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Abstract

Interpreting data using mechanistic mathematical models provides a foundation for discov-

ery and decision-making in all areas of science and engineering. Developing mechanistic

insight by combining mathematical models and experimental data is especially critical in

mathematical biology as new data and new types of data are collected and reported. Key

steps in using mechanistic mathematical models to interpret data include: (i) identifiability

analysis; (ii) parameter estimation; and (iii) model prediction. Here we present a systematic,

computationally-efficient workflow we call Profile-Wise Analysis (PWA) that addresses all

three steps in a unified way. Recently-developed methods for constructing ‘profile-wise’ pre-

diction intervals enable this workflow and provide the central linkage between different work-

flow components. These methods propagate profile-likelihood-based confidence sets for

model parameters to predictions in a way that isolates how different parameter combina-

tions affect model predictions. We show how to extend these profile-wise prediction intervals

to two-dimensional interest parameters. We then demonstrate how to combine profile-wise

prediction confidence sets to give an overall prediction confidence set that approximates the

full likelihood-based prediction confidence set well. Our three case studies illustrate practical

aspects of the workflow, focusing on ordinary differential equation (ODE) mechanistic mod-

els with both Gaussian and non-Gaussian noise models. While the case studies focus on

ODE-based models, the workflow applies to other classes of mathematical models, includ-

ing partial differential equations and simulation-based stochastic models. Open-source soft-

ware on GitHub can be used to replicate the case studies.

Author summary

Parameter estimation and model prediction are essential steps when mathematical models

are used to provide biological insight or to make practical predictions about future scenar-

ios. We present an efficient, unified workflow that addresses parameter identifiability,

parameter estimation and model prediction from a likelihood-based frequentist
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perspective. Our workflow, called Profile-Wise Analysis (PWA), involves constructing

‘profile-wise’ predictions that propagate profile-likelihood-based confidence sets for

model parameters to predictions, explicitly isolating how different parameter combina-

tions affect model predictions. Combining profile-wise prediction confidence sets gives

an overall prediction confidence set that efficiently approximates the full likelihood-based

prediction confidence set. Three case studies, focusing on canonical mathematical models

used in biology and ecology, illustrate various aspects of the workflow for commonly-

encountered ODE-based mechanistic models with both Gaussian and non-Gaussian mea-

surement error.

Introduction

Mechanistic mathematical models, typically represented using differential equations or other

evolution equations, underpin scientific understanding and thus play an essential role in sci-

ence and engineering. However, developing and solving a mathematical or computational

model is only the first step in realizing its potential value: we must reliably connect mathemati-

cal models to empirical data to ensure their relevance. There have been significant recent

efforts to develop ‘Bayesian workflows’ [1–7] for systematizing these tasks in a Bayesian set-

ting, but much less attention on corresponding frequentist workflows, and particularly so for

frequentist approaches incorporating prediction. Although both Bayesian and frequentist

approaches are concerned with uncertainty quantification in the general sense, the goals, inter-

pretation and computational requirements of frequentist and Bayesian approaches to this task

are different [8, 9]. In terms of goals and interpretation, frequentist methods are generally con-

cerned with constructing estimation procedures with reliability guarantees (such as ‘coverage’

of a confidence interval) under repeated use in ‘naturally random’ environments modelled by

probability distributions [8–10]. In contrast, Bayesian methods generally aim to ensure the

‘coherence’ of an analyst’s personal beliefs or ‘state of information’ when updating them given

new data, representing the analyst’s beliefs (rather than the external environment) by a proba-

bility distribution [8, 9, 11, 12]. Computationally, Bayesian methods are typically more expen-

sive; as one example, see, e.g. [13]. However, this assessment depends on the computational

techniques used (e.g. sampling or optimization-based) and end targets of the analysis (e.g.

point estimates, set-valued estimates, or distribution-valued estimates).

Here we aim to provide an efficient, likelihood-based frequentist workflow for systematic

and efficient use of data to understand and predict with mechanistic mathematical models.

The new workflow, called Profile-Wise Analysis (PWA), enables parameter identifiability anal-

ysis, mechanistic-model-based parameter estimation, analysis of the sensitivity of predictions

with respect to different parameters and different parameter combinations, as well as the con-

struction of confidence intervals for predictive quantities. Our current approach is explicitly

frequentist in motivation; however, we take no position on whether frequentist or Bayesian

inference is inherently more desirable than the other, only that they have different goals and

interpretations, are appropriate for their respective goals, and can thus provide complemen-

tary rather than directly competing analyses [8].

Existing approaches for uncertainty propagation and prediction

As discussed in the next section, ‘New approach: Profile-Wise Analysis’, frequentist tools for

identifiability analysis and parameter estimation are well-established in systems biology and

related fields. In contrast, tools for frequentist prediction uncertainty for mechanistic models
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are less well-developed; hence, we focus on this literature in the present section. As with

parameter estimation [8], the logic of propagation of uncertainty from parameters to predic-

tions is different in frequentist inference and Bayesian inference (see e.g. [14]). Hence Bayesian

uncertainty propagation methods are not directly applicable to frequentist inference, and we

require approaches tailored to frequentist goals. We describe the logic of uncertainty propaga-

tion in a frequentist setting more explicitly when describing our methodology later; for now,

we review existing methods.

The current state of frequentist prediction for mechanistic models is well-summarised by

Villaverde et al. [15] who write, in a recent review in the context of systems biology models:

Unfortunately, estimating prediction uncertainties accurately is nontrivial, due to the non-

linear dependence of model characteristics on parameters. While a number of numerical

approaches have been proposed for this task, their strengths and weaknesses have not been

systematically assessed yet.

Villaverde et al. then compare different predictive uncertainty quantification methods in

systems biology. These include the frequentist methods of local linearization and covariance

(i.e. Fisher information-based) propagation [16], prediction profile likelihood [17–19], and

ensemble methods [20]. We consider this latter set of methods to include bootstrap-style

methods such as the bootstrap version of randomized maximum likelihood (RML) [21] we

presented recently alongside profile-based methods in [22].

Villaverde et al. [15] conclude that existing methods involve trade-offs between computa-

tional tractability and statistical rigor. While the so-called profile prediction likelihood [19] is,

in principle, justified rigorously and directly by standard profile likelihood theory [18, 19, 22–

24], this approach is challenging to implement and computationally expensive. Linearization

is simple and efficient but potentially imprecise for highly-nonlinear models. Ensemble meth-

ods are simple to implement but also typically expensive and, depending on the specific form,

can be ad hoc and challenging to analyze in terms of accuracy [15].

As in the profile prediction likelihood approach [17–19], our workflow, including the pre-

diction component, is based on profile likelihood theory. However, our approach is much sim-

pler to implement and interpret as, in contrast to existing methods [17–19], we use profile-

likelihood for prediction in a new way that avoids specifying additional optimal control or inte-

gration-based steps. We intentionally compare our method to a rigorously justifiable but ineffi-

cient method: direct Monte Carlo evaluation and propagation (post-thresholding) of the full

likelihood. Our workflow thus provides a new frequentist methodology for prediction using

mechanistic models, alongside identifiability analysis and estimation. We evaluate the new

workflow against a ‘gold-standard’ likelihood-based approach, which is rigorous but inefficient

(we explicitly justify the classification of this approach as gold-standard in the Results section).

In the interests of fair comparison and exposition, we focus on canonical mechanistic models

here. However, in addition to providing a modular component of a systematic workflow for

understanding the influence of various parameters and parameter combinations, our prediction

method is conceptually and computationally more straightforward and less expensive than

existing profile-likelihood-based prediction methods and is designed with future scalability in

mind. Furthermore, as our approach retains the link between finite-dimensional model param-

eter vectors and ‘infinite-dimensional’ model trajectories, it naturally provides fully ‘curvewise’

(simultaneous) predictive confidence sets for model trajectories, in contrast to the typical

‘pointwise’ intervals of other methods [17–19]. This means we expect our 95% confidence sets

for the trajectory to trap the full trajectory 95% of the time, which is a stronger and often more

relevant guarantee than merely trapping the trajectory at particular time points separately [25].
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New approach: Profile-Wise Analysis

Here we provide a brief overview of our profile likelihood-based workflow, Profile-Wise Analy-
sis (PWA), its key components, and relation to the literature. Fig 1 summarises this workflow.

The Results section contains the full details and definitions whereas here we outline some

background information.

Likelihood functions and auxiliary mappings. As our workflow uses an explicitly likeli-

hood-based approach to statistical inference, we need to have a likelihood function available.

As detailed in the Results section, a generic likelihood function is based on a probability model

of the data given the parameters of the form

pðy; yÞ; ð1Þ

for mechanistic model parameters θ and data y. This probability model can be viewed as a

mapping, θ 7! p(y; θ), corresponding to the so-called ‘forward mapping’ in the field of inverse

problems [26, 27]. The likelihood function is then obtained from this model by treating this as

a function of the parameter for fixed data [9, 28, 29] (see Results).

