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Lévy movements and a slowly decaying

memory allow efficient collective learning in

groups of interacting foragers

Andrea Falcón-Cortés1,2, Denis BoyerID
1*, Maximino Aldana3,4, Gabriel Ramos-

Fernández5

1 Instituto de Fı́sica, Universidad Nacional Autónoma de México, Ciudad de México, México, 2 Center for
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Abstract

Many animal species benefit from spatial learning to adapt their foraging movements to the

distribution of resources. Learning involves the collection, storage and retrieval of informa-

tion, and depends on both the random search strategies employed and the memory capaci-

ties of the individual. For animals living in social groups, spatial learning can be further

enhanced by information transfer among group members. However, how individual behavior

affects the emergence of collective states of learning is still poorly understood. Here, with

the help of a spatially explicit agent-based model where individuals transfer information to

their peers, we analyze the effects on the use of resources of varying memory capacities in

combination with different exploration strategies, such as ordinary random walks and Lévy

flights. We find that individual Lévy displacements associated with a slow memory decay

lead to a very rapid collective response, a high group cohesion and to an optimal exploitation

of the best resource patches in static but complex environments, even when the interaction

rate among individuals is low.

Author summary

How groups of social animals collectively learn to find and exploit resources in complex

environments is not well-understood. By means of a computational model where individ-

uals are initially spread out across a landscape, we study the effects of individual explor-

atory behaviors and memory capacities on the emergence of spatial learning. Collective

learning emerges spontaneously only if group members transfer information between

each other at a sufficiently high rate, so that individual experiences can be used by others.

In static but heterogeneous environments with many resource sites of varying attractive-

ness, we find that random displacements over many spatial scales combined with a slow

memory decay lead to a rapid collective response and highly cohesive groups. Collective
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learning is noticeable through an optimal exploitation of the best resource sites, which far

exceeds what individuals would achieve on their own. Our study sheds light on important

mechanisms responsible for collective learning in ecology, with potential applications in

other areas of science.

Introduction

Learning is evidenced through changes in animal behaviour as a result of experience and is

well documented in many species. Learning brings numerous ecological advantages by

improving the foraging efficiency [1], increasing the ability to escape from predators [2] or

through the choice of major low-cost migrations corridors between seasonal ranges [3, 4], for

instance. Learning processes are comprised of several steps that are necessary for a proper

information acquisition based on experience, such as the collection, storage and retrieval of

information. These steps are directly conditioned by the intrinsic cognitive capacities of the

individual, and, in the case of foraging, the strategies used to explore the environment [5]. A

learning process is deemed successful when the organism has the ability to choose among vari-

ous options with a bias toward the most rewarding ones, based on previous experience. During

the process, past events can be recent or remembered over long periods of time [6, 7]. In this

sense, we can define learning as in the context of machine learning: improved performance on
a specific task due to prior experience [5].

The learning of spatial features in an environment is closely related to exploratory behavior.

Some strategies may be more beneficial than others to collect information across different spa-

tial and temporal scales. A body of studies have reported Lévy patterns in the foraging move-

ments of diverse animal species [8–13]. Lévy flights (LF) are random sequences of

independent displacements whose lengths are drawn from a probability distribution function

having a power-law tail [14, 15]. An important statistical feature of LF is scale invariance in

space and time [16], which makes them a convenient modelling tool to analyze animal paths

that involve multiple spatial or temporal scales. Such trajectories quickly diffuse in space and

can be depicted as composed of many random walks with small, local displacements connected

to each other by displacements of widely varying lengths [11]. Although there is controversy

about the validity of the Lévy-flight approximation to describe the motion of animal groups

[17–19], there is substantial evidence that the Lévy-flight approximation works well for some

species. Indeed, patterns that can be accurately described by means of Lévy flights (or related

Lévy walks) have been observed in the movements of seabirds [8, 20], marine predators [21],

foraging bumble bees [9], African jackals [22], spider monkeys [12], or Drosophila flying in a

small circular arena [23], among others. It is not our purpose in this article to delve into the

debate about the validity of the Lévy-flight approximation. Instead, we will take for granted

that Lévy flights do exist as a model of multiple-scale animal movement, and will explore the

consequences of this hypothesis regarding foraging with memory and learning.

As mentioned above, important steps during a learning process are the storage and retrieval

of information, two cognitive processes that depend on the memory capacity of the organism.

Spatial memory is documented in many animal species, from large herbivores to birds [1, 24–

26]. The use of memory, as well as its decay over time, can be inferred by fitting models to real

trajectories obtained from tracking devices in foraging landscapes where the resource patches

are well identified [27, 28]. Recent theoretical approaches incorporating memory-based move-

ments into ordinaryrandom-walk models have shown how spatial learning can emerge in

principle [29–31]. This phenomenon is noticeable by frequent revisits to certain places where
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resources are located [32] or through the emergence of home ranges and preferred travel

routes [33, 34].

