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Abstract

China had conducted some of the most stringent public health measures to control the

spread of successive SARS-CoV-2 variants. However, the effectiveness of these measures

and their impacts on the associated disease burden have rarely been quantitatively

assessed at the national level. To address this gap, we developed a stochastic age-stratified

metapopulation model that incorporates testing, contact tracing and isolation, based on 419

million travel movements among 366 Chinese cities. The study period for this model began

from September 2022. The COVID-19 disease burden was evaluated, considering 8 types

of underlying health conditions in the Chinese population. We identified the marginal effects

between the testing speed and reduction in the epidemic duration. The findings suggest that

assuming a vaccine coverage of 89%, the Omicron-like wave could be suppressed by 3-day

interval population-level testing (PLT), while it would become endemic with 4-day interval

PLT, and without testing, it would result in an epidemic. PLT conducted every 3 days would

not only eliminate infections but also keep hospital bed occupancy at less than 29.46%

(95% CI, 22.73–38.68%) of capacity for respiratory illness and ICU bed occupancy at less

than 58.94% (95% CI, 45.70–76.90%) during an outbreak. Furthermore, the underlying

health conditions would lead to an extra 2.35 (95% CI, 1.89–2.92) million hospital admis-

sions and 0.16 (95% CI, 0.13–0.2) million ICU admissions. Our study provides insights into

health preparedness to balance the disease burden and sustainability for a country with a

population of billions.
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Author summary

As China continues to be challenged by successive SARS-CoV-2 variants, rethinking pop-

ulation health, broader than health-care system alone, is a prerequisite for health pre-

paredness. China has introduced several changes to its public health measures in response

to evolving pandemic risk, however, the effectiveness of public health measures in control-

ling COVID-19 outbreaks in China and their impacts on the associated disease burden

have not been quantitatively assessed at the national level. Here, we developed a stochastic

age-stratified metapopulation model based on high resolution human mobility data to

address these questions. Our results suggest that there’s marginal effect between the test-

ing speed and reduction in the epidemic duration. Rapid implementation of population-

level testing and a short response lag would be critical if aiming at suppression of potential

future SARS-CoV-2 waves in China. Furthermore, the underlying health conditions

would lead to extra hospital admissions and ICU admissions, where obesity is expected to

contribute to most extra hospital admissions, while hypertension could contribute to

most extra ICU admissions.

Introduction

Since the first COVID-19 wave in Wuhan in 2020, China implemented the strict control strat-

egy to combat SARS-CoV-2. This strategy successfully contained hundreds of SARS-CoV-2

outbreaks across the country and was estimated to have averted more than one million deaths

in China [1,2]. However, the effectiveness of the strategy appears to have been substantially

challenged by the Omicron and other highly transmissible variants. Major Omicron outbreaks

occurred in Shanghai, Jilin, and Hong Kong in the spring of 2022 [3–5], and there was a rapid

surge of infections across China in December 2022 after the relaxation of the strategy [6–10].

Although WHO declared end to COVID-19’s emergency phase [11], the effectiveness of public

health measures against Omicron-like variant is still being debated, especially with regard to

the COVID-19 disease burden considering underlying health conditions in the future wave.

China’s public health measures mainly includes travel restrictions between cities and testing

(with contact tracing and isolation) for almost three years. These measures have been adjusted

in response to the changing pandemic risk (Fig 1A). During the first wave in 2020, China

banned travel to and from Wuhan and implemented strict social distancing (Fig 1A). In Janu-

ary 2021, China began to adopt multiple rounds of population-level testing (or screening

based on the definition of European Centre for Disease Prevention and Control [12]) com-

bined with contact tracing for rapid case identification in response to the increasing risk of

imported cases caused by multiple variants of SARS-CoV-2 (Fig 1A). This change represents

the key transition from passive surveillance to active surveillance in China. Over the past three

years, China has developed a robust PCR testing capacity, with a daily capacity of over 100 mil-

lion single tube tests, and a potential testing capacity of over one billion people per day if a 1:10

pooled testing strategy is employed [13].

The critical role of testing specific populations in pandemic control, e.g., health workers

[14], quarantined individuals [15,16], and international travelers [17], has been demonstrated.

Mass testing was also implemented in some countries considering the existence of presymp-

tomatic or asymptomatic transmission [18,19], with diverse purposes (e.g., reducing the

SARS-CoV-2 prevalence in Slovakia [20–22], investigating the symptoms of COVID-19 and

monitoring SARS-CoV-2 prevalence in England [23,24]). Rapid and/or frequent testing (two

or three times per week) has been used to mitigate the transmission of SARS-CoV-2 at large
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public universities in the United States [25] and in schools and daycare facilities in Germany

[26,27]. However, requirements for population-level testing have not yet been well explored in

the setting of Omicron-like variant across 366 Chinese cities with human mobility [28].

Meanwhile, the travel restrictions has been extensively evaluated at different scales, from

within-country [29–31] to within-continent [32] and globally [33,34]. Although the travel restric-

tions slowed the epidemic, they failed to stop the spread of the virus nationwide and globally

[31,33,35,36]. Additionally, the potential negative effects have caused great concern [37–41],

such as the association between lockdown duration and mental health [42,43]. Although the pub-

lic health measures in China were relaxed to balance the advantages and disadvantages [6–8]

when facing Omicron and its subvariants [44–47], few comprehensive quantitative assessments

have been conducted to assess the effectiveness of control measures against Omicron variants

Fig 1. Evolution of the public health measures in China and successfully controlled COVID-19 outbreaks. (A) Key changes in the

control strategy in China. Initial population-level testing is highlighted with a yellow star, and the first imported case of each variant of

concern is in bold. (B) Successfully controlled COVID-19 outbreaks, stratified according to the SARS-CoV-2 variant causing each outbreak.

From the first outbreak of B.1.1 in January 2021, multiple rounds of population-level testing were introduced. Red error bars correspond to

measures of epidemic duration (i.e., time interval from the first to the last reported case in each outbreak). Blue error bars correspond to the

response lag (i.e., time interval from the first reported case to the start of population-level testing at city level in each outbreak). The basic

reproduction number (R0) for Wuhan-Hu-1, B.1.1, B.1.617.2 (Delta), and B.1.1.529 (Omicron) was set to be 3.2, 4.6, 5.2 and 10, respectively,

according to previous studies [31,79–81]. (C) Illustration of population-level testing and contact tracing employed in China. The testing

interval is the time to finishing one round of population-level testing.

https://doi.org/10.1371/journal.pcbi.1011492.g001
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and the corresponding COVID-19 disease burden, especially considering the underlying health

conditions and high resolution human mobility in 366 cities of China [28,48–50].

