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Abstract

During the COVID-19 pandemic, control measures, especially massive contact tracing fol-

lowing prompt quarantine and isolation, play an important role in mitigating the disease

spread, and quantifying the dynamic contact rate and quarantine rate and estimate their

impacts remain challenging. To precisely quantify the intensity of interventions, we develop

the mechanism of physics-informed neural network (PINN) to propose the extended trans-

mission-dynamics-informed neural network (TDINN) algorithm by combining scattered

observational data with deep learning and epidemic models. The TDINN algorithm can not

only avoid assuming the specific rate functions in advance but also make neural networks

follow the rules of epidemic systems in the process of learning. We show that the proposed

algorithm can fit the multi-source epidemic data in Xi’an, Guangzhou and Yangzhou cities

well, and moreover reconstruct the epidemic development trend in Hainan and Xinjiang with

incomplete reported data. We inferred the temporal evolution patterns of contact/quarantine

rates, selected the best combination from the family of functions to accurately simulate the

contact/quarantine time series learned by TDINN algorithm, and consequently recon-

structed the epidemic process. The selected rate functions based on the time series inferred

by deep learning have epidemiologically reasonable meanings. In addition, the proposed

TDINN algorithm has also been verified by COVID-19 epidemic data with multiple waves in

Liaoning province and shows good performance. We find the significant fluctuations in esti-

mated contact/quarantine rates, and a feedback loop between the strengthening/relaxation

of intervention strategies and the recurrence of the outbreaks. Moreover, the findings show

that there is diversity in the shape of the temporal evolution curves of the inferred contact/

quarantine rates in the considered regions, which indicates variation in the intensity of con-

trol strategies adopted in various regions.

Author summary

When applying the compartment model to simulate the disease transmission dynamics,

some parameters or particular functions are assumed to describe the intensity of the
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control interventions. However, these preset specific functions may not accurately quan-

tify the intervention strategies, which brings great challenges to accurately make predic-

tion and evaluation. In this study, we developed an extended transmission-dynamics-

informed neural network algorithm by integrating deep neural network with epidemic

model. Even for insufficient case data, the proposed algorithm can still help us reconstruct

the temporal evolution trend of the epidemic and infer unknown parameters. We inferred

the time series on contract rate and quarantine rate for six regions based on the case data,

on which the reasonable and interpretable functions, describing the dynamic variation in

the intensity of control strategies, can be successfully selected and determined. The

inferred contact/quarantine rates in various regions show the diverse shapes and regional

dependent, and hence the variation in the intensity of control measures. This suggests the

dynamic zero-case policy exhibits the different efficacy in reducing contacts and increas-

ing the quarantine and isolation.

Introduction

The COVID-19 pandemic has lasted for three years since the end of 2019. Due to the continu-

ous variation of the virus strain and the dynamic adjustment of prevention and control mea-

sures, it is a great challenge to propose a dynamic model of infectious diseases to evaluate the

effectiveness of non-pharmaceutical interventions (NPIs) [1]. In particular, before October

2022, due to China’s implementation of the dynamic zero-case policy, strong close contact

tracing and isolation measures or even static management mode make almost all outbreaks be

cleared in about 40 days. From the point view of mathematical modelling, increased quaran-

tine/isolation rate and decreased contact rate have played an essential role in reducing new

infections. However accurately quantifying the rate functions and examining their effects on

infections remain unclear and fall within the scope of this study.

Modelling the dynamics of infectious diseases is an essential tool to provide the quantitative

basis for decision making during the COVID-19 pandemic. Traditionally, the intrinsic trans-

mission mechanism of infectious diseases and the flow among individuals in various compart-

ments are mainly described by ordinary/partial differential equations [2, 3], delay differential

equations [4] and fractional differential equations [5]. In traditional mechanism-based models,

researchers usually incorporated constant contact rate and quarantine/isolation rate for sim-

plicity to analyze the transmission risk [6], model the impact of contact tracing and quarantine

on the development of COVID-19 [7, 8] and evaluate the independent effectiveness of vaccines

[9]. There are also a large number of literatures in which the specific functions were supposed

to represent the dynamic changes in intensity of interventions for comparing the effectiveness

of various control strategies [10], understanding the drivers of multiple waves of outbreaks

[11] and exploring the transmission mechanism of COVID-19 with different intervention pat-

terns [12]. Moreover, Wang et al. [13] considered a dynamic epidemiological model with a

piecewise contact rate and quarantine rate to simulate the dynamics of the Omicron variant in

Shanghai, and explored the feasibility of different control patterns in avoiding subsequent

waves. Li et al. [14] developed a model with pulse population-wide nucleic acid screening, and

simulated the changes of contact/quarantine rates over time by using exponential decline/

increase functions, respectively, focusing on the impact of large-scale screening on the trans-

mission dynamics of COVID-19 infection and the operation of medical resources. Note that

the preset specific functions may not accurately capture the dynamic adjustment of interven-

tion strategies. And the assumed rate functions may inevitably involve more parameters in the
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model, which brings significant challenges to data fitting and parameter estimation. This

mechanism of preset rate functions inevitably causes that the outcomes are usually dependent

on the particular types of rate functions due to various assumptions. Hence the data-driven

inference of rate function is of great significance to quantify and assess the intensity of control

interventions.

Data-driven statistical models are widely used in biological, medicine, social science and

other fields due to the flexibility and feasibility of the method [15, 16]. Especially in recent

years, it has played an important role in simulating COVID-19 pandemic [17, 18]. For exam-

ple, Sindhu et al. [19] proposed a three parametric model named as Exponentiated transforma-

tion of Gumbel Type-II (ETGT-II) for analyzing the number of deaths due to COVID-19 for

Europe and China. In addition, there are several studies have developed different types of sta-

tistical models based on COVID-19 mortality data and evaluated the performance of the mod-

els [20, 21]. Rahman et al. [22] developed a seasonal Autoregressive Integrated Moving

Average (ARIMA) model and eXtreme Gradient Boosting (XGBoost) model to simulate the

overall trend of confirmed cases and deaths of COVID-19 infection in Bangladesh, and com-

pared the accuracy of predictions of two methods. Külah et al. [23] considered Shifted Gauss-

ian Mixture Model with Similarity-based Estimation (SGSE) to predict the development trend

of COVID-19 pandemic for a specific country by examining similar behaviors in other coun-

tries. Note that these data-driven statistical methods do not incorporate prior transmission

mechanisms, resulting in poor interpretability of simulation results, making it difficult to pro-

vide decision-making basis for optimizing control strategies.