Having an explicit form for the forward mapping, and hence for the likelihood, is typical

for statistical models with the form ‘ODE + noise’, which is our main focus here. However, an

explicit likelihood is not available for many stochastic process models. Such models are some-

times referred to as ‘simulation-based’, ‘implicit’, or ‘likelihood-free’ (see e.g. [30, 31]). In such

cases, we assume an approximate or auxiliary likelihood function [32], also called a synthetic

[33, 34] or surrogate [35] likelihood function, is available, which places these simulation-based

problems within the proposed framework. In particular, as described by, e.g., [32, 36], also

building on the prior work in indirect inference [37, 38], the critical component of approxi-

mate likelihood approaches is a function that links the parameters of the model of interest, θ,

to the parameters ϕ that define a tractable probability distribution p(y; ϕ) for the observable

data y:

auxiliary mapping : y 7! �ðyÞ $ pðy;�ðyÞÞ: ð2Þ

Note that the$ notation indicates that this is a bijective mapping, i.e. the data distribution

parameters uniquely and minimally define the data distribution. Throughout the manuscript,

we use a standard abuse of notation by using the same symbol for both the auxiliary mapping,

ϕ, and its values, ϕ(θ), the data distribution parameters. Furthermore, throughout this docu-

ment all quantities may generally be vector-valued, and we do not use bold for vectors to be

consistent with the statistics literature. The data y may also represent summary statistics of

finer-scale data.

In our framework, the auxiliary function linking mechanistic model parameters to data dis-

tribution parameters is conceptually important even in the ‘exact’ cases as it provides a more

structured link between the mechanistic model parameters and data distribution parameters

than the forward mapping or likelihood alone. The upper left of Fig 1 depicts this role of the

auxiliary mapping in determining relationship between the mechanistic model and the auxil-

iary data distribution model. Hence, although for simplicity we focus on elementary ODE-

based models in the present work, in which case the auxiliary mapping leads to an ‘exact’ likeli-

hood, we still make use of an explicit auxiliary mapping for completeness. A very common

and familiar example of an auxiliary mapping is a function mapping the parameters of an

ODE to the associated trajectory, measured at a discrete set of points, then identified with the

mean of a (multivariate) normal distribution for observations. All of our examples in the pres-

ent manuscript use an auxiliary mapping of this form (e.g. mapping the model parameters to

the mean of a normal or Poisson observation distribution), though this is not required in
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general. In contrast to much of the indirect inference literature [37, 38], here we do not assume

the auxiliary mapping is one-to-one, which would correspond to the assumption of an iden-

tifiability condition [26]. Instead, we assess this by carrying out an identifiability analysis using

the profile likelihood. In the case where auxiliary parameters such as the variance of the noise

are unknown, we can include the ‘observational’ model parameters in θ, representing the

‘observation mechanism’ [39].

Fig 1. Profile-Wise Analysis: A profile likelihood-based workflow illustrating: (A) statistical framework; (B) estimation and prediction using the full likelihood function;

and, (C) estimation and prediction using profile-wise, profile likelihood approximations.

https://doi.org/10.1371/journal.pcbi.1011515.g001
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The assumption of requiring an auxiliary likelihood is no real limitation in practice as such

synthetic/auxiliary methods typically perform at least as well as alternatives with implicit or

nonparametric likelihood functions such as approximate Bayesian computation [32, 33, 35, 36,

40, 41]. Still, we recommend checking approximate-likelihood-based inferences with synthetic

data to ensure the approximations preserve the relevant inferential properties, as these are not

always guaranteed [42]. With the above discussion in mind, we will generally refer to likeli-

hood functions (specified in detail in Results), simply as ‘likelihood functions’, whether ‘exact’

or approximate, and will not distinguish these further in the present work because we explicitly

focus on the ‘exact’ case from this point on.

Profile likelihood. The essential tool of our PWA framework is profile likelihood, which is

obtained from a full likelihood by optimizing out (or eliminating) so-called nuisance parame-

ters. We use this tool in our workflow in both traditional and newly developed ways. Initially

established in the conventional statistical literature as a tool for eliminating nuisance parame-

ters and constructing approximate confidence sets with asymptotic guarantees and good per-

formance in small samples [9, 28, 29, 43], profile likelihood is also a reliable and efficient tool

for practical identifiability analysis of mechanistic models [13, 44–52]. For example, we have

shown that profile likelihood analysis provides equivalent verdicts concerning identifiability

orders of magnitudes faster than other approaches, such as Markov chain Monte Carlo

(MCMC) [13, 53–55]. Others have shown that the profile likelihood can provide reliable

insights when other methods, including MCMC and Fisher information-based methods, may

fail [49, 56]. Thus we use profile likelihood as a tool for an initial identifiability analysis in

mechanistic models, as proposed by Raue et al. (2013) [49] and our previous work [13]. After

this initial identifiability analysis, we also use profile likelihood as an estimation and uncer-

tainty analysis tool, using its good frequentist calibration properties [9, 28]. In addition to effi-

ciently constructing confidence sets representing overall uncertainties, our approach allows us

to target our inferences towards specific questions and attribute the influence of specific

parameters or combinations of parameters on predictions. We do this by taking advantage of

the conventional targeting property of profile likelihood [9], allowing us to form approximate

likelihood functions and corresponding confidence sets for so-called interest parameters. We

then use our recently developed method [22–24] for propagating individual profile-likelihood-

based parameter uncertainties through to predictions and associated ‘profile-wise’ confidence

sets before recombining these into an overall confidence set accounting for the uncertainties

in all parameters. This approach is conceptually simple and computationally straightforward

compared to existing approaches as we use combinations of lower-dimensional approxima-

tions to the full likelihood function and directly propagate parameter confidence sets forward

instead of requiring additional constrained optimization as in the optimal control formulation

of prediction profile likelihood [18, 19]. We extend our approach to propagate bivariate pro-

files [57] for higher accuracy and assess this against the results from the full likelihood. As we

show, PWA is useful for targeting specific parameters or combinations of parameters to

explore how they impact a predictive quantity of interest. These tools together form a system-

atic workflow incorporating identifiability analysis, parameter estimation, and prediction,

each component capable of targeting particular interest parameters or combinations of param-

eters, as well as recombined to understand overall uncertainties.

Prior information. Like other frequentist and likelihood-based methods, our approach

can, in principle, incorporate prior information in the form of prior likelihoods based on past

observations [28, 58, 59] and constraints in the form of set constraints [60] without the need

for prior probability distributions over parameters [22]. In the present work, we only use basic

prior information in the form of set constraints, providing lower and upper bounds on param-

eters. As discussed by Stark [60], this is distinct from (and makes fewer assumptions than)
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assuming a uniform prior probability over parameter space as might be done in a Bayesian

analysis. We mention this to emphasize that in our view, the ability to incorporate past infor-

mation is not a core distinguishing feature of Bayesian and frequentist analyses (see also [58]

and [60]), as opposed to their distinct goals and interpretations [8, 9].

Identifiability analysis and uncertainty analysis: Full likelihood methods. Given a like-

lihood function linking our mechanistic model parameters to data via the auxiliary mapping,

we can carry out practical identifiability (or estimability [26]) analysis and statistical inference.

As indicated above, we take a likelihood-based frequentist approach to statistical inference [9,

28, 29, 43]. We consider the likelihood function as an intuitive measure of the information in

the data about the parameters and construct approximately calibrated confidence sets for

parameters, Cy, by thresholding the likelihood function according to standard sampling theory

[28]. In addition to providing confidence sets for the whole parameter vector with good fre-

quentist (i.e., repeated sampling) properties for sufficiently regular problems, we can also use

the likelihood to diagnose and analyse structurally or practically non-identifiable models using

profile likelihood [13, 18, 19, 48], as well as to construct approximate, targeted confidence

intervals for interest parameters [9, 28, 43].

While likelihood and profile likelihood are commonly used to estimate and analyse infor-

mation in the data about mechanistic model parameters [13, 48], they have been less widely

used in this context for predictions (though see [18, 19, 22–24]). However, likelihood-based

confidence set tools are well-suited for this purpose. Firstly, one can, in principle, directly

propagate a likelihood-based confidence set for parameters, Cy, forward under the auxiliary

mapping ϕ from mechanistic model parameters to data distribution parameters, to construct a

confidence set, C�, for the data distribution parameters. For example, a confidence set for the

parameters θ of an ODE, dz/dt = f(z; θ), can be propagated under the model to its solution

z(θ). We might then define the auxiliary mapping such that the ODE solution represents the

mean of the data distribution, p(y; ϕ(θ)) = p(y; z(θ)) for density p(y; ϕ) with mean parameter ϕ.

This process, illustrated in the centre panel in Fig 1, allows us to form a confidence set for ϕ
and is described in detail in the Results section. As also shown in the figure, we can further

construct confidence sets Cy for (noisy) data realisations, which leads to additional uncertainty.

The term prediction interval is often reserved for such predictions of realisations in statistical

applications [9, 61, 62] while here, because of the mechanistic interpretation of the data distri-

bution parameters (including the ability to project out of sample), we refer to both the data dis-

tribution parameters ϕ(θ) and realisations y, drawn from the associated distribution p(y; ϕ(θ)),

as ‘predictive’ quantities.

