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Abstract

Locomotion results from the interactions of highly nonlinear neural and biomechanical
dynamics. Accordingly, understanding gait dynamics across behavioral conditions and indi-
viduals based on detailed modeling of the underlying neuromechanical system has proven
difficult. Here, we develop a data-driven and generative modeling approach that recapitu-
lates the dynamical features of gait behaviors to enable more holistic and interpretable char-
acterizations and comparisons of gait dynamics. Specifically, gait dynamics of multiple
individuals are predicted by a dynamical model that defines a common, low-dimensional,
latent space to compare group and individual differences. We find that highly individualized
dynamics—i.e., gait signatures—for healthy older adults and stroke survivors during treadmill
walking are conserved across gait speed. Gait signatures further reveal individual differ-
ences in gait dynamics, even in individuals with similar functional deficits. Moreover, compo-
nents of gait signatures can be biomechanically interpreted and manipulated to reveal their
relationships to observed spatiotemporal joint coordination patterns. Lastly, the gait dynam-
ics model can predict the time evolution of joint coordination based on an initial static pos-
ture. Our gait signatures framework thus provides a generalizable, holistic method for
characterizing and predicting cyclic, dynamical motor behavior that may generalize across
species, pathologies, and gait perturbations.

Author summary

In this manuscript, we introduce a novel, machine learning-based framework for quanti-
fying, characterizing, and modifying the underlying neuromechanical dynamics that drive
unique gait patterns. Standard methods for evaluating movement typically focus on
extracting discrete gait variables ignoring the complex inter-limb and inter-joint spatio-
temporal dependencies that occur during gait. Popular physiologically realistic modeling
approaches encode these spatiotemporal dependencies but are too complex to
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and on GitHub. Links to Google Colab notebooks
enable our software to be run on the cloud for
users without computational resources. The gait
signature code developed and used in this paper
has been deposited at GitHub: https:/github.com/
bermanlabemory/gait_signatures.The RNN model
and code was developed in Python programming
language using built-in Python-based libraries such
as Keras, Pandas, and NumPy. We revised the
Phaser algorithm (https:/github.com/sheim/
phaser) to estimate phase for our kinematic time
trajectories in the development of our phase
averaged dynamics per trial. Shareable Jupyter
Notebooks were developed on the Google Colab
platform. The data analysis of the generated gait
signatures was conducted in MATLAB 2022a
(MathWorks).
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characterize individual differences in the factors driving unique gait patterns or disorders.
To circumvent these modeling complications, we develop a phenomenological model of
gait that enables more holistic and interpretable characterizations of gait, encoding these
complex spatiotemporal dependencies between humans’ joint angles arising from joint
neural and biomechanical constraints. Our coined ‘gait signature’ framework provides a
path towards understanding the neuromechanics of locomotion. This framework has
potential utility for clinical researchers prescribing individualized therapies for patholo-
gies or biomechanists interested in animal locomotion or other periodic movements
assessed across different pathologies, neural perturbations, and or conditions.

Introduction

Locomotion is a ubiquitous, complex, and dynamic behavior that is essential for survival.
Using cyclic patterns of joint angles, inter-limb and inter-joint coordination, animals effec-
tively move through their environments: walking, running, trotting, swimming, flying, and
crawling. Even within species and types of locomotion, variations in locomotor patterns often
occur across behavioral contexts, groups, and individuals. Thus, although locomotor patterns
can appear highly stereotyped, considerable inter- and intra-individual variability exists. Stud-
ies of locomotor behaviors have shown systematic differences in movement patterns based on
a wide range of neural [1-4] and biomechanical perturbations [5-8] environmental challenges
[9,10], psychological state [11,12], social status [13,14], injury [15-17], and disease [4,18-23].
Furthermore, locomotor impairments can arise from a wide range of physiological and neuro-
logical changes, from the subtle changes that may be indicators of progressive disorders (e.g.,
aging, cognitive impairments) to profound impairments with brain injury (e.g., stroke, spinal
cord injury) that can severely limit locomotor function. Although locomotor deficits are often
subjectively visible to a human observer, objectively characterizing and understanding some-
times subtle yet important differences in locomotion from a scientific and mechanistic stand-
point has been challenging [24-26]. For example, kinematic movement patterns (the
continuous motion of joint angles over time) have been collected across a wide range of loco-
motor modes and species but revealing individual-specific differences in kinematics remains
difficult. One barrier to progress is that interpreting individual differences in kinematics with-
out an underlying dynamical model is challenging, as kinematics are the result of the complex
neuromechanical dynamics that drive the spatiotemporal dependencies of joint kinematics
over time. Thus, capturing these underlying gait dynamics is likely essential for interpreting
differences in gait and movement across conditions and individuals.

Traditionally, gait dynamics are modeled using physiologically detailed neuromechanical
equations, however making predictive models using this approach has often proved challeng-
ing [27-29]. Partially, this difficulty arises because in order to understand the dynamics under-
lying gait, we also need to understand how neural feedback and control shape these dynamics.
While many models (e.g., musculoskeletal models) that use principles like optimal control can
generate simulations of unimpaired gait, as well as changes in gait due to altered biomechani-
cal or neural constraints, they often fail to predict changes in gait kinematics following neuro-
logical injury [28] or more subtle perturbations [30,31]. Progress in the physiological
modeling of locomotor circuitry in the spinal cord and brainstem demonstrates the role of
neural circuits in gait dynamics. However, these models typically rely on simplified [32,33]
biomechanical properties and cannot yet predict the deficits in gait specific to an individual
[25,34-36]. More importantly, if a hyper-realistic model of the neural and biomechanical
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system did exist, the relationships between the high-dimensional parameters and actual move-
ment patterns would not likely be unique, as many parameters would not be identifiable, even
given massive amounts of data, as many different parameter choices could lead to the same
biomechanical output [37,38]. This non-identifiability limits the predictive power and gener-
alizability of these models to other interventions and conditions outside of limited contexts,
suggesting a need for a more holistic approach.

Despite these challenges, rich individual-specific information exists in gait data. For
instance, through observation of movement, the human brain can perceive many socially
salient features of an individual’s gait, suggesting that it should be possible to infer aspects of
gait dynamics from kinematic data. As an example, humans can derive a host of information
about individuals from movement patterns, including gender [39], body size [40], sexual ori-
entation [41], emotion [42], individual differences in dancing [43], perceived affective states
[44] and underlying intention [45]. Furthermore, judgements based on how individuals move
can drive decisions such as partner desirability or attractiveness [46] diagnosis [47,48], and
treatment planning [49,50].

Despite the rapid advent of technologies providing kinematic measurements through a
wide range of techniques, from videos to wearable sensors, we are still limited in how kine-
matic data can help interpret individual differences in gait [51,52]. Current approaches to
comparing biomechanical features or kinematic trajectories quantify between-group differ-
ences or inter-individual similarity but lack sufficient sensitivity to reveal interpretable differ-
ences in individuals’ gaits [53-55]. Inter-joint coordination differs across individuals, as
muscular coordination patterns vary across a variety of motor skills and deficits in individual-
specific ways. Indeed, metrics of muscle coordination in children with cerebral palsy are con-
sistent with clinician judgements of motor control complexity that predict intervention out-
comes [56]. Recently, supervised machine learning methods have been used to classify
differences in a large sets of gait kinematics that were labeled by groups or individuals [55,57].
However, these approaches have not modeled the underlying gait dynamics, nor can they dis-
cover subtle differences in gait that are not labeled a priori.

Here we develop a data-driven framework for modeling gait dynamics that represents mul-
tiple individuals in the same latent space. This latent space reveals individual- and group-level
differences in the neuromechanical dynamics of gait. We used kinematic data from multiple
healthy and neurologically impaired individuals, each walking at six different speeds, to train a
recurrent neural network (RNN) that learns gait dynamics. This phenomenological approach
infers complex spatiotemporal dynamics and enables future kinematic predictions to be made
based on current and prior kinematic postures. Once trained, differences in gait dynamics
across groups, individuals, and walking speed were projected onto a common, low-dimen-
sional latent space of the model parameters. The stride-averaged representation of gait dynam-
ics in the latent space constitutes a “gait signature” that we use to characterize differences
across individuals, groups, gait speed, and impairment severity. To demonstrate the generaliz-
ability of gait dynamics, we show that interpolating gait signatures to predict gait kinematics at
new walking speeds is more accurate than interpolating the kinematics themselves in healthy
individuals. Further, we show that the low-dimensional basis functions we discovered have
biomechanical interpretability in terms of the inter- and intra-limb coordination patterns that
they generate. The dynamical projections onto each basis function for each trial can be inde-
pendently driven through the trained gait dynamics model to reconstruct the kinematics asso-
ciated with that specific basis function. We generated illustrations of the reconstructed joint
angle kinematics to visualize and infer what aspects of gait coordination each subcomponent
influences. These subcomponents of gait coordination can be manipulated independently (i.e.,
gait sculpting) to infer the relationships between specific underlying dynamical components
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and their corresponding kinematic phenotypes and to identify what specific gait rehabilitation
strategies are likely required for individuals. Finally, our gait dynamics model is generative; it
can predict individual-specific time evolution of kinematics from an initial arbitrary posture
(self-driving) once the network is primed with several gait cycles of the individual’s kinematic
data. This study establishes a new data-driven framework to quantitatively interpret individ-
ual-specific differences in gait dynamics with the potential to enable discovery in a wide range
of gait coordination deficits, contexts and interventions in humans and other animals.

Results

Gait signatures: A low-dimensional representation of gait dynamics

We used motion capture to collect sagittal-plane kinematic data that consisted of 15 seconds of
continuous gait kinematics from bilateral, hip, knee, and ankle joints from 5 able-bodied (AB)
participants and 7 stroke survivors (> 6 months post-stroke, gait speeds 0.1 to 0.8 m/s) walk-
ing on a treadmill at a range of six different speeds each. Taking inspiration from neural net-
work models that capture neural dynamics [58-60] and biological systems, we implemented a
recurrent neural network (RNN) model to capture the dynamical properties of gait. Our
model input parameters only include kinematic data and do not include anthropometric infor-
mation or clinical characteristics and do not account for differences in joint kinematics due to
neural versus biomechanical constraints.

