12 A12 = VVT

A: motif-driven adjacency matrix;

S: DDI adjacency matrix; Y: DFI adjacency matrix;

Z: FFI adjacency matrix; W: DTI adjacency matrix;

G: DSI adjacency matrix; V: DDiI adjacency matrix;

�: denotes the element-wise product.

https://doi.org/10.1371/journal.pcbi.1011597.t004
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With the following 4 groups of motifs, e.g., RSS, ISS, RSM, ISM, we construct four hyper-

graphs that contain different high-order drug relation patterns. We use the incidence matrices

Ij = A1 + A2 + A3, Ip = A4 + A5 + A6, Ii = A7 + A8 + A9, and Iu = A10 + A11 + A12 to represent 4

hypergraphs induced by the above 4 motif groups, respectively. Take Ij (based on the heteroge-

neous network shown in Fig 1) as an example, the related M1-M3 and the final incident matrix

Ij obtained are shown in the (Fig 2(a)).

Learning drug representation by multi-branches hypergraph attention

Our representation learning method is developed upon MHCN model [32]. Based on the 4

groups of motif-driven hypergraphs obtained in the previous section, 4 branches are used to

extract multi-scale drug features of the given heterogeneous network, with each branch captur-

ing high-order drug relationship patterns in a motif-driven hypergraph. To distinguish

higher-order drug-drug relations in different hypergraphs to the final drug-related interaction

prediction performance, we apply a filtered self-gating unit for pre-processing when drug ini-

tial feature vectors matrix D0 are the input for each branch, as defined in following:

Dx
0
¼ D0 � sðD0P

x
g þ Bx

gÞ ð2Þ

where x 2 {j, p, i, u} represents the branches,� is the element-wise product, σ is the sigmoid

nonlinearity, Px
g 2 R

c�c
is the parameters matrix to be learned, c is the dimension of the drugs

initial feature, and Bx
g 2 R

c is the parameters vector to be learned.

After the nonlinear gate modulates the drug’s initial features at a feature-wise granularity

through dimension re-weighting, we then obtain the branch-specific drug features Dx
0
. The

hypergraph attention on each branch is defined as:

Dx
lþ1
¼ ðDxÞ

� 1reluðDx0
l P

x
m þ Bx

mÞ ð3Þ

where l is the propagating layer, Dx0
l ¼ softmaxðIxD

x
l ðD

x
l Þ

T
ÞDx

l , D
x 2 Rb�b is the degree matrix

of Ix, b is the number of drugs. Note that Ix can be replaced with arbitrary Ij, Ip, Ii and Iu to

learn drug representations that encode higher-order information in the corresponding branch

using a hypergraph attention network. Px
m 2 R

c�c is the parameters matrix to be learned, Bx
m 2

Rc
is the parameters vector to be learned. After the drug embedding is propagated through the

Lth layer, the embedding features obtained by each layer are averaged to avoid over-smoothing,

and the final representation of the drug obtained in each branch is Dx ¼ 1

Lþ1

PL
l¼0

Dx
l .

Moreover, the attention mechanism is applied to aggregate the drug feature information

obtained from each branch because the drug features obtained from different branch are not

equally important. For each drug d in different branch, a ωx is learned to measure the different

contributions of branch-specific embeddings to the final prediction performance. The ωx is

defined as:

ox ¼
expðaT � ðDxPaÞÞ

P
x02fj;p;i;ugexpðaT � ðD

x0PaÞÞ
ð4Þ

where a 2 Rc
, Pa 2 R

c�c
are trainable parameters, and the four-scale drug feature are aggre-

gated as Ds ¼
P

x2fj;p;i;ugo
xDx.

Drug multi-task interaction predictions

For the downstream task of drug multi-task interaction prediction, we use graph convolution

to obtain the drugs and drug-related nodes information from the known interactions data of
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specific downstream tasks. Dc is defined as the drug feature from the graph convolution, and

can be computed as:

Dc
0
¼ D0 � sðD0P

c
g þ bcgÞ

Dc
lþ1
¼ ðDc

dÞ
� 1reluððRMl

ÞPc
m þ bcmÞ

8
<

:
ð5Þ

where Dc
l is the gated drug embedding for graph convolution, R 2 {S, W, G, V} is drug-related

interaction adjacency matrix for different tasks, Dc 2 Rb�b are degree matrices of R, Pc
m 2 R

c�c

is the parameters matrix to be learned, and bcm 2 R
c

is the parameters vector to be learned. M
is defined as the drug-related node feature from the graph convolution, and can be computed

as:

Dm
l ¼

P
x2fj;p;i;ugo

xDx
l þ

1

2
Dc

l

Mlþ1 ¼ ðD
c
mÞ
� 1reluððRTDm

l ÞP
c
t þ bctÞ

8
><

>:
ð6Þ

where Dm
l is the drug embedding, which combines the drug feature information from the

above multi-branches hypergraph
P

x2fj;p;i;ugo
xDx

l and the drug feature information from the

graph convolution Dm
l , Dc

m 2 R
t�t

are degree matrices of RT, and t is the number of drug-

related nodes. The Pc
t 2 R

c�c is the parameters matrix to be learned, and bxt 2 R
c is the parame-

ters vector to be learned. Note that the dimension of the nodes initial feature equals to the

dimension of the drug initial feature.