Identifiability analysis and uncertainty analysis: Profile-wise profile likelihood meth-

ods. The above full likelihood approach is conceptually simple, but can be computationally

expensive or infeasible when the parameter dimension is large. Furthermore, while this

approach simultaneously accounts for uncertainties in all parameters, it makes it difficult to

determine how uncertain our estimates of particular parameters, or combinations of parame-

ters, are and to attribute different contributions to the total uncertainty in predictions from

specific parameters or combinations of parameters. These factors make profile likelihood an

attractive approach to approximately target parameters and investigate their influence on pre-

dictive quantities. The latter usage—a form of approximate statistical sensitivity study linking

mechanistic and data distribution parameters and providing associated confidence sets—is

something we developed recently [22–24]. A similar idea was independently introduced in the

context of local derivative-based sensitivity analysis [63, 64], where the authors consider the

total derivative of outputs with respect to an interest parameter along the associated profile

curve. While similar in spirit, our approach is fully nonlinear, global over the profiling range,
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can generalise to vector interest parameters, and provides approximate confidence sets for out-

puts rather than sensitivities expressed as derivatives.

The left of the bottom row of Fig 1 shows how we can approximately decompose the overall

parameter uncertainty into components based on profile likelihoods. Importantly, these com-

ponents are efficiently computable separately and can be propagated separately before being

re-combined to approximate the total uncertainty in predictive quantities. This decomposed

approach forms the basis of the PWA workflow for estimation and prediction with mechanis-

tic mathematical models presented in this work. In addition to approximating the more com-

putationally-expensive, complete likelihood methods, our approach allows for additional

insight into the attribution of uncertainty by targeting our inferences and propagation of

predictions.

Manuscript structure

This manuscript is structured as follows. As our main contribution is a new methodology, we

present the details of our approach in the Results section. In Results, we first provide the details

of workflow, methodology and notation alongside a gold-standard full likelihood approach.

We then present three case studies focusing on canonical ODE-based models used in popula-

tion biology and ecology applications, together with Gaussian and non-Gaussian error models.

Our case studies emphasise how to use parameter confidence sets to construct approximate

profile-wise and combined confidence sets for predictive quantities, as this predictive compo-

nent of likelihood-based methodologies is the least explored in the literature. This component

also completes a natural analysis cycle, from data to model parameters and back to predictions,

enabling an iterative approach to model building, inference, and checking. Finally, in the ‘Con-

clusions and future directions’ section, we summarise our contribution and mention areas for

future consideration. We note that all computational examples can be replicated using soft-

ware written in the open-source Julia language made available on GitHub.

Materials and methods

Since this study describes a new computational methodology, we present the mathematical

details for the components of the methods in the Results section.

Results

Here we provide full details of the core components of the workflow illustrated in Fig 1, before

considering a series of case studies. We describe our workflow for dynamic, differential equa-

tion-based models for simplicity. However, the same ideas carry over to other models, e.g., sto-

chastic differential equations [65], spatiotemporal models such as partial differential equations

(PDEs) [13] or simulation-based stochastic models [36].

Full likelihood methods

We first define the probability model, data, and full likelihood function. As mentioned, our

focus here is on dynamic mechanistic models—ODE models in particular—so we specify our

workflow components in these terms. Again as mentioned, the generalisation to other cases is

straightforward conceptually. We also explicitly layout the logic of frequentist uncertainty

propagation in the subsection ‘Likelihood-based confidence sets for data distribution parame-

ters’, and hence justify the classification of this ‘full likelihood’ approach to prediction as a gold

standard method.
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Observed data. We assume that observed data yoi are measured at I discrete times, ti, for

i = 1, 2, 3, . . ., I. When collected into a vector, we denote the noisy data by yo
1:I , where the sub-

script makes it clear that the data consists of a time series of I observations. Multiple measure-

ments at a single time can be represented by repeated ti values for distinct i indices.

Mechanistic model. The mechanistic models of interest here are assumed to satisfy differ-

ential equations, i.e., of the general form

dz
dt
¼ f ðz; yÞ; ð3Þ

where θ is the vector of mechanistic model parameters and z is also vector-valued in general.

We denote noise-free model solutions evaluated at observation locations ti by zi(θ) = z(ti; θ).

As with the noisy observations, we denote the process model solution by z1:I(θ) for the model

solution vector at the discrete time points and by z(θ) for the full (continuous) model trajectory

over the time interval of interest.

Auxiliary mapping. The mapping from model parameters to data distribution parameters

takes the general form:

� : y 7! �ðyÞ: ð4Þ

Here we will assume the model solution (trajectory) is the key data distribution parameter.

In particular, we take the model solution to correspond to the mean of the data distribution.

Hence we have

pðy;�Þ ð5Þ

for density p with mean parameter ϕ and the mapping

�ðyÞ ¼ zðyÞ ð6Þ

defining the data mean as equal to the model solution. At observation locations ti we will

define

�iðyÞ ¼ ziðyÞ ð7Þ

where zi(θ) is defined above.

As discussed below, we will assume the variance in normal distribution data models is

known for simplicity, though we can estimate this simultaneously [39]. We also consider the

case of Poisson noise, for which the mean defines the variance.

Likelihood function. Given the above elements, we have a density function for the

observable random variable y depending on the model parameter θ of the form

y � pðy; yÞ ¼ pðy;�ðyÞÞ ¼ pðy; zðyÞÞ: ð8Þ

At any given observation time, ti, we have

yi � pðyi; yÞ ¼ pðyi;�iðyÞÞ ¼ pðyi; ziðyÞÞ: ð9Þ

For a collection of observations yo
1:I , treating the distribution of the observations as a func-

tion of the parameter θ with observations fixed, we can define the normalised likelihood func-

tion as [29]

L̂ðy; yo
1:IÞ ¼

pðyo
1:I;�ðyÞÞ

sup
y
pðyo

1:I;�ðyÞÞ
: ð10Þ
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Often the likelihood is only defined up to a constant, but here we fix the proportionality

constant by working with the normalised likelihood function. The normalised likelihood func-

tion is also appropriate for forming asymptotic confidence intervals [28]. The hat notation

indicates the normalisation—when required, the unnormalised likelihood function (and

unnormalised log-likelihood) will be denoted without the hat. We will occasionally refer to the

likelihood function as the ‘full’ likelihood function to distinguish it from the profile likelihood

functions considered below.

We will assume that the observations at each time are independent of the others given the

model trajectory at that time, i.e.

pðyo
1:I; zðyÞÞ ¼

YI

i¼1

pðyoi ; ziðyÞÞ: ð11Þ

In practice, we work with the log-likelihood function, which, given a set of I independent

(given the model trajectory) observations, takes the form

‘̂ðy ; yo
1:IÞ ¼ log pðyo

1:I; zðyÞÞ � sup
y

log pðyo
1:I; zðyÞÞ ð12Þ

¼
XI

i¼1

log pðyoi ; ziðyÞÞ � sup
y

XI

i¼1

log pðyoi ; ziðyÞÞ: ð13Þ

The normalising factor, i.e. the value associated with the maximum likelihood estimate

(MLE) sup
y
logðpðyo

1:I; zðyÞÞ, can be computed by numerical optimization of the unnormalised

log-likelihood function logðpðyo
1:I; zðyÞÞ. In the case of normally-distributed noise about the

model trajectory z(θ), with known variance σ2, we have the unnormalised log-likelihood func-

tion

‘ðy ; yo
1:IÞ ¼

XI

i¼1

log ½φðyoi ; ziðyÞ; s
2Þ�; ð14Þ

where φ(x; μ, σ2) denotes a Gaussian probability density function with mean μ and variance σ2,

and ϕ(θ) = z(θ) defines the auxiliary mapping from model parameters to the mean of the nor-

mal distribution. Similar expressions hold for non-normal models; we discuss the case of a

Poisson noise model in one of our case studies below.

Likelihood-based confidence sets for parameters. Given the log-likelihood function, we

can form approximate likelihood-based confidence sets for θ using [28, 29]

Cy;1� aðyo1:IÞ ¼ fy j ‘̂ðy ; yo
1:IÞ � cg ð15Þ

for a cutoff parameter, c, chosen such that the confidence interval has approximate coverage of

1 − α (the usual choice being 95% i.e. α = 0.05). This threshold is, conceptually, based on invert-

ing a likelihood ratio test for each candidate parameter value and can be calibrated for suffi-

ciently regular problems using the chi-square distribution, ℓ* = −Δν,q/2, where Δν,q refers to the

qth quantile of a χ2 distribution with ν degrees of freedom (taken to be equal to the dimension

of the parameter) [28]. This calibration is with respect to the (hypothetical) ‘repeated sampling’

of y1:I under the fixed, true, but unknown distribution [9]. Above, Cy;1� aðyo1:IÞ is the realised con-

fidence set from the random variable Cy;1� aðy1:IÞ where y1:I* p(y1:I; θ). We will drop the explicit

dependence on the random variable y1:I in general, but we emphasise that all probability state-

ments in the frequentist approach are made under the distribution of y1:I.
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Likelihood-based confidence sets for data distribution parameters. Given a confidence

set for the model parameters and the auxiliary mapping ϕ(θ), we can define a corresponding

confidence set C� for the data distribution parameters ϕ. In particular, we define this confi-

dence set as the image of the parameter confidence set under the auxiliary mapping ϕ:

C�;1� a ¼ �½Cy;1� a� ¼ f�ðyÞ j y 2 Cy;1� ag; ð16Þ

where the square brackets indicate that we are taking the set image under the mapping. Since

the definition above implies that we have the following relationship between statements:

y 2 Cy;1� a ) �ðyÞ 2 C�;1� a; ð17Þ

it follows that the confidence set C�;1� a has at least 95% coverage (i.e. is conservative). The

intuitive reason for this is that when the above implication statement holds, and under

repeated sampling, the statements of the form �ðyÞ 2 C�;1� a are true in all cases that the state-

ments y 2 Cy;1� a are true. So the proportion of correct statements about ϕ under repeated

sampling must be at least as high as those made for θ. There may, however, be cases in which

y =2 Cy;1� a yet �ðyÞ 2 C�;1� a, and hence the coverage for our data distribution parameters is at

least as good as for our parameters—we may occasionally correctly predict ϕ using the

wrong model parameter. If the mapping ϕ is 1-1, the statements are equivalent, and the two

confidence sets will have identical coverage.