Developing the recurrent neural network (RNN) architecture and training
the model

The gait dynamics model was developed in Python using common Python libraries, including
TensorFlow, Keras, Pandas, and NumPy. We developed our code in Google Colab to facilitate
open-source sharing of our dynamic framework, which can be found here: https://github.com/
bermanlabemory/gait_signatures. The model architecture was selected based on two criteria:
1) minimizing model training and validation loss during model fitting, and 2) maximizing the
similarity of short-time (single stride) and long-time (multiple strides) self-driven model pre-
dictions (termed: gait signature alignment) post model training (S1 Fig). By implementing
these two model selection criteria we ensure 1) a high goodness-of-fit (model that best repre-
sents the underlying dynamics across all participants and gait speeds) and 2) the model is capa-
ble of predicting the time-evolution of gait (encode gait dynamics). We evaluated these criteria
against alternative models by varying 2 hyperparameters (number of LSTM units and the look-
back time, see Methods). The selected model architecture is a sequence-to-sequence RNN [61]
consisting of an input layer, a hidden layer of 512 LSTM units, and an output layer. The RNN
learns a map from time-series kinematic input data (0 to T-1) to kinematics one time-step in
the future (1 to T) for all training trials (Fig 1A). The model was trained using the ‘mean
squared error’ (mse) loss function until training and validation error converged and stabilized
around the same point (< 0.03 degrees’). Thus, the model successfully learns the underlying
dynamics of gait (S2 Fig). The model’s internal states capture trial-specific dynamics predicting
the time evolution of joint kinematics; activation coefficients (H) and memory cell states (C)
and are tuned based on kinematic inputs. Kinematic data was input in multivariate format,
not concatenated [62,63]. In brief, our RNN model was designed to capture short and long-
term gait dependencies in time [64,65] as well as inter-and intra-limb coordination over time,
uncovering features of gait that were not previously targeted or used in gait analysis. To verify
whether our model was generalizable, we conducted leave-one-out cross validation, where 12
different models were trained leaving a single individual’s 6 trials on each model run (S3 Fig).
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A) Data-driven approach: train sequence to sequence RNN to extract dynamics B) 3D visualizations to examine individual differences in gait dynamics
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Fig 1. Pipeline figure outlining the steps to generating individual-specific gait signatures. Continuous, multi-joint kinematics from multiple individuals are
fed into the RNN model as input data and the model is trained sequence-to-sequence to predict one-step time shifted output kinematics. High dimensional
internal parameter (H and C) time traces per individual are extracted and principal component analysis was applied to reduce the dimensionality of the data to
form individual gait signatures (A). 3D time trace visualizations of 3 representative individuals (able-bodied (blue), high-functioning (red), low-functioning
stroke (orange)) of the 1st 3 dominant principal component contributions (B, left). 3D projections of the 6-D gait signatures using multi-dimensional scaling
(MDS) reveal different gait dynamics amongst the three gait groups: able-bodied (blue), high-functioning (red) and low-functioning (orange) stroke survivors
(B, right). The size of the circles represents the individual’s trial speed (i.e., the smallest circles represent an individual’s slowest gait speed, and the size of the
circles increase with gait speed).

https://doi.org/10.1371/journal.pcbi.1011556.9001

Stroke-survivors are known for having neurological impairments that result in heterogeneous
gait dysfunction that are not fully understood; thus, we anticipate that our gait dynamics
model will capture and shed light on these individual-specific deficits in gait coordination,
identify similar coordination strategies or deficits amongst our stroke cohort, and allow us to
compare these different gait dysfunctions to the able-bodied ‘normative’ gait (controls).

Generating gait signatures

To generate gait signatures, kinematic trajectories from each walking speed trial across partici-
pants were fed as input into the trained neural network and the corresponding internal states
(H and C parameters, see above) were extracted (Fig 1A). The internal activations prescribe
the spatial and temporal dependencies generating the input kinematics. The resulting time-
series of 1024 internal states (512 H, 512 C parameters) were reduced in dimension using Prin-
cipal Components Analysis (PCA) and phase averaged [66]. Phase averaging is applicable
here, as the underlying gait dynamics are periodic, and the translation from time to a phase
between 0 and 27 allows us to describe all internal state dynamics in a speed-independent
manner.

The first 6 Principal Components (PCs) explain ~72% of the variance in gait dynamics (54
Fig), allowing us to focus on these modes for our visualization and analysis. The time-varying
contributions of the first 3 dominant PCs were plotted in 3D for 3 representative individuals—
able-bodied adults, high-functioning stroke (self-selected (SS) walking speed > 0.4m/s) and
low-functioning stroke (SS speed < 0.4m/s)—highlighting that the gait dynamics between all 3
individuals are different (Fig 1B, left). The gait dynamics of the high-functioning stroke survi-
vor (red), while spatially closer to the able-bodied individual (blue) than the low-functioning
stroke survivor (orange), show observable differences in its dynamical trajectory between to
the two individuals. To determine whether some structure exists amongst the three different
subject groups, all the 6-dimensional gait signatures were projected onto a 3D map using Mul-
tidimensional scaling (MDS) [67] to visualize relative distances between all gait signatures
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(Fig 1B, right). The locations of the 3 MDS projections of the 3 representative individuals are
not arbitrary, as they belong to clusters of gait signatures of the same gait group. Thus, gait sig-
natures preserve key clinically relevant features of the underlying gait dynamics, independent
of the individual or speed.

Gait signatures reveal that individual-specific differences in dynamics are
favored in the gait representation, over differences in gait speed

Gait signatures of individuals’ 6 speed trials within both cohorts (healthy and stroke) are
tightly grouped together. Gait signatures represent individual-specific dynamics; the unim-
paired cohort exhibit a stereotyped low-dimensional structure across individuals in the able-
bodied cohort (Fig 2Ai, left) vs. the impaired cohort, which display much more variable (i.e.,
highly individualized) low-dimensional representations (Fig 2Ai, right). Because the data are
phase averaged over the gait cycle, we demonstrate that gait signature trajectories are well-
aligned with the four gait phases (leg 1 swing, leg 1 stance, leg 2 swing, leg 2 stance), enabling
phase-specific comparisons of differences in gait dynamics. The unimpaired group showed
similar structure across the four gait events (Fig 2Aii, left), whereas there was much more vari-
ability within the impaired group (Fig 2Aii, right), revealing individual-specific differences
within and across distinct parts of the gait cycle. The similarity between gait signatures was

A) 3D loop representation of gait signature loops B) 3D multidimensional scaling gait map all gait signatures color-scaled by:
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Fig 2. Gait signatures reveal highly individualized low dimensional representations of gait dynamics irrespective of absolute gait speed. A) 3D
unimpaired (left) and impaired (right) gait signatures colored by i) individual and ii) gait phase. Gait signatures are grouped together according to
individuals within both cohorts (same hues of blue cluster together for unimpaired (i, left) and similarly the same hues of red cluster in the impaired cohort
(i, right)). In our convention the right leg of all unimpaired individuals was assigned to be the paretic leg and left leg the non-paretic leg. Impaired
individuals can have either left or right leg paresis. Unimpaired gait signatures reveal a similar looped structure across the four gait phases that occur during
a gait cycle (leg 1 swing, leg 1 stance, leg 2 swing, leg 2 stance) (ii, left) whereas impaired signatures showed individual-specific differences across the four
phases and were more variable (ii, right). B) 3D multidimensional scaling applied to all gait signatures shows the pronounced separation between
unimpaired (blue hues in left section of map) and impaired (red hues in right section of map) gait dynamics (i). Impaired signatures (red hues) are located
further away from the centroid of all unimpaired gait signatures (black square), indicating that they are less dynamically similar to the unimpaired
individuals. The smallest circles represent an individual’s self-selected walking speed trial and larger circles correspond to the faster speed trials. Low-
functioning stroke survivors (encapsulated in orange; based on self-selected gait speed < 0.4m/s) are located furthest away (largest Euclidean distances) from
the unimpaired centroid (i). Gait speed does not appear to strongly influence the differences in dynamics between individuals as similar speed gait
signatures are in different regions of the gait map (ii). Particularly, gait speed does not explain the heterogeneity in low-functioning stroke survivors’ gait
dynamics.

https://doi.org/10.1371/journal.pcbi.1011556.9002
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computed and visualized in a dimensionally reduced gait map space using MDS and colored
according to the different individuals in the dataset (Fig 2Bi). The unimpaired group form a
cluster in the gait map, showing that individuals in the unimpaired group are distinct from the
impaired group. Stroke-survivors occupy distinct positions from other impaired individuals’
sub-clusters in the gait space that highlight the well-established but poorly understood hetero-
geneity in gait deficits in the stroke cohort. Furthermore, individual-specific gait signatures
change slightly as individuals walk faster than their self-selected pace (Fig 2Bi). However, these
within-subject speed-induced changes are much smaller than between-individual difference in
gait signatures. The gait signatures of the individuals belonging to the able-bodied, high-func-
tioning, and low functioning stroke survivor cohorts show 3x, 4x and 7x larger distances
between individuals in the group versus within each individual 6 speed trials, respectively. We
calculated the Euclidean distance between individuals’ self-selected speed trial gait signature
and the calculated able-bodied centroid (Fig 2Bi, black square) and the results shown on the
plot to the right reveal that low-functioning stroke survivors (characterized based on the clini-
cal definition of having a self-selected walking speed of <0.4 m/s) are further away from the
able-bodied cluster than the high-functioning stroke survivors. Note that no information from
a clustering algorithm was used to characterize low- vs high-functioning individuals. The
encircled low-functioning stroke survivors (Fig 2Bi, orange enclosure) were labeled post-hoc
to demonstrate the lack of a single cluster characterizing low- vs high-functioning stroke survi-
vors. Showing the validity of our approach, low-functioning stroke survivors are less dynami-
cally similar to AB than higher functioning stroke survivors.