Theoretical studies often assume that individuals have an infinite memory capacity, i.e., the

ability to remember all the sites they have visited throughout their lifetimes. Such simplifica-

tion has allowed a better understanding of the effects of memory on space use and the emer-

gence of site fidelity. However, it is well known that memory actually decays in time: it is easier

to remember recent events than those that happened far in the past. Memory decay has been

incorporated into optimal foraging theory [35], and it has been well documented empirically

in many animal species such as coal tits [36], desert ants [37], golden lion tamarins and Wied’s

marmosets [38]. In the case of bison [1], a memory kernel slowly decaying with time as a

power-law better described the revisitation patterns than the more standard exponential ker-

nel. Memory decay is thought to be advantageous when the environment is changing over

time [35] and can enhance the foraging success of primates because it allows animals to con-

stantly update the relevant features of their environment [38].

The studies described above have mainly focused on individual learning. However, many

animal species live in groups and sociability brings many benefits, ranging from a reduced pre-

dation risk [39–42] to an increased foraging efficiency in uncertain environments [43–46].

The concept of collective learning describes any learning process that is mediated by the trans-

fer of information, skills or strategies that were obtained in social contexts. Such interactions

can modify individual behavior and lead to coordinated collective dynamics [5]. There are sev-

eral types of collective learning, but all of them include the exchange of useful information in a

direct or indirect way. Individuals can increase their probability of adopting a certain behavior

in the presence of a peer, like in the case of bison, which are more likely to travel to a given

new location when another animal in the group knows about this location. [47]. The interest

of an individual about a particular location can arouse the interest of others, as in elephants,

where matriarchs lead herds to waterholes unknown by the rest of the group [48], or in killer

whales, where old females tend to lead the displacements of the group when prey abundance is

low [49]. Novel individuals can copy a model behavior through observation that results in a

reliable and similar outcome, as in fish where naive individuals learn migration routes through

associations with experienced individuals [50]. Given that individual and collective learning

could benefit from each other [51–54], we extend the definition of learning exposed above to

define collective learning as: the improved performance of a group to solve a specific task due

to the accumulation of individual experience and the transfer of social knowledge.

Several spatially explicit models have shown that spatial learning in groups can be affected by

the rates at which individuals interact or use previous information [52–54]. For instance, collect-

ives of interacting random walkers with infinite memory capacities were studied in [52]. In het-

erogeneous environments, these models naturally exhibit collective learning over a wide range

of parameters, a phenomenon noticeable by the capacity of the foraging group as a whole to

strongly aggregate and localize around the richest resource sites available in the environment.

Despite these advances, there is still a lack of understanding on how different combinations

of individual exploration types and memory capacities affect the emergence of collective learn-

ing. Here, we computationally analyze a model swarm without a leader, whose task is to find

and exploit the resource sites of highest reward in an environment containing many resource

sites. In particular, we study the effects of forager individual dispersion, modelled by LF move-

ments of varying exponent, combined with a power-law memory decay, on the emergence of

collective learning through information transfer, and contrast the results with those obtained

from movements of constant step length or perfect memory [52]. We find that LF dynamics

and a moderate memory decay allow for a fast and effective collective learning in complex

environments, even if those are static.
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Model

The collective foraging model presented here extends the one studied in [52]. Briefly, the

motion of individuals is assumed to be driven by the combination of two basic movement

modes: standard random walk displacements (with probability 1 − q) and preferential returns

to places visited in the past (with probability q). In the latter mode, an individual chooses a par-

ticular site from its own experience (with probability 1 − ρ) or from the experience of another

group member (with probability ρ). The probability of choosing a particular site for revisiting

is proportional to the accumulated amount of time that the individual (or its peer) has spent at

that site. Therefore, the sites that are often occupied have a higher probability of being revisited

in the future: they are linearly reinforced [32, 52]. Since this preferential dynamics depends on

the whole history, it implies that each individual in the swarm can remember which sites were

previously visited as well as the duration of these visits, either by its own experience (memory)

or by communication with peers (social interaction). Such communication takes place on an

information transfer network in which the agents are represented by nodes, and the links

between agents allow information exchange.

Environment. We consider a discrete lattice of L × L sites in two dimensions, with unit

spacing and reflective boundaries. The coordinates of a site n are a pair of integers (x, y). On

the lattice, resources (or targets) are randomly distributed with density δ< 1, hence, on aver-

age, there are M = δL2 targets in the system. To each target i we assign a fixed weight or attrac-

tiveness γi (related to the site “reward” in the context of learning), which is a random number

uniformly distributed in the interval (0, γmax), where γmax< 1 is a given parameter. Let T ¼
fðTi; giÞg

M
i¼1

denote the set that contains the positions Ti and weights γi of the targets. The tar-

get of highest weight, gbest ¼ maxi¼1;:::;Mfgig, is the best target and is denoted as Tbest. Although

the targets are spatially distributed randomly across the environment, heterogeneity is intro-

duced through the attractiveness parameter γi. Then, different targets can distinctly contribute

to the system’s dynamics. Other choices for the probability function P(γ) are possible, such as

a power-law probability distribution P(γ) = Cγ−α. In this case, there would be a few highly

attractive targets, while most are poorly attractive. Previous work shows that food distribution

in certain environments can be approximated by a power-law [55]. However, this work pres-

ents results for a uniform probability distribution P(γ), which also includes a certain amount

of heterogeneity.

Foragers. We consider N walkers with random initial positions on the lattice, connected by

a complete communication network. Namely, every walker can communicate with any other

group member [56]. The time variable t is discrete and during a time step t! t + 1, each

walker l = 1, . . ., N updates its position XðlÞt as follows.