We classify this full likelihood approach as gold-standard for likelihood-based methods as,

from the above arguments, the usual guarantees for likelihood-based model parameter confi-

dence sets directly translate to guarantees for data-distribution (predictive) parameters. We

also note that, in principle, this approach provides an alternative way to compute the usual pre-

diction profile likelihood, as given in [19], since a complete grid evaluation of the likelihood

will, by definition, determine the highest likelihood value associated with the prediction of

interest. In practice, when dealing with the full likelihood, we must resort to Monte Carlo or

other related approximate/ensemble methods [20], e.g. evaluating and propagating a finite set

of parameter vectors meeting the full likelihood cutoff. Nevertheless, even with computational

approximations, we view this approach as the natural standard to assess our profile-wise

approximation against.

In our approach we generate confidence sets for the predictive quantity ϕ(θ) by first form-

ing confidence sets for the parameter θ. Here, the mechanistic model provides a natural con-

straint indexed by a finite-dimensional parameter. Usefully, this means we can form

confidence sets for ‘infinite-dimensional’ quantities, such as full model trajectories, based on

finite-dimensional confidence sets for the parameters. This ability is another advantage of

mechanistic-model-based inference—forming confidence sets for functions/curves is a diffi-

cult problem without additional constraints, and fixed-time (i.e., pointwise) intervals tend to

underestimate extremes in dynamic models [25]. Furthermore, our (full likelihood) confi-

dence sets have coverage guarantees for data distribution parameters that are at least as good

as those for the parameters, in contrast to confidence sets based on linearisations, and have

non-constant widths in general.

Likelihood-based confidence sets for data realisations. Our primary focus in the present

work is on a workflow involving confidence sets for mechanistic model parameters and data

distribution parameters. Under ‘data distribution parameters’, we include quantities such as

the model trajectory considered as the data mean. We call the latter a ‘predictive’ quantity in

the context of mechanistic models as it is the natural output of simulating or solving the

model, and it can be projected forward beyond the data, providing a prediction of a future

data average. However, the term ‘prediction’ is often used when discussing predictions of data
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realisations (including e.g. measurement noise), i.e., for y* p(y; ϕ) rather than for distribution

parameters ϕ [9, 61, 62]. These noisy realisations are another type of ‘predictive’ quantity of

interest for which we can form confidence sets, though the process is, in general, more compli-

cated. This is because the error rate when predicting a noisy realisation from a data distribu-

tion with estimated parameter depends on both the error rate in estimating the parameter and

the inherent error involved in predicting a stochastic quantity. For completeness, we sketch

the process of forming such sets, and how to obtain bounds on the associated combined error

rates, but do not go into detail. Fig 1 also illustrates this. Readers who are interested in estimat-

ing the model mean trajectory only can skip this section.

To see how to form a prediction set for noisy realisations, first, consider predicting a single

unseen yj given full knowledge of p(y; ϕ) and assuming yj* p(y; ϕ). Given exact knowledge of

ϕ this task is simple. By definition, we need to identify, for the given ϕ, a subset of the sample

space A1� að�Þ having probability 1 − α. This is trivial for simple parametric models such as the

normal distribution where one can take a region of plus or minus approximately two standard

deviations. The main difficulty is that, for our application of interest, we only have an uncer-

tain estimate of (i.e., confidence set for) ϕ. In addition, this set is not of a known form in gen-

eral, as we do not use linearisation to propagate our parameter confidence sets. Under

complex conditions such as these, a simple, general, conservative approach is to use a Bonfer-

roni correction method (such methods are common in the simultaneous inference literature

[66]): we form a confidence set C�;1� a=2 for ϕ at the level 1 − α/2, and, for each ϕ, construct an

appropriate subset A1� a=2ð�Þ such that it has probability 1 − α/2 of correct prediction for the

distribution indexed by that ϕ, where ‘correct prediction’ means yj 2 A1� a=2ð�Þ. Taking the

union of the resulting sets, i.e.

Cyj;1� a
¼ [�2C�;1� a=2

A1� a=2ð�Þ; ð18Þ

gives a conservative confidence set for yj at the level 1 − α for realisations yj. Intuitively, the

error rate α is (bounded by) the sum of the two sources of error: the data distribution parame-

ter and the data realisation from the associated distribution. Thus we need to form confidence

sets at a higher confidence level (e.g., 97.5%) for each component quantity to ensure the result-

ing coverage for our goal (e.g., 95%).

Though the proof that this is a valid (though conservative) prediction interval is trivial, and

the same basic idea appears in the literature on constructing ‘tolerance intervals’ [66, 67], we

are unaware of a standard reference in the literature for this type of usage. While other

approaches tend to target the predictions directly [61, 62], our approach utilises the availability

of confidence sets for parameters of data distributions. The same procedure can also be

extended to the simultaneous prediction of multiple future observations, though, as with other

applications of Bonferroni corrections [66], these may become even more conservative.

Profile-wise methods

The section ‘Full likelihood methods’ (above) outlines the basic approach to forming and prop-

agating confidence sets based on the full likelihood function associated with a mechanistic

model and an auxiliary mapping connecting the model parameters to the parameters of a data

distribution. We now consider using profile likelihood methods for both targeting and

improving the computational efficiency of our inferences. In this section, we work with log-

likelihood functions exclusively, as these are how we implement our methods in practice.

Profile likelihood function. To assess the practical identifiability of our problem and to

target our inferences, we take a profile likelihood-based approach to inspect ‘̂ðy ; yo
1:IÞ in
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terms of a series of simpler functions of lower dimensional interest parameters. For simplic-

ity, we assume the full parameter θ is partitioned into an interest parameter ψ and a nuisance

parameter ω, such that θ = (ψ, ω). In general, an interest parameter can be defined as any

function of the full parameter vector ψ = ψ(θ), and the nuisance parameter is the complement,

allowing the full parameter vector to be reconstructed [43, 68]. For a set of data yo
1:I the profile

log-likelihood for the interest parameter ψ given the partition (ψ, ω) is defined as [9, 28]

‘̂pðc ; yo
1:IÞ ¼ sup

o j c

‘̂ðc;o ; yo
1:IÞ; ð19Þ

which implicitly defines a function ω* (ψ) of optimal values of ω for each value of ψ, and

defines a surface with points (ψ, ω* (ψ)) in parameter space. The bottom left of Fig 1 shows

profile likelihood functions for parameters. For convenience, Fig 1 shows profiles for both

interest and nuisance parameters, ψ and ω, respectively, but more precisely, we take each

parameter as the interest parameter in turn. This series of optimisation problems can be

solved using the same algorithm as used for computing the MLE (though typically with a bet-

ter starting guess, e.g. the MLE or previous point on the profile curve).

Profile likelihood-based confidence sets for parameters. Approximate profile likeli-

hood-based confidence sets are formed by applying the same dimension-dependent chi-square

calibration, taking the dimension as the interest parameter’s dimension [28]. As for the full

likelihood, this again leads to approximate confidence sets, but now for interest parameters,

i.e., our inferences are targeted.

Profile likelihood-based confidence sets for data distribution parameters. There are at

least two obvious ways to construct confidence sets for predictive quantities, such as the model

(mean) trajectory. Firstly, we can follow the approach outlined in the section on full likelihood

methods above, propagating parameter confidence sets forward. Secondly, we can directly

consider profile likelihood for predictive quantities defined as a parameter function. However,

both of these approaches present computational difficulties and interpretational limitations.

The first requires determining a potentially high-dimensional confidence set from the full like-

lihood function; the second requires solving optimisation problems subject to constraints on

predictions; for example, the profile likelihood for the model trajectory z(θ) requires solving

an optimisation problem subject to a series of trajectory constraints. In the latter case, the liter-

ature typically focuses on predictions at a small number of time points [18, 19, 22], which is

easier to implement computationally.

We recently introduced an alternative approach to producing approximate profile predic-

tions [22, 23, 39]. We called these parameter-wise profile predictions previously; to emphasise

that these can also be based on bivariate or higher-order profiles, here we call these parameter-
based, profile-wise predictions or profile-wise predictions for short. This approach is easier to

compute with but also provides a way of approximately attributing the uncertainty in predic-

tions to particular parameters or combinations of parameters.

Our approach works by using a series of profile likelihoods and associated confidence sets

for parameters, then propagating these forward to predictions. These individual confidence

sets for predictions provide an indication of the influence of particular parameters or combi-

nations of parameters. These individual confidence sets can then be combined to form an

approximate confidence set representing the combined contributions to the uncertainty in the

predictive quantity of interest. Our approach to confidence sets for predictive quantities is

shown in the bottom row of Fig 1, the second two columns.