Gait speed does not appear to strongly influence the differences in dynamics between indi-
viduals’ gaits (although the range of gait speeds for each participant may not have been wide
enough to elicit major differences in their overall dynamics). It is worth noting that the walk-
ing speeds in our post-stroke cohort spanned the full speed range of each participant’s safe
walking capacity, whereas this was not the case for our able-bodied cohort. Overall, as
expected, the unimpaired group walked at faster speeds than the impaired group (Fig 2Bii).
Individuals in the able-bodied cluster walk at a range of different speeds, but individual gait
signatures still cluster tightly together. Despite the able-bodied dynamics being similar, there
still exists inherent variability in their gait dynamics that may be explained by factors such as
prior exercise and sports-training history, injury, disease, etc. Post-stroke individuals who
walk at similar slower speeds, however, maintain their own distinct individualized groupings.
Thus, individuals’ characteristic gait signatures were preserved across their range of walking
speeds and were not grouped based on absolute walking speed. For example, several clinically
similar post-stroke individuals (similar overground walking speed and Fugl-Meyer score [68])
have very different gait signatures that remain recognizable across a range of gait speeds (Fig
2). Although the low-functioning individuals in our sample are more dispersed than high-
functioning individuals, we expect that the spaces between individuals represent a continuum
of gait dynamics that would be filled given a larger sample size.

Furthermore, when used to distinguish between gait groups and identify individuals, gait
signatures perform similarly to using a set of 26 commonly used discrete variables (S5 Fig).
Discrete variables are already sufficient to classify between able-bodied and stroke gaits, with
numerous studies identifying key variables that map to function/impairment [69-71]. With
Gait signatures, we achieve the same level of classification without needing to hand-pick dis-
crete variables or to use force plates or inverse-dynamics analyses that would require more
equipment, computation, and subject-specific anthropometry for each observation. Gait signa-
tures also perform better than continuous kinematics and joint velocities at these same dis-
crimination tasks (S5 Fig). These results serve as a positive control, as researchers previously
could distinguish gait groups by building a classifier based on important subjectively selected
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discrete variables. Here, we have created a dynamical representation that can distinguish
groups with similar accuracy. It is not surprising that the continuous kinematics performed
worse than the RNN gait signatures (which were developed from these very same data), as the
RNN model used the data to encode important time-varying changes in the kinematics, allow-
ing for more information to be extracted. Thus, parameterizing the evolution of individuals’
walking patterns into a common subspace allows for a more holistic, less biased, and straight-
forward analysis of primarily their overall differences in gait dynamics, inter- and intra-limb
coordination over any differences attributed to absolute gait speed. Gait signatures can allow
gait researchers to study or analyze the dynamical differences underlying impairment indepen-
dently from gait speed, facilitating analysis of dynamics between individuals who may not be
capable of walking at the same speeds and allowing investigation of changes in the underlying
mechanism of gait changes under different conditions (walking speed, gait rehabilitation inter-
vention, age etc.)

Low-functioning stroke-survivors are less dynamically analogous to able-
bodied and more dynamically variable compared to high-functioning
stroke-survivors

Clinically, gait rehabilitation researchers use gait speed as a primary quantitative indicator of
gait dysfunction [19,72,73]. While this coarse metric gives an overall value or number to one’s
overall gait function, it does not identify the specific impairments underlying the individuals’
gait. To derive more precise measures or indicators of gait impairment, we anticipated that uti-
lizing this gait signatures framework, we would be able to capture both subtle and obvious dif-
ferences in kinematic patterns underlying impaired gait. In the clinic, stroke survivors are
typically segmented into subgroups according to their self-selected walking speeds: high-func-
tioning stroke survivors with a self-selected (SS) walking speed above 0.4m/s and low-func-
tioning stroke survivors who adopt SS walking speeds less than 0.4m/s [74]. It is assumed that
low-functioning stroke survivors are more impaired and thus adopt slower walking speeds to
be able to navigate the environment safely. However, gait deficits of stroke survivors within
either sub-group are heterogeneous across individuals and include different impairments such
as foot drop, reduced paretic push-off during late stance, limited initial heel contact during
early stance, as well as compensatory gait strategies such as hip circumduction and hip hiking.
We expected that higher functioning individuals would have less severe impairments and
would be more dynamically analogous to able-bodied individuals, whereas low-functioning
stroke survivors would exhibit highly variable impairments from each other and be even less
dynamically analogous to able-bodied dynamics compared to higher functioning stroke
survivors.

To better visualize all developed individuals’ gait signatures across their 6 different speed
trials in our dataset, we again used MDS to project the 6D gait signatures to 3D. This mapping
allows us to visualize the relative locations of individuals in comparison to all the other gait sig-
natures to gain insights on how dynamically similar they are from one another. A 3D MDS
gait map of all gait signatures reveals that able-bodied and high-functioning stroke survivors
are located near each other, whereas low-functioning stroke survivors are farther and more
dispersed and form distinct clusters in different regions of the map (Fig 3A). Sub-group level
analysis reveals significant differences in the Euclidean distance metric (distance between each
gait signature and the able-bodied centroid) between the able-bodied group and the low- and
high-functioning stroke survivor groups, respectively (Fig 3B). Able-bodied gait signatures are
located closest to the centroid, followed by high-functioning and low-functioning stroke survi-
vors (Fig 3B). The within-group dispersion of gait dynamics for the low- and high- functioning
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Fig 3. Comparison of gait signatures across three gait subgroups: able-bodied (AB), high functioning (HF) and
low functioning (LF). A) 3D gait map using multidimensional scaling highlights the relative distances between AB
(blue), HF (red) and LF (orange) stroke survivors. LF stroke survivors are less clustered and occupy distinct regions of
the map away from the able-bodied centroid (black square). B) Gait dynamics similarity based on Euclidean distance
between AB centroid and each participant, showing larger distances within the low-versus high-functioning groups. C)
Within-group dispersion of gait signatures based on the radius of a hypersphere enclosing 95% of each group’s gait
signature reveals more dispersed gait signatures in low- versus high-functioning stroke survivors, highlighting the
potential of gait signatures to capture individual differences in more severe gait impairments.

https://doi.org/10.1371/journal.pcbi.1011556.9003

stroke survivors was calculated based on the radius of a hypersphere enclosing 95% of the
groups’ gait signatures. Using a leave-one-out sample with replacement method, multiple
within-group dispersion calculations were conducted for each group and the average within-
group dispersion was expressed alongside the standard error in Fig 3C. The 95" percent radius
was significantly higher in the low-functioning stroke-survivors gait signatures compared to
the high-functioning, highlighting that low-functioning gait signatures were more dispersed
from each other (higher inter-individual variability) and the RNN model can capture these
individual-specific gait deficits in individuals with more severe gait impairment.

Gait signatures are biomechanically interpretable

While Principal Component trajectories and low-dimensional maps provide one way to com-
pare the overall dynamics between individuals and groups, it remains to be seen what informa-
tion the independent components of the 6D gait signature represent biomechanically. The
contributions of each principal component (PC) to a gait signature fluctuates over the gait
cycle, shown for an exemplar able-bodied, one high-functioning stroke survivor, and one low-
functioning stroke survivor in Fig 4A. Superimposed individual stride-averaged PC projec-
tions from these 3 individuals (Fig 4B) highlight the specific differences in each PC. For PC1,
both able-bodied and high-functioning stroke survivor traces are within the able-bodied 95%
confidence interval, whereas the low-functioning stroke survivor is outside of these bounds
around the middle of the gait cycle. For PC2, some regions of the low and high-functioning
stroke survivor can be found outside of the confidence interval, however the entirety of the
PC3 projection of the low-functioning stroke survivor is found outside of interval (vertically
shifted). Given the generative nature of our RNN-based model, a specified number of the load-
ings on the PCs can be driven through the trained RNN model to reconstruct the correspond-
ing kinematics. Thus, to interpret the individual PC components, the internal parameters
corresponding to each isolated PC were driven through the gait dynamics model, generating
gait predictions, i.e., a multi-joint coordination pattern and their temporal evolution over the
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Fig 4. Biomechanical interpretation of gait signatures. A) Gait signatures reveal different gait dynamics between exemplar AB, low-
and high-functioning stroke survivors. B) The loadings on each principal component (PC), e.g., the contributions of each PC vary over
the gait cycle and can be compared to the AB 95% confidence interval (gray). C) Each PC generates specific multi-joint gait coordination
patterns when used to drive the gait model, enabling biomechanical interpretation of gait deficits and effects of treatment.

https://doi.org/10.1371/journal.pchi.1011556.g004

gait cycle that can be visualized in an animation or gait movie. Stick figure snapshots (7 equally
spaced samples of 100 frames) show that PC1 encodes dynamics driving hip flexion and exten-
sion, PC2 encodes dynamics driving knee flexion and extension and PC3 encodes dynamics
driving primarily postural coordination (trunk location relative to joints) (S1-S4 Videos). This
framework can potentially allow for the identification and targeting of individual-specific gait
deficits, informing the tailoring of precision rehabilitation strategies.