(i) Self-memory mode: If not on a target, with probability q(1 − ρ) the walker moves to a previ-

ously visited site, that is: XðlÞtþ1 ¼ XðlÞt0 where t0 is an integer in the interval [0, t] chosen

according to a probability distribution pt(t0) given a priori and denoted as:

ptðt0Þ ¼
Ftðt0Þ
CðtÞ

ð1Þ

with CðtÞ ¼
Pt

t0¼0
Ftðt0Þ a normalization factor and Ft(t0) a memory kernel function. Here

we consider a power-law memory decay given by

Ftðt0Þ ¼ ðt � t0 þ 1Þ
� b ð2Þ

where β� 0. If β = 0, one recovers the linear preferential visit model with non-decaying

memory [52], where the probability to visit a site is simply proportional to the total amount
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of time spent on that site up to t. With β> 0, it is more likely that the individual chooses a

recently visited place for relocation, rather than a site visited long ago. The rule in Eq (2) is

then equivalent to assuming that each site (target or not) has an accumulated weight for the

forager, such that each visit to a given site (at time t’) increments its weight in 1. At later

times (t> t0), this increment decreases from its initial value 1 and tends to zero as a power-

law. Hence, frequently visited sites have a larger accumulated weight and are more likely to

be revisited again (preferential visit mechanism) but sites that have not been visited for a

long time have vanishing weights and tend to be forgotten by the forager.

In addition to the power-law memory kernel above, we also performed simulations with an

exponential kernel Ft(t0) = Ae−(t−t0+1)/Δ with no qualitative difference in the results (see Sup-

porting Information, Fig A in S1 Text).

(ii) Information transfer mode: If not on a target, with probability qρ the walker l randomly

chooses another walker (m) and relocates to a place already visited by m, according to the

same preferential rule with memory decay: XðlÞtþ1 ¼ XðmÞt0 where t0 is again a random integer

in the interval [0, t] chosen from the probability distribution pt(t0).

(iii) Random motion mode: If not on a target, with probability 1 − q the walker l performs a

random displacement, or XðlÞtþ1 ¼ XðlÞt þ ℓt. Here, ℓt = (ℓx, ℓy), where ℓx and ℓy are two inte-

gers independently drawn from the distribution:

pð‘Þ ¼
C
j‘j

1þm
; ‘ ¼ �1;�2;�3:::; ð3Þ

with C a normalization constant and 0� μ� 2. When μ� 2, the random walk process

becomes asymptotically Gaussian, similarly to an ordinary random walk with small jumps,

e.g., to nearest neighbors (n.n.) lattice sites. Conversely, when μ! 0, the dynamics approxi-

mately correspond to random relocation in space, where very large displacements across

the landscape are frequent. For intermediate values of μ, self-similar Lévy flights are gener-

ated. This random movement mode does not take into account travel costs. In the Supple-

mentary Information, we present a variant of this rule that introduces cost, thus

discouraging long movement steps (see Fig B in S1 Text and the Discussion below). The

main results with and without travel costs are qualitatively the same. Therefore, in all the

results presented in what follows, we do not take into account any kind of cost function for

the motion of the particles.

(iv) Feeding: If on a target (i.e. if there exists an i such that XðlÞt ¼ Ti), the walker l stays on that

site with probability γi, and with the complementary probability 1 − γi leaves the site using

one of the movement rules ðiÞ � ðiiiÞ above with their respective probabilities.

In summary, the parameter q represents the probability of memory use (while 1 − q is the

probability to perform a random step), whereas ρ is the interaction parameter, or the probabil-

ity that the walker uses, in the memory mode, the experience of another individual. The mean

time spent feeding on a target Ti during a visit is 1/(1 − γi), which can be considered as the

mean reward associated to Ti. Hence a site with a γi close to γmax (which slightly below 1) rep-

resents a “rich” site. By setting β = 0 (perfect memory) and if the jumps in the random motion

mode are limited to nearest neighbours (n.n.) lattice sites, one recovers the model of ref. [52].

See also refs. [53, 54] for other variants of this model.
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Results

With the simple rules described above, collective learning may emerge via the localization of a

large fraction of the individuals around a good resource site, chosen among the many resource

sites available in the foraging domain (phenomenon known as selective localization). Fig 1 dis-

plays an example of spatial configuration obtained at large time in a simulation by iterating the

rules (i)–(iv), for a swarm of interacting foragers with non-decaying memory and performing

Lévy flights with index μ = 0.5. One notices a highly non-uniform distribution of foragers

around a few resource sites of high attractiveness.

Infinite memory (β = 0)

Fig 2A and 2B show the occupation probability PTi
of each target Ti as a function of its weight

γi, for nearest neighbour (n.n) and LF random jumps, respectively. At large times, a steady

state is reached and PTi
is defined as the probability that a walker chosen at random occupies

the target Ti. This quantity gives us a measure of how selectively foragers choose their

resources. When interactions and memory are at play, PTi
acquires its largest value for gi ¼

gmax and decays very quickly as γi decreases. In the n.n. case (Fig 2A), the occupation probabil-

ity of the resource site Tbest, denoted as PTbest
, rises to about 0.25 in certain environments.