We can compute this profile likelihood for ϕ as follows. We assume a partition of the full

parameter into an interest parameter ψ and nuisance parameter ω (both of which may be vec-

tor-valued) for simplicity. This computation produces a curve or hyper-surface of values
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(ψ, ω* (ψ)). The idea of our approach is then straightforward: we substitute this set of parame-

ters (ψ, ω*(ψ)) into our predictive quantity of interest, here data distribution parameters ϕ, i.e.,

we compute ϕ(ψ, ω*(ψ)). The approximate ‘profile-wise likelihood’ for any given ϕ, on the

basis of ϕ(ψ, ω*(ψ)), is defined by taking the maximum (sup) profile likelihood over all ψ val-

ues consistent with ϕ, i.e.

‘̂pð�ðc;o
∗ðcÞÞ ¼ �; yo

1:IÞ ¼ sup
cj�ðc;o∗ðcÞÞ¼�

‘̂pðc ; yo
1:IÞ: ð20Þ

This definition follows the process of constructing a profile for any well-defined function ϕ
of θ using a standard likelihood in θ, but now starting from a profile likelihood based on ψ. If ϕ
(ψ, ω*(ψ)) is 1-1 in ψ then this is simply the profile likelihood value of ψ, but this is not a neces-

sary condition. Computation is carried out by first evaluating ϕ along the profile parameter

curve/set (ψ, ω*(ψ)) and assigning it tentative profile likelihood values equal to the likelihood

value of (ψ, ω*(ψ)). The final profile likelihood value is then taken as the maximum value over

compatible ψ values. The approach is simple and computationally cheap—for a one-dimen-

sional interest parameter we only need to evaluate the predictive quantity along a one-dimen-

sional curve embedded in parameter space. Here we also consider two-dimensional profile-

wise predictions.

Our profile-wise prediction tool enables the construction of approximate intervals for pre-

dictive quantities when the parameter of interest (scalar or vector-valued) is considered the

primary influence. Consequently, this can illustrate which aspects of a prediction depend most

strongly on the interest parameter (e.g., the early or later parts of the mean trajectory). While

desirable for understanding the impacts of individual parameters on predictions, this feature

means the particular intervals will typically have lower coverage for the prediction than other

approaches taking into account all uncertainties simultaneously (due to neglected dependen-

cies on the nuisance parameters). However, we can reconstruct an approximate overall predic-

tive confidence set accounting (to some extent) for all parameters by combining the individual

profile-wise prediction sets to give a combined confidence set. Our approach aims to approxi-

mate what would be obtained by propagating the parameter confidence sets formed from the

full likelihood function. In particular, the definition of coverage for a confidence set means

that, given any collection of confidence sets for the same quantity, more conservative confi-

dence sets for that quantity can always be constructed by taking the union over all sets. Thus

we take the set union of our individual prediction sets:

C� � [cC
c

�
; ð21Þ

for a series of interest parameters ψ (typically chosen to be each parameter component, or all

pairs of parameter components, of the full parameter in turn). Furthermore, by increasing the

dimension of the interest parameter, we obtain a better approximation to the prediction set

based on the full likelihood. An open question is to what extent lower-dimensional approxima-

tions can be trusted, and we continue our investigations of this here. We have previously

applied unions of one-dimensional profiles [23, 24]; here, we extend this to unions of two-

dimensional profiles in addition to unions of one-dimensional profiles.

Profile likelihood-based confidence sets for realisations. Given an approximate confi-

dence set for ϕ, formed according to our approximate profile likelihood approach, and the

goal of producing a confidence set for an unseen yj, we can proceed exactly as in the full likeli-

hood case (see Fig 1 far right of bottom row).

We now consider three case studies to showcase the workflow. In all cases, we work with

ODE-based mechanistic models since these types of models exemplify the kinds of commonly
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deployed models for a range of important applications, for example, biological population

dynamics [69], disease transmission [70] and systems biology [71], among many others. The

first case study is a simple single nonlinear ODE model with Gaussian noise, and the two

remaining case studies seek to introduce important complexities. The second case study works

with a system of coupled nonlinear ODEs with Gaussian noise, while the third and final case

study focuses on a single nonlinear ODE model with a non-Gaussian noise model. We provide

software, written in Julia, on GitHub to replicate these results and to facilitate applying these

ideas to other mathematical and noise models. Note that we deliberately focus the presentation

of the workflow on identifiable and reasonably well-behaved problems which means that we

are able to use standard, local search-based numerical optimization tools with default stopping

criteria. In more complex problems, more sophisticated optimization tools may be required to

avoid local optima.

Case study 1: Logistic growth with Gaussian noise

We now demonstrate our workflow starting with the canonical logistic growth model that is

used throughout biology and ecology to describe sigmoid growth of a population with near

exponential growth at small population densities and zero net growth as the population density

approaches a carrying capacity density [72]. The logistic growth model has applications cover-

ing a phenomenal range of length and time scales ranging from microscopic growth of cancer

cell populations [23] to reef-scale growth of corals on coral reefs [39] to continental-scale

growth of human populations [73]. The dimensional logistic model assumes that the popula-

tion density C(t)� 0 evolves according to

dCðtÞ
dt

¼ lCðtÞ 1 �
CðtÞ
K

� �

; ð22Þ

where λ> 0 is the intrinsic growth rate and K is the carrying capacity density. To solve Eq (22)

we need to specify the initial density, C(0). Therefore, the parameter vector for this model is

θ = (λ, K, C(0)). While the logistic model has an exact solution, we aim to keep our workflow

as general as possible so we solve all models in this work numerically [74]. For a Gaussian

noise model we have

yoi ; y � N ðCiðyÞ; s
2Þ: ð23Þ

Here we take σ as a pre-specified constant, which is often used in practice [13, 71], but σ can

also be estimated with the other parameters, if required [39]. Data in Fig 2A shows 11 equally-

spaced noisy observations on the interval 0� t� 1000 superimposed with the MLE solution

of Eq (22). All calculations in this work that involve numerical optimisation are obtained using

the Nelder-Mead algorithm with simple bound constraints [75].

To assess the practical identifiability of this problem we calculate univariate profile likeli-

hood functions shown in Fig 2B. As for calculating the MLE, univariate profile likelihoods are

obtained using the Nelder-Mead algorithm [75]. For this model we have three univariate profile

likelihoods obtained by considering: (i) ψ = λ and ω = (K, C(0)); (ii) ψ = K and ω = (λ, C(0));

and, (iii) ψ = C(0) and ω = (λ, K), respectively. In each case the univariate profiles are well

formed about a single distinct peak, and we form a confidence interval by estimating the inter-

val where ‘̂p ¼ ‘
∗
. We use the bisection algorithm to determine the point(s) of intersection. In

the case of ψ = λ we determine the two points of intersection, λmin and λmax.

Before considering prediction we first explore the empirical, finite sample coverage proper-

ties for our parameter confidence intervals as they are only expected to hold asymptotically

[28]. We generate 5000 data realisations in the same way that we generated the single data
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realisation in Fig 2A, for the same fixed true parameters. For each realisation we compute the

MLE and count the proportion of realisations with ‘̂ � ‘
∗
¼ � D0:95;3=2, where ‘̂ is evaluated at

the true parameter values (this condition means the true parameter vector is within the sam-

ple-dependent, likelihood-based confidence set). This gives 4753/5000 = 95.06%, which is very

close to the expected asymptotic result. In addition to checking coverage of the confidence sets

based on the full likelihood function, for each of the 5000 data realisations we separately com-

pute the univariate profiles for λ, K and C(0). For each univariate profile we check whether the

Fig 2. (A) Data obtained by solving Eq (22), with θ = (λ, K, C(0)) = (0.01, 100, 10), at t = 0, 100, 200, . . ., 1000 is

corrupted with Gaussian noise with σ = 10. The MLE (cyan) solution is superimposed, ŷ ¼ ð0:0106; 101:35; 12:35Þ.

(B) Univariate profiles for λ, K and C(0), respectively. Each profile is superimposed with the MLE (vertical green) and

the 95% threshold ‘̂p ¼ ‘
∗
¼ � D0:95;1=2 is shown (horizontal orange). Points of intersection of each profile and the

threshold define asymptotic confidence intervals: l̂ ¼ 0:0106 ½0:00656; 0:0179�; K̂ ¼ 101:35 ½93:13; 110:41�; and,

^Cð0Þ ¼ 12:35 ½2:95; 25:33�. (C)-(E) C(t) trajectories associated with the λ, K and C(0) univariate profiles in (b),

respectively. In each case we uniformly discretise the interest parameter using N = 100 points along the 95%

confidence interval identified in (B), and solve the model forward with θ = (ψ, ω) and plot the family of solutions

(grey), superimposing the MLE (cyan), and we identify the prediction interval defined by these solutions (solid red).

(F) Compares approximate prediction intervals obtained by computing the union of the univariate profiles with the

‘exact’ prediction intervals computed from the full likelihood. Trajectories (grey) are constructed by considering

N = 104 choices of θ and we plot solutions with ‘̂ � ‘
∗
¼ � D0:95;3=2 only. These solutions define an ‘exact’ (or gold-

standard) prediction interval (dashed gold) that we compare with the MLE solution (cyan) and with the approximate

prediction interval formed by taking the union of the three univariate intervals (red).

https://doi.org/10.1371/journal.pcbi.1011515.g002
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95% confidence interval of that profile contains the true value, which we find holds for 94.74%,

94.95% and 94.70% of realisations for λ, K and C(0), respectively [76].