The gait dynamics model generalizes to unmeasured speeds

Our gait signature model can capture and predict nonlinear changes in dynamics in response
to speed in cases where interpolation of kinematics may fail. We trained a different gait
dynamics model using only 15s of data of the 2 fastest and 2 slowest walking speeds of each
subject. Weighted averages of gait signatures from an individual walking at these four different
gait speeds can be used to generate multi-joint kinematic trajectories that predict data from a
gait speed that was not used to train the model (Fig 5). Predicted kinematics from interpola-
tion of gait signatures across the four speeds resemble the measured kinematic reference more
accurately than do the kinematics generated from interpolating gait kinematics, shown for an
exemplary AB individual (Fig 5A) and low-functioning stroke survivor (Fig 5B). Kinematic
prediction from interpolation of dynamics did considerably better than interpolating kinemat-
ics directly for the exemplary low-functioning stroke survivor shown in Fig 5B, indicating that
interpolating gait signatures capture nonlinear (non-monotonic) changes in kinematics
between speeds. The kinematic output of the interpolated kinematics follows that of the fast
speed in the paretic hip closely but does not resemble the measured kinematic reference wave-
forms for the paretic knee or ankle angles. In some cases where interpolation of kinematics
fails, the averaged dynamics do a better job at predicting kinematic trajectories at unseen
speeds. Group level analyses show that the R* values between the measured and predicted
kinematics from interpolated gait dynamics are significantly higher (Wilcoxon paired signed
rank test) than interpolating kinematics within the able-bodied cohort (Fig 5C), but not for
stroke (Fig 5D). In general, averaging gait dynamics produced less variable R values and less
R” outliers than averaging kinematics in both the able-bodied (Fig 5C) and stroke survivors
(Fig 5D). The range of R* values in the able-bodied cohort for averaged dynamics was -0.20 to
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Fig 5. Data-driven gait dynamics model predicts non-linear changes in joint kinematics with gait speed. Gait
predictions of joint kinematics (green) at intermediate gait speeds not used in model training were generated by
interpolating gait signatures between slow (dashed grey) and fast speeds (dashed black) lines and using them to drive the gait
model. Interpolated kinematics from gait dynamics (green) and interpolated directly from kinematics (blue) were compared
to the measured reference kinematics (black solid). A) Predictions in an exemplar AB participant are more accurate when
interpolating gait signatures compared to interpolating gait kinematics across speeds. B) In an exemplar low-functioning
stroke survivor, interpolated gait signatures predict nonlinear changes in kinematics better at intermediate speeds than
interpolated gait kinematics. Averaging the kinematics fail in this case where there are larger differences between the slow
and fast speed paretic kinematics; the averaged kinematics (blue) follow the fast speed paretic hip kinematics whereas the
other angles do not reflect waveforms that resemble either the fast or slow speed. The gait model can therefore predict
movement reasonably well when interpolating between tested speeds. There is a statistically significant difference between
group level R? comparisons (kinematics generated from interpolated dynamics vs interpolated kinematics) in the able-
bodied (C) but not in stroke (D) cohorts. However, the range of R? values are larger in both able-bodied and stroke
kinematic predictions resulting from interpolated kinematics (-1.30-0.98, -0.50-1.00 respectively) vs. predicted from
interpolated gait dynamics (-0.20-1.00,0.46-1.00 respectively). Thus, while the R? values may not improve on average for the
stroke survivors, the model’s performance is more robust overall.

https://doi.org/10.1371/journal.pcbi.1011556.9005

1.00 compared to —1.30 to 0.98 in averaged kinematics whereas the range of R2 values in the
stroke cohort for averaged dynamics was 0.46 to 1.00 compared to -0.50 to 1.00 in averaged
kinematics. Two low-functioning stroke survivors show higher R? values of their hip, knee and
ankle kinematic traces when interpolating kinematics vs. dynamics. Post hoc analysis revealed
that these two stroke survivors (§T4 and ST2) were furthest away from the able-bodied cen-
troid (least dynamically similar to able-bodied) as shown in Fig 2Bi. These results suggest that
the RNN largely captures more stereotyped able-bodied dynamics and has a harder time learn-
ing the dynamics from more variable stroke individuals, especially those that deviate furthest
from able-bodied. We acknowledge that our model likely is not capable of generalizing to
speeds beyond the ranges of the input data (extrapolating), as RNNs are highly dependent on
the training data that it sees to learn patterns in the dataset. One benefit of this capability, how-
ever, is that any data that deviates from the walking speeds in the training set can still be ana-
lyzed, reducing the number of speeds required in the training set to achieve a model that is
valid across a range of speeds. Additionally, our small sample size limits the amount of data
the RNN sees for each diverse type of stroke dynamics, thus, with a larger sample size of stroke
survivors and longer trials, the RNN may be able to make better kinematic predictions of
lower-functioning stroke survivors. Moreover, this result highlights the utility in predicting
kinematics in unseen conditions which in contrast cannot be made using discrete biomechani-
cal or clinical metrics, nor with current biophysical models.
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Gait sculpting: Manipulating the PC components of an individual’s gait
signature identifies specific coordination deficits in stroke survivors

Previously, we showed that we can leverage our model to reconstruct the kinematics of healthy
PC projections of the gait signature to gain insight into their independent biomechanical inter-
pretations. However, identifying and interpreting the biomechanics related to impaired PC
dynamics of stroke-survivors’ gait would prove to be even more beneficial, as these dynamics
can potentially serve as rehabilitation targets when designing tailored gait intervention/strate-
gies for individuals. Here we present an example of how we use gait signatures to identify spe-
cific biomechanical or coordination targets in specific stroke survivors. Specifically, we utilize
our finding that the phase-varying contributions of the 6 principal projections of the gait sig-
nature differ in individual-specific manners (Fig 6A). For example, AB2’s 6 PC contributions
all lie within the 95% confidence interval of all able-bodied individuals. ST4 primarily shows
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Fig 6. Gait sculpting: interpolating between components of able-bodied and stroke gait dynamics to visualize anticipated gait improvement. The
components of individuals’ gait signatures can be manipulated (gait sculpting) to understand the relationship between specific underlying dynamics and their
corresponding kinematic phenotype. A) The projection on each of the 1st 6 principal components (PCs) can be observed for a representative able-bodied
(AB2), two low functioning stroke-survivors each having similar self-selected (SS) speeds and Fugl-Meyer (FM) scores (ST2 & ST4, as denoted in Fig 2) and
another low functioning stroke survivor (ST3) who has a higher FM score and faster SS walking speed. The PC projections are colored according to the 4 gait
phases (non-paretic swing, non-paretic stance, paretic swing, paretic stance). The right leg of the unimpaired individuals was arbitrarily assigned to be paretic
and the left leg, non-paretic for consistency. Colored boxes and arrows (orange, brown, green, purple) show specific, single PC manipulations, for example, the
orange boxes and arrow illustrate that the PC 1 projection of AB2 was replaced with the impaired PC 1 projection from ST4. B) The AB2:ST4 manipulation
(orange) shows how AB2’s original phase averaged kinematics (black trace) was manipulated by ST4’s impaired PC 1 projection (red dashed traced). ST4’s
impaired PC 1 manifests in AB2’s healthy kinematics showing deviation primarily in the hip kinematics (as suggested in Fig 4 where healthy PC 1 encodes a
kinematic subcomponent corresponding to hip flexion/extension) and some deviation in the ankle angles, especially the paretic ankle. The AB2:ST4
manipulation (brown) shows how ST4’s impaired PC3 manifests in AB2’s healthy kinematics; we observe a vertical shift downwards (red trace) of the bilateral
hip angles as well as the non-paretic knee. This change in hip flexion highlights that this impaired PC3 encodes a reduction in the hip flexion angles; pointing to
a more crouched gait (trunk is leaning forward more). The AB2:ST2 manipulation (green) shows replacing AB2’s PC4 projection with ST2’s impaired PC4
dynamics shows deviation in the knee joints especially during paretic swing, a vertical shift upwards in the paretic ankle angle kinematics and deviations
around the middle of the gait cycle (transition between non-paretic stance and paretic swing) in the non-paretic ankle kinematics. Alternatively, the AB2:ST3
manipulation (purple) the impaired PC5 in ST3 is replaced with the healthy PC5 projection from AB2 resulting in slight increase in non-paretic knee
magnitude and reduced amplitude of paretic and non-paretic ankle flexion. The result of this manipulation points to potential predicted improvements (or
deviations) that can occur when aiming to mimic PC5 healthy dynamics in this stroke survivor allowing offline in-silico testing of potential avenues for gait
rehabilitation for this stroke survivor.

https://doi.org/10.1371/journal.pcbi.1011556.9006
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major deviation from AB in PC 3 (located entirely above the AB confidence interval), impaired
dynamics during paretic swing in PC 4 and overall irregular shapes in PC 5 and 6. ST2’s PC3 is
largely within the AB confidence interval, however PC 4’s paretic swing shows major devia-
tion, their PC 5 contribution is shifted below the AB confidence interval and PC 6 shows an
irregular shape. ST3’s PC5 projection lies below the AB confidence interval and PC 6 projec-
tion is irregularly shaped compared to AB. To validate our finding that suggested that PC 3 pri-
marily influences hip flexion or extension, we exchanged AB2’s healthy PC1 with that of ST4
(Fig 6A, orange boxes and arrow) and we observed if and how AB2’s original hip joint kine-
matics (Fig 6B, orange box, black trace) deviated (Fig 6B, orange box, red dashed trace and S5
Video). To gain further insight into how the other PC deviations manifest in movement, we
manipulated the PC3 projection of AB2 by replacing it with that of ST4 (Fig 6A, brown boxes
and arrow). The kinematic reconstruction from this manipulation (Fig 6B, brown box, red
dashed trace and S6 Video) shows a vertical shift downwards for bilateral hip angles and the
non-paretic knee. The vertical shifts in the hip flexion/extension angles suggest a major differ-
ence in this individual’s posture (perhaps stroke individual leaned forward more during gait)
compared to able-bodied. We manipulated AB2’s PC4 projection by replacing it with that of
ST2 (Fig 6A, green boxes and arrow). This manipulation affected specifically the paretic and
non-paretic ankle angles and both knee joints primarily during the period between non-
paretic stance and paretic swing (Fig 6B, green box, red dashed trace and S7 Video). This result
highlights a coordination deficit between these specific joint angles and, if targeted accurately,
may allow for corrected gait patterns of this stroke survivor. Conversely, we tested the effects
of replacing an impaired PC projection with a healthy one to observe how gait impairments
can potentially be improved. We replaced ST3’s PC5 with that of AB2 (Fig 6A, purple boxes
and arrow) and observed a substantial change in the magnitude and shape of bilateral ankle
angle trajectories and slight increase in non-paretic knee magnitude (Fig 6B, purple box, red
dashed trace and S8 Video). We can infer that to make improvements to ST3’s PC5 towards
able-bodied or normative kinematics, rehabilitation focusing on these specific knee and ankle
strategies may prove useful.