In this study, we developed a stochastic age-stratified metapopulation model to evaluate

COVID-19 disease burden and public health measures for a single wave in China. We explored

the feasibility of combating Omicron-like waves without implementing travel restrictions

between cities. The disease burden was also accessed by considering 8 types of the underlying

health conditions among the population of China. A massive nationwide mobile phone dataset

covering 419 million travel movements among 366 Chinese cities before and during the pan-

demic was incorporated into the model. Our detailed analysis may provide insights for future

pandemic preparedness based on self-monitoring and underlying health conditions in China.

Results

Population-level testing is critical if aiming at suppressing Omicron, even

without travel restrictions between cities

China successfully controlled dozens of sporadic outbreaks caused by different SARS-CoV-2

variants or lineages, including B.1.1 (4 outbreaks), Delta (11 outbreaks) and Omicron (3 out-

breaks), with the duration of each outbreak limited to less than a month and the maximum

size of each outbreak limited to 2,500 confirmed cases (Fig 1B and S1 Table). Owing to the

emergence of highly contagious Omicron variants, China substantially increased the intensity

of population-level testing at city level, as measured by the shorter response lag (i.e., time inter-

val from the first reported case to the start of population-level testing at city level in each out-

break) and testing interval (i.e., the time to finishing one round of population-level testing),

compared with that for B.1.1 (Wilcoxon test statistic = 2.5, P = 0.04). The duration of each out-

break, as measured by the time interval from the first reported case to the last reported case,

was also significantly reduced (Wilcoxon test statistics = 3, P = 0.06) (Fig 1B and 1C, S1 Table).

To assess the effectiveness of population-level testing at city level in controlling a highly

transmissible variant like Omicron BA.1, we first developed a metapopulation model that

incorporates the initial public health measures, including travel restrictions between cities and

social distancing (a set of measures aiming to reduce the transmission rate, e.g., wearing

masks) but without population-level testing, contact tracing and isolation. Our results reveal

the difficulty in controlling a variant with similar transmissibility as Omicron using the control

measures previously employed to contain the Wuhan-Hu-1 outbreak, if aiming at suppressing

Omicron-like wave (S1–S7 Figs, S2 Table).

We then extended the previously developed testing–contact tracing–isolation model [51]

into a stochastic age-stratified metapopulation model but without travel restrictions between

cities, to assess the controllability of the Omicron-like variant in China. The study period for

this model began from September 2022. The sensitivity of PCR tests when administered at dif-

ferent time after infection was also modelled (Section S1.3 of Supplementary Materials). Our

results indicate that population-level testing with an interval of� 3 days would be necessary to

achieve suppression in an Omicron-like variant wave. Increasing the response lag and testing

interval of population-level testing significantly extends the epidemic duration and increases

the rounds of testing, resulting in more infections and a higher number of tests (Fig 2A, S8

and S9 Figs; P< 0.001 from the t-test in S3 and S4 Tables). The strategy with a 3-day testing

interval and a response lag of 3 weeks would be least stringent among all possible combina-

tions of control measures aiming at suppressing SARS-CoV-2 infections. Any less-stringent

strategy would lead to a failure of suppression for Omicron-like wave [for example, the

response lag of 4 weeks or 4-day testing interval could result in whole population isolated in

many cities (S5 Table) or longer epidemic duration (S10 Fig)].

PLOS COMPUTATIONAL BIOLOGY Marginal effects of public health measures and COVID-19 disease burden in China

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011492 September 18, 2023 4 / 24

https://doi.org/10.1371/journal.pcbi.1011492


We observed a large number of rounds of testing for some cities with a response lag of 3

weeks and a 1-day testing interval (Fig 2A). Although suppression can be achieved in these cit-

ies for a short duration, new rounds of population-level testing may be triggered due to the

importation of new COVID-19 cases from other cities. By comparison, the effect on rounds of

population-level testing together with travel restrictions between cities was also evaluated; no

waves were triggered by imported COVID-19 cases (S11 Fig). Sensitivity analysis showed that

a SARS-CoV-2 variant with lower basic reproduction number could reduce the demand for

testing, but may need fast response if testing interval is 4 days (S12 Fig). We also performed

sensitivity analysis by shortening the infectious period (S13 Fig). The outbreak would be

harder to control in terms of the number of cities with outbreak and the epidemic duration.

Considering the emergence variants with breakthrough (e.g., BQ.1.1 and XBB), we performed

sensitivity analysis to assess the feasibility of population-level testing aiming to suppress Omi-

cron-like waves by varying the vaccine effectiveness against infection. The results showed that

3-day testing interval with the response lag of 1 week could control the outbreak even with the

vaccine effectiveness against infection of 0 (an extreme situation).

Marginal effects between decreasing testing interval and reduction in

epidemic duration

We observed marginal effects between the testing interval and reduction in the epidemic dura-

tion given a response lag of 3 weeks (Fig 2B). Decreasing the testing interval from 3 days to 2

Fig 2. All possible control strategies aiming at suppressing SARS-CoV-2 infections in China during Omicron-like variant wave (R0 = 10). (A)

Predicted epidemic duration and rounds of testing across 366 cities in China under different testing intervals and response lags. The dashed red line shows

the duration of Wuhan’s lockdown in 2020 (i.e., 76 days) as reference. The number of cities with local outbreaks is labelled below the violin plot. The grey

dot represents the median and the grey error bar represents the 95% CI based on the 100 simulation. (B) Comparison of epidemic duration and rounds of

testing between two successive testing intervals when the response lag was 3 weeks. A negative value corresponds to benefits yielded for duration or rounds

by accelerating testing (shortened testing interval), and a positive value corresponds to potential loss for duration or rounds by accelerating testing. The

slope for red dots is significantly smaller than that for blue dots (P< 0.001). A dot represents a city. The red and blue dots represent median and grey error

bar represents the 95% CI based on the 100 simulation. The reduction of social distancing on the transmission rate was set to 18% by considering the effect

of only mask wearing against SARS-CoV-2 infection [82]. The vaccine coverage for all age groups was set to 89% (consistent with 86% vaccine coverage in

the�60 age group by August of 2022 in China) and the effectiveness of China’s inactivated vaccines (BBIBP-CorV and CoronaVac) against infection was

set to 40% for Omicron [76,77]. The full list of epidemiological parameters is given in S6 and S7 Tables. The response lag is the time interval from the first

reported case to the start of population-level testing at city level in each outbreak. The testing interval is the time to finishing one round of population-level

testing.

https://doi.org/10.1371/journal.pcbi.1011492.g002
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days can largely reduce the rounds of population-level testing and epidemic duration (Fig 2B).