Data-driven deep learning is another powerful tool for analyzing the dynamics of COVID-

19 pandemic. It is a nonlinear mathematical tool with powerful learning ability, and is widely

used in natural language processing [24], fault detections [25], image recognitions [26] and

reliability analysis [27–29]. During COVID-19 pandemic, neural networks are used to con-

struct various simulation frameworks to predict the development trend of the epidemic [30,

31]. For example, Jin et al. [32] predicted COVID-19 infection based on multiple neural net-

works and reinforcement learning. Shafiq et al. [33] estimated the COVID-19 mortality rates

in Italy by using maximum likelihood estimation and artificial neural network (ANN). Xu

et al. [34] employed three different deep learning models, including the convolutional neural

network (CNN), long short-term memory (LSTM) and convolutional neural network-long

short-term memory (CNN-LSTM), to predict the number of new cases and forecast the spread

of COVID-19 infection. Utku [35] developed a convolutional neural network-gated recurrent

unit (CNN-GRU), based on hybrid deep learning model, to predict COVID-19 cross-country

spread. Gautam [36] applied transfer learning to the LSTM network to learn the trends of new

cases and new death of COVID-19 infection from case data in Italy and the United States and

to make projections for other countries. However, the black box attribute of the algorithms

makes it face uninterpretable risks, especially the end-to-end learning method cannot reveal

the underlying transmission mechanism of epidemics or the impact of intervention measures

on mitigating the disease spread.

The main purpose of this study is to combine scattered observational data with deep learn-

ing and epidemic models, in order to avoid assuming the specific rate functions in advance

and make neural networks follow the rules of epidemic systems in the process of learning. This

mechanism of physics-informed neural network (PINN) may provide a flexible computational

framework for scientific problems [37, 38]. By applying a data-driven module to extend an

epidemiological model with control interventions derived from first principles, we implement

the time-dependent parameters that quantify the intensity of prevention and control measures

as different neural networks, and then embed the epidemiological model into the neural net-

work through adding the residuals of the equations to the loss function, and develop an
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extended transmission-dynamics-informed neural network algorithm framework. We simu-

late the COVID-19 epidemic evolution trend in Xi’an, Guangzhou, Yangzhou, Hainan and

Xinjiang with TDINN, and discover the temporal evolution pattern of time-dependent param-

eters reflecting the dynamic adjustment of the control strategies based on the epidemic curves

in these regions. Furthermore, we reconstruct the dynamic evolution trend of time-dependent

parameters through specific functions and provide interpretability analysis for the output of

deep learning. Finally, We also test the fitting performance of the TDINN algorithm on the

COVID-19 infection with multiple waves in Liaoning province.

In this study, we will develop a TDINN algorithm that integrates epidemic data, deep learn-

ing, and epidemiological models to identify the intensity of interventions during COVID-19

pandemic. It is worth noting that the TDINN algorithm guides neural networks to adhere to

epidemic system rules during the learning process and meanwhile avoids the pre-assumption

of modeling contact/quarantine rates with specific functions. The proposed algorithm can not

only fit the multi-source epidemic data well, but also reconstruct the epidemic development

trend with incomplete reported data. Further, we successfully trace the temporal evolution pat-

terns of the contact rate and quarantine rate, and perform the interpretability analysis of the

time-dependent rate functions inferred by TDINN algorithm.

Methods

Data

We obtained the daily reported number of confirmed cases for Xi’an outbreak from December

9th, 2021 to January 20th, 2022, Guangzhou outbreak from May 21st, 2021 to June 18th, 2021,

and for Yangzhou outbreak from July 28th, 2021 to August 26th, 2021 from Health Commis-

sions of Shaanxi [39], Guangdong [40] and Jiangsu provinces [41], respectively. In addition,

we collected the daily reported number of confirmed cases from August 1st, 2022 to September

23rd, 2022 in Hainan province [42] and form August 4th, 2022 to September 26th, 2022 in

Xinjiang Uygur Autonomous Region [43], respectively. Data information includes the number

of daily reported cases in the community(Ic
data
new ðtÞ) and in the quarantined zone(Iq

data
new
ðtÞ). It is

important to note that the numbers of daily reported case in the community or quarantined

zone are incomplete for Hainan and Xinjiang, but we have complete daily reported case num-

bers (Ir
data
new ðtÞ) in these two regions. Moreover, we also obtained the daily reported number of

confirmed cases for Liaoning outbreak from 6th March 2022 to 21st May 2022 from Health

Commissions of Liaoning provinces [44], where the data information only contains a column

of daily reported case numbers (Ir
data
new ðtÞ) and shows multi-wave outbreaks. Detailed data are

shown in Fig 1a–1d.

For Xi’an, Guangzhou, and Yangzhou, we can calculate the cumulative reported cases in

the community(Ic
data
cumðtÞ)(or quarantined zone (Iq

data
cum
ðtÞ)) based on the daily reported cases in

the community (or quarantined zone), while for Hainan, Xinjiang and Liaoning, we only

obtain the cumulative reported cases(Ir
data
cumðtÞ). Therefore, in this study, we have access to three

categories of reported data sets, which are as the follows:

• Set 1: Ic
data
new ðtÞ, Iq

data
new
ðtÞ, Ic

data
cumðtÞ, Iq

data
cum
ðtÞ, for Xi’an, Guangzhou, Yangzhou;

• Set 2: Ic
data
new ðtÞ, Iq

data
new
ðtÞ, Ir

data
new ðtÞ, Ir

data
cumðtÞ, for Hainan, Xinjiang;

• Set 3: Ir
data
new ðtÞ, Ir

data
cumðtÞ, for Liaoning.
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Fig 1. Multi-source epidemic data and the framework of transmission dynamic model. (a) Epidemic data of COVID-19 infection in

Liaoning province from 6th March 2022 to 21st May 2022; (b) Epidemic data of COVID-19 infection in Xi’an from 9th December 2021

to 20th January 2022, in Guangzhou from 21st May to 18th June 2021, and in Yangzhou from 28th July to 26th August 2021; (c)

Epidemic data of COVID-19 infection in Hainan from August 1st to September 23rd, 2022; (d) Epidemic data of COVID-19 infection

in Xinjiang from August 4th to September 26th, 2022; (e) Flow diagram among epidemiological classes.

https://doi.org/10.1371/journal.pcbi.1011535.g001
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The model

During COVID-19 pandemic, China’s government has mainly adopted the dynamic zero-

case policy, i.e., strict close contact tracking and isolation, high-frequency and large-scale

nucleic acid screening, closed management and etc, to quickly respond to the outbreak.