Self-driven signatures: Our gait dynamics model revealed robustness of gait
predictions establishing the utility of gait signatures in precision medicine

The ability to predict future kinematics based on measured data is key to rapid, virtual design
of personalized interventions. We demonstrate that the recurrent neural network model of
gait dynamics, once primed with several gait cycles of data from either able-bodied or stroke
participants, can predict future joint angle trajectories (Fig 7). Once the network is primed, an
initial posture is presented (initial condition, denoted by blue vertical bar) after which the
model self-drives i.e., predicts the general shape of future kinematics in a feedforward manner
(without referencing previous measured data points) in an able-bodied (Fig 7Ai, left) and
stroke individual (Fig 7Bii, left). A smooth transition is seen between the previously measured
gait cycle (green) and the self-driven cycle (red trace) for both AB and stroke (Fig 7Ai, right
and 7Ali, right respectively).To verify that the model was not generating a gait cycle prediction
entirely by chance, we calculated the Euclidean distance between the kinematics of the pre-
dicted (self-driven) gait cycle and the kinematics from each of the measured gait cycles. We
computed the distribution of distances between each predicted gait cycle with all other gait
cycles from the same individual (Fig 7B, purple bars). We then compared the predicted gait
cycle to the target gait cycle (Fig 7B, red bars). In the able-bodied individual, the predicted gait
cycles are more similar to the target gait cycle (Fig 7Bi, red bar) than 79% of all gait cycles.
However, in the stroke survivor, 60% of other gait cycles were more similar to the predicted
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Fig 7. Our trained RNN model can predict the time evolution of kinematics from an initial posture. The trained gait dynamics model can predict
individual-specific time-evolution of gait kinematics from an arbitrary initial posture (self-driving) in able-bodied (A, i) and stroke (A, ii) once the network is
primed with several gait cycles of an individual’s data (gait cycley n(measured) black solid). This predictive ability shows that the model encodes the gait dynamics
underlying movement. Despite inter-cycle kinematic variability, the gait dynamics model can predict the general shape of the next gait cycle of kinematics (gait
cycley(predicted)» red) in an able-bodied individual (A, i) and stroke survivor (A, ii), however, predicted kinematics (red) show larger deviation from the
measured reference gait cycle (gait cyclex(measured)» black dashed) in the stroke survivor. A smooth transition exists between the measured kinematics from the
gait cycle preceding (gait cycley 1 (measured)» green) the self-driven predicted cycle (red). For the representative able-bodied individual (B, i), the Euclidean
distance (deviation) between the predicted gait cycle of kinematics and its respective measured kinematics (reference) is ~79% lower than the distance between
the other gait cycles in the trial; ruling out that the kinematic predictions are attributed to chance. The deviation (Euclidean distance) of the predicted gait cycle
of stroke (B, ii) kinematics to its reference gait cycle is ~40% lower than the distance between the other gait cycles in the trial. This suggests that the dynamical
model is less able to accurately predict stroke kinematics better than chance. The dynamical model was first initialized with all the trial’s kinematics data (15
seconds) (black trace) after which the trial’s initial posture was presented to the model to self-drive kinematics (red trace) in feedforward mode for 15 seconds
(G, 1, top plot). The duration of each gait cycle from the measured kinematics is not well encoded by the dynamical model; gait cycle durations of the predicted
kinematics are typically underestimated in both able-bodied (C, i, bottom plot) and stroke (C, ii, bottom plot) (to a larger degree) in self-driving mode and as
such deviate from the y = x reference line (black).

https://doi.org/10.1371/journal.pchi.1011556.g007

gait cycle than the target gait cycle (Fig 7Bii, red bar). This suggests that the model is less able
to accurately predict future kinematics in stroke gait. Note, to calculate the Euclidean distances
between the gait cycles, we need to normalize the period of each gait cycle to the period of the
self-driven cycle. To avoid the potential of bias due to this normalization, we also performed a
comparison using a metric that was not manipulated in time-gait cycle duration. After prim-
ing the model, we presented the model with the first posture of the trial and ran the network
forward in self-driving mode for the remainder of the trial length (15 seconds). Able-bodied
self-driven predicted kinematics resembled the reference kinematics closely (Fig 7Ci, top plot)
whereas stroke self-driven predicted kinematics matched the first gait cycle closely but soon
converged to patterns reflecting able-bodied kinematics (Fig 7Cii, top plot). The gait cycle
duration of the first few cycles of the self-driven kinematics match those of the measured kine-
matics (blue dots located close to the y = x line) in both the exemplary able-bodied (Fig 7Ci,
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bottom plot) and stroke individual shown (Fig 7Cii, bottom plot), however kinematics soon
diverged to shorter and relatively consistent gait cycle durations (blue dots appearing almost
horizontal in the plots) result in both cases. The model may preferentially predict able-bodied
kinematics, which were less variable between individuals than were post-stroke kinematics.
These results highlight that the model encodes gait dynamics that can predict kinematics over
short timescales, but the variability and amount of training data may influence predictive
power over long timescales. Our model provides a foundation for a sample-specific gait
dynamics model to predict the effects of environmental perturbations, assistive devices, and
treatments without extensive experimental sessions. In-silico predictions using the gait
dynamics model may thus reduce the experimental time, cost, and participant burden required
for personalized gait characterization, treatment personalization, and device design.

Discussion
Summary

Here we establish a data-driven framework for comparing and predicting individual-specific loco-
motor patterns without needing to construct physiologically based mechanistic models. As an ini-
tial proof of concept, complex neuromechanical gait dynamics were modeled using a relatively
simple recurrent neural network that captures the rules by which joint kinematics during gait
transition from one time point to the next. Because the network was trained on multiple healthy
and impaired individuals walking at several speeds, its internal parameters provide a basis for
comparing, interpreting, and predicting gait dynamics. Gait signatures further capture coordina-
tion between joints and limbs without the need for pre-selecting gait features that may introduce
bias and ignore the continuous nature of gait. We show that individuals have little variance in gait
dynamics across speeds, leading to the individual-specific “gait signature” concept and enabling
comparisons between individuals moving at different speeds. Across stroke survivors, we found
greater heterogeneity in low-functioning individuals who exhibited disparate gait dynamics
despite similar clinical metrics, highlighting the potential utility of gait signatures in providing
more sensitive diagnoses to personalize therapies. Gait signatures provide a predictive simulation
framework for sculpting gait dynamics to understand coordination deficits and predict kinemat-
ics, potentially forecasting the effects of rehabilitative devices or treatments. Finally, the gait signa-
tures methodology can be readily applied to other periodic motions across species and across
conditions that alter movement and may be a powerful adjunct to modern experimental methods
aimed at understanding the neural mechanisms underlying movement.

Computational framework captures the neuromechanical dynamics of
walking

Using a data driven modeling approach enabled us to learn the underlying gait dynamics
based on data rather than constructing a neuromechanical gait model based on first principles.
Data-driven approaches in gait have not focused on gait dynamics but have solved tasks based
on unique features in multi-dimensional gait data such as classifying gait based on pathologies
[75] or conditions such as fatigue and non-fatigue [76], identifying gait events (e.g., initial con-
tact, loading response [77-79]), and discriminating individuals [62,80]. Gait dynamics have typi-
cally been described though neuromusculoskeletal models based on physical principles focusing
on musculoskeletal mechanics, [30,81] but they lack adequate representations of the neural sys-
tems that contribute to the resulting movement patterns, particularly in neurological impair-
ments such as stroke [31]. Machine learning methods to capture dynamics have been used
across physics, engineering, and neuroscience to learn the dynamics underlying complex
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systems when the governing equations are unknown [58,82,83]. Recently, machine learning
models have been used in human gait to predict continuous kinetic variables such as ground-
reaction forces [84] or joint torque [85,86] based on kinematic data. Dynamical machine learn-
ing models have also been used to encode gait dynamics, including responses to perturbations
or assistive devices, but their model structure did not enable comparisons between individuals
[87-91]. Here, our RNN-based gait dynamics model provides a means to capture the rules
underlying continuous, multi-joint coordination between bilateral lower limb joints, and how
they evolve over time. Accordingly, we do not explicitly capture mechanical dynamics (i.e., the
relationship motion and force), but the effects of force interactions within the body and environ-
ment and implicitly represented in how multi-joint kinematics evolve over time, with the net-
work parameters and the internal states at each time point determining the output kinematics.
As gait arises from complex interactions between the nervous system and the musculoskele-
tal system that are not easily modeled from first principles, a data-driven approach provides a
powerful framework for capturing and comparing neuromechanical constraints on gait
dynamics. While biomechanical dynamics clearly play a role in movement, the activation of
muscles by the nervous system enables the body to perform a variety of motor behaviors. How-
ever, the governing spatiotemporal dynamics of neuromuscular signals are poorly understood,
especially in neuro-pathologies such as stroke. During behaviors such as locomotion, motor
patterns can be characterized by the number and structure of motor modules, or muscle syner-
gies, defining groups of co-activated muscles producing a biomechanical function for gait [92].
Similar motor modules are used within individuals across different task conditions [93-95],
and are shaped by learning and disease [96,97]. Particularly in post-stroke gait, motor modules
appear to constrain motor function. Fewer motor modules are observed post-stroke with the
number of modules correlated to reduced walking speed [98,99]. Further, different patterns of
motor module merging are seen in slower walking stroke survivors, differentially affecting gait
biomechanics in a manner that may necessitate individualized rehabilitation approaches [100].
Adding neural constraints such as motor modules on muscle activations in musculoskeletal
simulations improve predictions of key physiological variables such as joint loading in osteoar-
thritis [101]. However, relating motor modules to kinematic gait patterns post-stroke and in
other neurological disorders has been challenging, likely because the neural constraints are
underspecified [27,102-105]. Corroborating results from motor module analysis, there were
greater differences in gait dynamics amongst the slowest walking stroke survivors. Since the
gait signatures capture spatiotemporal constraints underlying gait dynamics, they provide a
complementary approach to musculoskeletal simulations. Ultimately, gait signatures may play
a complementary role to biophysical simulations, enabling the relationships between bio-
mechanical principles, neural constraints, and the emergent gait dynamics to be revealed.

Gait signatures enable holistic comparison of gait dynamics across
individuals, speeds, and groups

In contrast to other applications of dynamical machine learning models for gait, we capture
multiple individuals within a single network, enabling comparisons of gait dynamics across
groups, individuals, and gait conditions. Rather than using the network as a black box solely to
generate predictions, we explicitly compare and interpret the model’s internal parameters to
identify low-dimensional latent variables representing gait dynamics. To encourage a general-
izable data-driven gait dynamics model, we omitted subject and trial condition (gait speed)
labels as inputs to the neural network. Adding input labels might force the RNN to create sepa-
rable gait models, whereas our goal was to have the network learn a structure that could be
modified parametrically to represent individual differences in the neuromechanics of walking.
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Similarly, neuromusculoskeletal models assume common dynamic principles across individu-
als, using parameter variations to represent individual differences [27,28,103,104,106]. We
intentionally designed a relatively simple RNN architecture (e.g., single layer, linear input/out-
put) as a starting point to recover as much interpretability as possible, with the awareness that
more complexity could be added to the model architecture (number of hidden layers, number
of neurons, etc.) if required to fit a given data set robustly. The representations of gait dynam-
ics that emerge from our model holistically capture the changes underlying measured kinemat-
ics, without being attributable to specific neural or biomechanical constraints. The loss of
physiological interpretability is counterbalanced by the holistic approach to representing gait
dynamics and explaining gait kinematics features.