However, reducing the testing interval from 2 days to 1 day only gives marginal gain, i.e., the

reduction in epidemic duration decreased with a one-round increase in testing (smaller slope

for 1-day vs. 2-day testing interval observed with P< 0.001 from the t-test, compared with that

for a 2-day vs. 3-day testing interval). A similar pattern exists under different response lags

(S14 Fig). To examine whether the marginal effects between the testing interval and reduction

in epidemic duration is caused by the movements of COVID-19 cases among cities, we per-

formed a similar analysis with travel restrictions between cities. The results indicated that the

marginal effects persisted (S15 Fig).

Impact of the public health measures on SARS-CoV-2 Omicron burden in

China

According to the above simulations, we assessed the daily hospital beds required and the daily

ICU beds required during a highly contagious SARS-CoV-2 variant (like Omicron) outbreak,

accounting for hospitalization and ICU admission rates for symptomatic Omicron infection in

vaccinated and unvaccinated individuals (S8 Table). The control strategy was set with a 3-day

testing interval and response lag of 3 weeks, which is the least stringent strategy among all pos-

sible strategies aiming at suppressing SARS-CoV-2 infections based on the simulations. Under

this scenario, the average number of SARS-CoV-2 infections per 100 individuals across the cit-

ies in China would be 1.34 (95% CI, 1.19–1.50), 1.83 (95% CI, 1.63–2.03), 1.23 (95% CI, 1.10–

1.36), and 0.46 (95% CI, 0.41–0.51) for the 0–19, 20–39, 40–59 and� 60 age groups, respec-

tively (S16A Fig), with 34.71 (95% CI, 24.76–48.79) million infections in total.

Considering that hospitalization and ICU admission for COVID-19 cases are highly depen-

dent on the underlying health conditions and age, we collected the age-adjusted risk ratios of

the hospitalization and ICU admission for 8 types of underlying conditions, hypertension, dia-

betes mellitus, chronic kidney disease, obesity, chronic obstructive pulmonary disease, asthma,

chronic liver disease and cancer, and their corresponding age-specific or region-specific preva-

lence in the Chinese population. The highest age-adjusted odds ratio was observed in obesity

for hospitalization and chronic obstructive pulmonary disease for ICU admission, while

hypertension showed the highest prevalence in China (Table 1). Based on these data, the age-

and region- specific prevalence and the risk ratios of the underlying health conditions were

incorporated to evaluate the COVID-19 burden (Table 1 and S8 Table, see the Methods for

Table 1. Age-adjusted odds ratios (OR) for hospitalization and ICU admission of infected individuals with underlying health conditions and the prevalence of

underlying health conditions in the Chinese population.

Underlying health conditions OR for hospitalization OR for ICU admission Overall prevalence in China

Hypertension 2.01 [83] 2.95 [84] 0.28c [85]

Diabetes mellitus 2.27 [86] 3.07 [84] 0.12c [87]

Chronic kidney disease 3.4 [86] 5.32 [84] 0.11a [88]

Obesity 5.82* [86] 1.43 [89] 0.05c [90,91]

Chronic obstructive pulmonary disease 1.07 [92] 6.66 [84] 0.03b [93]

Asthma 3.83 [86] 2.63 [86] 0.01c [94–96]

Chronic liver disease 2.77 [86] 1.1 [86] 0.007c [97,98]

Cancer 2.88 [86] 0.91 [86] 0.002b [99]

*: hospitalizations for class III obesity

The prevalence data is an average across different groups, either age-specifica, region-specificb or bothc.

Note: Because of the low prevalence of underlying health conditions, risk ratio was approximated by age-adjusted OR in disease burden calculation.

https://doi.org/10.1371/journal.pcbi.1011492.t001
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more details). During the outbreak projected under this scenario, both the daily required hos-

pital beds and ICU beds for respiratory illness would be under the capacity of the health care

system for respiratory illness (3.1 million hospital beds and 138,100 ICU beds in total

[50,52,53]), with the highest occupancy of 29.46% (95% CI, 22.73–38.68%) and 58.94% (95%

CI, 45.70–76.90%) for hospitalization and ICU beds, respectively (Fig 3). However, without

testing, the peak number of daily required hospital beds would be 15.92 (95% CI, 15.28 to

16.51) times the hospital bed capacity in China (Fig 3). Even worse, the peak number of daily

required ICU beds would be 31.33 (95% CI, 30.17 to 32.38) times the maximum capacity. We

also evaluated the COVID-19 burden under 4-day testing interval. The endemic of COVID-19

could be reached. The required number of hospital beds would still be under capacity, but the

ICU capacity may be slightly overwhelmed (Fig 3A and S17 Fig). The results still hold when

taking the uncertainty in vaccine effectiveness against hospitalization and ICU admission (S18

and S19 Figs). We also performed the similar analysis based on Hong Kong-specific and

Shanghai-specific age-dependent hospitalization and ICU admission rates. The COVID-19

burden would be under the capacity for 4-day testing interval (S20 and S21 Figs), demonstrat-

ing the variations in hospitalization and ICU admission rates in China.

In terms of the peak of isolated population during the outbreak, the cities with smaller pop-

ulation sizes and less movement, may suffer a higher proportion of isolated people than the cit-

ies with higher populations under the control strategy with a 3-day testing interval and

response lag of 3 weeks (S16B Fig). The "isolated" individuals include the individuals exposed

to the SARS-CoV-2 and the infected individuals. We recognize that our study did not distin-

guish between isolation and quarantine, as we concentrated on the percentage of individuals

Fig 3. COVID-19 burden for the Omicron-like variant (R0 = 10) under the control strategy in China. (A) Daily required hospital beds for different age

groups. (B) Daily required ICU beds for different age groups. The control strategy was employed with a testing interval of 3 days and a response lag of 3

weeks (the effective reproduction number Re < 1), which is the least stringent strategy aiming at suppressing SARS-CoV-2, as shown in Fig 2A. A strategy

with a testing interval of 4 days and a response lag of 3 weeks would lead to the endemic of COVID-19 as shown in the grey dashed line with Re� 1. The

red dashed line represents the total available hospital beds or ICU beds in China. The grey solid line represents the peak number of required hospital beds

or ICU beds during the pandemic without testing (Re > 1). The bar represents the median, and the grey error bar or shadow represents the 95% CI for 100

simulations. The vaccine coverage for all age groups was set to be 89%, consistent with 86% vaccine coverage in the�60 age group by August of 2022 in

China. The response lag is the time interval from the first reported case to the start of population-level testing at city level in each outbreak. The testing

interval is the time to finishing one round of population-level testing.

https://doi.org/10.1371/journal.pcbi.1011492.g003
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who were temporarily restricted in their movements. Contact tracing in the cities with small

population sizes would be another type of "lockdown", but only a few cities would experience

this. The short response lag can substantially reduce the isolated population (S22 Fig), indicat-

ing the importance of fast response in cities with small populations.