These powerful NPIs effectively make most infected people not go through the complete

process from infection to incubation period, and then to asymptomatic or symptomatic,

that is, patients may be detected at every stage after infection. Therefore, this study simu-

lates the transmission mode and evolution dynamics of COVID-19 infection based on the

classic deterministic Susceptible-Infected-Removed (SIR) type epidemiological model [2].

Then we extend the simplest SIR-type dynamic model by including contact tracing and iso-

lation, and the flow diagram is shown in Fig 1e. Given an outbreak taking off in a city, the

city can usually be divided into two regions according to different intensity of control mea-

sures: free region (or community) and quarantined region. Consequently, we stratify the

population in the free (quarantined) region into the susceptible class S (Sq) and the infected

class Ic (Iq), and the removed class (denoted by R). Note that here we do not distinguish the

individuals in the removed class in free or quarantined region since they can not be re-

infected within a relatively short duration, and then consider a single compartment. Here

we use the subscripts ‘q’ to represent quarantined population, i.e. Sq and Iq represent quar-

antined susceptible class and quarantined infected class, respectively. To model the contin-

uously adjusted intervention measures, we assume the time-dependent contact rate and

quarantine rate, denoted by c(t) and q(t), respectively. The transmission probability of per

contact is supposed to be β. Then, the quarantined individuals, if infected (or uninfected),

move to the compartment Iq (or Sq) at a rate of βc(t)q(t) (or (1 − β)c(t)q(t)). Those who are

not quarantined, if infected, will move to the compartment Ic at a rate of βc(t)(1 − q(t)).

According to the fact that the quarantined individuals do not return to the susceptible pop-

ulation before the end of outbreak, then we ignore the rate of transition from Sq to S class.

Hence we have the following ordinary differential equations:

dS
dt
¼ �

bcðtÞ þ cðtÞqðtÞð1 � bÞ
N

SIc;

dIc
dt

¼
bcðtÞð1 � qðtÞÞ

N
SIc � gIc;

dSq
dt

¼
ð1 � bÞcðtÞqðtÞ

N
SIc;

dIq
dt

¼
bcðtÞqðtÞ

N
SIc � dqIq;

dR
dt
¼ gIc þ dqIq;

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð1Þ

where N represents the total population of the region, the recovery rate of infected individ-

uals in community (quarantined region) denoted by γ(δq), and the definitions and values of

all parameters used in the model are given in Table 1. Here we consider three additional

auxiliary compartments to record cumulative reported cases (Ircum), the cumulative reported

cases in the community (Iccum) (or the quarantined region (Iqcum)). The dynamics of these
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three compartments are driven by the following equations:

dIccum
dt

¼
bcðtÞð1 � qðtÞÞ

N
SIc;

dIqcum
dt

¼
bcðtÞqðtÞ

N
SIc;

dIrcum
dt

¼
bcðtÞ
N

SIc:

8
>>>>>>><

>>>>>>>:

ð2Þ

Parameter estimation

It is known that fully connected deep neural networks with arbitrary nonlinear activation

functions are universal approximators [45], we then use three independent neural networks

with time t as input to represent the time-dependent contact rate c(t), quarantined rate q(t)
and each state variable in model (1) respectively. So we have

cðtÞ ¼ cNNðt;YcÞ; qðtÞ ¼ qNNðt;YqÞ; UðtÞ ¼ UNNðt;YUÞ;

where U is a vector of all epidemiological categories considered in model (1), i.e.,

U = (S, Ic, Sq, Iq, R). Here cNN, qNN, UNN represent neural network operators and

(Θc, Θq, ΘU) is a parameter set composed of network weights and biases.

Based on the method of physics-informed neural networks proposed in [37], we integrate

three different neural networks to obtain an extended transmission-dynamics-informed neural

network(TDINN), shown in Fig 2. The neural networks in the purple shaded area are used to

infer the time-dependent contact rate c(t) and quarantine rate q(t). The neural network in the

green shaded area is used to fit the available data and approximately solve model (1). The

approximated network solution of model (1) can be defined as

UNNðtÞ ¼ ðSNNðtÞ; Ic
NNðtÞ; Sq

NNðtÞ; Iq
NNðtÞ;RNNðtÞÞ:

The next critical step is to embed the information of transmission dynamics into the neural

network to constrain the output(solutions) to satisfy the observational data and the ODE sys-

tem, which is achieved by constructing a loss function corresponding to reported data and epi-

demiological models. Specifically, the output of the neural network at the temporal nodes

ftidg
T d
i¼1

should be as close as possible to the observed data. In addition, we enforce the neural

network to satisfy the ODE system at the temporal nodes ftieg
T e
i¼1

. This can be achieved by

Table 1. Parameter definitions and estimation for model (1).

Parameter Definitions Estimated values Sources

Xi’an Guangzhou Yangzhou Hainan Xinjiang Liaoning

c(t) Time-dependent contact rate See text and

Fig 3c

See text and Fig

3g

See text and Fig

3k

See text and

Fig 4d

See text and

Fig 4i

See text and Fig

7b

TDINN

q(t) Time-dependent quarantine rate See text and

Fig 3d

See text and Fig

3h

See text and Fig

3m

See text and

Fig 4e

See text and

Fig 4j

See text and Fig

7c

TDINN

β Probability of transmission per

contact

0.1498 0.1893 0.1493 0.1281 0.1977 0.2544 TDINN

γ Recovery rate of community infected

individuals

0.2953 0.2337 0.2994 0.2830 0.1773 0.3691 TDINN

δq Recovery rate of quarantined infected

individuals

0.3531 0.2507 0.1950 0.2737 0.3519 0.2155 TDINN

https://doi.org/10.1371/journal.pcbi.1011535.t001
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using automatic differentiation to calculate the residual error of the ODE system at ftieg
T e
i¼1

, so

ftieg
T e
i¼1

is also called “residual points”. Here, let T d represent the number of observed data and

T e represent the number of residual points. It is worth noting that residual points can be arbi-

trarily sampled in the entire computational domain. To measure the mismatch between the

outputs from neural network/ODE systems and the observed data, we define the loss function

as follows [37]:

Loss ¼ MSEdata þMSEode; ð3Þ

where MSE stands for mean square error, MSEdata is used to measure the degree of matching

between the output of the neural network and the observed data, and MSEode, as a penalty

term, describes whether the solution learned by the neural network satisfies the ODE system.