Therefore, there is a probability of order 1 to find any forager (at a given time) on the site giv-

ing the maximum reward, out of the L2 = 40, 000 visitable sites. For the LF dynamics (Fig 2B),

PTbest
grows to about 0.35 in some environments. It is important to notice that when the swarm

individuals do not communicate with each other (pink squares), one still observes some locali-

zation around the best resource site with LF jumps, whereas this phenomenon almost vanishes

with n.n. jumps.

Fig 1. Initial (A) and final (B) positions of 200 walkers (white dots) following the dynamical rules (i)–(iv), after t = 105 iterations in a two-dimensional

environment of size L = 200. The most attractive resource sites (with γ� 0.85) are represented by green circles (among a total of 100). The values of the other

parameters are q = 0.25, β = 0, ρ = 0.5, γmax = 0.9, and μ = 0.5. Initially, all the walkers are randomly distributed across the square lattice. Note that at the end of the

simulation, most of the walkers aggregate around a very attractive resource site, as indicated by the color gradients showing the density of walkers.

https://doi.org/10.1371/journal.pcbi.1011528.g001
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When the foragers do not use memory (q = 0, blue circles in Fig 2 for n.n. and LF), the

selectivity disappears altogether. In this case, the foragers are independent and memory-less

random walkers. Their occupation probability of a site i in the steady state can be calculated

exactly and is given by PðRWÞ
i ¼ CðLÞ=ð1 � giÞ, where γi = 0 for a non-target site, where CðLÞ ¼

1=½
PL2

j¼1
ð1 � gjÞ

� 1
� is a normalization factor. This result is independent of the step distribution

p(ℓ). As C(L)/ 1/L2, the occupation probability of any site is very small, even for γi = γmax.

One can also show that if these walkers interact (e.g., every individual can jump with probabil-

ity ρ to the site currently occupied by another forager chosen at random), the asymptotic occu-

pation probability is given by the same PðRWÞ
i as above. Therefore, when there is no memory,

communication between particles does no contribute at all to the dynamics of the system. The

emergence of selective localization in our model with n.n. dynamics is thus only possible with

Fig 2. Infinite memory case. Simulations with N = 200 walkers in an environment with 200 × 200 lattice sites, δ = 0.0025 (M = 100 resource sites), γmax = 0.9 and t = 105.

A) Final target occupation probability PTi
for n.n. dynamics vs. the target weight γi. Each point represents a target. B) Same quantity as in (a) for LF dynamics with index

μ = 0.5. C) Fraction of swarm individuals that have visited the best target site at least once at time t, for different memory and communication rates. D) Same quantity as

in C) for Lévy flight dynamics with index μ = 0.5. PTi
and NTbest

ðtÞ are obtained from averaging over 1000 independent dynamics in a same environment. The data from

10 different environments are aggregated in A) and B), and averaged in C) and D). In each panel, the green triangles correspond to a system in which there is

communication between particles (ρ = 0.5) and memory (q = 0.25); pink squares correspond to memory (q = 0.25) but no communication (ρ = 0); and the blue circles

correspond to neither memory nor communication (random walks of independent particles, q = 0, ρ = 0).

https://doi.org/10.1371/journal.pcbi.1011528.g002
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both memory use and communication, while for the LF dynamics, individual memory use is

sufficient.

Fig 2C and 2D display the fraction of individuals (denoted as NTbest
ðtÞ) that have visited the

best site at least once at time t, for n.n. and LF swarms, respectively. For a n.n. swarm with

memory but without communication (q = 0.25 and ρ = 0, pink squares), very few individuals

find the best target site, even after a long period of time. This is because with small steps, mem-

ory causes each individual to explore intensively a limited region of space around its starting

point, which is unlikely to contain the best site. In the absence of memory and communica-

tion, the agents perform pure random walks (q = 0, blue circles) and can visit the best target

just by chance. Under such conditions, NTbest
ðtÞ grows linearly with t at short times. However,

in the same swarm with memory and information transfer (q = 0.25 and ρ = 0.5, green trian-

gles), a much larger number of individuals rapidly find the best target, although this fraction

remains well below 100% in all the configurations that we explored. In Fig 2D, LF dynamics

exhibit similar trends. In this case, though, even in the absence of communication many indi-

viduals that use memory can find the best target. Thanks to LFs, individuals actually explore

distant parts of the environment and can reach the best target by themselves more easily.

Importantly, in LF swarms with memory and communication, after a short time, almost the

100% of the individuals have encountered the best target.

The quantity NTbest
ðtÞ also gives access to a dynamical quantity of particular interest in ran-

dom search processes, namely, the mean time needed by an individual to visit a given site

(here, the best resource site) for the first time. In Fig 2C and 2D, this mean first passage time is

actually equal to the area (integrated over the time interval [0,1)) between the curve of the

fraction of individuals NTbest
ðtÞ and the horizontal line of coordinate unity. This is a very gen-

eral equality, valid for any stochastic process [56]. Clearly, the first passage time is considerably

shorter for LF than for n.n. swarms, where it can be huge due to the fact that NTbest
ðtÞ very

slowly approaches 1. Among LFs, the shortest first passage times are observed with both mem-

ory and interactions.

