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Abstract

Random forests have emerged as a promising tool in comparative metagenomics because

they can predict environmental characteristics based on microbial composition in datasets

where β-diversity metrics fall short of revealing meaningful relationships between samples.

Nevertheless, despite this efficacy, they lack biological insight in tandem with their predic-

tions, potentially hindering scientific advancement. To overcome this limitation, we leverage a

geometric characterization of random forests to introduce a data-driven phylogenetic β-diver-

sity metric, the adaptive Haar-like distance. This new metric assigns a weight to each internal

node (i.e., split or bifurcation) of a reference phylogeny, indicating the relative importance of

that node in discerning environmental samples based on their microbial composition. Along-

side this, a weighted nearest-neighbors classifier, constructed using the adaptive metric, can

be used as a proxy for the random forest while maintaining accuracy on par with that of the

original forest and another state-of-the-art classifier, CoDaCoRe. As shown in datasets from

diverse microbial environments, however, the new metric and classifier significantly enhance

the biological interpretability and visualization of high-dimensional metagenomic samples.

Author summary

Traditional phylogenetic β-diversity metrics, particularly weighted and unweighted Uni-

Frac, have had great success in comparing and visualizing high-dimensional metagenomic

samples. Nonetheless, these metrics rely upon pre-established biological assumptions that

might not capture key microbial players or relationships between some samples. On the

contrary, supervised machine learning algorithms, such as random forests, can often cap-

ture intricate relationships between microbial samples; however, unveiling these relation-

ships is often challenging due to the intricate inner mechanisms inherent to these

algorithms.

The adaptive Haar-like distance integrates the merits of β-diversity metrics and ran-

dom forests, allowing for precise, intuitive, and visual comparison of metagenomic sam-

ples, offering valuable scientific insight into the distinctions and associations among

microbial environments.
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Introduction

Comparative metagenomics seeks to identify conserved or variable genetic features across

microbial communities to discern the relationship between environmental characteristics and

microbial composition. A popular approach to infer which microbes are present in a sample is

to use amplicon sequencing, targeting the 16S gene, which is present in all bacteria and

archaea. The processing of these raw sequences into amplicon reads generates Amplicon

Sequence Variants (ASVs), capable of discerning single nucleotide substitutions. ASVs provide

a high taxonomic resolution by which to distinguish microbes, offering advantages for study

reproducibility among other benefits [1]. Many existing analyses, however, involve a pipeline

that clusters these reads (obtained from one or multiple environments) into Operational Taxo-

nomic Units (OTUs) based on a predetermined level of sequence similarity. The OTUs are

then consolidated into feature tables with abundance counts per sample. A common practice

is to map these OTUs onto the leaves of a reference phylogenetic tree such as Greengenes [2]

or Silva [3], allowing for the use of phylogenetic β-diversity metrics to quantify differences

between microbial environments. If a high resolution of sequence similarity was used to define

the OTUs, such as the conventional 97% or 99%, the processed data can have hundreds of

thousands of dimensions, which poses significant challenges for its analysis.

In contrast, whole genome sequencing aims to identify all the DNA contained within the

microbes’ genome. Traditionally, this process was costly and time-consuming; however,

advancements in shotgun sequencing and computational tools have made it feasible. Since this

framework does not rely on a singular marker gene, establishing a reference phylogenetic tree

is also more challenging. Nevertheless, recent efforts have made strides towards a unified phy-

logeny for bacterial and archaeal genomes [4].

Phylogenetic β-diversity metrics assume that OTUs with shared evolutionary histories pos-

sess similar traits, which may be advantageous or disadvantageous in environments with com-

parable characteristics; in particular, samples containing closely related OTUs should exhibit

closer clustering. These metrics are commonly employed to assess the significance of clustering

or correlation with covariates such as pH, salinity, or depth [5], among many others. Phyloge-

netic β-diversity metrics are also often used alongside principle coordinates analysis (PCoA)

[6] to generate low-dimensional visualizations of microbial datasets [7].

UniFrac [8] is arguably the most renowned phylogenetic β-diversity metric. Its fundamen-

tal breakthrough lies in effectively integrating microbes’ phylogenetic relatedness: differences

in OTU composition between environments are weighted by the shared length of evolutionary

history among the OTUs. This metric has two variants, weighted and unweighted. Weighted

UniFrac can be viewed as an Earth Mover’s distance, where the ground metric is defined by

the underlying reference phylogeny [9].

Double Principle Coordinates Analysis (DPCoA) [10] is another, albeit less well-known, β-

diversity metric. It is a Mahalanobis-type distance [11] associated with the inverse of the so-

called phylogenetic covariance matrix of the reference phylogenetic tree (see Definitions 1.2

and 1.3). This matrix encodes the shared branch length, leading to the root, between all pairs

of OTUs [12]. In particular, the entries of this matrix can be interpreted as pair-wise covari-

ances of a trait that evolved over the reference phylogeny according to a Brownian motion [13,

Chapter 3].

DPCoA can be considered a Euclidean version (aka ℓ2-version) of weighted UniFrac, as

both metrics rely on the same fundamental assumptions regarding OTU relatedness. (Con-

versely, UniFrac can be seen as an ℓ1-version of DPCoA.) While UniFrac and DPCoA and

their associated embeddings have demonstrated remarkable efficacy across diverse microbial
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scenarios, explaining their embeddings solely based on microbial abundances remains a

challenge.

Recent work showed that discrete Haar-like wavelets [14] could significantly pseudodiago-

nalize (i.e., sparsify) the phylogenetic covariance matrix of most large binary trees by changing

basis to the wavelets. This motivated the introduction of a novel phylogenetic β-diversity met-

ric known as the Haar-like distance [15]. This new metric may be regarded as a proxy for

DPCoA; however, unlike DPCoA and UniFrac, it admits a simple decomposition in terms

of the splits or bifurcations (i.e., internal nodes) of the reference phylogeny, which enables fur-

ther interpretation and visualization of microbial sample distances in terms of differences

between microbial clade abundances. Despite its breakthrough, the Haar-like distance,

along with all existing phylogenetic β-diversity metrics, is also constrained by the inherent

assumptions in the reference phylogeny (specifically, encoded in its covariance matrix). This

bears the question, can these metrics be tailored to capture more subtle relationships within spe-
cific metagenomic datasets, similar to those offered by supervised machine learning techniques,
while still leveraging the evolutionary relationships that β-diversity metrics have successfully
exploited?

Random forests (RFs) are a popular supervised machine learning method that combine

multiple decision trees to make predictions [16]. While specific architectures may vary among

implementations, the fundamental idea is as follows: each tree is built on a random subset of

labeled training data and optimizes a criterion such as the Gini impurity [17] to cluster data

with similar labels. To make predictions on new unlabeled data, each tree returns a label, and

the RF prediction is based on the (potentially weighted) average of these individual tree

predictions.

RFs usually exhibit superior or comparative performance to other state-of-the-art methods

in microbiome host-trait prediction [18], and numerous studies have documented their effec-

tiveness in metagenomics classification tasks [19–24]. While these classifiers achieve impres-

sive accuracy through the averaging of (random) decision trees, the inherent randomness in

their construction can obscure the learned relationships between OTU composition and pre-

diction. Furthermore, RF predictions cannot be explained solely by existing feature impor-

tance measures, such as Gini or permutation importance, as they can be highly sensitive to

correlated or highly variable features [25, 26].

In this manuscript, we introduce a new phylogenetic β-diversity metric: the adaptive Haar-

like distance, which is inspired by the recent Haar-like distance [15]. Taking a metric learning

approach [27], our algorithm learns a data-dependent weighting of the most important phylo-

genetic relationships across a set of samples to discover robust representations of microbial

abundance patterns. In contrast to traditional metric learning algorithms, which are known to

be computationally expensive [27] and suffer from the curse of dimensionality, our approach

scales well with large datasets. Scalability is achieved by leveraging a pretrained RF classifier,

which we adapt to fit a metric: a Haar-like distance associated with a phylogenetic covariance

matrix that we learn from the classifier. Accordingly, the adaptive Haar-like distance combines

the predictive power of RFs with the interpretability of the Haar-like distance.