The first term MSEdata in the loss function (3) has different expressions based on the three

categories of available datasets. For the data in Set 1,

MSEdata ¼
1

T d

XT d

i¼1

�
�
�Ic

NN
newðt

i
dÞ � Ic

data
new ðt

i
dÞ

�
�
�
2

þ
1

T d

XT d

i¼1

�
�
�Iq

NN
new
ðtidÞ � Iq

data
new
ðtidÞ
�
�
�
2

þ
1

T d

XT d

i¼1

�
�
�Ic

NN
cumðt

i
dÞ � Ic

data
cumðt

i
dÞ

�
�
�
2

þ
1

T d

XT d

i¼1

�
�
�Iq

NN
cum
ðtidÞ � Iq

data
cum
ðtidÞ
�
�
�
2

:

Fig 2. Schematic diagram of transmission-dynamics-informed neural network. Different neural networks are used to represent the state variables

(green shaded area) and time-dependent parameters (purple shaded area) of model (1). The symbols “σ” and “d
dt” represent the activation function and

the automatic differentiation operator, respectively.

https://doi.org/10.1371/journal.pcbi.1011535.g002
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For the data in Set 2, the MSEdata becomes

MSEdata ¼
1

T d

XT d

i¼1

�
�
�Ic

NN
newðt

i
dÞ � Ic

data
new ðt

i
dÞ

�
�
�
2

þ
1

T d

XT d

i¼1

�
�
�Iq

NN
new
ðtidÞ � Iq

data
new
ðtidÞ
�
�
�
2

þ
1

T d

XT d

i¼1

�
�
�Ir

NN
newðt

i
dÞ � Ir

data
new ðt

i
dÞ

�
�
�
2

þ
1

T d

XT d

i¼1

�
�
�Ir

NN
cumðt

i
dÞ � Ir

data
cumðt

i
dÞ

�
�
�
2

:

For the data in Set 3, the MSEdata becomes

MSEdata ¼
1

T d

XT d

i¼1

�
�
�Ir

NN
newðt

i
dÞ � Ir

data
new ðt

i
dÞ

�
�
�
2

þ
1

T d

XT d

i¼1

�
�
�Ir

NN
cumðt

i
dÞ � Ir

data
cumðt

i
dÞ

�
�
�
2

:

Where Ic
NN
new, Iq

NN
new

, Ir
NN
new, Ic

NN
cum, Iq

NN
cum

and Ir
NN
cum represent the approximate solution of the neural

network.

Combining ordinary differential Eqs (1) and (2), we give the residual form of each compo-

nent as follows:

L1ðtieÞ ¼
d
dt
SNNðtieÞ þ

bcNNðtieÞ þ cNNðtieÞq
NNðtieÞð1 � bÞ

N
SNNðtieÞIc

NNðtieÞ;

L2ðtieÞ ¼
d
dt
Ic

NNðtieÞ �
bcNNðtieÞð1 � qNNðtieÞÞ

N
SNNðtieÞIc

NNðtieÞ þ gIc
NNðtieÞ;

L3ðtieÞ ¼
d
dt
Sq

NNðtieÞ �
ð1 � bÞcNNðtieÞq

NNðtieÞ
N

SNNðtieÞIc
NNðtieÞ;

L4ðtieÞ ¼
d
dt
Iq

NNðtieÞ �
bcNNðtieÞq

NNðtieÞ
N

SNNðtieÞIc
NNðtieÞ þ dqIq

NNðtieÞ;

L5ðtieÞ ¼
d
dt
RNNðtieÞ � gIc

NNðtieÞ � dqIq
NNðtieÞ;

L6ðtieÞ ¼
d
dt
Ic

NN
cumðt

i
eÞ �

bcNNðtieÞð1 � qNNðtieÞÞ
N

SNNðtieÞIc
NNðtieÞ;

L7ðtieÞ ¼
d
dt
Iq

NN
cum
ðtieÞ �

bcNNðtieÞq
NNðtieÞ

N
SNNðtieÞIc

NNðtieÞ;

L8ðtieÞ ¼
d
dt
Ir

NN
cumðt

i
eÞ �

bcNNðtieÞ
N

SNNðtieÞIc
NNðtieÞ;

therefore, we have

MSEode ¼
1

T e

XM

j¼1

XT e

i¼1

jLjðt
i
eÞj

2
:

Finally, we simultaneously learn the network parameters and infer the unknown parame-

ters of the model (1) by training the neural network to minimize the loss function (3). We use

TDINN algorithm for fitting and parameter inferring based on the data available in different

regions. The algorithm is implemented in Python using Tensorflow [46], an open source

library for deep learning computations. We found empirically that the neural network struc-

tures used to solve model (1) and inferred time-dependent parameters c(t) and q(t) may be dif-

ferent due to the different sample sizes of observed data in various regions. The corresponding
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depth and width of neural networks are given in Table 2. We use the hyperbolic tangent func-

tion tanh(x) as the activation function σ shown in Fig 2. For the optimization of the loss func-

tion (3), we use a gradient-based optimizer such as the Adam optimizer [47], whose learning

rate is set to be 0.001 by default, and the number of training iterations for each region is listed

in Table 2.

Results

Model calibration

For Xi’an, Guangzhou and Yangzhou, we fitted the daily reported cases from communities

and from quarantined zone through the TDINN algorithm, while for Hainan and Xinjiang, we

further fitted daily reported cases. We present the best fitting results in Figs 3a, 3b, 3e, 3f, 3i, 3j,

4a–4c and 4f–4h (green solid lines), and the inferred time-dependent parameters c(t) and q(t)
for each region in Figs 3c, 3d, 3g, 3h, 3k, 3m, 4d, 4e, 4i and 4j (magenta pentagrams), respec-

tively. In addition, the estimated parameter values are listed in Table 1.

As we can see from Figs 3 and 4, the TDINN algorithm can fit the daily reported cases from

communities and from quarantined zones very well, and can also automatically capture the

temporal variations of contact rate and quarantine rate under different epidemic patterns for

different regions. It is worth noting that although part of data on the daily confirmed cases

from communities and from quarantined zone in Hainan and Xinjiang are available, our algo-

rithm can still accurately simulate the complete epidemic evolution trend for two regions.

These numerical simulation results indicate that the proposed TDINN algorithm can not only

adapt well to multi-source epidemic data in different regions, but also extract relevant infor-

mation that can quantify the intensity of control interventions. Moreover, the TDINN algo-

rithm can infer the unobserved dynamics of epidemic based on sparse and noisy observation

data, thereby reconstructing the complete epidemic development process.

It is worth noting here that although we do not have any prior information on the contact

rate c(t) and quarantine rate q(t), that is, we do not assume the specific function expressions

for c(t) and q(t) in advance, the variations in the contact rate and quarantine rate over time in

different regions can completely be extracted from the multi-source epidemic data. From Figs

3c, 3d, 3g, 3h, 3k, 3m, 4d, 4e, 4i and 4j (magenta pentagrams), we can find that c(t) and q(t)
inferred by TDINN algorithm show regional dependent, that is, the temporal evolution curves

of c(t) and q(t) corresponding to different regions show significantly different behaviors in

terms of shape, indicating differences in strength of implementation and execution of control

intervention strategies to alleviate the COVID-19 infection in each region. This difference

makes the epidemic curves in various regions exhibit diversity in terms of peak values and

peak times, which further demonstrating the importance of capturing the underlying efficacy

of intervention to quickly realize dynamic zero-case policy at that time.