For each univariate profile in Fig 2B we construct a profile-wise prediction interval for the

density, C(t) [24]. For example, to interpret how uncertainty in λ translates into uncertainty in

C(t) we uniformly discretise the interval (λmin, λmax) into N points and use numerical optimi-

sation to compute the nuisance parameters at each point. For each of the N parameter combi-

nations, we solve Eq (22) and plot the family of solutions in Fig 2C (grey solid curves). This

family of solutions allows us to construct a prediction interval for the model trajectory (red

solid curves). The profile-wise prediction interval for λ leads to a relatively wide prediction

interval during early time as C(t) increases, whereas the prediction interval narrows at later

time. This is intuitively reasonable since λ does not impact the late time solution of Eq (22).

Profile-wise prediction intervals for K and C(0) are also constructed, as shown in Fig 2D and

2E, respectively. Again, these prediction intervals provide clear and intuitive insight into how

uncertainty in each parameter affects the predictions in different ways. For example, Fig 2D

shows a relatively wide prediction interval at late time, which is again intuitively obvious since

the late time solution of Eq (22) depends solely on the value of K. Similarly, Fig 2E shows a rel-

atively wide prediction interval at early time, which also intuitively reasonable since the early

time solution depends on the estimate of C(0). Based on these three profile-wise prediction

intervals we then compute the union of the intervals, shown in Fig 2F, where it is clear that the

union encloses the MLE solution.

To explore the accuracy of the union of profile-wise prediction intervals we compare these

results with prediction intervals obtained by working with the full likelihood function. We

work with the full likelihood function by randomly sampling N = 105 locations in the (λ, K, C
(0)) parameter space and computing ‘̂ for each choice. For locations where ‘̂ � ‘

∗
we solve Eq

(22) and plot these solutions in Fig 2F (grey solid curves). Using these solutions we define a pre-

diction interval (yellow solid curves), and numerical experimentation shows that when N is suf-

ficiently large this prediction interval is relatively insensitive to N. Comparing the two sets of

prediction intervals in Fig 2F indicates that both are approximately symmetric about the MLE,

however the prediction interval based on the full likelihood (yellow solid curves) is noticeably

wider than the approximate prediction interval obtained by taking the union of univariate pro-

files (red dashed curves) [24]. Despite the difference in prediction intervals it is relevant to note

the difference in computational effort required to compute the prediction intervals. Predictions

from each univariate profile involves solving the mathematical model forward 102 times, which

means that the union of three univariate profiles involves solving the mathematical model for-

ward 3 × 102 times since we have three parameters. In contrast, working with the full likelihood

model involves solving the mathematical model forward 105 times, which translates into an

order of magnitude difference in the computational time to form these two prediction intervals.

The difference in prediction intervals between the union of univariate prediction intervals and

the prediction intervals obtained with the full likelihood motivates us to consider an improved

approximation based on constricting pairwise parameter predictions.

Results in Fig 3A show the same data superimposed on the same MLE solution of Eq (22) as

reported previously in Fig 2A. We proceed by computing the three bivariate profiles by setting:

(i) ψ = (λ, K) and ω = C(0); (ii) ψ = (λ, C(0)) and ω = K; and, (iii) ψ = (K, C(0)) and ω = λ,

respectively. As a concrete example, consider the bivariate profile likelihood for (λ, K), given by

‘̂pðl;K ; yo
1:IÞ ¼ sup

Cð0Þ j l;K
‘̂ðl;K;Cð0Þ ; yo

1:IÞ: ð24Þ
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Again, as for calculating the MLE and the univariate profile likelihoods, we calculate all

bivariate profile likelihood functions using the Nelder-Mead algorithm [75]. There are many

options for how we calculate the bivariate profile and here we simply estimate each bivariate

profile on a uniform 20 × 20 mesh and superimpose the ‘̂ ¼ ‘
∗
¼ � D0:95;2=2 contour (solid

red curve). Our initial estimate for the iterative solver at each mesh point is taken to be the

MLE for simplicity. The left-most panels in Fig 3B–3D shows the uniform meshes on which

we compute the (λ, K), (λ, C(0)) and (K, C(0)) bivariate profiles, the associated ‘̂p ¼ ‘
∗

contour,

Fig 3. (A) Data obtained by solving Eq (22), with θ = (λ, K, C(0)) = (0.01, 100, 10), at t = 0, 100, 200, . . ., 1000 is

corrupted with Gaussian noise with σ = 10. The MLE solution (cyan) is superimposed, ŷ ¼ ð0:0106; 101:35; 12:35Þ.

(B)-(D) Bivariate profiles for (λ, K), (λ, C(0)) and (C(0), K), respectively. In (B)-(D) the left-most panel shows the

bivariate profile uniformly discretised on a 20 × 20 grid with the ‘̂p ¼ ‘
∗
¼ � D0:95;2=2 contour and the MLE (pink disc)

superimposed. The right-most panels in (B)-(D) show C(t) predictions (grey) for each grid point contained within the

‘̂p ¼ ‘
∗

contour, together with the profile-wise prediction interval (solid red). (E) Compares approximate prediction

intervals obtained by computing the union of the profile-wise prediction intervals with the ‘exact’ (more precisely,

conservative, assuming the parameter confidence set has proper coverage) prediction intervals from the full likelihood

function. Predictions (grey) are constructed by considering N = 104 choices of θ and we plot solutions with ‘̂ �

‘
∗
� D0:95;3=2 only. These solutions define a gold-standard prediction interval (dashed gold) that we compare with the

MLE solution (cyan) and with the approximate prediction interval formed by the union of the three bivariate

trajectories (red).

https://doi.org/10.1371/journal.pcbi.1011515.g003
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and the MLE (pink disc). For each mesh point within the contour we solve Eq (22) and plot

the resulting family of solutions in the right-most panels of Fig 3B–3D to form a pairwise fam-

ily of prediction intervals (solid grey curves). The shape of the ‘̂p ¼ ‘
∗

contours provides

insight into the pairwise roles of the parameters. The banana-shaped contour in Fig 3C sug-

gests that λ and C(0) are related in terms of their effect on the model solution, which is intui-

tively reasonable since smaller values of C(0) require larger values of λ for the solution of Eq

(22) to match the data. Similarly, the relatively elliptical shape of the contour in Fig 3D indi-

cates little relation between C(0) and K in terms of their effect on the model solution, which is

also reasonable since these quantities are not mechanistically linked in the same way as C(0)

and λ are. Taking the union of the pairwise prediction intervals in Fig 3E leads to a prediction

interval (dashed red curves) that provides a closer match to the prediction interval formed by

working with the full likelihood function (yellow solid curves). Despite this improvement over

the union of univariate profiles, the banana shaped contour in Fig 3C clearly requires a fine

discretisation of the bivariate profile to accurately resolve the shape of the boundary which

motivates a second method of dealing with predictions from bivariate profiles.

We now introduce a more targeted means of using the bivariate profiles to construct

approximate prediction intervals using data in Fig 4A, which are the same observations and

MLE solution of Eq (22) as in Figs 2–3. We consider the same three bivariate profiles as in Fig

3 except that for each bivariate profile we target points on the ‘̂p ¼ ‘
∗

boundary rather than

naively meshing the bivariate parameter space. Consider the (λ, K) bivariate profile in Fig 4B,

we identify points on the boundary using the following simple algorithm:

1. Randomly choose a value of the abscissa by sampling λ*U(λmin, λmax), where λmin and

λmax are suitable lower and upper bounds (e.g. these bounds could be the same bounds

used to compute the MLE).

2. Sample a pair of ordinates, K1 * U(Kmin, Kmax) and K2 * U(Kmin, Kmax).

3. Repeat sampling pairs of ordinates until a pair of points on different sides of the threshold

is identified,
h
‘̂pðl;K1 j yo1:IÞ � ‘

∗
i
�
h
‘̂pðl;K2 j yo1:IÞ � ‘

∗
i
< 0.

4. Given these two points, use the bisection algorithm to estimate K such that

‘̂pðl;K j yo1:IÞ ¼ ‘
∗
.

5. Repeat the procedure of fixing λ and using the bisection algorithm to estimate K N times.

6. To obtain a reasonable spread of points around the contour we repeat this procedure by

first fixing K constant, and then using the bisection algorithm to estimate λ a further N
times. This procedure identifies 2N discrete points on the ‘̂p ¼ ‘

∗
contour.

This procedure identifies 2N discrete points on the ‘̂p ¼ ‘
∗

contour. While there are many

other approaches to estimate and visualise the bivariate profile likelihood, we find this

approach is both straightforward to implement and computationally robust.

Results in Fig 4B–4D shows how our method identifies points along the boundary of the

bivariate profile (blue discs), and for each boundary point identified we solve Eq (22) to give a

family of pairwise predictions, as shown (grey solid curves). Taking the union of these pairwise

profiles gives a prediction interval in Fig 4E (dashed red curves) that compares extremely well

with the prediction interval estimated from the full likelihood function (yellow solid curves).

Therefore, this boundary tracing method outperforms the results in Figs 2 and 3 and so we
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now focus on this approach for the remainder of this work. We caution, however, that this

method assumes that the extreme points of the parameter confidence set determine the

extreme points of the prediction (trajectory) confidence set.