The contributions of underlying health conditions

Projected by the age-stratified metapopulation model under the least stringent control strat-

egy, 1.33 (95% CI, 1.07–1.65) million hospital admissions and 0.10 (95% CI, 0.08–0.12) million

ICU admissions in total were estimated without considering the underlying health conditions

(S23 Fig). After calibration for the underlying conditions (Table 1 and S8 Table, see the Sup-

plementary Materials for more details), an extra 2.35 (95% CI, 1.89–2.92) million hospital

admissions and 0.16 (95% CI, 0.13–0.2) million ICU admissions were estimated under the

least stringent control strategy, corresponding to a 1.77-fold (95% CI, 1.15–2.72) and 1.67-fold

(95% CI, 1.08–2.57) of that under the scenario without underlying conditions, respectively.

The 40–60 age group would account for 39.96% of extra hospital admissions and the� 60 age

group would account for 50.30% of extra ICU admissions (Fig 4). Among the underlying

health conditions, obesity could contribute to most extra hospital admissions (Fig 4A), while

hypertension is expected to contribute to most extra ICU admissions (Fig 4B). Interestingly,

for the 0–19 age group, obesity would account for the most extra hospital admissions among

all underlying health conditions.

Discussion

China was one of the first countries to adopt the strict control strategy to control SARS-CoV-2

outbreaks in 2020. Recent adjustment of COVID-19 responses (i.e., "20 measures" and "10 new

Fig 4. The COVID-19 burden contributed by the underlying health conditions under the control strategy for Omicron-like variant (R0 = 10) in

China. (A) The extra number of hospitalizations due to the underlying health conditions for different age groups. (B) The extra number of ICU admissions

due to underlying health conditions for different age groups. The bar denotes median, and the grey error bar represents the 95% CI for 100 simulations.

The extra number of hospitalizations/ICU admissions is the difference between the hospitalizations/ICU admissions considering the underlying health

conditions and the hospitalizations/ICU admissions without considering the underlying health conditions. The control strategy was employed with 3 days

of testing interval and 3 weeks of response lag (i.e., the least stringent control strategy). The response lag is the time interval from the first reported case to

the start of population-level testing at city level in each outbreak. The testing interval is the time to finishing one round of population-level testing.

https://doi.org/10.1371/journal.pcbi.1011492.g004

PLOS COMPUTATIONAL BIOLOGY Marginal effects of public health measures and COVID-19 disease burden in China

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011492 September 18, 2023 8 / 24

https://doi.org/10.1371/journal.pcbi.1011492.g004
https://doi.org/10.1371/journal.pcbi.1011492


measures") indicated the end of this strategy [6,7]. However, comprehensive quantitative

assessments of the public health measures and the corresponding COVID-19 disease burden

in 366 Chinese cities is still lacking. We developed a stochastic age-stratified metapopulation

model to address these questions. The modelling framework allows us to assess specific imple-

mentation strategies in terms of epidemic duration, rounds of population-level testing, and

public health burdens of COVID-19 considering the underlying health conditions and the

high-resolution human mobility in 366 cities of China.

Our results indicate that the rapid implementation of population-level testing with 3-day

testing interval and a response lag� 3 weeks would be critical if aiming at suppression of

potential future SARS-CoV-2 waves in China. Increasing the testing interval to 4 days would

lead to endemic of COVID-19 and result in slightly overwhelming the ICU capacity. Com-

pared with previous studies [28,48–50], the outcomes in our study is more actionable. The

reported serial interval for Omicron is between 2 and 4 days [54–56]. The sensitivity analysis

by lowering basic reproduction number and shortening the infectious period indicated that

the serial interval/generation time, the basic reproduction number and the response lag would

have impact on the testing interval required for controlling outbreaks, but the generation

time/serial interval should contribute most. Considering the fast evolution of SARS-CoV-2

and the importance of the generation time/serial interval [57], these key epidemiological

parameters should be monitored continually [58], by contact tracing [59,60] or sequencing

data [61].

Given the negative effects of lockdown on lifestyle and mental health [38,39], population-

level testing has been proposed as a critical component of the public health measures in China,

with relatively minor disruption to daily life. Testing capacity may be an issue for low- to mid-

dle- income regions. Rapid antigen testing may be an alternative solution [62], with high fre-

quency and short turnaround time to compensate for the lower sensitivity compared with

PCR tests [63–65]. A previous study showed that home antigen test sensitivity was 64% com-

pared with same-day RT-PCR [66]. If 3-day interval is applied to PCR test, 2-day interval [1/

(3*0.64) = 0.52, that is about 2-day interval] would have to be used for rapid antigen test. Opti-

mal pooled testing strategies can also be used in regions with limited resources [67,68]. Addi-

tionally, various rapid methods of screening and diagnosis of SARS-CoV-2 have recently been

developed, for example, the Lolli-method (effective high-throughput RT–qPCR [26]),

ADESSO (Accurate Detection of Evolving SARS-CoV-2 through SHERLOCK (Specific High

Sensitivity Enzymatic Reporter UnLOCKing) Optimization, results within 1 hour, with sensi-

tivity and specificity comparable to RT–qPCR and less than 5 per test [69]), OPTIMA-dx (a

sensitive, robust, rapid, one-pot assay [70]), and DNA aptamer-conjugated graphene field-

effect transistor (GFET) biosensor platform (label-free, results within 20 minutes, conducted

with an ultrasensitive handheld wireless readout device [71]). Traveler screening and wastewa-

ter surveillance may facilitate the early detection of outbreaks and would likely reduce the

amount of population-level testing required. Another important finding is the marginal effects

between the testing interval and the benefit of a reduction in epidemic duration. Shortening

the testing interval can significantly reduce the epidemic duration. However, this benefit is

diminished at a 1-day testing interval. Previous studies showed that high percentage of con-

tacts successfully traced is needed to control the outbreaks with historical variant [72,73]. Pop-

ulation-level testing (essentially another form of contact tracing) was used to compensate for

the low percentage of contacts successfully traced (usually about 17%) in practice.

The use of real-time human mobility data presents an important opportunity to understand

the dynamics and control of SARS-CoV-2 in a large country with modern transport systems

within a densely populated setting. To quantify the potential severity of the Omicron outbreak,

we used a counterfactual assumption that between-city travel restrictions would not be
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implemented. Our results demonstrate that the effectiveness of travel restrictions depends

upon both the timing of implementation and the specific variant. With timely travel restric-

tions between cities, the number of cities with outbreaks can be significantly reduced. Owing

to the economic and social stresses imposed by this type of intervention, trade-offs between

economic and public health objectives should be considered.