Table 2. Hyperparameters for the problems in this study.

Hyperparameters

Regions Xi’an Guangzhou Yangzhou Hainan Xinjiang Liaoning

NN depth and width for U(t) (5, 64) (5, 50) (10, 64) (3, 32) (7, 32) (7, 32)

NN depth and width for c(t) (1, 10) (1, 10) (1, 20) (1, 16) (1, 16) (3, 16)

NN depth and width for q(t) (1, 10) (1, 10) (1, 20) (1, 16) (1, 16) (3, 16)

Learning rate 0.001 0.001 0.001 0.001 0.001 0.001

Iterations 2 × 104 3 × 104 3 × 104 1 × 104 1 × 104 3 × 104

https://doi.org/10.1371/journal.pcbi.1011535.t002
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Fig 3. Data fitting and inference of the time-dependent parameters by TDINN algorithm for the local outbreaks in Xi’an, Guangzhou, and

Yangzhou. (a)-(b), (e)-(f) and (i)-(j) show the fitting results in Xi’an, Guangzhou and Yangzhou, respectively, where the cyan and purple solid dots

represent the daily reported data from communities and quarantined population respectively, green solid curves represent the best fitting results by

TDINN, the dashed curves represent the corresponding solution curves after substituting various combinations of the family of functions (4) and (5)

into model (1). (c)-(d), (g)-(h) and (k)-(m) show the inference and fitting results of the time-dependent contact rate c(t) and quarantined rate q(t) in

Xi’an, Guangzhou and Yangzhou, respectively, where the magenta pentagrams represent the inference results of c(t) and q(t) by TDINN and the solid

curves represent the fitting results of c(t) and q(t) based on different functions in (4) and (5).

https://doi.org/10.1371/journal.pcbi.1011535.g003
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Fig 4. Data fitting and inference of the time-dependent parameters by TDINN algorithm for the local outbreaks in Hainan and Xinjiang. (a)-

(c) and (f)-(h) show the fitting results in Hainan and Xinjiang, respectively, where the cyan solid dots represent the daily reported data from

communities, the purple solid dots represent the daily reported data from quarantined population and the red solid dots represent the daily

reported data, green solid curves represent the best fitting results by TDINN, the dashed curves represent the corresponding solution curves after

substituting various combinations of the family of functions (4) and (5) into model (1). (d)-(e) and (i)-(j) show the inference and fitting results of

the time-dependent contact rate c(t) and quarantined rate q(t) in Hainan and Xinjiang, respectively, where the magenta pentagrams represent the

inference results of c(t) and q(t) by TDINN and the solid curves represent the fitting results of c(t) and q(t) based on different functions in (4) and

(5).

https://doi.org/10.1371/journal.pcbi.1011535.g004
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In addition, based on the inferred c(t) and q(t), we find that contact rate c(t) shows a down-

ward trend (shown in Figs 3c, 3g, 3k, 4d and 4i, while quarantine rate q(t) shows an upward

trend (shown in Figs 3d, 3h, 3m, 4e and 4j. This is associated with the fact that once an out-

break taking off, China’s dynamic zero-case policy leads to an increase in the quarantine rate

and the contact rate decline due to local lockdown and the enhanced close contact tracing and

quarantine measure. Then, an interesting question raised from this observation is whether we

can describe the temporal evolution patterns of c(t) and q(t) with specific functions to better

quantify the evolution of the interventions, and consequently enhance the interpretability of

deep learning.

Interpretability analysis of time-dependent parameters

Note that the contact rate and quarantine rate resulting from TDINN inference are two

abstract time series without particular expressions. Therefore, it is worth formulating the

appropriate functions for contact rate and quarantine rate, which can describe deep learning’s

inference results and reveal the temporal evolution process of interventions. These functions

not only aid in better understanding the behavior of deep learning during the inference pro-

cess, but also improve the prediction accuracy and interpretability of model, providing guid-

ance for designing more effective prevention and control strategies.

Note that the increasing/decreasing pattern of time series may be associated with various

formulas of rate functions. Here, we consider the contact rate c(t) and quarantine rate q(t) as a

family of functions, with each family comprising three distinct forms denoted as c1(t), c2(t),
c3(t) and q1(t), q2(t), q3(t), respectively. The explicit expressions for these functions are

assumed as follows:

c1ðtÞ ¼ ðc01 � cb1Þe� r11t þ cb1;

c2ðtÞ ¼ ðc02 � cb2Þe� ðr12tÞ
2

þ cb2;

c3ðtÞ ¼ cb3

"

1þ

�
cb3

c03

� �� m
� 1

�

e� r13mt

#1
m

;

8
>>>>><

>>>>>:

ð4Þ

and

q1ðtÞ ¼ ðq01 � qm1Þe� r21t þ qm1;

q2ðtÞ ¼ ðq02 � qm2Þe� ðr22tÞ
2

þ qm2;

q3ðtÞ ¼ qm3

"

1þ

�
q03

qm3

� �� n
� 1

�

e� r23nt

#� 1
n

:

8
>>>>><

>>>>>:

ð5Þ

Here, the functions c1(t) and q1(t) are derived from existing literatures [48–50]. Parameter c0i

is the initial contact rate, parameter cbi represents the minimum contact rate, and parameter

r1i denotes the exponential decreasing rate of the contact rate, i = 1, 2, 3. Parameter q0i is the

initial quarantine rate, parameter qmi denotes the maximum quarantine rate with the interven-

tion being implemented, and parameter r2i represents the exponential increasing rate of quar-

antine rate, i = 1, 2, 3. In contrast to the exponential decay/increasing functions of c1(t) and

q1(t), the sustained strengthening control strategies is described by the Gaussian decay func-

tions [51] of c2(t) and q2(t). Additionally, the construction of c3(t) and q3(t) is based on the

analytical solution of the Rosenzweig model [52], where m and n are interference constants.