Materials and methods

In this section, we outline our metric learning algorithm. First, we discuss the Haar-like wave-

let [14] basis and its corresponding coordinate system, which gives rise to the Haar-like dis-

tance [15]. We then generalize this metric by introducing tunable weight parameters, leading

to the adaptive Haar-like distance and corresponding kernel. Then, to learn weights in a data-

dependent manner, we examine the representation of random forests as local average
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estimators [28]. Here, random forest classifiers are framed as kernel estimators built from their

so-called affinity. Finally, we use a compressed sensing algorithm to learn a sparse set of

weights to approximate a random forest affinity by an adaptive Haar-like kernel. This substitu-

tion yields a surrogate random forest model that is precisely interpretable through a limited

number of Haar-like coordinates, representing the most relevant clade abundances for distin-

guishing between environments in a given dataset.

Haar-like wavelet basis

The Haar-like wavelets were first described in [14] for the multiscale analysis of datasets

equipped with a hierarchical partition tree. The wavelets form an orthonormal basis for

the vector space of (real-valued) functions defined on the leaves of such trees and localize

information on the leaves at scales determined by the proximity of each internal node to the

(external) root: the closer an internal node is to the root, the coarser the scale associated with

that node.

In phylogenetic trees (particularly out-rooted, see [15, Definition 2.1]), there is a direct cor-

respondence between the Haar-like wavelets and the internal nodes. In particular, since the lat-

ter represent speciation events that group OTUs into clades, the Haar-like wavelets offer a

basis for comparing clades of microorganisms as opposed to separate OTUs. So, assuming

sample abundances correlate within the same clade across similar environments, projecting

these onto the wavelets should elucidate relationships between microbial composition and

environmental factors [15].

Haar-like coordinates

Before describing how to project functions defined over the leaves of a phylogenetic tree onto

its Haar-like wavelet basis, we introduce some notation.

In what follows, T denotes a reference phylogenetic tree with vertex and edge set V and E,

respectively, and branch length function ℓ: E! [0, +1). The root of T is denoted as ∘. We dis-

tinguish the set of leaves L from the set of internal nodes I, noting that they partition V (i.e., L
[ I = V but L \ I = ;). In practice, the leaves of T represent OTUs, whereas its interior nodes

represent inferred speciation events.

For any internal node v, i.e., v 2 I, denote by L(v) the set of leaves that descend from v. Fur-

ther, v+ and v− denote the left and right children descending from v, respectively. (In [15],

these were denoted v0 and v1, respectively.)

We assume that microbial abundance data on the leaves of T are normalized to sum to one

so that each sample can be represented as a probability mass function on L. We denote these

functions by x, x1, x2, . . .; in particular, x: L! [0, 1) satisfies that ∑v 2 Lx(v) = 1. Therefore,

each sample is compositional (that is, distribution valued) and could be analyzed using a vari-

ety of methods [29].

With the above notation, the projection of a sample x onto a Haar-like wavelet φv, associ-

ated with internal node v 6¼ ∘, can be conveniently represented in terms of average abundances

on subtrees of the reference phylogeny.

Definition 1.1 (Average clade size). For a given function x : L! R and non-empty J� L
of cardinality |J|, we define the mean of x over J as

avgðx; JÞ ≔
1

jJj

X

j2J

xðjÞ:
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Theorem 1.1 (Wavelet projection). Let v 6¼ ∘ be an interior node of T. The projection of a

function x : L! R onto Haar-like wavelet φv is:

hx; φvi ¼ cv � avg x; L vþ
� �� �

� avg x; L v�ð Þð Þ
� �

; where cv ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jLðvþÞj � jLðv� Þj
jLðvþÞj þ jLðv� Þj

s

:

We refer to the set of projections {hx, φvi}v 2 I\{∘} as the Haar-like coordinates associated

with a sample x. (We disregard the root of T in our setting because, for compositional data x,

hx; φ� i ¼
ffiffiffiffiffiffi
jLj

p
, i.e., a constant. In particular, as we assess microbial samples by differences in

their Haar-like coordinates, this coordinate holds no relevance in our framework.)

We highlight that the Haar-like coordinates of log(x) (i.e., the function log (x(v)), when x(v)

> 0 for all v 2 L) correspond to the isometric log-ratio (ILR) coordinates [30], which have

been used in previous metagenomics analyses like PhILR [31] and Phylofactorization [32].

The ILR coordinates necessitate zero-count replacement and employ logarithmic ratios of geo-

metric means to map compositional data into an unconstrained Hilbert space, known as the

Bayes space [33], where the Euclidean distance is replaced by the Aitchison distance [34]. The

Aitchison distance is invariant to the underlying phylogenetic structure and thus disregards

OTUs evolutionary relatedness, which has been key to the success of phylogenetic β-diversity

metrics.

Haar-like distance

As mentioned earlier, DPCoA is a Mahalanobis-type distance associated with the inverse of

the phylogenetic covariance matrix of the reference tree. The precise interpretations of this

statement follow.

Definition 1.2 (Phylogenetic Covariance). For i, j 2 V, let [i, j] denote the set of edges in

the shortest path between nodes i and j in T. Also, let (i ^ j) be the least common ancestor of i
and j. Namely, the v 2 V that maximizes |[v, ∘]| among all the nodes that are ancestors to both

i and j. The phylogenetic covariance matrix of T is the matrix of dimensions |L| × |L| with

entries

Cði; jÞ ≔
X

e2½i^j;∘�

‘ðeÞ; for each i; j 2 L:

In what follows, AT denotes the transpose of a vector or matrix A.

Definition 1.3 (Double Principal Coordinate Analysis [10]). The DPCoA distance between

two environmental samples x1 and x2 is

DPCoAðx1; x2Þ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x2Þ
TCðx1 � x2Þ

q

: ð1Þ

Let F denote the matrix whose columns consist of the Haar-like wavelets of the reference

phylogeny. On large trees, if one changes basis using F, then, in the new coordinates, and with

high probability, C will be nearly diagonal [15, Corollary 3.8]. Namely, the matrixFTCF is sig-

nificantly sparse, which motivates substituting C by the diagonal matrix

L ≔ diagðlv : v 2 IÞ;

where

lv ≔ ðF
T CFÞðv; vÞ ¼ φT

v Cφv; for each v 2 I:
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In terms of DPCoA, this is equivalent to substituting the matrix C in (1) by the matrix

FΛFT, which motivates the next definition.

Definition 1.4 (Haar-like Distance [15]). The Haar-like distance between two environmen-

tal samples x1 and x2 is

dðx1; x2Þ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1 � x2Þ
T
FLFTðx1 � x2Þ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

v2I

lv hx1 � x2;φvi
2

r
: ð2Þ

The Haar-like distance is a weighted Euclidean distance between the Haar-like coordinates

of pairs of samples. This metric provides an interpretable version of DPCoA, as the distance

between two samples relates to a sum indexed by the internal nodes of the reference phylogeny

and, unlike the Aitchison distance, includes assumptions about phylogenetic relatedness when

calculating distances.

Adaptive Haar-like distance and kernel

Although traditional phylogenetic β-diversity metrics have provided significant insights across

various datasets, they may not consistently differentiate between samples from distinct envi-

ronments. On the other hand, despite its biological interpretability, a fundamental limitation

of the newly introduced Haar-like distance is the potentially broad biological assumptions

encoded by the coefficients λv, with v 2 I, used to define it (see Eq (2)). In fact, it seems

improbable that these fixed “universal” weights adequately account for relevant differences in

microbial composition across arbitrary pairs of environments. Nevertheless, the Haar-like dis-

tance allows for easy adjustment of these assumptions by replacing its fixed weights with adap-

tive ones, learned from labeled datasets. We next define this generalization.

Definition 1.5 (Adaptive Haar-like Kernel & Distance). The adaptive Haar-like kernel asso-

ciated with a weight vector w = {wv}v 2 I, with wv� 0 for each v, is defined as

kwðx1; x2Þ ≔ hWx1;Wx2i; where W ≔ diagð
ffiffiffiffi
w
p
ÞFT: ð3Þ

The adaptive Haar-like distance between two environmental samples x1 and x2 is

dwðx1; x2Þ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kwðx1 � x2; x1 � x2Þ

p
: ð4Þ

The adaptive Haar-like distance is induced by an inner product between differences of

Haar-like coordinates; in particular, it is faithful to the topology of the reference tree. Impor-

tantly, each weight aligns with an internal node in the phylogeny, allowing selective weight

adjustment for specific clades. This is especially promising for a multiscale analysis of β-diver-

sity in sample comparisons. In practice, however, identifying the most important internal

nodes in a given context is not immediately clear. The subsequent aim is therefore to choose

weights that minimize the adaptive Haar-like distance, or maximize the related kernel,

between samples that share similar environmental characteristics.