Case study 2: Lotka-Volterra model of ecological competition with

Gaussian noise

We now apply the same techniques to the ubiquitous Lotka-Volterra model of ecological com-

petition [69], which describes the interactions between prey species a(t) with predator species

Fig 4. (A) Data obtained by solving Eq (22), with θ = (λ, K, C(0)) = (0.01, 100, 10), at t = 0, 100, 200, . . ., 1000 is

corrupted with Gaussian noise with σ = 10. The MLE solution (cyan) is superimposed, ŷ ¼ ð0:0106; 101:35; 12:35Þ.

(b)-(d) Bivariate profiles for (λ, K), (λ, C(0)) and (C(0), K), respectively. In (B)-(D) the left-most panel shows 200

points along the ‘̂p ¼ ‘
∗
¼ � D0:95;2=2 contours (blue discs) superimposed with the MLE (pink disc). The right-most

panels shows 200 C(t) predictions (grey) that are associated with the 200 points along the ‘̂p ¼ ‘
∗

boundary, together

with the profile-wise prediction interval (solid red). (E) Compares approximate prediction intervals obtained by

computing the union of the profile-wise prediction intervals with the prediction intervals from the full likelihood

function. Predictions (grey) are constructed by considering N = 104 choices of θ and we plot solutions with

‘̂ � ‘
∗
� D0:95;3=2 only. These solutions define a gold-standard prediction interval (dashed gold) that we compare with

the MLE solution (cyan) and with the approximate prediction interval formed by the union of the three bivariate

trajectories (red).

https://doi.org/10.1371/journal.pcbi.1011515.g004

PLOS COMPUTATIONAL BIOLOGY Profile-Wise Analysis: Workflow for identifiability analysis, estimation, and prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011515 September 29, 2023 20 / 31

https://doi.org/10.1371/journal.pcbi.1011515.g004
https://doi.org/10.1371/journal.pcbi.1011515


b(t). This model can be written in non-dimensional form as

daðtÞ
dt
¼ aaðtÞ � aðtÞbðtÞ; ð25Þ

dbðtÞ
dt
¼ baðtÞbðtÞ � bðtÞ; ð26Þ

so that we have θ = (α, β, a(0), b(0)). In this example we assume that our observations consist

of a time series of both species, i.e. yoi ¼ ða
o
i ; b

o
i Þ, meaning that at each discrete time point we

have an observation of both the prey and predator species. Further, we assume that, for all

parameter sets, the observations of both the predator and prey are normally distributed about

the solution z(t; θ) = (a(t; θ), b(t; θ)) of Eqs (25) and (26) with a common pre-specified con-

stant variance, yoi ; y � N ðziðyÞ; s2IÞ. Here I is a 2 × 2 identity matrix and zi(θ) = z(ti; θ) =

(a(ti ;θ), b(ti; θ)). For this case study, we consider the solution of Eqs (25) and (26) on the inter-

val 0� t� 10, with 21 equally-spaced observations at ti = (i − 1)/2 for i = 1, 2, 3, . . .21. To

make a distinction between estimation and prediction we use the first 15 time points (i.e.

t� 7) for parameter estimation, whereas we make predictions over time whole time interval

(i.e. t� 10).

Results in Fig 5A show yoi ¼ ða
o
i ; b

o
i Þ and the associated MLE solution, again noting that the

total time series consists of 21 observations of each species, but here we only use the first 15

points in the time series for parameter estimation. In both Fig 5A and 5B we show a vertical

dashed line at t = 7 to make it clear that data for t� 7 are used for model inference, whereas

predictions are made over the whole time interval, t� 10.

Results in Fig 5B–5G show a sequence of bivariate profiles and the associated profile-wise

prediction intervals. The left-most panel in each of these plots show the MLE (pink discs) and

100 points along the ‘̂p ¼ ‘
∗

boundary identified using the method outlined for the results in

Fig 4 (blue discs). The middle- and right-most panels in Fig 5B–5G show solutions of Eqs (25)

and (26) associated with the 100 points identified in the bivariate profiles along with the pair-

wise prediction interval (grey solid curves). As for the previous case study, the shape of the

‘̂p ¼ ‘
∗

boundary identifies potential relationships between the pairs of parameters in terms of

their effects on model trajectories, and the profile-wise prediction intervals for each parameter

pair provide insight in the how uncertainty in these parameter estimates translates into uncer-

tainty in the solution of the mathematical models (red solid curves). Results in Fig 5H com-

pares the prediction interval formed by taking the union of the profile-wise prediction sets

(dashed red curves) with the prediction interval taken from working with the full likelihood

function (solid yellow curves). As with the simpler logistic model, we see that the union of

pairwise profiles provides a relatively accurate alternative to working with the full likelihood

function.

Case study 3: Logistic growth with Poisson noise

Here we return to the dimensional logistic growth model, Eq (22) with θ = (λ, K, C(0)), except

that we work with a non-normal Poisson noise model by assuming that

yoi ; y � PoisðCiðyÞÞ; ð27Þ

which is often used to model non-negative quantities, such as population densities in ecologi-

cal modelling [77–80]. Despite the difference in the observation model, the approximate cali-

bration criterion for the likelihood function for the Poisson noise model is the same as before

[28]. The results in Fig 6A show data and the MLE solution of Eq (22). Comparing the data in

PLOS COMPUTATIONAL BIOLOGY Profile-Wise Analysis: Workflow for identifiability analysis, estimation, and prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011515 September 29, 2023 21 / 31

https://doi.org/10.1371/journal.pcbi.1011515


Fig 5. (A) Data obtained by solving Eqs (25) and (26), with θ = (α, β, x(0), y(0)) = (0.9, 1.1, 0.8, 0.3), at t = 0, 0.5, 1.0, . . ., 10

is corrupted with Gaussian noise with σ = 0.2. The MLE solution (solid curves) is superimposed,

ŷ ¼ ð0:983; 1:131; 0:816; 0:335Þ. (B)-(G) Bivariate profiles for (α, β), (α, x(0)), (α, y(0)), (β, x(0)), (β, y(0)) and (x(0), y(0)),

respectively. In (B)-(G) the left-most panel shows 100 points along the ‘̂p ¼ ‘
∗
¼ � D0:95;2=2 contour (blue discs) and the

MLE (pink disc). The middle- and right-most panels show 100 predictions of a(t) and b(t), respectively, associated with the

100 points along the ‘̂p ¼ ‘
∗

contour, together with the profile-wise prediction interval (solid red). (H) Compares

approximate prediction intervals obtained by computing the union of the profile-wise prediction intervals with the

prediction intervals from the full likelihood function. Predictions (grey) are constructed by considering N = 104 choices of

θ and we plot solutions with ‘̂ � ‘
∗
� D0:95;4=2 only. These solutions define a gold-standard prediction interval (dashed

gold) that we compare with the MLE solution (cyan) and with the approximate prediction interval formed by the union of

the three bivariate trajectories (red).

https://doi.org/10.1371/journal.pcbi.1011515.g005

PLOS COMPUTATIONAL BIOLOGY Profile-Wise Analysis: Workflow for identifiability analysis, estimation, and prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011515 September 29, 2023 22 / 31

https://doi.org/10.1371/journal.pcbi.1011515.g005
https://doi.org/10.1371/journal.pcbi.1011515


Figs 2A and 6A we see that with the Poisson noise model we have larger variability as C(t)
increases, whereas with the Gaussian noise model we have approximately constant variability

over time. Working with the non-Gaussian noise model means that the variability vanishes as

C(t)! 0+ which avoids the possibility of negative population densities. Results in Fig 6B show

the associated univariate profiles (solid blue curves) where we see that each profile is well-

formed about a single peak. Using the same procedure as in Fig 2, we generate the profile-wise

Fig 6. (A) Data obtained by solving Eq (22), with θ = (λ, K, C(0)) = (0.01, 100, 10), at t = 0, 100, 200, . . ., 1000 is

corrupted with Poisson noise. The MLE solution (cyan) is superimposed, ŷ ¼ ð0:00854; 101:85; 12:313Þ. (B)

Univariate profiles for λ, K and C(0), respectively. Each profile is superimposed with the MLE (vertical green) and the

95% threshold ‘̂p ¼ ‘
∗
¼ � D0:95;1=2 is shown (horizontal orange). Points of intersection of each profile and the

threshold define asymptotic confidence intervals: l̂ ¼ 0:00854 ½0:00651; 0:0110�; K̂ ¼ 101:85 ½93:29; 111:62�; and,
^Cð0Þ ¼ 12:313 ½8:024; 18:01�. (C)-(E) C(t) predictions associated with the λ, K and C(0) univariate profiles in (B),

respectively. In each case we uniformly discretise the interest parameter using N = 100 points along the 95%

confidence interval identified in (B), and solve the model forward with θ = (ψ, ω) and plot the family of solutions

(grey), superimposing the MLE (cyan), and we identify the prediction interval defined by these solutions (solid red).