Then, an interesting question is which function in the family of functions (4) and (5) can accu-

rately describe the temporal evolution trends of c(t) and q(t) inferred by TDINN.
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To address this question, we initially begin by considering the time series corresponding to

c(t) and q(t) learned from the TDINN algorithm as observed data, denoting them as ĉðtÞ and

q̂ðtÞ, respectively, where t ¼ 1; 2; � � � ; T d. Next, we fit the functions in (4) and (5) to the

observed data ĉðtÞ and q̂ðtÞ, estimate the corresponding unknown parameters, and select the

appropriate function formula based on the statistical criterion. This is equivalent to solving the

optimization problem:

arg min
y

LciðyÞ; arg min
W

Lqi
ðWÞ; i ¼ 1; 2; 3; ð6Þ

with

LciðyÞ ¼
XT d

t¼1

jciðt; yÞ � ĉðtÞj2;Lqi
ðWÞ ¼

XT d

t¼1

jqiðt; WÞ � q̂ðtÞj2:

Parameters θ and ϑ represent the unknown parameter vectors in (4) and (5), respectively.

Then, we utilize the least squares(LS) method to solve the optimization problem (6), and con-

sequently obtain the estimated values of the unknown parameters in the family of functions

(4) and (5), as listed in Table 3. The fitting results for each region are shown in Figs 3c, 3d, 3g,

3h, 3k, 3m, 4d, 4e, 4i and 4j (solid lines), respectively. Finally, we determine the optimal func-

tion form to accurately capture the temporal evolution of contact rate c(t) and quarantine rate

q(t) inferred by the TDINN algorithm based on the criterion of minimizing the root mean

squared error (RMSE). We computed the root mean square errors (RMSEci
and RMSEqi

)

which are generated by different functions in (4) and (5) when fitting the observed data ĉðtÞ

Table 3. Parameter definitions and estimation for functions ci(t) and qi(t) (i = 1,2,3).

Parameter Definitions Estimated values Sources

Xi’an Guangzhou Yangzhou Hainan Xinjiang

c0i c01 Contact rate at the initial time 14.6054 12.7988 14.2205 10.3253 14.5078 Estimated

c02 12.8872 10.0039 11.7293 9.0234 13.0733 Estimated

c03 15.2903 10.8316 13.2506 10.0992 14.5899 Estimated

cbi cb1 Minimum contact rate under the current control strategies 2.6624 2.9691 2.5979 2.8232 2.0714 Estimated

cb2 3.4625 3.1812 3.2593 3.5705 2.0515 Estimated

cb3 2.5073 3.3792 3.1596 3.0476 2.1241 Estimated

r1i r11 Exponential decreasing rate of contact rate 0.0483 0.1703 0.1342 0.0313 0.1328 Estimated

r12 0.0463 0.1213 0.1176 0.0306 0.1038 Estimated

r13 0.0404 0.0802 0.0836 0.0189 0.0929 Estimated

m Interference constant 2 12 8 4 8 Assumed

q0i q01 Quarantined rate at the initial time 0.2299 0.2912 0.3383 0.2020 0.7210 Estimated

q02 0.3230 0.4199 0.4416 0.2854 0.7219 Estimated

q03 0.3070 0.3870 0.3972 0.2483 0.7149 Estimated

qmi qm1 Maximum quarantined rate under the current control strategies 0.9633 0.9847 0.9555 0.9744 0.8969 Estimated

qm2 0.9844 0.9039 0.8642 0.9775 0.8100 Estimated

qm3 0.9405 0.9695 0.8789 0.9899 0.8233 Estimated

r2i r21 Exponential increasing rate of quarantined rate 0.0541 0.0571 0.0481 0.0840 0.0126 Estimated

r22 0.0452 0.0566 0.0519 0.0665 0.0332 Estimated

r23 0.0388 0.0392 0.0364 0.0911 0.0171 Estimated

n Interference constant 12 4 4 2 2 Assumed

https://doi.org/10.1371/journal.pcbi.1011535.t003
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and q̂ðtÞ, where

RMSEci
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T d

XT d

t¼1

½ciðtÞ � ĉðtÞ�2
s

; RMSEqi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T d

XT d

t¼1

½qiðtÞ � q̂ðtÞ�2
s

; i ¼ 1; 2; 3:

Note that, the functions with the smallest RMSEci and RMSEqi were selected as the best

candidates. According to Figs 5a, 5b, 5d, 5e, 5g, 5h, 6a, 6b, 6d and 6e, we can draw the follow-

ing conclusions:

• for Xi’an: RMSEc1
> RMSEc3

> RMSEc2
, RMSEq1

> RMSEq3
> RMSEq2

;

• for Guangzhou: RMSEc1
> RMSEc2

> RMSEc3
, RMSEq1

> RMSEq3
> RMSEq2

;

Fig 5. The optimal contact/quarantine rates from the family of functions (4) and (5) for Xi’an, Guangzhou and Yangzhou. (a, d,

g) Root mean square error(RMSEci
), corresponding to fitting the time-dependent contact rate learned by TDINN algorithm using

c1(t), c2(t) and c3(t) in Xi’an, Guangzhou and Yangzhou. (b, e, h) Root mean square error(RMSEqi
), corresponding to fitting the time-

dependent quarantine rate learned by TDINN algorithm using q1(t), q2(t) and q3(t) in Xi’an, Guangzhou and Yangzhou. (c, f, i)

Average root mean square error (ARMSEqj
ci
i; j ¼ 1; 2; 3), corresponding to fitting epidemic data using model (1) based on various

combinations of the family of functions (4) and (5) in Xi’an, Guangzhou and Yangzhou.

https://doi.org/10.1371/journal.pcbi.1011535.g005
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• for Yangzhou: RMSEc1
> RMSEc2

> RMSEc3
, RMSEq1

> RMSEq3
> RMSEq2

;

• for Hainan: RMSEc2
> RMSEc1

> RMSEc3
, RMSEq1

> RMSEq2
> RMSEq3

;

• for Xinjiang: RMSEc1
> RMSEc3

> RMSEc2
, RMSEq3

> RMSEq2
> RMSEq1

.

Based on the above results, we can select the optimal functions to quantify the evolution of

the interventions in each region, that is, for Xi’an, Guangzhou, Yangzhou, Hainan and Xin-

jiang, the optimal rate functions are c2(t) and q2(t), c3(t) and q2(t), c3(t) and q2(t), c3(t) and

q3(t), c2(t) and q1(t) respectively.

To further validate our conclusions, we substituted various functions into the model (1)

and re-fitted the multi-source data for each region by using the estimated parameters in Tables

1 and 3. The fitting results are presented in Figs 3a, 3b, 3e, 3f, 3i, 3j, 4a–4c and 4f–4h (dotted

lines). Note that here we consider the average root mean square error (ARMSEqj
ci

, i, j = 1, 2, 3)

as a metric to evaluate the fitting performance of model (1) with different function combina-

tions in the family of functions (4) and (5) for multi-source data in each region.