In the framework of kernel regression [35], the Haar-like kernel could be used to construct

an estimator ŷ of the data labels y : Rd 7!C � R. Subsequently, finding the optimal weights for

a given dataset of n labeled samples (x1, y1), . . ., (xn, yn) could be achieved through
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optimization of the quadratic leave-one-out training loss with respect to the vector of weights w:

arg min
w

Xn

i¼1

ðyi � ŷiÞ
2
; where ŷi ¼ ŷiðx; wÞ ≔

Xn

i6¼j

kwðx; xiÞ � yi

Xn

i6¼j

kwðx; xiÞ

: ð5Þ

In theory, this optimization could be done using gradient descent as in [36]. Unfortunately,

the cost to compute the gradient in each iteration is Oðdn2Þ, which is prohibitively expensive

in high dimensions d. Instead, we introduce a method to efficiently infer weights from a pre-

trained random forest (RF) that requires only a single Oðdn2Þ computation.

Towards an interpretable random forest surrogate

Though the connection to metric learning is not immediately clear, an RF can be re-framed as

a kernel method by considering the geometry learned through training: each decision tree is a

collection of binary decision rules that partition a feature space. By examining the splits made

by the decision trees, it is possible to define a notion of similarity between data points based on

the trees’ paths they traverse within the forest.

The RF affinity [28] is a kernel that quantifies how often two data points land in the same

partition across a forest’s decision trees. This kernel can be used to replicate RF predictions:

the label for a new point is estimated through a weighted average of the closest training point

labels based on some similarity measure.

In what follows, ⟦�⟧ denotes the indicator function (aka Iverson bracket) of the proposition

within, i.e., ⟦�⟧ = 1 when the statement within parenthesis is true; otherwise ⟦�⟧ = 0.

Definition 1.6 (Random Forest Affinity [28] & Dissimilarity). Consider an RF consisting of

M decision trees trained on n labeled samples ðxi; yiÞ 2 ðR
d
; CÞ, where C � R is non-empty.

(For example, C ¼ f� 1; 1g in binary classification, but C ¼ R in most regression problems.)

For each x 2 Rd
, let LmðxÞ denote the bin containing x in the m-th decision tree. The RF affin-

ity and dissimilarity between two points x1; x2 2 R
d

are defined, respectively, as follows:

Aðx1; x2Þ ≔
1

M

XM

m¼1

½½Lmðx1Þ ¼ Lmðx2Þ��; ð6Þ

Dðx1; x2Þ ≔ 1 � Aðx1; x2Þ: ð7Þ

The RF affinity between two points is the fraction of decision trees that group them in the

same leaf across the forest; in particular, it is symmetric and measures how similar two points

are from the perspective of the trained RF. Accordingly, the dissimilarity is also symmetric but

measures how often two training points are placed into different bins by the RF.

In the context of regression, the affinity can be used to construct the so-called kernel RF

estimate from labeled samples (x1, y1), . . ., (xn, yn), as follows.

Definition 1.7 (RFs as Regressive Local Average Estimators [28]). The kernel RF estimate

(KeRFE) of a function f : Rd ! R at a point x is

f̂ ðxÞ ≔

Xn

i¼1

Aðx; xiÞ � yi

Xn

i¼1

Aðx; xiÞ

:
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Under mild conditions, the KeRFE converges to the original RF estimate as n increases

[28].

KeRFEs do not entirely resolve the interpretability issue of RFs. One reason is the non-sta-

tionarity of A(x1, x2) [37], as it depends on both x1 and x2 rather than just (x1 − x2), which com-

plicates generating a consistent explanation of the affinity’s behavior across a dataset. This is

unlike the adaptive Haar-like kernel and distance, where weights signal the importance of

clade abundances in sample comparisons. Nevertheless, as we shall see next, KeRFEs offer a

perspective for directly studying the behavior of RFs through their affinity.

Metric learning algorithm

The core idea in this manuscript is to learn a weight vector w such that the Haar-like kernel

(see Eq (3)) can act as a surrogate of the RF affinity (see Eq (6)) across the whole training set.

In particular, because each weight wv is directly linked to the internal node v and, therefore, a

speciation event in the reference tree, the associated Haar-like kernel may serve as an inter-

pretable proxy for the RF model—from the perspective of the phylogeny. We note that after

learning the appropriate weights, the adaptive Haar-like distance and its associated embedding

can be recovered from the kernel.

Assume as given n labeled samples ðxi; yiÞ 2 ðR
d
; CÞ and collect the xi’s in a data matrix

X 2 Rd�n. To accomplish our goal, we first train an RF on the data and recover a pairwise

affinity matrix A 2 Rn�n
and dissimilarity matrix D≔ 1 1T − A, where 1 is a column vector of

ones of dimension n. (The entry in row-xi and column-xj of A and D are A(xi, xj) and D(xi, xj),

respectively.)

Although D is in general non-Euclidean, we can use principal coordinate analysis (PCoA),

also known as multidimensional scaling [38], to find a matrix Z such that the Euclidean dis-

tance between its i-th and j-th column is approximately equal to D(i, j). Therefore, the matrix

G≔ ZTZ is of a Gram-type [39] as its entries are the Euclidean inner products between all the

columns in Z. In practice, we find that this Euclidean approximation of D has no noticeable

effect on the resulting model performance (see Fig E in S1 Text).

Define Kw≔ XTF diag(w)FTX; in particular, the entry associated with row-xi and column-

xj of this matrix is precisely kw(xi, xj). The matrix Kw like G is also of a Gram-type because

Kw = YTY, with Y ≔ diagð
ffiffiffiffi
w
p
ÞFTX. Ideally, we would like to select a weight vector w so that

Kw = G; however, this is not generally possible. So instead, we pursue the next best option: find

a vector w such that Kw approximates G as best as possible, which we interpret as solving the

optimization problem:

min
w2Rd
k G � KwkF; subject to k w k0 � s; ð8Þ

where k�k0 is the pseudo-norm that counts the number of nonzero entries of the vector. The

inclusion of the constraint kwk0� s, where s is a strictly positive user-defined integer, ensures

that the optimization prioritizes sparse solutions, thereby enhancing the interpretability of the

solution w. Fig 1 gives an overview of the approach we have just described.

It is worth noting that the identities, G = ZTZ and Kw = YTY, prompt the approximation of

Euclidean coordinates in Z by those in Y. Nevertheless, this alternative approach is unsuitable

because it is not rotation-invariant, unlike the formulation based on Gram matrices in (8).

For any matrix M, let Mi denote its i-th column and vec(M) be the (column) vector

obtained by stacking M1, M2, . . . up from left to right.

We can reformulate the optimization problem in (8) into a more computationally tractable

one as follows. Since Kw is linear in w, there is a matrix M 2 Rn2�d
such that vec(Kw) = Mw. In
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particular, since kG − KwkF = kvec(G) − vec(Kw)k2, the minimization problem is equivalent to

min
w2Rd
k vecðGÞ � Mw k2; subject to k w k0 � s: ð9Þ

Further, the columns of M can be computed explicitly as follows. Let ei denote the i-th vec-

tor in the canonical base of Rd
; namely, ei(j) = ⟦;j = i⟦ for 1� j� d. Then, we must have

Mi ¼ vecðKei
Þ ¼ vecðXTFdiagðeiÞF

TXÞ. But diag(ei) is symmetric and idempotent; hence

Mi ¼ vecððdiagðeiÞF
TXÞTdiagðeiÞF

TXÞ ¼ vecððXTFÞi � ðX
TFÞiÞ;

where� denotes the outer-product of vectors. Namely, Mi is the vectorization of the matrix

obtained by the outer-product of the i-th row of FTX with itself. We emphasize that FTX is the

matrix of Haar-like coordinates of the (unlabelled) data.

The optimization in Eq (9) is a standard sparse approximation problem [40], where the

matrix M is referred to as the “dictionary,” and the goal is to learn a sparse linear combination

of the “dictionary elements” (i.e., columns of M) to best reconstruct a signal. In our setting, in

a dataset-specific manner, the signal is the matrix G, which is a proxy for the discriminatory

patterns learned by the RF, whereas M’s columns represent discriminatory patterns associated

with the internal nodes of the reference phylogeny. The goal of the sparse approximation in

(9) is therefore to find the least number of Haar-like coordinates that can best explain the

patterns learned by the RF.