Behavior as a function of the information transfer rate ρ. Fig 3A displays the variations

with ρ of the occupation probability PTbest
for both n.n. (pink) and LF (blue) dynamics. This

probability grows rapidly with ρ and reaches a plateau, whose value is higher for LF than for n.

n. walkers. Note also that, to achieve the plateau value, LF swarms need a larger communica-

tion rate (ρ� 0.2) than n.n. walkers (ρ� 0.1).

Fig 3B shows the asymptotic cohesion reached by the swarm at long times, denoted as Nr1
,

as a function of the interaction parameter ρ. To compute Nr1
, we define the neighborhood of a

forager by a disk of radius r ¼ L=ð2
ffiffiffiffi
N
p
Þ centered at the forager position. The length r repre-

sents half of the mean distance between two neighboring foragers if they were distributed ran-

domly in space with homogeneous probability. For each forager, at time t, we determine the

number of other group members located in its neighborhood and take the average over all for-

agers, denoted as Nr(t) [52]. We define Nr1
as the limit of Nr(t) when t!1, in the steady state.

As can be observed in Fig 3B, this quantity also reaches a plateau as ρ increases. The swarms

with n.n. dynamics are very cohesive. This is expected because in the n.n. dynamics, the fre-

quent use of memory (q = 0.25) does not give the time for the individuals to diffuse away from

the best resource sites. On the other hand, the large jumps of the Lévy processes are likely to

spread the group further around these sites, producing less cohesion. Nevertheless, LF swarms

remain more cohesive than foragers randomly distributed in space, as exemplified by Fig 1.

Fig 3C displays the typical time taken for the swarm to reach half of its asymptotic cohesion.

We denote this quantity as τ, which is also a measure of the time taken by the collective
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learning process, i.e., the adaption time of the group to the environment. The variation of τ as

a function of ρ exhibit a slow decay until a finite asymptotic value is reached. Hence, more fre-

quent interactions accelerate the convergence toward collective learning, which is faster for n.

n. groups than for LF groups.

Behavior as a function of the memory use rate q. In panels D to F of Fig 3, we fix ρ = 0.5

and study the influence of q (the ratio of memory use) on the quantities PTbest
, Nr1

and τ. Fig

3D displays the occupation probability PTbest
as a function of q. There exists a threshold value qt

above which the swarm presents collective learning, and this value is slightly lower for n.n. (qt

� 0.08) than for LF dynamics (qt� 0.12). After the learning threshold, PTbest
reaches an opti-

mum at a certain q = q*. For q ≳ 0.2, LF swarms exhibit a better performance than n.n.

swarms. In both cases, an excessive use of memory leads to a degraded localization around the

best target site. This is because when q! 1, each individual tends to get “trapped” in the first

visited site, reducing its exploration capacity to zero. Fig 3E shows that, as in Fig 3B, the

Fig 3. Infinite memory case. Occupation probability of the best target, PTbest
(left column), asymptotic cohesion Nr1

(center column) and learning time τ (right column),

as function of: (A,B,C) the information transfer rate ρ, with q = 0.25 and μ = 0.5; (D,E,F) the rate of memory use q, with ρ = 0.5 and μ = 0.5; and G-I the Lévy index μ, for

different values of memory use. In panel D, the values of the threshold probability qt (green dashed line) and the optimal probability q* (blue dashed line) are indicated

for the curve corresponding to Lévy flights swarms.The other parameters are those of Fig 2. All the curves are averages over ten different landscape configurations.

https://doi.org/10.1371/journal.pcbi.1011528.g003
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cohesion of the n.n. swarms is larger than for LF swarms. In both cases, the asymptotic cohe-

sion of the swarm decays abruptly when q approaches unity. In Fig 3F, the learning time τ
exhibits a maximum immediately after the learning threshold, whereas it further decays until

reaching a much lower asymptotic value, that is roughly the same in both dynamics.

Behavior as a function of the Lévy flight index μ (length of the steps). These results are

further complemented by studying the effect of the Lévy index μ on the dynamics of the sys-

tem, as shown in Fig 3G, 3H and 3I. At medium rates of memory use (e.g., purple line of Fig

3G), localization improves as the flights become super-diffusive (smaller μ), despite of being

less cohesive (Fig 3H) and slightly slower in learning (Fig 3I). Thus, the exploratory flights

with shorter step lengths (larger μ), and hence closer to n.n. dynamics, are slightly more cohe-

sive, and learn slightly faster. At small and large rates of memory use, localization and group

cohesion are very weak, while τ is small because no, or little, aggregation occurs.

Memory decay (β> 0)

The occupation probability of each target as a function of its attractiveness γi is now shown in

Fig 4 for a non-zero value of the memory decay parameter (β = 1, see Eq (2). In Fig 4A and 4B

we show PTi
for n.n. and LF swarms, respectively. As in the perfect memory case, PTi

is very

small for almost all γi’s but becomes very large (of order 1) when γi is close to γmax, provided

that memory use and communication are at play in the group (grey triangles). Again, our

model foragers are attracted to the best target sites and localize very selectively. When commu-

nication is suppressed (ρ = 0, blue circles) PTi
drops abruptly for all γi in n.n swarms. For LF

swarms, though, the lack of communication does not destroy selectivity target localization, but

decreases it by a factor of about 3 (see also Fig 5A, green curve). When the individuals are

memory-less, (q = 0, green crosses), selectivity completely disappears in both dynamics, as

expected. By comparing with Fig 2, one notices that memory decay in the LF swarm markedly

improves the selective localization on good targets compared to the case of infinite memory

(see a value of PTbest
above 0.60 in Fig 4B). Although memory is crucial, allowing the individuals

to forget about those sites visited in the far past, gives the group opportunities to find and

exploit better resource sites, even in a static environment.