With the age-stratified metapopulation model incorporating population-level testing and

contact tracing, the COVID-19 burden was also evaluated. Due to mass vaccination (especially

in the� 60 age group with 86% vaccine coverage by August 2022 in China), the hospital

admissions and ICU admissions would be largely reduced. However, the disease burden

would still overwhelm the health care system for respiratory illness without the testing. The

underlying health conditions would increase the requirements for hospital and ICU beds.

After calibrating the risk ratios and the prevalence of underlying health conditions, the 40–60

and� 60 age groups would contribute to most extra hospital admission and ICU admission

respectively, if the least stringent control strategy were employed. Among the underlying

health conditions, obesity would contribute to most extra hospital admissions, while the

hypertension could contribute to most extra ICU admissions. Interestingly, for 0–19 age

group, obesity is expected to account for most extra hospital admissions. This is due to the rel-

atively high prevalence of obesity (2.3%) in the young population and high hospitalization

rate. More attention should be given to children and adolescents in regions with an increasing

prevalence of obesity. We note that these estimations are based on the least-stringent control

strategy. In our analysis, the independence among different underlying conditions is assumed.

The impacts of multiple comorbid conditions for the same individuals on COVID-19 burden

should be investigated, particularly in regions with an ageing population. Due to the scarcity of

data, we also assumed that the age distribution of the prevalence of underlying health condi-

tions is consistent between cities and country. The age-adjusted odds ratios (OR) for hospitali-

zation and ICU admission for 8 types of underlying conditions were collected from multiple

sources. Incomparability may exist among them. In addition, the hospitalization and ICU

admission rate should also be calibrated to account for the underlying health conditions in a

detailed way in the future.

There are limitations to this study. Under-reporting may have existed during the initial

wave of COVID-19 in 2020 in China. Although different detection rates for symptomatic

individuals were modeled, regional variations might not have been fully captured during

that period. Additionally, human mobility is often influenced by holidays and other fac-

tors, which could impact the spread of the virus. While a typical outbreak scenario was

simulated in the study, it is essential to acknowledge that real-world situations might be

more complex and dynamic. Future work could focus on the changing epidemiological

parameters of new variants [58]. Model calibration should be performed if vaccine effec-

tiveness against infection with emerging variants is maintained, especially for the differ-

ence between breakthrough infections in vaccinated populations and waning vaccine

effectiveness.

To conclude, we found that the epidemic duration of COVID-19 in China over the past 2

years was reduced by population-level testing. Marginal effects between the testing interval

and the reduction in epidemic duration was observed. The control strategy with frequent pop-

ulation-wide testing would keep the COVID-19 burden under a manageable scale in China.

The population-level testing might balance disease control and the harm to health, economies,

and societies caused by travel restrictions between cities. We hope that the lessons learned

from the public health measures in China may help to inform the health preparedness of

COVID-19 pandemic, especially considering the unpredictable evolution of SARS-CoV-2 and

the high prevalence of underlying conditions.
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Methods

Epidemiological data

We collected daily official case reports from the health commission websites in 34 provincial-

level administrative units and 366 city-level units [31]. Demographic data for each city were

collected from the China City Statistical Yearbook 2019 (http://olap.epsnet.com.cn/).

Human mobility data

Human movement in China can be observed directly using mobile phone data with Baidu

location-based services. We obtained both the recorded movements and relative volume of

inflows, outflows, and internal movement among cities (n = 366) from the migration flows

database (http://qianxi.baidu.com/) from 1 January 2019 to 1 April 2020. We considered the

averaged between-city travel flow in 2019 as the flow at baseline and constructed a flow net-

work across 366 cities in China to simulate SARS-CoV-2 transmission across Chinese cities.

The travel flow during the first COVID-19 wave in 2020 was used to evaluate the effectiveness

of initial version of public health measures.

Metapopulation models

To evaluate the effectiveness of the public health measures in China and incorporate variations

in nonpharmaceutical interventions (NPIs), we developed three metapopulation models with

increasing complexity. We first introduced the baseline metapopulation model to set up the

context of modelling. Then, we extended the baseline model to account for social distancing to

evaluate NPIs during the first epidemic wave and the Omicron-like wave in China. Finally, we

developed a stochastic age-stratified metapopulation model that included population-level

testing and contact tracing based on previous well-established models [74,75] to illustrate the

effectiveness of the control strategy in a highly transmissible variant waves (e.g., Omicron

BA.1) and quantitatively assess the number of infections and disease burden in each age

group. The initial condition of the simulation is set as September 2022 since we performed the

modeling analysis based on the vaccine coverage by August of 2022 in China. Please see the

Supplementary Materials for more details.

Simulation scenarios

According to the fitted metapopulation model with social distancing and daily case reports

from each city in the first wave of COVID-19, we simulated different scenarios by varying the

strength of social distancing, travel restrictions between cities, vaccine coverage, and SARS--

CoV-2 variants. The effectiveness of China’s two-dose inactivated vaccines (BBIBP-CorV and

CoronaVac) against infection was set to 40% for Omicron [76,77] and 59% for Wuhan-Hu-1

[78]. All scenarios used the same epidemic trajectories among cities. Using the age-stratified

metapopulation model with population-level testing and contact tracing, we also performed

sensitivity analysis for the testing interval and response lag for the variant with the basic repro-

duction number of 10 and 8. In this age-stratified model, the population-level testing at city

level would be launched at response lag of 1, 2, 3, or 4 weeks after the first case was identified

in the city. Contact tracing would be trigged for each infection irrespective of the presence of

symptoms. The infections and the traced contacts would be isolated. Please refer to the Supple-

mentary Materials.
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The collection of risk ratios of hospitalization and ICU admission for

COVID-19 cases with underlying conditions

We searched PubMed for articles reporting the odds ratios of hospitalization and ICU admis-

sion for COVID-19 cases with underlying health conditions. The search terms "COV" AND

"underlying condition" AND "odds ratio" and "COV" AND "underlying condition" AND "OR"

yielded 93 and 3,081 studies, respectively. As the odds ratios are highly dependent on age, the

age-adjusted odds ratios are of interest and were collected. After screening, 12 studies

remained, and they involved 14 types of underlying health conditions. For each underlying

condition, the age-adjusted odds ratios for both hospitalization and ICU admission were

needed. After this filter, 11 types of underlying health conditions remained. If multiple studies

reported age-adjusted odds ratios, the highest one was selected.

The prevalence of the underlying health conditions in the Chinese

population

For each underlying condition from the above risk ratio collection, we searched the reported

prevalence in the Chinese population using PubMed and CNKI. In PubMed, the search terms

were "China" AND "prevalence" AND name of the underlying condition AND province. The

names of the underlying conditions were hypertension, diabetes, obesity, COPD, liver disease,

kidney disease, asthma, cancer, cardiovascular disease, cardiac disorder and chronic respira-

tory disease. These searches generated 22,333 studies in total. For CNKI, the search terms were

the same but in Chinese. This search yielded 3,821 studies. After screening the search results

from PubMed and CNKI, most studies were found to be irrelevant. The studies reporting age-

specific or province-specific prevalence with the latest publication date were selected. Finally,

the prevalence for 8 types of underlying health conditions was collected. The age-adjusted risk

ratio and the prevalence are shown in Table 1.