In general, the minimization problem in (9) is NP-hard, but there exists a variety of

approaches to find an approximate solution. One popular formulation, basis pursuit denoising

[40], relaxes the ||�||0 pseudo-norm constraint using an ||�||1-norm regularizer. This is then a

convex quadratic problem for which many solvers exist [41, 42]. However, with interpretability

in mind, we would like full control over the sparsity of our solution. Hence we opt to instead

approximate the solution to (9) using Algorithm 1, a heuristic variant of the Matching Pursuit

(MP) algorithm [40], in which the weights are constrained to be non-negative.

Algorithm 1 Non-negative Matching Pursuit Algorithm
Input. G, M, s.
Output. ι: {1, . . ., s}!{1, . . ., d}, with d = |I|, and v : f1; . . . ;sg ! R.
R1  vec(G)

while there exists at least one positive inner product hRi;
Mj
k Mj k

i and i

� s do

iðiÞ  arg max
j¼1:d

Ri;
Mj
k Mj k

* +

v(i)  hRi, Mι(i)i
Ri+1  Ri − v(i)Mι(i)
i = i + 1

Fig 1. Illustration of the main mathematical objects and their relationships in our metric learning algorithm.

https://doi.org/10.1371/journal.pcbi.1011543.g001
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Algorithm 1 takes as input the signal G, the dictionary M, and a user-defined sparsification

parameter s. It returns functions ι: {1, . . ., s}!{1, . . ., d} and v : f1; . . . ; sg ! R such that the

vector w with zero entries, except that w(ι(i)) = vi for i = 1: s, approximately solves the optimi-

zation problem in (9). The algorithm is greedy, which lets us choose exactly how sparse of a

solution we want. Its key idea is to select iteratively the dictionary element with the largest pro-

jection along the signal, subtract this projection from the signal, and then repeat with the signal

residual.

In principle, all inner products may be negative in the first iteration of the algorithm, in

which case it will return no weights. Otherwise, as in traditional MP, the same column may be

selected more than once. Nevertheless, we did not observe any of these anomalous behaviors

when the sparsity was constrained to 10 or fewer coordinates.

The function v need not be decreasing, i.e., v(i) may be larger than v(i+ 1). Nevertheless, the

norm of Ri − Ri+1 = v(i)Mι(i) is a decreasing function of i (this follows from the non-con-

strained version of Matching Pursuit [43]) and a natural measure of the importance of the

Haar-like coordinate with index ι(i); accordingly, we refer to |v(i)|�kMι(i)k as a Haar-like coor-

dinate importance.

Finally, because the learned weights wv, with v 2 I, are constrained to be non-negative, the

resulting Gram matrix, Kw = XTWTWX, with W ≔ diagð
ffiffiffiffi
w
p
ÞFT (see Definition 3), can be fac-

tored to find an associated Euclidean embedding with coordinates given by WX.

The Haar-like kernel as a local average estimator

The question remains: how consistent is the adaptive Haar-like surrogate model with the

original random forest?

In this section, we detail how the adaptive Haar-like kernel can be used as a local average

estimator, similar to the KeRFE, to obtain estimates of unlabelled data points. Later, this allows

us to benchmark our metric against the original random forest and another interpretable

model, CoDaCoRe [44].

Again consider n labeled samples ðxi; yiÞ 2 ðR
d
; CÞ with {xi}i = 1: n collected into a data

matrix X 2 Rd�n. We train the random forest using these labeled samples. Suppose we are then

given m new unlabelled samples fxig
nþm
i¼nþ1

that are appended to the data matrix to form

~X 2 Rd�ðnþmÞ
. First, we construct estimates for these new points using the trained random for-

est. We then recover the random forest affinities between all points to construct the full affinity

matrix ~ARF 2 R
ðnþmÞ�ðnþmÞ

. (Recall that affinity matrices are symmetric.) Next, we apply the

metric learning algorithm to this affinity matrix to recover the Gram matrix Kw and associated

Haar-like coordinates W ~X . The Euclidean distances between these points are computed to

form a Euclidean distance matrix DHaar. Values in this matrix are threshold to a maximum of

one, allowing us to form the Haar affinity: AHaar = 1 − DHaar. Using this learned Haar affinity,

the surrogate estimate for the RF is:

f̂ Haarðxnþ1Þ ¼

Xn

i¼1

AHaarðxnþ1; xiÞyi

Xn

i¼1

AHaarðxnþ1; xiÞ

: ð10Þ

By replacing the RF affinity with our Haar-like affinity, we now have constructed an inter-

pretable surrogate for the RF estimator: estimates are made by comparing to neighbors, and

neighbors are determined by comparing the learned Haar-like coordinates. Ahead, we demon-

strate that this surrogate has comparable performance to the original RF.
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Results

In this section, our goals are twofold: to demonstrate the use of the adaptive Haar-like distance

as an exploratory tool in metagenomics datasets (Model Demonstration), and to verify that

our model is a suitable approximation of the original random forest (Model Validation).

For the model demonstration, we apply the adaptive Haar-like distance to five datasets

spanning categorical and continuous labels across varied biological settings (see Table 1). We

examine the learned Haar-like coordinates for each dataset, producing visualizations and asso-

ciating them with known biological contexts. Next, for the validation, we benchmark the adap-

tive Haar-like distance classification performance against the standard RF and another

interpretable classifier, CoDaCoRe [44].

Our analyses include both 16S rRNA sequence data and whole genome sequence (WGS)

data. For the 16S datasets, we use Greengenes 97% [2] as the reference phylogenetic tree with

associated taxonomy from NCBI [51]. For the WGS datasets, we use the Web of Life (WoL)

phylogeny [4] annotated by the GTDB [52] taxonomy. All datasets and phylogenetic trees used

in this manuscript were obtained through QIITA [53].

Due to the correspondence between the Haar-like basis and the set of internal nodes in the

reference phylogenetic tree, we can construct a helpful visualization for the learned metric

over a dataset. In particular, we can assemble phylogenetic spectrograms, which shade clades

in the reference phylogeny in order of importance of their learned weights (see Definition 1.5).

We generate spectrograms using iTOL [54].

Our general methodology has two user-controlled tuning parameters: the sparsity s (i.e., the

number of Haar-like coordinates to recover), and the minimum RF bin size (i.e., the minimum

number of samples for a node to be considered a leaf in the original RF), initially set during

the training of the original RF. In the classification setting, we always set the minimum RF bin

size to 1 for optimal performance. However, in the regression setting, too small a bin size may

reduce the RF affinity between similar samples and can make it more difficult for our algo-

rithm to recover clustering patterns. Accordingly, we set the bin size at the ceiling of 10% of

the total sample count, noting that optimal bin size may require further experimentation.

Model demonstration

The purpose of this section is to introduce the adaptive Haar-like distance as an exploratory

tool to link differences in environmental characteristics (given by sample labels) to varia-

tions in clade abundances. We show that across a diverse range of microbial environments,

our metric produces embeddings that display strong clustering (in the classification setting)

and strong gradients (in the continuous setting) with respect to these sample labels.

A particularly useful aspect of our metric is that, due to Defition 1.5, the Haar-like coordi-

nates can be treated as Euclidean ones. These coordinates correspond to speciation events in

the reference phylogenetic tree, facilitating direct visualization of the relationship between

Table 1. Datasets used for model demonstrations.

Dataset Task Sample Type Sample Count No. of Classes Sequencing Method

Costello et. al. 2009 [45] Body Site (classification) Various Body Sites 600 7 16S

Dan et. al. 2020 [46] Autism Spectrum Disorder (classification) Human Fecal 286 2 16S

Youngblut et. al. 2020 [47] Animal Diet (classification) Animal Gut 628 4 WGS

Mills et. al 2019 [48] Calprotectin Levels (regression) Human Fecal 24 n/a WGS

Mason et. al. 2014 [49] Distance from Wellhead (regression) Ocean Sediment 106 n/a 16S

https://doi.org/10.1371/journal.pcbi.1011543.t001
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changes in clade abundances and directions within the embedding through a biplot [55],

where loadings are associated with Haar-like coordinates. Notably, by constraining the num-

ber of Haar-like coordinates, we achieve a distinct advantage over existing phylogenetic β-

diversity metrics: the resulting embedding can be explained exactly by a small number of

clades.