For Xi’an, Guangzhou and Yangzhou,

ARMSEqj
ci
¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T d

XT d

t¼1

h
~I cnewðtÞ � Ic

data
new ðtÞ

i2

v
u
u
t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T d

XT d

t¼1

h
~IqnewðtÞ � Idataqnew

ðtÞ
i2

v
u
u
t

0

@

1

A;

Fig 6. The optimal contact/quarantine rates from the family of functions (4) and (5) for Hainan and Xinjiang. (a, d) Root mean square

error(RMSEci
), corresponding to fitting the time-dependent contact rate learned by TDINN algorithm using c1(t), c2(t) and c3(t) in Hainan

and Xinjiang. (b, e) Root mean square error(RMSEqi
), corresponding to fitting the time-dependent quarantine rate learned by TDINN

algorithm using q1(t), q2(t) and q3(t) in Hainan and Xinjiang. (c, f) Average root mean square error (ARMSEqj
ci
; i; j ¼ 1; 2; 3), corresponding

to fitting epidemic data using model (1) based on various combinations of the family of functions (4) and (5) in Hainan and Xinjiang.

https://doi.org/10.1371/journal.pcbi.1011535.g006
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for Hainan and Xinjiang,

ARMSEqj
ci
¼

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T d

XT d

t¼1

h
~I cnewðtÞ � Ic

data
new ðtÞ

i2

v
u
u
t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T d

XT d

t¼1

h
~I qnewðtÞ � Idataqnew

ðtÞ
i2

v
u
u
t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T d

XT d

t¼1

h
~I rnewðtÞ � Idatarnew

ðtÞ
i2

v
u
u
t

0

@

1

A;

where ~I cnew , ~Iqnew ~I rnew are the predicted values by solving model (1).

Considering all possible combinations of rate functions, the smaller ARMSEqj
ci

value indi-

cates the better fitting effect of model (1) on multi-source data. In the following, we summa-

rized how the ARMSEqj
ci

varied with respect to different choices of contact rate and quarantine

rate for each region in Figs 5c, 5f, 5i, 6c and 6f. According to Figs 5c, 5f, 5i, 6c and 6f, the corre-

sponding ARMSEqj
ci

values for each region exhibit the following relationship:

• for Xi’an: ARMSEq1
c1
> ARMSEq1

c3
> ARMSEq1

c2
> ARMSEq3

c1
> ARMSEq2

c1
> ARMSEq3

c3
>

ARMSEq2
c3
> ARMSEq3

c2
> ARMSEq2

c2
;

• for Guangzhou: ARMSEq1
c2
> ARMSEq2

c2
> ARMSEq3

c2
> ARMSEq1

c1
> ARMSEq1

c3
>

ARMSEq2

c1
> ARMSEq3

c3
> ARMSEq3

c1
> ARMSEq2

c3
;

• for Yangzhou: ARMSEq1
c2
> ARMSEq1

c3
> ARMSEq3

c2
> ARMSEq1

c1
> ARMSEq2

c2
> ARMSEq3

c1
>

ARMSEq3
c3
> ARMSEq2

c1
> ARMSEq2

c3
;

• for Hainan: ARMSEq1
c2
> ARMSEq1

c3
> ARMSEq1

c1
> ARMSEq3

c2
> ARMSEq2

c2
> ARMSEq2

c1
>

ARMSEq2
c3
> ARMSEq3

c1
> ARMSEq3

c3
;

• for Xinjiang: ARMSEq1
c1
> ARMSEq3

c1
> ARMSEq2

c1
> ARMSEq2

c2
> ARMSEq1

c3
> ARMSEq3

c2
>

ARMSEq3
c3
> ARMSEq2

c3
> ARMSEq1

c2
.

The above results show that selecting c2(t) and q2(t) (or c3(t) and q2(t), c3(t) and q2(t), c3(t)
and q3(t), c2(t) and q1(t)) as the contact rate and quarantine rate leads to the smallest ARMSE

value for Xi’an (or Guangzhou, Yangzhou, Hainan, Xinjiang). This indicates that model (1)

can accurately replicate the development process of the COVID-19 epidemic in Xi’an(or

Guangzhou, Yangzhou, Hainan, Xinjiang) under this combination, which further validates

our previous conclusion that c2(t) and q2(t) (or c3(t) and q2(t), c3(t) and q2(t), c3(t) and q3(t),
c2(t) and q1(t)) are the optimal functions for quantifying the evolution of control interventions

in Xi’an(or Guangzhou, Yangzhou, Hainan, Xinjiang). Based on the optimal rate functions for

each region (see Figs 5 and 6 for detail), we can find that it is difficult to construct a universal

function combination to quantify the control intervention strategies implemented in different

regions. That is to say, in order to response the outbreak, the pattern of epidemic prevention

and control in one region cannot be directly applied to another region. Ideally, we should flexi-

bly adjust and develop appropriate prevention and control measures according to the actual

situation of different regions.

According to the above analysis, we utilized the time series inferred by the TDINN algo-

rithm to get the optimal contact rate and quarantine rate from the family of functions (4) and

(5), which enabled us to accurately quantify the strength of control measures in each region.

Further, it is worth noting all parameters in the rate functions have realistic meanings, then

the selected rate functions help to enhance the interpretability of the time series inferred by

deep learning. In addition, we can achieve the best fitting effect after substituting the optimal

contact rate and quarantine rate into the model (1), which further validates that this method of

quantifying the dynamic evolution of interventions is feasible. This method can also aid in
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improving our understanding of how control strategies are dynamically adjusted when fight-

ing against epidemics.

Simulation of the multiple epidemic waves

To further illustrate the effectiveness of our proposed method, we also apply the proposed

TDINN algorithm to the simulation of multiple waves of COVID-19 infection. To do this, we

simulated the dynamics of the epidemic based on daily reported cases in Liaoning province

and visualize the simulation results in Fig 7. The simulation results show that the TDINN algo-

rithm can not only fit the epidemic data containing multiple waves well (see Fig 7a), but also

capture the information on strengthening and relaxation of intervention measures, that is, the

inferred contact rate and quarantine rate exhibit fluctuations as shown in Fig 7b and 7c.