Analogous to written signatures, we find that features of individual-specific gait signatures
are largely preserved across walking speeds. Recognizable qualitative features of handwriting
are preserved even as the size of letters changes quantitatively, or if different limbs, or writing
instruments are used [107]. Similarly, it is well known that individuals can be recognized
based on how they move or walk [28,40,108-110], even if joint angle excursions are similar.
We show that gait dynamics are more similar within individuals across speeds than between
individuals, leading to the concept of the gait signature. In contrast, gait kinetics and kinemat-
ics vary characteristically across speeds, such that they cannot be directly compared across
speeds [111]. The relatively small changes in gait signatures across speeds suggest that the sig-
natures reflect changes in the spatiotemporal relationships between joint kinematics, rather
than quantitative changes in their magnitude. As such, gait signatures appear to encode indi-
vidual-specific constraints of walking, making it possible to compare gait either within or
between individuals walking at different speeds.

Gait signatures characterize the high inter-individual variability in gait impairment
amongst stroke survivors beyond overall gait function explained by clinical gait metrics. This
heterogeneity is a direct reflection of the wide range of impairments in stroke survivors,
including muscle weakness, impaired coordination, spasticity, abnormal synergistic activation
(muscles not independently coordinated), and compensatory motion [19,53,112]. We found
that higher-functioning stroke survivors were more dynamically similar to each other, whereas
lower functioning stroke survivors were more dispersed. In fact, two low-functioning stroke
survivors with similar clinical metrics (Fugl-Meyer score and gait speed) had quite different
gait signatures. As such, gait signatures have the potential to provide insights into individual
differences in gait dynamics that are simply not captured by clinical metric such as gait speed.
Moreover, in contrast to higher-functioning stroke survivors who share similar gait dynamics,
lower-functioning stroke survivors may require more individuals individualized rehabilitation
approaches targeting specific aspects of gait dysfunction. Further gait signatures do not require
a priori selection of which gait variables to compare [113-116]. As such gait signatures provide
a powerful, holistic approach to enhance the specificity and precision of gait diagnosis and
treatment. Our study inclusion criteria exclude severe contractures or deformities that inter-
fere with normal ambulation and in future work the gait signatures would need to be inter-
preted and correlated with clinical evaluation of strength, range of motion, sensorimotor
impairment, and/or limb deformities. The demographic and clinical information of the stroke
participants in our study are available in Supplementary Materials S1 Table. Gait signatures
could be part of a set of multi-modal data to account for the diverse causal factors underlying
each individual’s gait pattern (e.g., lesion neuroanatomy, medical confounding variables, mus-
culoskeletal conditions, psychosocial variables, physiological contributors to gait and environ-
mental factors). This framework can potentially extend to other diseases, disorders, injury, etc.
to gain further insight into individuals’ specific impairments and uncover specific targets
towards developing targeted therapies for individuals.
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Gait signatures enable biomechanical interpretation and manipulation

Our gait dynamics model enables biomechanical interpretation of gait signatures and explor-
ing “what if” scenarios to sculpt desirable gait dynamics. Gait signatures are based on principal
components (PCs) of the gait model internal states, where the weightings on each PC vary
over the gait cycle. The model parameters can be prescribed over the gait cycle, resulting in the
predicted kinematic outputs (i.e., joint angles). The gait signature PCs and their time-varying
weightings can be individually prescribed in the network as a method to reveal the specific
inter- and intra-limb coordination patterns governed by each PC. Further, any combination of
PC’s can be combined and reweighted to generate new kinematic output patterns. For exam-
ple, we interchanged healthy and impaired PCs to gain deeper insight into how specific
impaired PCs alter healthy gait and vice versa. Further, interpolating gait dynamics can predict
gait kinematics at walking speeds that were not used in the training data. Especially when
there was a nonlinear response in gait kinematics across speeds, interpolation of gait dynamics
to predict gait kinematics performed better than interpolating gait kinematics directly. As such
our data driven gait dynamics model can be used to show how changing select components of
the gait signature alters gait kinematics, providing a potential framework to identify personal-
ized therapeutic targets for gait rehabilitation.

Gait signatures have potential to predict future kinematics

Another powerful aspect of our gait signatures framework is its ability to generate future gait
kinematics in the absence of new data. The model is self-driving for able-bodied individuals,
predicting multiple cycles of gait kinematics in the future. However, the ability of the model to
predict future stroke kinematics is limited to approximately one gait cycle in the future; ren-
dering it promising in applications that provide control signals to rehabilitation devices (e.g.,
exoskeletons). Furthermore, our model is likely only capable of generalizing to speeds within
the speed ranges of the input data. There was a moderate association between participants’
similarity to able-bodied gait signatures (distance to the able-bodied centroid) and the RNN’s
ability to predict gait kinematics over one gait cycle (S6 Fig). This association is likely due to
the RNN favoring able-bodied dynamics during model fitting, which were more homogeneous
than those of high- or low-functioning stroke survivors. A larger post-stroke sample may
improve the RNN’s ability to encode and predict pathological gait dynamics. Further, the
reduced predictive power for the stroke participants can be attributed to our model architec-
ture’s relative simplicity and short time-series (15 seconds/ 1500 sample points per trial).
These factors should be addressed to improve the predictive capacity of the model for impaired
gait in the future. Additionally, including more variables besides sagittal plane kinematics

(e.g., frontal plane and coronal plane kinematics and joint forces, may improve learning of the
underlying dynamics of gait and increase predictive capability of our model.

Generalization to other species and rhythmic movements

Because the input to this model are periodic sequences of behaviors, our gait dynamics frame-
work should generalize to other species that display similar behavioral motions (e.g., flight,
crawling, and walking). Physicists, computational biologists, and other scientists can benefit
from this method by studying the dynamical behavior of species whose neuromechanical mod-
els and physics of complex terrains are difficult to model. This is the first study to our knowl-
edge that uses a neural network to study the dynamics of gait in an interpretable manner.
While much work is left to be done, we have provided a simplistic, unsupervised framework to
discover individual-specific differences in walking in health and disease in humans. Despite
being limited by a small dataset, we have shown that our model is generalizable to
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characterizing and predicting kinematics of one held-out subject using leave one out cross vali-
dation (S3 Fig). Here we focus on demonstrating the innovation, feasibility, and potential
advantages of our RNN gait signature approach, justifying the need and potential for further
development by scaling to larger-sample studies.

Importantly, this methodology relies on having a periodic or quasi-periodic pattern, as
non-periodic patterns would not be able to generate a phase and subsequent signature. We
also limited our inputs to gait kinematics, anticipating applications to the proliferation of
new measurement modalities for movement in humans and animals such as wearable sen-
sors and markerless video-based motion capture [117-119]. However, the gait signatures
framework could easily be extended to include other data types (e.g., force, muscle activity,
joint loadings, center of mass dynamics) and experimental conditions (overground walking,
biomechanical constraints, gait interventions, such as exoskeletons, functional electrical
stimulation, or treatment e.g., drugs, optogenetics). In practice, a more comprehensive data
set would be needed within each gait group to train a model capable of capturing the full
range of variability in gait dynamics. Short of having a massive data set, it may also be possi-
ble to leverage synthetic gait data from simulations to span the full range of feasible gait
dynamics variations.

Opverall, by modeling the dynamics of individual’s gait based on measured data, we uncov-
ered individual-specific representations of individuals’ neuromechanical constraints that
allows direct comparisons between individuals who do not walk at the same speed. The gait
signatures framework has implications for the diagnosis of disease, development of future tai-
lored gait therapies or interventions and tracking meaningful changes in the fundamental neu-
romechanical mechanism of walking.

Materials and methods
Ethics statement

All participants provided written informed consent prior to study participation, and the study
protocol was approved by the Emory University Institutional Review Board.

Human subject participants

To develop dynamical signatures of human gait, we collected data in seven post-stroke individ-
uals (age = 56 + 12 years; 2 females; 48 + 25 months post-stroke; Lower Extremity Fugl-

Meyer = 20 + 4) and five able-bodied (AB) controls (age = 24 + 4 years; 4 female). All post-
stroke participants experienced a cortical or subcortical ischemic stroke, were able to walk on
a treadmill for one minute without an orthotic device, and exhibited no signs of hemi-neglect,
orthopedic conditions limiting walking, or cerebellar dysfunction.

Experimental design

Participants completed 15-second walking trials at six different speeds, distributed evenly
between and ranging from each participant’s self-selected (SS) speed to the fastest safe and
comfortable speed. Across stroke participants, gait speeds ranged from 0.3-1.6 m/s. Each par-
ticipant’s fastest walking speed was determined by progressively increasing the treadmill speed
from the SS speed until the participant could no longer comfortably or safely maintain the
speed for 30 seconds. Participants rested for 1-2 minutes between consecutive gait trials. Dur-
ing data collection, speed increased from the participant’s SS to their fastest speed (i.e., not
randomized).
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Data acquisition

Reflective markers were attached to the trunk, pelvis, and bilateral shank, thigh, and foot seg-
ments [120]. We collected marker position data while participants walked on a split-belt
instrumented treadmill (Bertec Corp., Ohio, USA) using a -7-camera motion analysis system
(Vicon Motion Systems, Ltd., UK). Participants held onto a front handrail and wore an over-
head safety harness that did not support body weight. Marker data were collected at 100 Hz,
and synchronous ground reaction forces were recorded at 2000 Hz and were down sampled to
100Hz using previously established techniques [121-123].