We underscore that our aim here is not to replicate a full scientific analysis of these datasets

but to demonstrate that our metric recovers Haar-like coordinates associated with biologically

significant clades. With this in mind, for each dataset, we select ahead of time a sparsity param-

eter s and link the top s Haar-like coordinates to established taxonomical annotations by iden-

tifying the lowest taxonomic classification that encompasses all members of the corresponding

clade. While further Haar-like coordinates may be relevant—depending on the dataset—we

limit our discussion to these top s coordinates. Nevertheless, an in-depth analysis of the rele-

vant Haar-like coordinates should pay close attention to the comparison of abundances of the

left and right descendants of the corresponding internal nodes. For instance, an observed

increase in a Haar-like coordinate does not necessarily imply increased abundances of all its

descendants. Instead, recall from Theorem 1.1 that the Haar-like coordinate values represent

the difference between the abundances of left and right subtrees.

Dataset 1 classification: Body sites

We use the first dataset as a detailed exposition to our method, thoroughly explaining all

related plots. Our analysis becomes more succinct for subsequent datasets, focusing solely on

the most critical observations.

This dataset consists of 16S rRNA sequences from “Bacterial community variation in

human body habitats across space and time” [45]. This study “surveyed bacteria from up to 27

sites in seven to nine healthy adults on four occasions” resulting in a total of 600 samples. For

our analysis, we grouped these into 7 primary body habitats: skin, external auditory canal,

feces, hair, oral cavity, nostril, and urine.

Training the RF on all 600 labeled data points, we form the RF Gram matrix G shown in

Fig 2A. Here, the indices have been sorted by body habitat. For this dataset, motivated by the

fact that there are seven body habitats, we first applied the non-negative Matching Pursuit

algorithm with s = 7 to recover the seven most important Haar-like coordinates. The associ-

ated Gram matrix Kw constructed from these coordinates is shown in Fig 2B. We also display

the Gram matrix resulting from the first 50 coordinates in Fig 2C. In both cases, we find a

good reconstruction of the true RF affinity with only a small amount of additional noise.

Fig 2D displays the importance of these top 50 Haar-like coordinates. We note that the expo-

nential decay of these importances implies low dimensional embeddability of the data and

indicates the efficiency of our adaptation of Matching Pursuit (Algorithm 1) in choosing rele-

vant Haar-like coordinates.

Fig 3 displays the phylogenetic spectrogram associated with the top seven Haar-like coordi-

nates of the Body Sites dataset. Moreover, for illustration, Fig 4 displays how these Haar-like

coordinates combine to capture the vast majority of the classification pattern (excluding hair

samples) seen in the RF Gram matrix (Fig 2B). We note that hair samples make up only about

*2% of the dataset, so their lack of distinction with only seven Haar-like coordinates is not

surprising.

To confirm that our algorithm is recovering biologically meaningful splits in Greengenes

97%, we further examine these first seven selected Haar-like coordinates to assess their rele-

vance to the habitat of interest. To aid in our analysis, Fig 5 displays boxplots of these seven

coordinates in the different body habitats.
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Fig 3. The seven most important Haar-like coordinates of the Body Sites dataset visualized on Greengenes 97%.

Colors are displayed in decreasing order of importance from darker to lighter shades.

https://doi.org/10.1371/journal.pcbi.1011543.g003

Fig 2. Sparse approximation of the RF Gram matrix from the Body Sites dataset. A: RF Gram matrix. B: Sparse

approximation using 7 Haar-like coordinates. C: Sparse approximation using 50 Haar-like coordinates. D: Haar-like

coordinate importance as learned by Algorithm 1. The fit is y = 13.69e−.14x + 1.09.

https://doi.org/10.1371/journal.pcbi.1011543.g002
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The dominant Haar-like coordinate (45998) strongly localizes fecal samples (with a negative

coordinate value) and also corresponds, to a lesser extent, with oral cavity and urine samples.

Notably, the descendants of node 45998 are classified as Bacteroidetes, a phylum well known

to be found in the human gut, but also in the mouth and urine [56].

The second selected Haar-like coordinate (15409) localizes oral cavity samples. On exami-

nation of the phylogeny, this clade consists entirely of the Pasteurellaceae family, which has

been identified in human supragingival plaque samples [57].

The third selected Haar-like coordinate (61162) corresponds to the order Actinomycetales.

As seen in Fig 5, this coordinate strongly localizes the skin samples. The literature supports

that Actinomycetales, specifically the order genus Actinomyces, appear in the skin [58].

The fourth selected Haar-like coordinate (75728) localizes urine samples and consists

entirely of the genus Lactobacillus, which has been found in both male and female urine [59,

60].

The fifth selected Haar-like coordinate (76916) localizes the external auditory canal and

consists entirely of the genus Alloiococcus, which has been established as part of the typical

outer ear microbiome [61].

The sixth selected Haar-like coordinate (99280) again localizes fecal and oral cavity samples.

This clade contains the Firmicutes phylum, which are well-known members of the gut and

oral microbiome [62].

Finally, the seventh selected Haar-like coordinate (59781) strongly localizes nostril samples.

This clade consists entirely of the Corynebacterium genus, which is known to be a dominant

bacteria in the nose [63].

Based upon these top seven Haar-like coordinates, we then apply principal component

analysis (PCA) to reduce to three dimensions for visualization. Comparing our PCoA embed-

ding (Fig 6D) to the PCoA embeddings associated with unweighted UniFrac, weighted Uni-

Frac, and the Haar-like distance (Fig 6A–6C) we see that our metric obtains better clustering

by bodysite. Because this dataset has a large number of classes, it can be difficult to see all of

the class separations in the biplot. For this reason, we also display the normalized PCoA

embedding, resulting from a rescaling of the Haar-like coordinates, in Fig 7. In the normalized

biplot, we can see all seven loadings, and it is clear that our metric is recovering Haar-like

Fig 4. Reconstructed RF Gram matrix of the Body Sites dataset using the seven most dominant Haar-coordinates.

These have indexes 45998, 15409, 61162, 75728, 76916, 99280, and 59781 in a post-order traversal of Greengenes 97%.

https://doi.org/10.1371/journal.pcbi.1011543.g004
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coordinates that align well (either in the positive or negative direction) with different classes in

the embedding. For example, coordinate 15409, which was linked to Supragingival plaque,

points exactly in the direction of significant variation for the oral cavity.

We can quantify how well each of the four metrics cluster the body habitats by the PERMA-

NOVA pseudo-F test statistic [64] applied to the corresponding distance matrices. This score

Fig 5. Box plots of the top seven Haar-like coordinates across the Body Sites dataset.

https://doi.org/10.1371/journal.pcbi.1011543.g005
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is a measure of clustering strength estimated by comparing within-group variability to

between-group variability; a higher value indicates stronger clustering. As seen in Fig 6, the

embedding associated with the adaptive Haar-like distance has the highest score and, by this

measure, recovers the best clustering of body habitats among the various phylogenetic β-diver-

sity metrics considered.

Altogether, only seven adaptive Haar-like coordinates are enough to cluster all body habi-

tats except for the hair samples, which, as we have mentioned, represent a too small fraction of

the dataset for localization with only seven Haar-like coordinates. Though separating body

habitats may be a relatively trivial classification task, our method recovers coordinates that

align almost perfectly with the various body habitats and outperforms existing metrics using

just a few coordinates.

Next, we show that our algorithm maintains strong performance even in classification tasks

deemed far more challenging by current metagenomic analyses.

Fig 6. Comparison of the adaptive Haar-like embedding to various phylogenetic β-diversity metrics in the Body Sites

dataset. Pseudo F-statistics are reported to quantify clustering. A: Unweighted UniFrac PCoA embedding (F = 23.51). B:

Weighted UniFrac PCoA embedding (F = 88.24). C: Haar-like Distance PCoA embedding (F = 56.24). D: Adaptive Haar-like

PCoA embedding using 7 Haar-like coordinates (F = 146.87).

https://doi.org/10.1371/journal.pcbi.1011543.g006
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Dataset 2 classification: Autism

We turn our attention to the 16S dataset from “Altered gut microbial profile is associated with

abnormal metabolism activity of Autism Spectrum Disorder” [46]. This study compared fecal

samples from 143 individuals diagnosed with autism spectrum disorder (ASD) against 143

control subjects, matched for age and gender.