In fact, as the epidemic initially took off, we observed an increase in quarantine rate and a

decrease in contact rate due to enhanced intervention measures to mitigate epidemic. While

the outbreak was subsiding, the gradual relaxation of control interventions led to the quaran-

tine rate decline and the contact rate increase, and thereby possibly inducing a resurgence of

epidemic. As a consequence, comparing the inferred contact rate and quarantine rate with the

time series of daily reported cases containing multiple epidemic waves (Fig 7a–7c), we can

observe a feedback loop: epidemic taking off! quarantine rate increasing and contact rate

Fig 7. Data fitting and inference of the time-dependent parameters by TDINN algorithm for multiple waves of COVID-

19 infection in Liaoning province. (a) shows the fitting results for the available data in Liaoning, where the purple solid dots

represent the daily reported data, green solid curves represent the best fitting results by TDINN. (b) and (c) show the inferred

time-dependent contact rate c(t) and quarantine rate q(t) by TDINN, respectively.

https://doi.org/10.1371/journal.pcbi.1011535.g007
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decreasing! epidemic subsiding! quarantine rate decreasing and contact rate increasing

! epidemic resurging, which drives multiple COVID-19 epidemic waves as observed in Liao-

ning province. It is worth noting that the inferred time series on contact rate and quarantine

rate in Fig 7b and 7c exhibit complicated behaviors, which are difficult to simulate accurately

through the family of functions (4) and (5).

Discussion and conclusion

During the COVID-19 pandemic, control measures played an important role in mitigating the

disease spread. In particular, massive contact tracing following prompt quarantine and isola-

tion showed decisive effect in dynamic clearing of the COVID-19 epidemic in China. Hence

quantifying the dynamic contact rate and quarantine rate and estimate their impacts remain

challenging. In this study, we integrated data-driven deep learning and dynamics-driven first

principle modeling, and proposed an extended transmission-dynamics-informed neural net-

work (TDINN) algorithm by encoding SIR-type compartment model into the neural net-

works, in order to obtain the time-dependent rate functions of mechanistic models. With the

developed TDINN algorithm, we simulated the dynamics of COVID-19 infection in Xi’an,

Guangzhou, Yangzhou, Hainan, Xinjiang and Liaoning province, by simultaneously inferring

the unknown time-independent and time-dependent parameters.

The TDINN algorithm enables us to successfully encode the contact rate and quarantine

rate derived from deep neural networks into the compartment model, as well as integrating

the transmission dynamic model into the deep neural networks. It is important to note that

the TDINN algorithm overcomes some disadvantages of traditional transmission dynamic

models for simulating the development process of the COVID-19 epidemic. For example, in

the classic compartment model, the contact rate and quarantine rate are usually assumed to be

constant or particular time-dependent functions, respectively, to describe the intensities of

control interventions [10, 12]. That is, to simulate outbreaks in different regions, we need to

pre-set various particular parameter values and/or time-dependent functions to quantify the

continuously adjusted control measures in different regions, which significantly limits the per-

formance of the transmission dynamic models. In contrast, our proposed TDINN algorithm

can effectively overcome this disadvantage as it associates the transmission dynamic model

with deep neural networks through the universal approximation property of neural networks

[45] and can capture information on contact rate and quarantine rate from the epidemic data

without assuming the particular formula for the rate functions in advance.

Despite the structure of the considered transmission dynamic model (1) in the TDINN

algorithm is quite simple, the model (1) incorporates time-dependent contact rate and quaran-

tine rate inferred by neural networks, allowing us to well fit multi-source data for different

regions that included daily reported cases in the community and in the quarantined zone (see

Fig 3a, 3b, 3e, 3f, 3i and 3j), as well as daily reported cases with multiple epidemic waves (Fig

7). In addition, by using TDINN algorithm we can also reconstruct the epidemic process even

if the data are insufficient (Fig 4a–4c and 4f–4h) and obtain the temporal evolution patterns of

contact rate c(t) and quarantine rate q(t). The estimations of contact/quarantine rates show the

regional-dependent (see Figs 3c, 3d, 3g, 3h, 3k, 3m, 4d, 4e, 4i, 4j, 7b and 7c), which indicates

that there are differences in efficacy of control intervention strategies adopted in various

regions. It further reveals why it is difficult to accurately quantify the strength of control mea-

sures through a specific function, that is, pre-setting the particular type of functions may not

describe the actual contact rate and quarantine rate.

It is interesting to observe the high consistency in the evolutionary trend of the contact rate

and quarantine rate extracted by the TDINN algorithm from a single wave of epidemic (such
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as Xi’an, Guangzhou, Yangzhou, Hainan and Xinjiang), where the contact rate gradually

decreases and the quarantine rate gradually increases (shown in Figs 3c, 3d, 3g, 3h, 3k, 3m, 4d,

4e, 4i and 4j). This suggests that reducing the contact rate and/or increasing the quarantine

rate can significantly be associated with decrease in the daily reported cases, which agrees well

with previous studies [53, 54]. In addition, Liaoning outbreak experienced two epidemic

waves, which is related with the continuous strengthening and relaxation of control interven-

tions, corresponding to the oscillations of the contact and quarantine rates (shown in Fig 7). In

return, the shifting of the contact and quarantine rates can also affect the transmission dynam-

ics of COVID-19 pandemic. This generates a feedback loop between the changes in the inten-

sity of control measures and the epidemic shifting, which is the key to drive the fluctuations of

the epidemics and is in line with observations of the existing study [11].

A key highlight of this study is that we can select the best combination from a family of

functions (4) and (5) to accurately simulate the time series for contact and quarantine rate (c(t)
and q(t)) learned by TDINN algorithm (Figs 5 and 6). The selection enables us to comprehen-

sively explore the evolution trend of COVID-19 epidemic outbreak in different regions, and

study the impact of various intervention strategies on the spread of infectious diseases. In addi-

tion, the selected rate functions based on the time series inferred by deep learning have reason-

able meanings.

In this study, we proposed the TDINN algorithm, which not only extends the traditional

transmission dynamic model by embedding the time-dependent functions learned from the

deep neural network, but also extends the neural network by embedding the information of

the transmission dynamic model. The novel approach enables us to well integrate the advan-

tages of the transmission mechanism model and the deep neural network. Compared with tra-

ditional dynamic models, the TDINN algorithm has better data learning ability and inference

ability of unknown rate functions. Compared with end-to-end deep learning, our main results

are more interpretable due to the incorporation of known propagation mechanisms. Further-

more, this method can be easily extended to more complex compartment models to study

other aspects of emerging infectious diseases.

Our study has some limitations. The transmission dynamic model (1) we considered is

fairly simple and may overlook the impact of important factors such as the capacity of health-

care infrastructure, behavioral responses to epidemics, and vaccination on the development of

the COVID-19 infection, but we hope the approaches, integrating transmission dynamics with

deep learning, are able to be applied more generally. In addition, for the contact rate and quar-

antine rate inferred from the multiple epidemic waves, it is difficult to accurately simulate

their temporal evolution patterns through smooth functions. We leave this for future work.
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