Fig 4. Memory decay case. A) Final target occupation probability PTi
for n.n. dynamics vs. the value γi of the target attractiveness. B) Same as A) but for the Lévy flight

dynamic with μ = 0.5. In all cases, each point represents a target, and PTi
is obtained from averaging over 1000 independent realizations in the same environment. Ten

different landscapes are shown. All the simulations were performed with N = 200, γmax = 0.9, and β = 1.

https://doi.org/10.1371/journal.pcbi.1011528.g004
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To discuss the properties of n.n. and LF swarms with memory decay, we computed PTbest
,

Nr1
, and τ as a function of the communication rate ρ, the memory decay index β, and the Lévy

index μ, respectively.

Behavior as a function of the information transfer rate ρ. For both n.n. and LF swarms,

when β is fixed to 1, the probability PTbest
is approximately doubled compared to the case β = 0

(Fig 5A vs. Fig 3A). It also remains remarkably constant as a function of ρ (as far as ρ> 0), and

slightly decreases with increasing the frequency of interactions. The curves of the cohesion Nr1

in Fig 5B reach plateau values at large ρ that are nearly twice the ones of Fig 3B. One of the most

spectacular effects of memory decay, though, is the decrease of the learning time τ by a factor

ranging between 5 (at ρ = 0.1) and 12 (at ρ = 0.4), compared to the perfect memory case (see the

scale of the y-axis of Fig 5C vs. Fig 3C). The results presented in Fig 5A, 5B and 5C clearly show

that the quantities PTbest
, Nr1

, and τ are impacted by the memory decay exponent β.

Fig 5. Memory decay case. Occupation probability of the best target PTbest
(left column), asymptotic cohesion Nr1

(center column), and typical learning time τ (right

column), as function of: (A-C) the rate of information transfer ρ (with μ = 0.5 and β = 1); (D-F) the memory decay exponent β (with ρ = 0.5 and μ = 0.5); and (G-I) the

Lévy flight index μ, for ρ = 0.5 and β = 0.5 (red line), β = 1.5 (grey line) and β = 2.5 (green line). In all cases, the memory rate was fixed to q = 0.25. In panel D, the values

of the optimal memory decay exponent β* are indicated in vertical dashed lines for n.n. (yellow) and LF (green) swarms. The other parameters are those of Fig 2. All the

curves are averages over ten different landscape configurations.

https://doi.org/10.1371/journal.pcbi.1011528.g005
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Behavior varying the memory decay exponent β. To further investigate the behavior of

the system when varying the exponent β of the memory kernel (see Eq 2, we computed PTbest
,

Nr1
, and τ as functions of β for fixed values of ρ = 0.5, q = 0.25, and μ = 0.5. Fig 3D shows the

occupation probability of the best target PTbest
as a function of β for n.n. (yellow curve) and LF

(green curve). In both dynamics, intermediate values of memory decay improve localization

and, notably, PTbest
reaches a maximum for a particular value of β (β*� 0.8 for n.n and β*�

1.5 for LF). The improvement in localization properties brought by memory decay is more sig-

nificant for LF swarms, as the maximum probability PTbest
is always considerably larger for

Lévy flights than for nearest neighbors. In the former case, the occupation probability of the

best site at optimal, β = β*, is PTbest
� 0:42, which is larger than the value with β = 0 by a factor

of 2.5. In both dynamics (n.n and LF), a high memory capacity (β� 0) actually causes the

group to reinforce those sites visited at the beginning of the search, which are not necessarily

the most attractive sites. On the other hand, at low memory capacity (β> 3) the motion of

individuals becomes similar to memory-less random walkers.

Similarly to PTbest
, the cohesion described by the stationary number of neighbors Nr1

,

reaches maximum values close to β� 1 for n.n. walkers, and β� 1.5 for LF walkers. (See Fig

5E). As can be seen from this figure, the n.n. swarms are again more cohesive than LF ones.

Note that the maximal cohesion is not reached at the exact same value β* reported in Fig 5D.

Nevertheless, high levels of aggregation are associated with an intensive exploitation of the best

resource site.

As mentioned before, the learning time τ drastically decreases with β, until a plateau is

reached at about β’ 1, see Fig 5F. When individuals have an infinite memory capacity (β = 0),

the group takes a considerable longer time to cluster around the best resource sites.

In summary, by choosing β’ 1 for n.n. swarms and β’ 1.5 for LF swarms, a good compro-

mise is achieved for a quick convergence, a selective exploitation and a high group cohesion.

In addition to the power-law memory kernel analyzed above, we also performed simulations

with an exponential kernel Ft(t0) = Ae−(t−t0 + 1)/Δ with no qualitative difference in the results

(see Fig A in S1 Text).