Data processing

Raw marker position data were labeled, gap-filled, and low-pass filtered in Vicon Nexus.
Labeled marker trajectories and ground reaction force raw analog data were low-pass filtered
In Visual 3D. Gait events (bilateral heel contact and toe-off) were determined using a 20-N
vertical GRF cutoff, and sagittal-plane hip, knee, and ankle joint kinematics were calculated in
Visual 3D (C-Motion Inc., Maryland, USA).

RNN model development

Our goal was to start with a simple RNN to reduce overfitting with too many parameters and
deep layers. We wanted the simplest model capable of learning the dynamics underlying gait
which also preserved interpretability. The simplest recurrent neural network (RNN) model archi-
tecture consisted of one input layer, one hidden layer and one output layer. The hidden layer was
composed of long short-term memory (LSTM) units with a lookback parameter that spanned at
least one gait cycle. Model hyperparameter selection is described in a later paragraph.

RNN model training

Model fitting on our selected dataset and architecture was executed on the order of minutes to
tens of minutes, using Keras 3.7.13 and TensorFlow 2.8.2 on Google Colab’s standard GPU
with high-RAM runtime (54.8 gigabytes). The RNN model was trained using bilateral, sagittal-
plane, lower-limb joint angles from 5 able-bodied (AB) participants and 7 stroke survivors
each walking on a treadmill at 6 steady speeds, ranging from each participant’s preferred speed
to the fastest safe speed. Our training dataset was input to the RNN in multivariate format (not
concatenated) [62,63]. We trained a sequence-to-sequence RNN with 512 long-short-term
memory (LSTM) activations units in the single hidden layer, capable of using 15 seconds (sam-
ple rate of 100 Hz) time-series kinematic input data (0 to T-1) to predict kinematics one time-
step in the future (1 to T) for all training data across individuals and speeds. Our data was
batched according to the number of total trials (N = 72); thus, the LSTM maintains its internal
state while a batch is being processed, after which the internal state can be maintained or
cleared. Because our network retains its internal state from one time step to the next (i.e., the
RNN is stateful), we have fine-grained control over when the internal state of the LSTM net-
work is reset. The input data from all trials was ‘mini-batched’ into 2 training batches and 1
validation batch (499 samples each) that were used to update model weights on each model
run (epoch). To format our data into equal length input and output mini batches for training
and account for the output data being a one-time step shifted version of our input data, our
lookback parameter must be one value less than a divisor of the trial length. For example, in
our dataset (1500 sample length trials), a lookback parameter of 499 would result in the first
mini batch input of samples [0:499] which will predict our reference output samples [1:500],
our 2™ mini batch input data would include samples [501:999] and corresponding output
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[502:1000] and the last mini-batch input of samples [1001: 1499] predicts samples [1002:
1500]. This lookback parameter of 499 allows us to construct 3 mini-batches of shorter input
and output data lengths which would be used to train and validate the RNN model (2:1 train-
ing: validation mini batch split). Similarly with the lookback parameter of 499 (2:1 training:
validation mini-batch split) and 749 (1:1 training: validation split). Mean squared error was
used as the LSTM loss function and ADAM as the optimization algorithm because it is fast,
has a small memory footprint and is well suited for large-parameter deep learning models
[124]. The model was trained for at least 5000 iterations or until training and validation error
converged (< 0.75°). The training resulted in a sample-specific dynamical model structure
defined by a single set of LSTM network weights (W). The model’s internal states capture trial-
specific dynamics predicting the time evolution of joint kinematics; activation coefficients (H)
and memory cell states (C) and are tuned based on kinematic input.

Model hyperparameter selection

We selected the hyperparameter values of 512 nodes in the LSTM layer and a 499-sample
LSTM lookback length (number of samples preceding the current time point that is used to
train the LSTM) were selected based on training and validation loss, as well as the ability to
encode dynamics over short and long timescales. In two steps, we evaluated all pairs of the fol-
lowing hyperparameter values: 1024, 512, 256, and 128 LSTM nodes and 749, 499, and 249-sam-
ple lookback parameters. Because RNN performance can change with the parameters used to
initialize the RNN, we fit an RNN gait dynamics model 20 times using random initial parame-
ters, for each hyperparameter pair. First, we compared model training and validation loss for
each hyperparameter pair: the ‘best’ hyperparameter pair would have low training and valida-
tion loss. The following [node-lookback] pairs were considered the best hyperparameter pairs:
512-499 (MSEain = 0.010 + 0.001 deg’ MSE,y = 0.018 + 0.000 deg?), 256-749 (MSE rain =
0.010 + 0.002 deg” MSE, = 0.015 + 0.001 deg?), 256-499 (MSEy.ir, = 0.010 + 0.001 deg’; MSE-
val = 0.017 £ 0.000 deg?). (S1A Fig). The training loss was not different between hyperparameter
pairs (p > 0.235). The validation loss differed between all three models (p < 0.001), with the
256-749 model having the lowest validation loss. However, if the differences in validation loss
of less than 0.003 deg” corresponded to meaningful differences in performance was unclear.

Our second analysis was, therefore, used to compare the three hyperparameter pairs
deemed best in the prior analysis. Here, we evaluated the models’ abilities to encode the aver-
age dynamical behavior over long timescales (long-time) and the stride-to-stride behavior
(short-time). We defined the best model as the one with the highest long- and short-time per-
formance. The following analysis was performed for 10 of the 20 random initializations. For
long- and short-time analyses, we created a single set of reference dynamics as done in the
manuscript: we performed one time-step predictions over the full (1500-sample) time-series.
This step provided best-case predictions of the gait dynamics (S1B Fig).

Long-time performance. We generated long-time predictions of each trial’s gait signa-
tures (RNN latent states) by simulating each participant’s gait dynamics forward in time, 1500
samples into the future. Each simulation was initialized by setting the RNNs’ latent states to
those of the last sample of the trial’s reference dynamics and using the last sample of the trial’s
kinematics. We then phase-averaged both the reference dynamics and the long-time predic-
tions using the same technique as described in the main manuscript. Long-time performance
was defined as the similarity of the phase-averaged latent states (i.e., the gait signatures)
between the reference and the long-time predictions and was quantified using R*. Note that
using R” as a similarity metric, rather than the Euclidean distance metric used in the main
manuscript, was needed to compare models with different numbers of nodes. Unlike R?,
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Euclidean distances are sensitive to the number of samples used to compare models, which
would bias short- and long-time performance towards models with fewer nodes. Low R? values
between predictions indicates that the learned dynamics are sufficiently complex to capture
instantaneous gait dynamics but can also accurately generate the time evolution of dynamics
over the gait cycle—a major challenge in data-driven models of locomotion [89-90].

The 512-node model captured gait dynamics over long time scales significantly better (i.e.,
more accurate predictions of the time-varying dynamics) than the 249-node models (S1B Fig).
For long-time predictions, the 512-node model predictions (R* = 0.50 + 0.46) were better than
the 249-node 499-sample lookback model (AR” = 0.27 + 0.06; p < 0.001; independent-samples
t-tests) and the 249-node 499-sample lookback model (AR® = 0.31 + 0.07; p < 0.001).

Short-time performance. We generated short-time predictions by simulating single strides
in each trial’s time-series, initialized from the first sample of each stride. Initialization used the
latent RNN states and kinematics of the reference dynamics at the onset of a new stride
(phase = 0 rad). For each initial condition, we integrated the dynamics forward in time, up to the
onset of the next stride. For each stride, we then compare the similarity of the reference dynamics
to the dynamics of the corresponding short-time prediction using R*. Short-time performance
was quantified as the average R* value across trials for a single model and initialization.

The 512-node model captured gait dynamics over short time scales significantly better (i.e.,
more accurate predictions of the time-varying dynamics) than the 249-node models (S1B Fig).
For short-time predictions, the 512-node model predictions (R* = 0.11 + 0.51) were more
accurate than the 249-node 499-sample lookback model (AR* = 0.51 + 0.13; p = 0.055; inde-
pendent-samples t-tests) and the 249-node 499-sample lookback model (AR = 0.34 + 0.09;

p < 0.001). Based on difference in short- and long-time prediction performance, we selected
the 512-node, 499-sample lookback hyperparameters for the RNN model.

Leave-one-out subject model evaluation for generalizability

Using the selected hyperparameters, 12 different models were trained where one different sub-
ject (all 6 speed trials per subject) was held out for evaluation on each model run. The same
model architecture, training and validation setup was used as the original model trained using
the full dataset (12 subjects). The minimum training loss, validation loss, and overall evaluated
test loss for each model were extracted and box plots of each generated. The Wilcoxon Rank-
Sum Test statistic was used to compare the means. Each model was evaluated on the 6 held-
out speed trials from training and an average loss was calculated for each model. The reference
kinematics, externally driven and self-driven predictions of each of the 6 held-out trials per
model were phase averaged and R” between the phase averaged externally driven and long-
time self-driven predictions (see Long-Time Performance section, above) were calculated.

Box plots for each metric across the held-out trials were generated and the Wilcoxon Rank-
Sum Test statistic used to compare the means.

Computing gait signatures from RNN internal states

To develop the gait signatures, we extract the activation and cell states from the LSTM
(denoted “H” and “C” respectively) which evolve over time (the course of the gait cycle) as the
kinematics of each trial are fed through the trained RNN. These H and C parameters represent
how the model’s internal parameters change as it encodes the prediction of future kinematic
trajectories. The selected 512-node LSTM layer had 512 H parameters and 512 C parameters.
Time-varying gait signatures were computed by identifying dominant modes of variation in
the internal states using principal components analysis (PCA). A single PCA operation was
used to transform the internal states for all participants into a common basis. Consequently,
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inter-trial differences in the time-varying activations of the principal components (modes)
reflect differences in the underlying dynamics of the individual(s). These activations consti-
tuted the time-varying (1500 sample) gait signatures, which had the same dimension as the
RNN’s hidden layer (1024 units). However, the first six principal components accounted for
~72% of the variance in the internal states.

To compare gait signatures within and between individuals, we phase averaged each trial’s
signatures across strides. Rather than linearly interpolating the data between foot contact
events before averaging, as is common in gait analysis [122,125-127] we computed a continu-
ous phase using the first 3 gait signature modes for each trial using Von Mises interpolation
[128]. Compared to averaging across linearly interpolated strides, phase averaging is expected
to reduce the variance in the data at any point in the stride [66,90]. As the domain for interpo-
lation, we estimated the time-varying phase for each trial separately using the Phaser algo-
rithm, using the first 3 principal components as phase variables [66]. To align phase estimates
across trials, we defined zero-phase as the maximum of the first principal component.