The calculation of extra COVID-19 burden due to the underlying

conditions

To evaluate the disease burden of the Omicron variant, the age-specific number of hospitaliza-

tions, and ICU admissions were measured quantitatively based on age-specific hospitalization

and ICU admission rates (S8 Table). Previous studies suggested that individuals with underly-

ing health conditions have higher risks of hospitalization and ICU admission. We first calcu-

lated the number of hospitalizations and ICU admissions as baseline by assuming all

individuals were healthy (i.e., without underlying health conditions), and then calculated the

number of hospitalizations and ICU admissions considering underlying health conditions

across age groups. Finally, we used the difference between them as an extra disease burden due

to underlying health conditions. The number of cases in each age group was derived from the

age-stratified metapopulation model with population-level testing and contact tracing. Please

see the Supplementary Materials for more details.
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S1 Fig. Heterogeneities in population distribution, intra-city movement reduction, move-

ment inflow reduction, movement outflow reduction, before and after the travel restric-

tion among Chinese cities during the first wave. The shading from light to dark represents

the value from low to high. The base layer of the map is provided by GADM (File link: https://
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gadm.org/download_country.html; License information: https://gadm.org/license.html).

(DOCX)

S2 Fig. Travel movements in China before and after the travel restriction. (A) Movement

inflows in 2019 and 2020, averaged across 366 Chinese cities. The median (solid line) and

interquartile range (shading) of values among cities are shown. The vertical dotted line repre-

sents the beginning of the Wuhan lockdown on 23rd January 2020. (B) Intra-city movements

in China before and after travel restriction during the SARS-CoV-2 pandemic between Janu-

ary 1 and March 6, 2020. Line shade indicates the average number of daily travel movements

(>300 are shown) for each pair of location. Point size represents the volume of travel inflow.

(DOCX)

S3 Fig. Travel movements and transmission pattern of the first SARS-CoV-2 wave in

China. (A) Travel matrices before and after travel restriction. Lower-triangular values repre-

sent travel movements from city i to city j, and upper-triangular values from city j to city i. The

shading from light to dark represents the volume of travel movements between pairs of cities

from low to high. Black box represents the travel movements between cities within a province.

The upper panel represents the total movements for each city, inflow (red) and outflow (blue).

(B) Correlation of time series of reported cases between cities in the first wave of China. Cities

are categorized by province and ranked from North (top) to South (bottom).

(DOCX)

S4 Fig. Pairwise correlation in daily COVID-19 cases between cities during the first wave

in China. (A) Each point represents a pair of cities. Synchrony of the epidemics in the two cit-

ies is measured by the correlation between the number of cases reported in two cities on each

day, using a spatial non-parametric correlation function (black line = estimated curve, dark

grey area 95% confidence band). The synchrony declines with increasing geographical dis-

tance. (B) Pairs of cities are ranked according to the level of travel movements between them

(from low to high). The city pairs are then classified into ten categories corresponding to quan-

tiles of the rank. Box and whisker plots show distribution of epidemic synchrony scores for cit-

ies in each of the ten categories; The first box represents the correlation among Q1-Q1 pairs,

the second is among Q1-Q2 pairs, up to the final bar which is among Q4-Q4 pairs. Pairs of cit-

ies with more travel movements have more synchronized epidemics.

(DOCX)

S5 Fig. Fits of the meta-population model with the social distancing on transmission rate

during the first wave in China. Correlation between the number of cases reported in each city

and model fitting by March 6, 2020. Circle size is proportional to the correlation coefficient

between time series of reported cases and model prediction for each city.

(DOCX)

S6 Fig. Fits of meta-population model with the social distancing on transmission rate to

time series of reported cases from cities during the first wave (city with more than 50 cases

are shown). The numbers of confirmed cases reported (points) and estimated (lines) each day

in each city. Grey areas correspond to pointwise 95% prediction envelopes.

(DOCX)

S7 Fig. Effectiveness of public health measures without population-level testing during

Wuhan-Hu-1 and Omicron waves in China. (A) Predicted dependence of the average epi-

demic duration across all cities on travel restrictions between cities (from 100% strict restric-

tion to 0% no restriction) and social distancing (a set of measures aiming at reduction of

transmission rate, e.g., mask wearing, from strong [100%] to weak [0%]) for Wuhan-Hu-1
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variant in the absence of vaccination. The estimated intensity of social distancing on reduction

of transmission rate during the first wave in 2020 in China is indicated by the red cross. The

fitting performance for the first wave can be found in S5 and S6 Figs. The simulation is based

on the specific NPIs implemented during the first wave in 2020, except the strength of travel

restrictions between cities. (B) Same as in (A) but for Omicron variant. (C) Predicted depen-

dence of average epidemic duration across all Chinese cities on vaccine coverage and social

distancing for the Omicron variant. The simulation is based on the specific NPIs implemented

during the first wave in 2020. In (A) to (C), the Zero-COVID line (i.e., controlling the outbreak

within 76 days) is shown as a dashed white line and solid line for Wuhan-Hu-1 and Omicron

variants, respectively (see Methods). Note that the darker color with longer duration indicates

that the whole population was infected, and the epidemic curve is either thin or flat. Effective-

ness of China’s inactivated vaccines (BBIBP-CorV and CoronaVac) against infection was set

to 40% for Omicron and 59% for Wuhan-Hu-1. The full list of epidemiological parameters is

given in S6 Table.
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S8 Fig. Number of COVID-19 cases under different response lags and testing intervals of

population-level testing (R0 = 10). Predicted number of COVID-19 cases across 366 cities in

China under different testing intervals and response lags. The grey dot represents the median

and the grey error bar represents the 95% CI based on the 100 simulations. The reduction of

social distancing on transmission rate is set to 18% by considering the effect of only mask

wearing against SARS-CoV-2 infection [8]. The vaccine coverage is set to 89% (consistent with

86% vaccine coverage in the�60 age group by August of 2022 in China) and the effectiveness

of China’s inactivated vaccine (BBIBP-CorV and CoronaVac) against infection was set to be

40% for Omicron [9].