Behavior as a function of the Lévy flight index μ (length of the steps). To address the

effects of the long exploratory random jumps on the group properties, we computed the three

quantities above, PTbest
, Nr1

, and τ, as functions of the Lévy index μ (that determines the length

of the steps), for different values of β (which determines the memory kernel function). In Fig

5G, with a relatively slow memory decay (β = 0.5), the occupation probability PTbest
stays almost

constant (around 0.3) as μ varies. With a more pronounced forgetting (β = 1.5 and β = 2.5),

PTbest
becomes non-monotonic with μ and reaches a maximum value around μ = 1. On the

other hand, one can observe that swarm aggregation increases as the individuals perform

shorter steps (have a larger μ) for all the values of β considered (Fig 5H). The cohesion of a

swarm with slowly diffusing individuals is indeed not disrupted by large steps, which are more

frequent in the highly super-diffusive regime (small μ). Finally, Fig 5I shows that the learning

time τ slightly decreases with μ. In this last example, the swarm with the slower forgetting

capacity (β = 0.5, red line) has a learning time considerably longer than the other two.

Discussion

Groups of social agents are often more effective in solving complex tasks than isolated individ-

uals, not only in ecology [52] but also in the area of artificial intelligence [57] or in the context

of the discovery of innovations, where social connections play an important role [58]. Individ-

ual experience and the transfer of valuable information that can be exploited by others are
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essential in the emergence of collective learning and novelties in human societies [58]. In the

present study, individuals discover a foraging site not visited previously as a result of their ran-

dom exploration of the environment. They also store information about previously visited

sites, and, depending on their memory capacity, retrieve this information at a constant rate to

take memory-based decisions.

With these elements, we developed a model of interacting agents with memory and

observed the emergence of collective states of learning. We analyzed different individual

exploratory behaviors and memory features, used by the foragers to visit resource patches

according to their attractiveness. As a consequence of pairwise interactions, in all cases the

whole group gathered very selectively around the best resource site among the many sites

available in the environment, except when individuals made little use of their memory. The

reward obtained by the individuals of the group is much higher than what they would obtain

on their own without sharing information. We have explored the effects on learning of the use

of random walks or Lévy flights, as well as the effects of a perfect memory capacity or a mem-

ory that decays over time as a power law.

In the perfect memory case, the cohesion of n.n swarms converges faster and to higher val-

ues than in LF swarms (larger Nr1
and smaller τ). However, LF groups localize more strongly

on the most attractive target (larger PTbest
), meaning that the group takes advantage of the valu-

able information collected by individuals, which at the same time is facilitated by their long

exploratory steps.

When memory decays with time, we found qualitatively similar results. Nevertheless, some

progressive forgetting considerably reduces the time needed by the group to find and gather

around the best resource sites. Concomitantly, individuals exploit these sites more intensively

and are more cohesive. Therefore, a decay of memory allows the group to learn faster and bet-

ter. In particular, an intermediate value of the decay exponent maximizes resource exploita-

tion. If memory decays too fast, collective learning degrades and the group becomes similar to

a swarm of interacting but memory-less random walks. Although n.n. swarms converge even

faster than LF swarms to the steady state, they localize less effectively. Thus, LF movements

with a proper amount of memory decay seem to represent an advantageous individual strategy

for maximising the foraging success of the group (indicated by a combination of high PTbest
and

small τ), as a result of efficient collective learning. This is in line with previous results on the

benefits of a limited memory [34].

The ability to transfer information is essential to the emergence of collective learning. Sur-

prisingly, the aforementioned efficient strategies require a fairly small amount of interactions

among foragers. In comparison, stronger interactions (higher ρ) are needed to reach high levels

of collective learning in the perfect memory case, see Fig 3A, 3B and 3C vs. Fig 5A, 5B and 5C.

The outcome of collective actions is not always rewarding and can be costly instead.

Inspired by the homing behavior of pigeons, a model of two coupled neural networks aiming

to learn a correct navigation angle showed that the performance of solo learners was actually

better than the collective performance of democratic pairs of learners [59]. However, when

pair members contributed less equally to decision making, learning was faster and final perfor-

mance higher [59]. In the present model, collective performance might be a consequence of

the complexity of the foraging environment and of the large number of individuals, who can

explore different regions of space in parallel. However, the (slight) decrease of performance

with the strength of interactions, observed in Fig 5A, while the cohesion increases in Fig 5B, is

worth being noticed. This sub-optimal patch exploitation due to an excess of interactions

could be caused by the presence of conflicting information in the social network about the

location of the best resource sites.
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A wealth of theoretical studies have discussed the optimality of random Lévy walks for

encountering resources in unknown environments [9, 60–63]. Here we have shown that multi-

ple scale movements can also be useful for learning purposes, when dispersed information

about resources needs to be collected during a memory-based process. In a model similar to

ours, where individuals performed random exploratory Lévy walks at constant speed (instead

of jumping from one site to another in one time-step like here), a large fraction of the group

could also aggregate around a salient resource site of the environment [53]. Aggregation even

reached a maximum for a particular value of μ, which decreased as the use of memory was

more frequent. Here we find that increasing μ favours cohesion, at the expanse of less exploita-

tion of the best site.