Gait event estimation of phase averaged signatures

The force plates embedded in the treadmill captured precise gait event timing information
(left heel strike, right toe off, right heel strike, left toe off) across individuals’ trials which we
represented as a vector of 1’s, 2’s, 3’s and 4’s, respectively (ground truth markings for the 4
gait events). We leveraged the Phaser algorithm again [66] to develop a phase estimator to
transform these 4 gait events over time into gait events over phase. For each trial, we deter-
mined the mode phase that corresponded to each of the 4 gait events to gain a representa-
tion of where the 4 gait events occurred during phase averaged dynamics (0-2m) for each
trial.

Interpolation of unseen speed gait signatures to reconstruct kinematics

To demonstrate the generalizability of gait dynamics, we show that linearly interpolating gait
signatures to predict gait kinematics at new walking speeds is more accurate than linearly
interpolating the kinematics themselves. We trained another RNN model with the same archi-
tecture and hyperparameters to the first model, however using only the 2 slowest and 2 fastest
speeds from each participant (i.e., we held out the 2 middle speed trials from each participant).
We then linearly interpolated the 2-middle speeds’ internal states and ran the data through the
trained RNN to reconstruct or predict kinematics. We compared the original phase averaged
kinematics to the predicted kinematics resulting from each of the two linear interpolations
(dynamics and kinematics) using the coefficient of determination. Furthermore, even when
we reduced the dimensionality of the model’s internal states from the full 1024 to the first 6
principal components (the selected dimension on the gait signatures), it still performed better
than interpolating kinematics (also rank = 6).

Biomechanical interpretation of principal components of the gait signature

To reconstruct kinematics from the corresponding underlying dynamics (internal state repre-
sentations), we restored our trained model’s weights to a new model using the ‘model.set’ and
‘model.get_weights” Keras built in functions. The function ‘model.predict’ takes in the hidden
state values (Hs) only (first 512 of the 1024 internal-state time trajectories) and predicts the
corresponding kinematics for the provided internal states. Using this framework, we provided
this new model with independent principal component representations of individuals’ hidden
states and visualized the corresponding kinematics through stick figure movie representations
of the resulting kinematics over the walking trials.
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Predicting time evolution of kinematics from an initial posture (self-
driving)

Our trained generative gait model can take in a single initial posture of size (6,1) correspond-
ing to a single time point representation of each of the 6 joint angles to predict the next time
step posture/kinematics using command ‘model.predict’. To make further predictions, the
predicted value is used as the new initial condition (posture) and predictions are made on a
one-time step basis in a similar fashion for a pre-specified prediction length (self-driving).
However, it is important to note that even though our current framework only predicts one
time-step in the future, the LSTM layer remains stateful through each gait cycle, allowing the
model to learn much longer timescales as seen when self-driving the network (S7 Fig).

Supporting information

S1 Video. Stick figure movie demonstrating the RNN’s kinematic reconstruction of all the
PCs of dynamics.
(MP4)

$2 Video. Stick figure movie demonstrating that PC1 encodes dynamics driving hip flexion
and extension.
(MP4)

$3 Video. Stick figure movie demonstrating that PC2 encodes dynamics driving knee flex-
ion and extension.
(MP4)

$4 Video. Stick figure movie demonstrating that PC3 encodes dynamics driving postural
coordination.
(MP4)

S5 Video. Stick figure movie demonstrating the kinematic reconstruction when AB2’s PC1
projection is replaced with ST4’s impaired PC1 projection.
(MP4)

$6 Video. Stick figure movie demonstrating the kinematic reconstruction when AB2’s PC3
projection is replaced with ST4’s impaired PC3 projection.
(MP4)

$7 Video. Stick figure movie demonstrating the kinematic reconstruction when AB2’s PC4
projection is replaced with ST2’s impaired PC4 projection.
(MP4)

S8 Video. Stick figure movie demonstrating the kinematic reconstruction when ST3’s
impaired PC5 projection is replaced with AB2’s PC5 projection.
(MP4)

S1 Fig. Comparison of model performance on training and validation loss (left), and long-
and short-time prediction performance (right). In both plots, small dots represent the aver-
age values across trials for each random initialization of each model. Large dots and bars
denote the average and standard deviation of model performance metrics across initializations.
Left: Training and validation loss (RMSE) for all 12 hyperparameter pairs. Models in the
lower-left consider are considered better. Right: Long- and short-time prediction performance
(R2) for the 3 hyperparameter pairs with the lowest training and validation loss. Models in the
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upper-right corner are considered better.
(TIF)

$2 Fig. RNN model training (green) and validation (blue) loss curves.
(TIF)

$3 Fig. RNN dynamic learning generalizes across 12 leave-one-individual-out models. The
minimum train loss (blue) and validation loss (green) was low (< 0.02 degrees2) for 5 models
that were trained each with a single able-bodied individual held out of the training data (A, 1)
and 7 models each with a stroke individual held out of training data (A, ii). The magnitude
and range of the test loss (evaluation of model on the held-out data) (orange) was higher than
the respective minimum training and validation losses for both held-out able-bodied (A, i)
and stroke (A, ii) models. The magnitude and range of test losses evaluated on held-out able-
bodied individuals, however, were lower than models evaluated on held-out stroke data. The
models generate external predictions (blue) of held-out test trials with higher R2 values than
that of self-driven predictions (red) in models evaluated on both able-bodied (B, i) and stroke
trials (B, ii). The models can generate external kinematic predictions (blue) of held-out able-
bodied (B, i) trials better than that of stroke (B, ii). Self-driven predictions of stroke kinematics
were generally very low (R2 values below 0.5). Models were incapable of generating self-driven
predictions for 5 of 30 able-bodied trials and 16 of 42 stroke trials. (C) shows reference (black),
externally driven (blue) and self-driven (red) phase averaged kinematic predictions for an
exemplary able-bodied trial (C, i) and exemplary stroke trial (C, ii). Models can predict kine-
matics of held-out able-bodied trials better (higher R2) than that of stroke.

(TIF)

$4 Fig. Cumulative proportion of variance explained by the first 100 principal components
of gait dynamics. Six (6) principal components (PCs) explained 77% of the variance in the
gait dynamics. The top 6 dominant PCs were used to develop the gait signature.

(TIF)

S5 Fig. Support vector machine cross-validation classification accuracy of four different
gait descriptors (discrete variables, gait signatures, kinematics, and a combination of kine-
matics & joint velocity) for discrimination between: a) gait group (able-bodied vs. stroke)
and B) individuals. Using k = 25 folds, RNN gait signatures distinguished between impaired
and unimpaired gait with 100% accuracy, along with the 26 discrete variables (100%, p = 1),
whereas kinematic (92.67 + 0.15%, p < 0.05) and kinematics & velocity (88.67 £ 0.17%, p
<0.05) discrimination were significantly lower. Using k = 6 folds, SVM classification of indi-
viduals was most accurate using RNN gait signatures and discrete variables (100%), lower
using kinematics (88.9 + 0.13%, p = 0.061) and significantly lower using a kinematics and
velocity (68.10 £ 0.16%, p < 0.05).

(TIF)

S6 Fig. Relationship between participants’ similarity to able-bodied gait signatures and the
RNN’s ability to predict gait kinematics over one gait cycle. There exists a negative correla-
tion between self-driven R2 and Euclidean distance to the AB centroid that is statistically sig-
nificant at the 0.05 level (S6 Fig, dots). Lower functioning stroke survivors are located further
away from the able-bodied centroid, however remarkably all but one (outlier) of the R2 values
are above 0.73 in both high and lower-functioning individuals. Even though the model can
better predict able-bodied future kinematics better than stroke (R2 values above 0.8), the abil-
ity of our model to predict at least a single gait cycle of future stroke kinematics with R2 above
0.73 is promising. To provide a control for this analysis, we found the average R2 values
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between the self-driven prediction of the last full gait cycle of each trial and 5 randomly
selected gait cycles from other randomly selected individuals in the same gait group (able-bod-
ied vs. stroke) (S6 Fig, stars). This control would effectively reveal whether our model learned
each individual’s specific gait pattern or was just producing arbitrary (averaged) gait patterns.
We expect that if the model learned individuals specific gait patterns, then the distribution of
the R2 values of the self-driven kinematic predictions would be significantly different to that of
the averaged R2 values corresponding to arbitrary gait patterns. In fact, the averaged R2 of the
generic gait cycle comparisons ranged from 0.56 to 0.95 (compared to 0.61-0.99 in self-driven
predictions). Further, the distributions of the R2 outputs for both able-bodied and stroke indi-
viduals were significantly different (at the 0.05 level) to self-driven R2 outputs with p-values
5.5x10-6 and 5.4x10-3 respectively using the Wilcoxon Rank-Sum test. This reveals that even
for stroke survivors the model has learned their dynamics in some capacity and the model isn’t
simply predicting arbitrary gait patterns.

(TIF)

S7 Fig. Graphical summary and pseudo code of our gait signatures framework and algo-
rithm. A) Training dataset: Using the 6-dimensional gait trajectory, the inputs (green) were
concurrent segments from the gait trajectory, each one 499-time steps long. The outputs (blue)
were 1-shifted (in time) segments of inputs. B) Model architecture: Our model consisted of
an input layer, a hidden layer composed of 512 LSTM units, and a 6-unit Dense output layer.
C) Stateful training: The hidden state of an RNN at time t is a function of the input at time t
and the hidden state at time t-1. The model starts with processing the first mini-batch, calculat-
ing a new hidden state at each t and predicting gait kinematics at time t+1 given kinematics
data at t. At the end of the mini-batch processing, the model calculates MSE over the entire
mini-batch to calculate error for backpropagation and to update model weights. The final hid-
den state h(t+L) is used as the initial hidden state for generating predictions for the next mini
batch (L is the temporal length of each mini-batch). The hidden state is initialized as zero
before processing the first mini-batch.

(TIF)

S§1 Table. Stroke participant’s demographics and clinical scores.
(TIF)
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