(DOCX)

S9 Fig. Number of tests under different response lags and testing intervals of population-

level testing (R0 = 10). Predicted number of tests across 366 cities in China under different

testing intervals and response lags. The grey dot represents the median and the grey error bar

represents the 95% CI based on the 100 simulations. The reduction of social distancing on

transmission rate is set to 18% by considering the effect of only mask wearing against SARS--

CoV-2 infection [8]. The vaccine coverage is set to 89% (consistent with 86% vaccine coverage

in the�60 age group by August of 2022 in China) and the effectiveness of China’s inactivated

vaccine (BBIBP-CorV and CoronaVac) against infection was set to be 40% for Omicron [9].

Note that when response lag is 3 weeks, cities with small population size may suffer from lock-

down due to high proportion of population of cities were traced, and the outbreak is quickly

contained, resulting in smaller number of tests.

(DOCX)

S10 Fig. Effectiveness of population-level testing in China under 4-day testing interval (R0

= 10). Predicted epidemic duration and rounds of testing across 366 cities in China under dif-

ferent testing intervals and response lags when travel restrictions between cities is imple-

mented with population-level testing. The grey dot represents the median and the grey error

bar represents the 95% CI based on the 100 simulations. The dashed red line shows the dura-

tion of Wuhan’s lockdown in 2020 (i.e., 76 days) as reference. The number of cities with local

outbreaks is labeled below the violin plot. The reduction of social distancing on transmission

rate is set to 18% by considering the effect of only mask wearing against SARS-CoV-2 infection

[8]. The vaccine coverage is set to 89% (consistent with 86% vaccine coverage in the�60 age

group by August of 2022 in China) and the effectiveness of China’s inactivated vaccine
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(BBIBP-CorV and CoronaVac) against infection was set to be 40% for Omicron [9].

(DOCX)

S11 Fig. Effectiveness of population-level testing combined with travel restrictions

between cities in China during Omicron-like variant wave (R0 = 10). Predicted epidemic

duration and rounds of testing across 366 cities in China under different testing intervals and

response lags when travel restrictions between cities is implemented with population-level test-

ing. The grey dot represents the median and the grey error bar represents the 95% CI based on

the 100 simulations. The dashed red line shows the duration of Wuhan’s lockdown in 2020

(i.e., 76 days) as reference. The number of cities with local outbreaks is labeled below the violin

plot. The reduction of social distancing on transmission rate is set to 18% by considering the

effect of only mask wearing against SARS-CoV-2 infection [8]. The vaccine coverage is set to

89% (consistent with 86% vaccine coverage in the�60 age group by August of 2022 in China)

and the effectiveness of China’s inactivated vaccine (BBIBP-CorV and CoronaVac) against

infection was set to be 40% for Omicron [9].
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S12 Fig. Effectiveness of population-level testing in China during Omicron-like variant

wave when R0 = 8. Predicted epidemic duration and rounds of testing across 366 cities in

China under different testing intervals and response lags when travel restrictions between cit-

ies is implemented with population-level testing. The grey dot represents the median and the

grey error bar represents the 95% CI based on the 100 simulations. The dashed red line shows

the duration of Wuhan’s lockdown in 2020 (i.e., 76 days) as reference. The number of cities

with local outbreaks is labeled below the violin plot. The reduction of social distancing on

transmission rate is set to 18% by considering the effect of only mask wearing against SARS--

CoV-2 infection [8]. The vaccine coverage is set to 89% (consistent with 86% vaccine coverage

in the�60 age group by August of 2022 in China) and the effectiveness of China’s inactivated

vaccine (BBIBP-CorV and CoronaVac) against infection was set to be 40% for Omicron [9].

(DOCX)

S13 Fig. Effectiveness of population-level testing in China during Omicron wave (R0 = 10)

when rI = 2. Predicted epidemic duration and rounds of testing across 366 cities in China

under different testing intervals and response lags when travel restrictions between cities is

implemented with population-level testing. The grey dot represents the median and the

grey error bar represents the 95% CI based on the 100 simulations. The dashed red line

shows the duration of Wuhan’s lockdown in 2020 (i.e., 76 days) as reference. The number

of cities with local outbreaks is labeled below the violin plot. The reduction of social dis-

tancing on transmission rate is set to 18% by considering the effect of only mask wearing

against SARS-CoV-2 infection. The vaccine coverage is set to 89% (consistent with 86%

vaccine coverage in the�60 age group by August of 2022 in China) and the effectiveness of

China’s inactivated vaccine (BBIBP-CorV and CoronaVac) against infection was set to be

40% for Omicron.

(DOCX)

S14 Fig. Comparison of epidemic duration and rounds of testing between two successive

testing intervals without travel restrictions between cities (R0 = 10). Response lag is set to 2

weeks. A negative value corresponds to benefits yielded for duration or rounds by speeding up

testing (shorten testing interval), and a positive value corresponds to potential loss for duration

or rounds by speeding up testing. The red and blue dots represent median and grey error bar

represents the 95% CI based on the 100 simulations. The reduction of social distancing on trans-

mission rate is set to 18% by considering the effect of only mask wearing against SARS-CoV-2
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infection [8]. The vaccine coverage is set to 89% (consistent with 86% vaccine coverage in the

�60 age group by August of 2022 in China) and the effectiveness of China’s inactivated vaccine

(BBIBP-CorV and CoronaVac) against infection was set to be 40% for Omicron [9].

(DOCX)

S15 Fig. Comparison of epidemic duration and rounds of testing between two successive

testing intervals when travel restrictions between cities is implemented (R0 = 10). (A)

Response lag is set to 2 weeks. (B) Response lag is set to 3 weeks. A negative value corresponds

to benefits yielded for duration or rounds by speeding up testing (shorten testing interval),

and a positive value corresponds to potential loss for duration or rounds by speeding up test-

ing. The red and blue dots represent median and grey error bar represents the 95% CI based

on the 100 simulations. The reduction of social distancing on transmission rate is set to 18%

by considering the effect of only mask wearing against SARS-CoV-2 infection [8]. The vaccine

coverage is set to 89% (consistent with 86% vaccine coverage in the�60 age group by August

of 2022 in China) and the effectiveness of China’s inactivated vaccine (BBIBP-CorV and Coro-

naVac) against infection was set to be 40% for Omicron [9].
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S16 Fig. Potential impact of control strategy with long response lag on SARS-CoV-2 infec-

tions and daily life. (A) The total SARS-CoV-2 infections for different age groups when test-

ing interval is 3 days and response lag is 3 weeks. The dot represents the infections for an age

group and a city. (B) Association between population size and proportion of isolated popula-

tion across 366 cities in China when testing interval is 3 days and response lag is 3 weeks. The

size and color of the circle represent the movement flow and the proportion of isolated popula-

tion in a given city, respectively.
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S17 Fig. COVID-19 burden for Omicron-like variant (R0 = 10) under 4-day testing inter-

val. (A) Daily required hospital beds for different age groups. (B) Daily required ICU beds for

different age groups. The response lag is set to be 3 weeks. The grey error bar or shadow repre-

sents the 95% CI for 100 simulations. The red dashed line represents the total available hospital

beds or ICU beds in China. The vaccine coverage for all age groups was set to be 89%, consis-

tent with 86% vaccine coverage in the�60 age group by August of 2022 in China.
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S18 Fig. COVID-19 burden for Omicron-like variant (R0 = 10) under the control strategy

in China for optimistic scenario. (A) Daily required hospital beds for different age groups.