As seen in Fig 8E, the dominant Haar-like coordinate (32419) strongly distinguishes the

ASD patients. This clade consists entirely of the genus Thermus, which has been observed to

differ significantly in ASD patients compared to controls [65]. For the next prominent coordi-

nate (84140), the associated clade is made up of an unclassified genus within the Ruminococ-

caceae family. Finally, for the third coordinate (90645), every member of the corresponding

clade is classified as Ruminococcus, a genus that has been associated with ASD in the original

study of this dataset [46], as well as in other studies [66–68].

In the phylogenetic spectrogram (Fig 8F), we note that the second and third coordinates

(84140 and 90645) are more closely related (both belonging to the order Clostridiales) than the

dominant coordinate (32419), which descends from Deinococci, a class of extremophiles. The

role of these extremophiles, such as Thermus, in Autism spectrum disorder is not well under-

stood, yet our methodology highlights their potential significance in this context.

For Dataset 2, we only compute the embedding associated with the three most dominant

Haar-like coordinates. In the biplot (Fig 8D), we see that coordinates 90645 and 32419 are

Fig 7. Normalized PCA of adaptive Haar-like distance using seven coordinates in the Body Sites dataset.

https://doi.org/10.1371/journal.pcbi.1011543.g007
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Fig 8. Comparison of the adaptive Haar-like embedding to various phylogenetic β-diversity metrics in the Autism

dataset. A: Haar-like Distance PCoA embedding (F = 6.66). B: Unweighted UniFrac PCoA embedding (F = 18.44). C:

Weighted UniFrac PCoA embedding (F = 7.80). D: Adaptive Haar-like PCoA embedding using 2 Haar-like

coordinates (F = 34.96). E: Box plots of the top two Haar-like coordinates across the various diet types. F: The three

most important Haar-like coordinates of the Autism dataset visualized on Greengenes 97%.

https://doi.org/10.1371/journal.pcbi.1011543.g008
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nearly orthogonal: 90645 captures the variation in ASD patients, while 32148 corresponds to

control patients. However, we do not achieve the same quality of class separation as the previ-

ous dataset. This should be expected because the Body Sites data (Dataset 1) compared samples

from distinct body habitats, which are known to harbor different microbial communities [45],

while this dataset contains samples from the same habitat (feces). Consequently, it may be

harder to find features that strongly distinguish the two groups. Regardless, the adaptive metric

still achieves the best clustering among the tested metrics as indicated by the PERMANOVA

statistics (Fig 8A–8D). This improvement in clustering compared to the (non-adaptive) Haar-

like distance serves as compelling evidence for the role of weight optimization over the Haar-

like coordinates to capture relevant differences in microbial composition.

Next, we apply our method on a WGS dataset where existing phylogenetic β-diversity met-

rics are unable to discern any clustering.

Dataset 3 classification: Animal diet type

In this section, we analyze WGS data obtained from “Large scale metagenome assembly reveals

novel animal-associated microbial diversity” [47]. This study compares 628 gut microbiomes

from wild and captive animals “spanning 5 classes: Mammalia, Aves, Reptilia, Amphibia, and

Actinopterygii.” We consider the diet types of these animals: carnivore, insectivore, omnivore,

or herbivore.

Training our model to recover just the two most important Haar-like coordinates, Fig 9E

shows that the dominant coordinate (5511) strongly distinguishes herbivores from the other

diet types. This coordinate consists of the genus sporobacter, which has been connected to var-

ious herbivores and ruminants [69–71]. The second coordinate (6179) increases in value mov-

ing from herbivore to omnivore to carnivore, with insectivore having similar values to

carnivore. This coordinate contains members of the class Clostridia and, in particular, its left

descendants (whose abundances contribute to a positive coordinate value) contain the order

Clostridiales, which has been linked to some carnivorous species [72, 73]. As seen in the phylo-

genetic spectrogram (Fig 9F), these two Haar-like coordinates are closely evolutionarily

related, both belonging to the Bacillota phylum.

Constructing the various β-diversity metric embeddings (Fig 9A–9D), we find that none of

the traditional metrics recover any strong clustering or separation of the diet types. In contrast,

the adaptive Haar-like embedding, using only two Haar-like coordinates, displays excellent

separation of carnivore and herbivores, with omnivores laying directly in between the two.

We also note that our embedding allows for immediate visual identification of outliers. For

example, there is one carnivore sample that is clustered closer to the herbivore samples. This

sample corresponded to the European Grass snake and further investigation is necessary to

determine if this is a general trend among this species or if this specific sample was an outlier.

Next, we demonstrate our methodology in a regression setting.

Dataset 4 regression: Crohn’s disease

The first regression dataset we examine consists of WGS data from “Evaluating Metagenomic

Prediction of the Metaproteome in a 4.5-Year Study of a Patient with Crohn’s Disease” [48]. A

total of 8 fecal samples were collected from the patient over 5 years and processed in technical

triplicate, resulting in a total of 24 samples. Additionally, various blood markers associated

with inflammatory bowel disease were collected alongside these samples. Of these, “calprotec-

tin was found to have the strongest association with the microbial dysbiosis index,” so we

decided to train our model using the calprotectin value labels.
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Fig 10A displays the random forest Gram matrix. In the regression setting, we are ideally

looking for a diagonal band in the matrix, indicating that samples with similar label values are

highly similar. Here, we notice three main clusters corresponding to low, medium, and high

calprotectin values, and an inner diagonal band of higher similarity. As seen in Fig 10B, just 2

Haar-like coordinates are sufficient to recover a similar clustering pattern to the original RF.

Fig 9. Comparison of the adaptive Haar-like embedding to various phylogenetic β-diversity metrics in the Animal

Diet Type dataset. A: Haar-like Distance PCoA embedding (F = 9.35). B: Unweighted UniFrac PCoA embedding

(F = 8.65). C: Weighted UniFrac PCoA embedding (F = 10.64). D: Adaptive Haar-like PCoA embedding using 2 Haar-

like coordinates (F = 52.53). E: Box plots of the top two Haar-like coordinates across the various diet types. F: The two

most important Haar-like coordinates of the Animal Diet dataset visualized on the WoL tree.

https://doi.org/10.1371/journal.pcbi.1011543.g009
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As seen in Fig 11E, the dominant Haar-like coordinate (5713) correlates negatively with Cal-

protectin levels. The corresponding clade consists of the genera Ruminococcus, Ruminococcus

C, and Ruminococcus F. Multiple studies have associated these genera with Crohn’s disease and

other gastrointestinal disorders [74–76]. Instead, the second Haar-like coordinate is positively

correlated with Calprotectin levels and corresponds to the species Vescimonas coprocola. This

species has been isolated from human feces [77] but is relatively unstudied, and the correlation

observed here may warrant further scientific investigation into its relation to Chron’s disease.

To quantify the strength of the gradients in the regression setting, we use the notion of dis-

tance correlation [78]. As opposed to the traditional notion of correlation, distance correlation

captures nonlinear associations, and a distance correlation of zero is equivalent to probabilistic

independence. Among the traditional metrics, Unweighted UniFrac is the only one that dis-

plays any clear gradient with respect to calprotectin levels. Nevertheless, the adaptive Haar-like

distance has the best gradient as quantified by distance correlation (see Fig 11A–11D).

Next, we demonstrate our metric on ocean sediment samples taken near an oil spill.

Dataset 5 regression: Deepwater horizon oil spill

The final dataset we consider is a 16S dataset that “investigated the impact of oil deposition on

microbial communities in surface sediments collected at 64 sites” affected by “the Deepwater

Horizon oil spill in the spring of 2010” [49]. For our analysis, we consider each sample’s dis-

tance from the wellhead.