In social species such as spider monkeys, the individuals have mental maps to navigate their

environment and also exhibit movements characterized by a Lévy index of μ* 1 [12, 55]. Spi-

der monkeys travel in small subgroups of varying composition and size across their home

range and can communicate over large distances through vocalizations [64]. Information

transfer processes and their effects on collective dynamics have also been measured in this spe-

cies [65]. By monitoring visits to certain food patches, knowledgeable and naive individuals

can be identified, and it has been demonstrated that the arrival of naive individuals to novel

food patches is accelerated by social information [65]. Our model exhibits a similar phenome-

non, as illustrated by Fig 2C and 2D regarding the number of individuals that have visited a

particular site at a given time, in the presence or absence of interactions.

Information transfer in the context of collective foraging can be active, as when overt sig-

nals are used specifically to recruit others to feeding areas, or passive, as when individuals sim-

ply follow others to known areas [66]. The latter is the simplest mechanism by which

information could be transferred, and would imply that information would be distributed

more equally among individuals, while active signalling could involve unequal behavior on the

part of signallers and the responses by recipients. Dominant individuals, for example, could

signal freely as they would not be displaced from small patches, while recipients could decide

to join or not depending on their relationship to the signaller [67]. In our model, we do not

assume any particular mode of information transfer, but it would be compatible with an

equally distributed way of information transfer. In the future, it would be interesting to study

how collective performance changes when other types of information transfer are considered.

It is well accepted that forgetting improves reinforced learning because unimportant infor-

mation disappears, making room for more valuable input [36–38, 68]. Here, we have allowed

memory to decay slowly in time as a power-law instead of exponentially. The classical Ebbin-

ghaus’ “forgetting curve” obtained from experiments conducted on human subjects is well fit-

ted by a double power-law or a simple power-law function with a small exponent (in the

interval 0.1 − 0.2), rather than by an exponential or a double exponential [69]. The collective

decay of public memories in human societies can be described as an exponential at short time

and a power-law with β = 0.3 at large time [70]. In the context of movement ecology, the rang-

ing patterns of bisons are well fitted by power-law memory kernel with β = 1 [1]. Similar data

of Elk movements were successfully fitted by a slower-than-exponential decay [27]. With the

model proposed here, we have shown that memory decay is an important driver of a fast and

efficient collective learning in static but complex environments. When assuming a different

memory kernel, with exponential decay, we found qualitatively similar results (see Fig A in S1

Text).

In its present form, our computational model considers resource patches that are always

available and ignores competition among foragers. However, even the best food patch may not

be sufficiently large for being occupied by a large number of individuals at the same time. In

addition, patch depletion by some foragers may affect the attractiveness perceived by others
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during future visits, unless the patches refresh very rapidly. These competition effects should

favour the occupation of other good but sub-optimal patches with a larger probability and

cause a decrease in cohesion by splitting the group into several subgroups, akin to fission-

fusion societies [71]. We nevertheless expect that medium-sized groups should still choose

patches very selectively according to the attractiveness, even in the presence of competition.

On the other hand, travel costs play a crucial role in shaping an individual’s decision-mak-

ing process within the context of animal foraging. When an animal lacks comprehensive infor-

mation about the attributes of the destination, the inclination to undertake an extended

journey could be diminished. We modified the primary model, incorporating a travel cost cor-

relating with the distance between the individual’s current position and the target destination.

The outcomes of this adjustment are illustrated in Fig B in S1 Text of the Supplementary Infor-

mation. Notably, the results reveal no significant alterations in the collective learning perfor-

mance across the swarm, thus highlighting the robustness of the model’s findings.

Even though our work represents a step toward the understanding of some mechanisms

responsible for efficient collective learning in ecology, other aspects remain elusive. The effects

of the number of foragers on the learning time and performance are little understood. We

speculate that the foraging efficiency of a group increases rapidly with the number of individu-

als, as the search for good resource sites is faster in principle with foragers dispersed over a

whole landscape. However the fact that too many interactions seem to affect learning would

suggest that beyond a certain size, the group could find conflicting information and strive to

make optimal decisions. Future studies could also focus on how the foragers of our model

adapt to environments where resources are clumped into patches or that are ephemeral. In

changing environments, the decay of memory might be particularly beneficial.

Supporting information

S1 Text. Extensions of the model: Expoential memory decay and travel costs. Fig A. Expo-

nential memory decay. Simulations with N = 200 walkers in an environment with 200 × 200

lattice sites, resource density δ = 0.0025 (M = 100 resource sites), γmax = 0.9 and t = 105. (a)

Occupation probability of the best target, PTbest
, (b) Asymptotic cohesion Nr1

, and (c) Learning

time τ for n.n. (green) and LF dynamics (yellow), as a function of the memory time Δ. The

other parameters are q = 0.25, ρ = 0.5 and μ = 0.5. All the curves are averages over one thou-

sand different walks in one landscape configuration. Fig B. Cost for long travels. (a) Occupa-

tion probability of the best target, PTbest
, (b) Asymptotic cohesion Nr1

, and (c) Learning time τ
as function of the rate of memory use q, with ρ = 0.5. The swarm performs a LF dynamics with

μ = 0.5. The other parameters are those of Fig A in S1 Text. All the curves are averages over

one thousand different walks and only one landscape configuration.

(PDF)
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17. Benhamou S. How many animals really do the Lévy walk? Ecology. 2007; 88(8):1962–9. https://doi.org/

10.1890/06-1769.1 PMID: 17824427

PLOS COMPUTATIONAL BIOLOGY Collective spatial learning with Lévy movements and decaying memory
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