(B) Daily required ICU beds for different age groups. The control strategy was employed with

a testing interval of 3 days and a response lag of 3 weeks (the effective reproduction number Re

< 1), which is the least stringent strategy aiming at suppressing SARS-CoV-2, as shown in Fig

2A. A strategy with a testing interval of 4 days and a response lag of 3 weeks would lead to the

endemic of COVID-19 as shown in the grey dashed line with Re� 1. The red dashed line rep-

resents the total available hospital beds or ICU beds in China. The grey solid line represents

the peak number of required hospital beds or ICU beds during the pandemic without testing

(Re > 1). The grey error bar or shadow represents the 95% CI for 100 simulations. The vaccine

coverage for all age groups was set to be 89%, consistent with 86% vaccine coverage in the�60

age group by August of 2022 in China. The effectiveness of China’s inactivated vaccine

(BBIBP-CorV and CoronaVac) against hospitalization and ICU admission were set to be

78.8% considering an optimistic scenario [10,11].
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S19 Fig. COVID-19 burden for Omicron-like variant (R0 = 10) under the control strategy

in China for pessimistic scenario. (A) Daily required hospital beds for different age groups.

(B) Daily required ICU beds for different age groups. The control strategy was employed with

a testing interval of 3 days and a response lag of 3 weeks (the effective reproduction number Re

< 1), which is the least stringent strategy aiming at suppressing SARS-CoV-2, as shown in Fig

2A. A strategy with a testing interval of 4 days and a response lag of 3 weeks would lead to the

endemic of COVID-19 as shown in the grey dashed line with Re� 1. The red dashed line rep-

resents the total available hospital beds or ICU beds in China. The grey solid line represents

the peak number of required hospital beds or ICU beds during the pandemic without testing

(Re > 1). The grey error bar or shadow represents the 95% CI for 100 simulations. The vaccine

coverage for all age groups was set to be 89%, consistent with 86% vaccine coverage in the�60

age group by August of 2022 in China. The effectiveness of China’s inactivated vaccine

(BBIBP-CorV and CoronaVac) against hospitalization and ICU admission were set to be

62.6% considering an pessimistic scenario [10,11].
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S20 Fig. COVID-19 burden for Omicron-like variant (R0 = 10) under the control strategy

in China for Hong Kong-specific age-dependent hospitalization and ICU admission rates.

(A) Daily required hospital beds for different age groups. (B) Daily required ICU beds for dif-

ferent age groups. The control strategy was employed with a testing interval of 3 days and a

response lag of 3 weeks (the effective reproduction number Re < 1), which is the least stringent

strategy aiming at suppressing SARS-CoV-2, as shown in Fig 2A. A strategy with a testing

interval of 4 days and a response lag of 3 weeks would lead to the endemic of COVID-19 as

shown in the grey dashed line with Re� 1. The red dashed line represents the total available

hospital beds or ICU beds in China. The grey dotted line represents the strategy with a testing

interval of 4 days and a response lag of 3 weeks. The grey solid line represents the peak number

of required hospital beds or ICU beds during the pandemic without testing (Re > 1). The grey

error bar or shadow represents the 95% CI for 100 simulations. The vaccine coverage for all

age groups was set to be 89%, consistent with 86% vaccine coverage in the�60 age group by

August of 2022 in China. The age-dependent hospitalization and ICU admission rates were set

according to data from the fifth wave of COVID-19 in Hong Kong in early 2022 [12].

(DOCX)

S21 Fig. COVID-19 burden for Omicron-like variant (R0 = 10) under the control strategy

in China for Shanghai-specific age-dependent ICU admission rates. Daily required ICU

beds for different age groups. The control strategy was employed with a testing interval of 3

days and a response lag of 3 weeks (the effective reproduction number Re < 1), which is the

least stringent strategy aiming at suppressing SARS-CoV-2, as shown in Fig 2A. A strategy

with a testing interval of 4 days and a response lag of 3 weeks would lead to the endemic of

COVID-19 as shown in the grey dashed line with Re� 1. The red dashed line represents the

total available ICU beds in China. The grey dotted line represents the strategy with a testing

interval of 4 days and a response lag of 3 weeks. The grey solid line represents the peak num-

ber of required ICU beds during the pandemic without testing (Re > 1). The grey error bar

or shadow represents the 95% CI for 100 simulations. The vaccine coverage for all age groups

was set to be 89%, consistent with 86% vaccine coverage in the�60 age group by August of

2022 in China. The age-dependent ICU admission rates were set according to data from the

Omicron wave of COVID-19 in Shanghai in early 2022 [13]. Due to the lack of hospitaliza-

tion data in Omicron wave of COVID-19 in Shanghai, only the ICU burden of COVID-19

for the Omicron variant was evaluated under this scenario.
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S22 Fig. Potential impact of control strategy with short response lag on SARS-CoV-2 infec-

tions and daily life. (A) The total SARS-CoV-2 infections for different age groups when test-

ing interval is 3 days and response lag is 2 weeks. The dot represents the infections for an age

group and a city. (B) Association between population size and proportion of isolated popula-

tion across 366 cities in China when testing interval is 3 days and response lag is 2 weeks. The

size and color of the circle represent the movement flow and the proportion of isolated popula-

tion in a given city, respectively.
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S23 Fig. The disease burden for Omicron-like variant (R0 = 10) outbreak without consider-

ing the underlying health conditions. (A) The number of hospitalizations and (B) ICU

admissions when the least stringent control strategy is employed. We considered all the

infected individuals were healthy in the baseline scenario. The grey error bar or shadow repre-

sents the 95% CI for 100 simulations.
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S5 Table. The number of cities with the peak number of isolated individuals reaching the

population size during the outbreak under different combinations of testing intervals and

response lags. The isolated individuals include the individuals exposed to the SARS-CoV-2

and the infected individuals.
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S6 Table. Baseline model parameter values.
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S7 Table. Population-level testing and contact tracing model parameter values.
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S8 Table. Age-dependent hospitalization and ICU admission rates for symptomatic Omi-

cron- infection in vaccinated and unvaccinated individuals. The effectiveness of China’s

inactivated vaccine (BBIBP-CorV and CoronaVac) against hospitalization and ICU admission

were set to be 70% for Omicron for all age groups [11].
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