We can therefore obtain the final drug and drug-related node feature embeddings D and

M by:

D ¼ Ds þ
1

Lþ 1

XL

l¼0
Dm

l

M ¼
1

Lþ 1

XL

l¼0
Ml

8
>>><

>>>:

ð7Þ

where D0 ¼ fd1; d2; :::; dbg, d 2 R
c

and M0 ¼ fm1;m2; :::;mtg, m 2 R
c

are randomly

initialized.

Objective functions optimizaion

The model applies the Bayesian Personalized Ranking (BPR) loss [70], which is computed as:

Ls ¼
X

ðd;i;jÞ2O

� logsðŝd;iðyÞ � ŝd;jðyÞÞ þ dkyk
2

2 ð8Þ

where O ¼ fðd; i; jÞjðd; iÞ 2 Rþ
; ðd; jÞ 2 R�

g denotes the pairwise training data, Rþ
indicates

the observed interactions, R� indicates the unobserved interactions, σ(�) is the sigmoid func-

tion, ŝd;i ¼ dT
dmi, ŝd;j ¼ dT

dmj is the predicted score of d on i and j, respectively. θ is the parame-

ters of model, kθk2 is the L2 norm of the parameter vector, and δ is the hyper-parameter that

controls the L2 regularization strength to prevent overfitting. The BPR is a pairwise loss that

promotes an observed interaction to be ranked higher than its unobserved counterparts. Let

drug d be the input to the mode. Assume there is a random positive sample i related to drug d,

and a random negative sample j unrelated to the drug d, the goal of the model optimization is

then to yield a higher rank for sample i than sample j in the predicted list of drug d.
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The different branches can learn drug features with different distributions on different

hypergraphs. To avoid the loss of higher-order information possibly caused by aggregation

operations, a self-supervised auxiliary task is employed to enhance the performance of the

association prediction task. Inspired by the Deep Graph Infomax (DGI) method [71], our

model calculates the mutual information between node representations and full graph repre-

sentations (in large-scale graph networks, sampled sub-graph representations are used). In the

self-supervised auxiliary task, a comprehensive drug representation reflecting the local and

global higher-order connectivity patterns of drug nodes in different hypergraphs can be

obtained by hierarchically maximizing the mutual information between the representation of

the drug, the corresponding drug-centric sub-hypergraph and the hypergraph in each branch.

For each motifs-driven hypergraph, an adjacency matrix I is built to capture the higher-order

association information of the drug, with each row representing a drug-centered sub-hyper-

graph by row-index of the corresponding hypergraph. The sub-hypergraph representation can

be obtained by a readout function F s : Rs�d
, which is depicted as following:

Dx
¼ D� sðDPx

sg þ bxsgÞ

sxd ¼ F sðD
x; qxdÞ ¼

Dxqxd
numðqxdÞ

8
>><

>>:

ð9Þ

where qxd is the row vector of Ix corresponding to the center drug d, and numðqxdÞ denotes the

number of drug d associated nodes in the sub-hypergraph. The representation sxd of the Sub-

hypergraph can represent the importance of each drug in the Sub-hypergraph. The hypergraph

representation can be obtained by an average pooling to summarize the sub-hypergraph fea-

tures into a graph level:

gx ¼ AveragePoolingðSxÞ ð10Þ

where Sx ¼ fsx
1
; sx

2
; :::; sxbg.

The pairwise ranking loss [72] is applied to estimate the mutual information, and the objec-

tive function of the self-supervised auxiliary task is defined as:

Lself ¼ �
X

x2fj;p;i;ug

�
X

d2D

logsðf ðdx
d; s

x
dÞ � f ðdx

d;~s
x
dÞÞ

þ
X

d2D

logsðf ðsxd; g
xÞ � f ð~sxd; g

xÞÞ

�

where D is the set of drugs, f : Rc
� Rc

7!R denotes a discriminator function with two vectors

as the input and scores the agreement between them, and ~Sx ¼ f~sx
1
;~sx

2
; :::;~sxbg is the negative

examples by both row-wise and column-wise shuffling to corrupt Sx.

Finally, the overall objective of the model is defined as:

L ¼ Ls þ lLself ð12Þ

where λ is a hyper-parameter used to control the effect of the auxiliary task.

Supporting information

S1 Text. Fig A. Dimensionality reduction of the drug representations learned from the 4

hypergraph branches. The figure is drawn by t-SNE and the color corresponds to different

types of drug’s ATC primary codes. Table A. Abbreviation List.Table B. The prediction

results of other evaluation indicators for HGDrug and three GNN baseline models on four
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