(F) Compares approximate prediction intervals obtained by computing the union of the three univariate profiles with

the prediction intervals computed from the full likelihood. Trajectories (grey) are constructed by considering N = 104

choices of θ and we plot solutions with ℓ� ℓ* = −Δ0.95,3/2 only. These solutions define a prediction interval (dashed

gold) that we compare with the MLE solution (cyan) and with the approximate prediction interval formed by taking

the union of the three univariate intervals (red).

https://doi.org/10.1371/journal.pcbi.1011515.g006
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prediction sets shown in Fig 6C–6E, where we see that we have the same qualitative trends in

terms of how variability in each parameter impacts the prediction interval for C(t). Taking the

union of the profile-wise prediction sets leads to the prediction set in Fig 6F (dashed red

curves), which, when compared to the prediction interval obtained using the full likelihood

(solid yellow curves), leads to an approximation of a gold-standard prediction interval that

underestimates the uncertainty and motivates us again to consider working with the pairwise

bivariate profiles.

Results in Fig 7 are directly analogous to those in Fig 3 except that here we work with the

Poisson noise model. Results in the left-most panels in Fig 7B–7D show 200 points on the

Fig 7. (A) Data obtained by solving Eq (22), with θ = (λ, K, C(0)) = (0.01, 100, 10), at t = 0, 100, 200, . . ., 1000 is

corrupted with Poisson noise. The MLE solution (cyan) is superimposed, ŷ ¼ ð0:00854; 101:85; 12:313Þ. (B)-(D)

Bivariate profiles for (λ, K), (λ, C(0)) and (C(0), K), respectively. The left-most panel in (B)-(D) shows 200 points along

the ‘̂p ¼ ‘
∗
¼ � D0:95;2=2 contour (blue discs) and the MLE (pink disc). The right-most panel in (B)-(D) shows 200 C(t)

predictions associated with the points along the ‘̂p ¼ ‘
∗
¼ � D0:95;2=2 contour that define a prediction interval (solid

red). (E) Compares approximate prediction intervals obtained by computing the union of the three bivariate profiles

with the exact prediction interval computed from the full likelihood. Trajectories (grey) are constructed by considering

N = 104 choices of θ and we plot solutions with ‘̂ � ‘
∗
¼ � D0:95;3=2 only. These solutions define an exact prediction

interval (dashed gold) that we compare with the MLE solution (cyan) and with the approximate prediction interval

formed by taking the union of the three univariate intervals (red).

https://doi.org/10.1371/journal.pcbi.1011515.g007
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‘̂p ¼ ‘
∗

boundaries identified as in the previous case studies (blue discs). As we saw with the

Gaussian noise model previously, the shape of the identified boundaries identifies relation-

ships between pairs of parameters in terms of their effects on the model solution. The right-

most panels in Fig 7B–7D shows the solution of Eq (22) corresponding to the points along the

ℓ = ℓ* boundaries (grey solid curves). As for the results with the Gaussian noise model in Fig 3,

the union of the profile-wise predictions in Fig 7E (dashed red curves) compares very well

with the prediction interval obtained using the full likelihood function (yellow solid curves).

While this case study focuses on a Poisson noise model in the context of ecological popula-

tion dynamics [77–80], other kinds of non-Gaussian noise models can also be accommodated

within the workflow [70, 81]

Discussion

This work outlines a likelihood-based workflow, called Profile-Wise Analysis, for identifiabil-

ity analysis, estimation, and prediction for mechanistic mathematical models. Three case stud-

ies are presented to make our theoretical developments as practical as possible: (i) a single

nonlinear ODE mechanistic model with a Gaussian noise model; (ii) a system of coupled non-

linear ODEs with a Gaussian noise model; and (iii) a single nonlinear ODE mechanistic model

with non-Gaussian noise.

While our workflow combines parameter identifiability, parameter estimation, and model

prediction, we intentionally focus much of the theoretical development and our case studies

on linking parameter estimates to data distribution parameters representing model predic-

tions. We choose this emphasis as prediction questions often receive less attention in the likeli-

hood-based setting than questions about parameter estimation and identifiability.

Furthermore, linking parameter estimation back to prediction naturally completes the analysis

cycle and provides the opportunity for iterative model building, testing and refining. Our pri-

mary predictive quantity of interest here is the model trajectory, intended to represent the data

mean. For completeness, we also sketch a method for predicting data realisations that leverages

our ability to form and propagate confidence sets for both mechanistic model and data distri-

bution parameters. However, the proper evaluation and comparison of such methods for pre-

dicting realisations rather than model trajectories remain for future work.

A central component of our workflow is the use of profile likelihood to construct profile-

wise prediction intervals that propagate confidence sets for model parameters forward to data

distribution parameters in a way that explicitly isolates how different parameter combinations

affect predictions [23, 24]. We demonstrate this important step using various types of approxi-

mation. First, we consider univariate profile likelihood functions and explicitly propagate

parameter sets forward to show how individual parameters affect model trajectories [23, 24].

Using individual profiles is insightful because it allows us to explore how particular parame-

ters, describing different mechanisms inherent in the mathematical models, affects various

aspects of the model predictions. Taking the union of the single-parameter profile-wise predic-

tion intervals also allows us to construct an approximate overall prediction interval for the

model trajectory that incorporates the effects of each parameter. However, we find that such

intervals are typically narrower than the prediction intervals obtained by working with the full

likelihood, leading to potential under-coverage and underestimation of uncertainties. This

leads us to consider working with bivariate profiles rather than univariate profiles, both for

estimation and for taking the union of bivariate profile-wise prediction intervals. By working

with bivariate profile likelihood functions, we explicitly see how pairs of parameters jointly

affect predictions, offering insight into synergistic effects. Furthermore, taking the union of

these two-dimensional profile-wise prediction intervals leads to combined prediction intervals
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that compare very well with results obtained by working with the full likelihood function. We

consider both grid-based and boundary-based methods of computation, finding that the latter

does a better job of capturing non-elliptical profile likelihood functions.

Working within an ‘ODE + noise’ framework here is natural for the purposes of presenting

and demonstrating the workflow since this is a very common situation in practice. However,

our framework can be applied to other situations. More broadly, the workflow can also apply

to other differential equation-based mechanistic models, such as partial differential equation-

based models [13], stochastic differential equation-based models [65], as well as simulation-

based models [35, 36, 42, 82, 83]. Regardless of the form of the mechanistic model, the critical

requirement of our framework is that we have access to a likelihood function. In the case of a

simulation-based stochastic model, we assume an auxiliary likelihood function [32], also

known as a synthetic or surrogate likelihood [33, 34], is available. For example, our recent

work [36] considered a random walk simulation-based model of diffusive heat transfer across

layered heterogeneous materials, and we generated data in terms of breakthrough-type time

series to mimic experiments involving heat transfer across layered skin. For identifiability

analysis and inference, we made use of an approximate likelihood function based on moment

matching, written in terms of a Gamma distribution, and showed that this led to accurate

inference at a fraction of the computational cost of working directly with the stochastic ran-

dom walk simulations. Similarly, we recently demonstrated how to approximate stochastic

individual-based models using models of the form ‘ODE + noise’ by appropriately correcting

the noise model using surrogate modelling through coarse graining [35]. Therefore, simula-

tion-based mechanistic model approaches fall naturally within our workflow when a synthetic

or surrogate likelihood function can be constructed. However, additional investigation into

the accuracy of such approximations is needed, e.g., as in other work on Monte Carlo profile

likelihood methods [42]. In this work we deliberately focused the first two case studies on situ-

ations involving pre-specified Gaussian noise with constant variance since this is very com-

mon in practice [13, 71]. Other noise models can be accommodated within the workflow such

as working with a Gaussian noise model with unknown constant variance [24], a pre-specified

Gaussian noise model with variable variance [84], or non-Gaussian noise models as we illus-

trate with the third case study.

Conclusions and future directions

An important feature of our work here is that all three case studies involve practically identifi-

able models, and we have yet to directly address the question of applying our complete work-

flow to problems that are structurally unidentifiable [45, 85, 86]. Common motivations for

assessing structural identifiability of mechanistic models are: to use this as a screening tool

before more expensive estimation is attempted [13, 49], and to simplify structurally unidentifi-

able models to structurally identifiable models to obtain more mechanistic insight [87, 88].

While profile likelihood, as used in our present workflow, is established as a valuable tool for

initial parameter identifiability analysis capable of detecting non-identifiable models [45, 49,

56], we have not explicitly considered the consequences of structural non-identifiability for

predictions and model simplification. However, we are also interested in such scenarios, and

we leave these for future consideration where it is likely that we would need to use a different

numerical optimization approach, such as using global search algorithms instead of local strat-

egies. Another point of interest for future exploration is to examine different options for con-

structing the profile-wise predictions. In this work we take a very straightforward approach of

using a uniform mesh and identifying the boundary using a simple bisection algorithm. Other

options for sampling the parameter space (e.g. random samples or Latin Hypercube-based
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samples) or tracing the boundary (e.g. gradient-based methods using automatic differentiation

and continuation methods) are available, and a detailed comparison of different methodolo-

gies would be insightful. In this work we have been careful to compare prediction intervals for

our approximate method with prediction intervals obtained by working with the full-likeli-

hood, as the full likelihood is a gold standard likelihood-based approach. It would also be use-

ful to directly compare the new approximate method with other established approximate

frequentist methods, e.g. as reviewed in [15], as well as working with established, more compli-

cated benchmark problems from the systems biology literature, e.g. as reviewed in [89]. How-

ever, in this first presentation of our PWA approach we have restricted our attention to

relatively simple, yet widely understood Case study problems of broad interest across the

mathematical biology and mathematical ecology literature to emphasise the general nature of

our approach.
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