Fig 10. Sparse approximation of the RF Gram matrix from the Crohn’s dataset. A: RF Gram matrix. B: Sparse

approximation using 2 Haar-like coordinates. C: Sparse approximation using 50 Haar-like coordinates. D: Haar-like

coordinate importance as learned by Algorithm 1. The fit is y = 4.28e−0.42x + 0.04.

https://doi.org/10.1371/journal.pcbi.1011543.g010
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Fig 11. Comparison of the adaptive Haar-like embedding to various phylogenetic β-diversity metrics in the

Crohn’s dataset. Distance correlations are reported to quantify gradients. A: Haar-like Distance PCoA embedding

(Distance Correlation=.45). B: Unweighted UniFrac PCoA embedding (Distance Correlation=.67). C: Weighted

UniFrac PCoA embedding (Distance Correlation=.45). D: Adaptive Haar-like PCoA embedding using 2 Haar-like

coordinates (Distance Correlation=.91). E: Plots of the top two Haar-like coordinates across the samples. F: The two

most important Haar-like coordinates of the Crohn’s dataset visualized on the WoL tree.

https://doi.org/10.1371/journal.pcbi.1011543.g011
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In this dataset, the dominant Haar coordinate (19038) consists entirely of the class Gamma-

proteobacteria. As seen in Fig 12E, this Haar-like coordinate decreases with distance from the

spill site, and as seen in Fig 12D, the corresponding loading aligns well with the distance gradi-

ent. This is consistent with the observation in the original publication [49], which noted that

an uncultured Gammaproteobacterium OTU and a Colwellia taxon had high relative abun-

dances in highly contaminated samples but low relative abundances elsewhere. The second

Haar-like coordinate (2754) consists entirely of the phylum Gracilibacteria, which has been

identified and examined in the context of oil spills previously [79]. The third Haar-like coordi-

nate (14394) consists of the Alteromonadales order, which, as seen in Fig 12F, descends from

the clade corresponding to the dominant coordinate (19038). Altermonadales abundance has

also been identified and examined in oil-contaminated samples in [80]. Finally, the fourth

Haar-like coordinate (43571) consists entirely of the genus Ulvibacter, which is known to be a

hydrocarbon-degrading bacteria [81].

These learned Haar-like coordinates all correspond to clades that play a role in oil degrada-

tion, and as we show next, together, they are sufficient to cluster samples based on their dis-

tance from the wellhead accurately.

Constructing the adaptive Haar-like embedding using the top four Haar-like coordinates,

we see a very clear gradient with respect to distance. For both the biplot (Fig 12D) and the

plots of the individual Haar-like coordinates (Fig 12E), we take the logarithm of the sample

distances in order to approximately linearize the distances (see Fig D in S1 Text). This has no

effect on the resulting analysis and serves only for gradient visualization with respect to sample

distance (to the wellhead) on a linear scale.

Finally, when comparing the distance correlation between the true wellhead distances and

the various phylogenetic β-diversity metrics, we find that the adaptive Haar-like distance has

the highest distance correlation among the four β-diversity phylogenetic metrics.

Model validation

The preceding section highlighted how the adaptive Haar-like distance can generate insightful

embeddings across diverse datasets. However, ensuring that the weights and coordinates

derived from our metric closely match the RF estimates is imperative for the precise categori-

zation of environmental attributes.

Here, we test the adaptive Haar-like kernel obtained from the microbiome learning reposi-

tory (ML Repo) [50]. This repository consists of 28 binary classification problems and 5 regres-

sion tasks across various studies involving human microbial samples. We emphasize that in

the framework of our model, classification is just another form of regression; hence, for sim-

plicity, we chose to analyze only the binary classification problems.

Many of these datasets included only RefSeq OTU counts [82] and lacked Greengenes OTU

counts. Due to the absence of an associated phylogenetic tree with RefSeq, these datasets were

not suitable for our method. We also excluded datasets with sample size n� 10 as well as data-

sets with extreme class imbalance (i.e., 25/75 split or worse). The remaining 16 datasets that we

included in our analysis are detailed in Table 2.

To benchmark our method, we compare results to the original RFs and another state-of-

the-art interpretable classifier, CoDaCoRe [44], that learns a sparse set of log-ratios to classify

metagenomic data. We implemented a stratified 5-fold cross-validation (partitioning the data

into 80% training and 20% testing) on each dataset, iterating this process with 5 different ran-

domizations, resulting in 25 unique splits per dataset. In what follows, we outline the precise

implementations of each model.
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Fig 12. Comparison of the adaptive Haar-like embedding to various phylogenetic β-diversity metrics in the

Deepwater Horizon dataset. A: Haar-like Distance PCoA embedding (Distance Correlation=.70). The outlier is

associated with an OTU singleton. B: Unweighted UniFrac PCoA embedding (Distance Correlation=.60). C: Weighted

UniFrac PCoA embedding (Distance Correlation=.70). D: Adaptive Haar-like PCoA embedding using 4 Haar-like

coordinates (Distance Correlation=.72). E: Plots of the top four Haar-like coordinates across samples in the Deepwater

Horizon oil spill dataset. F: The four most important Haar-like Coordinates visualized on Greengenes 97%.

https://doi.org/10.1371/journal.pcbi.1011543.g012
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During the training of our adaptive Haar-like kernel, we employed a hyperparameter tun-

ing stage to choose the optimal number of Haar-like coordinates for each dataset. For each

randomization of the stratified 5-fold cross-validation, the 80% training data was further split

into a training and hyperparameter selection set. The best-performing value of the parameter s
was then chosen for the final model evaluation on the remaining 20% testing data.

Table 3 displays additional information about our model, namely the average and standard

deviation of the number of coordinates selected, the top selected Haar-like coordinate in each

dataset and a taxonomic classification that can be associated with that coordinate. The average

s used for each dataset is reported in Table 3 as “Haar-like Sparsity.” We note that the optimal

sparsity and its associated standard deviation depend strongly on the dataset. However, the

overall low standard deviation observed across the datasets indicates that our model is rela-

tively stable with respect to this parameter.

We observed better performance in our model by thresholding the Haar affinity matrix in

(10). For this, we adopted the popular convention from K-Nearest Neighbors (KNN) classifiers

and only kept the weights corresponding to the b
ffiffiffi
n
p
c closest neighbors. All other weights were

set to zero.

For the RF classifier, we implemented the scikit-learn RF classifier [83] with the default

parameter settings.

CoDaCoRe relies on a regularization parameter λ to control the trade-off between the spar-

sity and accuracy of the model. For a fair comparison with our model, we set λ = 0 to ensure

the highest classification accuracy. The average model sparsity for each dataset is reported in

Table 3 as “CoDaCoRe sparsity”. We note that for some datasets, especially those with a small

number of samples, CoDaCoRe failed to find a fit due to perfect separation [84]. This occurs

because of a logistic regression step in CoDaCoRe when an outcome variable entirely segre-

gates a predictor variable, making it impossible to determine a regression coefficient. For these

cases, the CoDaCoRe results were omitted (i.e., reported as n/a).

Fig 13 displays boxplots of the accuracy and area under the receiver operating characteristic

curve (ROC-AUC score) [85] for the adaptive Haar-like metric, CoDaCoRe, and RF across the

Table 2. Datasets from ML Repo used for model comparisons. Acronyms “cd” and “uc” stand for Crohn’s disease and ulcerative colitis, respectively. Dataset names in

the second column are as listed in [50].

Index Dataset Task Sample Type No. of Samples Samples per Class

1 Montassier 2016 Bacteremia vs. no bacteremia Human stool 28 11/17

2 David 2014 Animal vs. plant diet, last diet day Human stool 18 9/9

3 Cho 2012 Chlortetracycline vs. control, cecal Mouse cecal contents 17 7/10

4 Cho 2012 Chlortetracycline vs. control, fecal Mouse pellets 18 8/10

5 Cho 2012 Penicillin vs. vancomycin, cecal Mouse cecal contents 20 10/10

6 Cho 2012 Penicillin vs. vancomycin, fecal Mouse pellets 19 9/10

7 Gevers 2014 Control vs. cd, ileum Ileal biopsies 140 62/78

8 Gevers 2014 Control vs. cd, rectum Rectal biopsies 160 92/68

9 Morgan 2012 Healthy vs. cd, stool Human stool 81 19/62

10 Morgan 2012 Healthy vs. uc, stool Human stool 66 19/47

11 HMP 2012 Male vs. female, stool Human stool 180 98/82

12 HMP 2012 Stool vs. tongue Human stool, oral 404 204/200

13 HMP 2012 Subgingival vs. supragingival plaque Oral 408 203/205

14 Yatsunenko 2012 Malawi vs. Venezuela Human stool 54 21/33

15 Yatsunenko 2012 Male vs. female Human stool 129 37/92

16 Kostic 2012 Healthy vs. tumor biopsy, paired Colon biopsies 172 86/86

https://doi.org/10.1371/journal.pcbi.1011543.t002
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sixteen datasets. Across all the tested datasets, we see that, on average, the three classification

models are comparable in terms of accuracy. In terms of AUC, the adaptive Haar-like metric

also has comparable performance except on the two datasets (Datasets 8–9 from Morgan

2012).

It is generally difficult to perform proper significance testing for model comparison via k-

fold cross-validation because the assumption of independence is often violated, resulting in a

high type-I error [86]. Regardless, in an attempt to quantify the significance of these results, we

employed the heuristic corrected t-test described in [86]. With this corrected t-test and at a sig-

nificance level of α =.05, we find that none of the differences in accuracy between RF and the

adaptive Haar-like metric are statistically significant. Among the AUC values, only Dataset 9

from Morgan 2012 was found to have a significant difference where the RF outperformed our

metric.

Fig 13. Model results across the 16 ML Repo datasets. A: Model accuracy. B: Model ROC-AUC scores.

https://doi.org/10.1371/journal.pcbi.1011543.g013

Table 3. Datasets from ML Repo used in our model comparisons. The “taxonomic classification” column lists the lowest taxonomic classification that encompasses all

members of the clade corresponding to the given Haar-like coordinate. The phyla in dataset 12 include p_Actinobacteria, p_Firmicutes, and p_Tenericutes. Dataset names

in the second column are as listed in [50].

Index Dataset CoDaCore sparsity Haar-like sparsity Top Haar-like coordinate Taxonomic classification

1 Montassier 2016 n/a 7.12 ± 1.77 94036 o_Clostridiales

2 David 2014 n/a 6.56 ± 3.07 88556 o_Clostridiales

3 Cho 2012 n/a 2.16 ± 0.82 41082 f_S24–7

4 Cho 2012 n/a 1.00 ± 0.00 41082 f_S24–7

5 Cho 2012 n/a 2.28 ± 0.54 41082 f_S24–7

6 Cho 2012 n/a 6.56 ± 2.91 86819 o_Clostridiales

7 Gevers 2014 2.44 7.72 ± 1.87 86791 o_Clostridiales

8 Gevers 2014 2.40 5.88 ± 2.58 99273 f_Lachnospiraceae

9 Morgan 2012 1.76 3.16 ± 1.77 97006 f_Lachnospiraceae

10 Morgan 2012 1.36 4.48 ± 2.74 98982 f_Lachnospiraceae

11 HMP 2012 1.96 6.80 ± 2.13 38025 g_Bacteroides

12 HMP 2012 n/a 5.00 ± 0.00 99301 multiple phyla

13 HMP 2012 2.60 3.80 ± 1.22 79173 g_Parvimonas

14 Yatsunenko 2012 n/a 7.08 ± 1.72 84112 f_Ruminococcaceae

15 Yatsunenko 2012 1.88 6.84 ± 2.43 99190 f_Lachnospiraceae

16 Kostic 2012 1.32 7.88 ± 1.87 98472 g_Blautia

https://doi.org/10.1371/journal.pcbi.1011543.t003
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Initially, we expected RF to outperform the adaptive Haar-like distance on every dataset

because RFs use non-stationary kernels that can fit higher-order interactions than adaptive

Haar-like kernels (which are analogous to a Euclidean distance in a modified inner product

space). However, because the adaptive Haar-like kernel can only learn linear relationships

between microbial abundances, this may reduce over-fitting, allowing for comparable perfor-

mance to RF in most datasets that we tested. On the other hand, while CoDaCoRe offers unre-

stricted OTU selection for crafting log-ratios, the adaptive Haar-like distance restricts OTU

groupings based on phylogeny. Although this could enable CoDaCoRe to identify a more con-

cise set of OTUs for model construction, we contend that restricting OTU grouping to the

phylogeny enhances biological interpretability.

Discussion

By learning a metric in a data-dependent manner, the adaptive Haar-like distance can produce

accurate and insightful embeddings of metagenomic environments using only a limited num-

ber of Haar-like coordinates. The effectiveness of this approach hinges on the projection of

compositional data into a wavelet basis that compares differences in abundance between the

left- and right-clades that descend from each internal node in a reference phylogeny, which,

up to a factor, is what each Haar-like coordinate represents. The sparsity induced by this

choice of basis is precisely what allows our algorithm to learn a sparse set of weights that can

approximate a far more intricate RF model. Analogous to wavelet denoising [87], selecting

only the critical Haar-like coordinates in a dataset and discarding the rest helps build a robust

representation of metagenomic environments, thus better differentiating genuine biological

signals from noise. This is possible because of the one-to-one correspondence between the

splits in the phylogeny and the wavelets.

As mentioned earlier, phylofactorization [32] uses a similar coordinate system to decom-

pose microbial abundance in terms of internal nodes of a phylogeny. However, a pivotal dis-

tinction in our method lies in its supervised approach, where data labels are integrated to

discern the most significant clades within a specific setting. In contrast, phylofactorization

employs an unsupervised approach, reminiscent of PCA, to identify clades in the phylogeny

that account for the most variance, independently of data labels.

We underscore that traditional statistical methods employed in Euclidean space do not

apply to Haar-like coordinates. This distinguishes our approach from methods like phylofac-

torization or CoDaCoRe, which utilize isometric log-ratios and have established valid statisti-

cal tests [32]. Nonetheless, our method is the only one that exploits phylogenetic structure and

takes a supervised learning approach. Further work is therefore necessary to derive statistical

tests involving Haar-like coordinates.

Finally, it is worth noting that while we have introduced a data-driven approach for select-

ing the most significant Haar-like coordinates, our metric can also be applied to investigate

user-specified Haar-like coordinate embeddings. Particularly, if specific clades hold particular

scientific interest, our method can be used to generate biplots, thereby enabling the visualiza-

tion of the Haar-like coordinates corresponding to particular clades.

Conclusion

The adaptive Haar-like distance offers a versatile framework for comparing metagenomic sam-

ples from experiments encompassing various biological settings. By tailoring the underlying

assumptions to each dataset, our metric learns weights on a reference phylogeny that best dif-

ferentiate between environmental characteristics of interest. Compared to existing phyloge-

netic β-diversity metrics, the adaptive Haar-like distance can produce quantitatively better
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embeddings using only a handful of Haar-like coordinates. Our subsequent analysis of the

Haar-like coordinates selected in each of the presented datasets confirmed that our metric

learning algorithm recovers biologically meaningful splits in the phylogeny. This highlights

using our metric as an exploratory tool for uncovering possible relationships between micro-

bial clade abundances and environmental factors. Furthermore, by using the simple adaptive

Haar-like kernel to approximate the patterns learned by a more complex but uninterpretable

random forest, we offer an interpretable surrogate model with comparable performance.

Supporting information

S1 Text. The supplementary file contains the following figures and captions: Fig A. Sparse

approximation of the RF Gram matrix from the Autism dataset. A: RF Gram matrix. B:

Sparse approximation using 3 Haar-like coordinates. C: Sparse approximation using 50 Haar-

like coordinates. D: Haar-like coordinate importance as learned by Algorithm 1. The fit is

y = 5.73e−0.13x + 1.21. Fig B. Sparse approximation of the RF Gram matrix from the Animal

Diet Type dataset. A: RF Gram matrix. B: Sparse approximation using 2 Haar-like coordi-

nates. C: Sparse approximation using 50 Haar-like coordinates. D: Haar-like coordinate

importance as learned by Algorithm 1. The fit is y = 35.11e−.55x + 2.11. Fig C. Sparse approxi-

mation of the RF Gram matrix from the Deepwater Horizon oil spill dataset. A: RF Gram

matrix. B: Sparse approximation using 4 Haar-like coordinates. C: Sparse approximation using

50 Haar-like coordinates. D: Haar-like coordinate importance as learned by Algorithm 1. The

fit is y = 16.00e−0.61x + 0.64. Fig D. Logarithm of sample distances from the wellhead in the

Deepwater Horizon oil spill dataset. Fig E. Comparison of the KeRFE to a classifier con-

structed using its Euclidean approximation across the 16 datasets from the ML Repo data-

sets. The comparison reveals no significant difference in accuracy between the two models.
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