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Abstract

Machine learning has played transformative roles in numerous chemical and biophysical

problems such as protein folding where large amount of data exists. Nonetheless, many

important problems remain challenging for data-driven machine learning approaches due to

the limitation of data scarcity. One approach to overcome data scarcity is to incorporate

physical principles such as through molecular modeling and simulation. Here, we focus on

the big potassium (BK) channels that play important roles in cardiovascular and neural sys-

tems. Many mutants of BK channel are associated with various neurological and cardiovas-

cular diseases, but the molecular effects are unknown. The voltage gating properties of BK

channels have been characterized for 473 site-specific mutations experimentally over the

last three decades; yet, these functional data by themselves remain far too sparse to derive

a predictive model of BK channel voltage gating. Using physics-based modeling, we quan-

tify the energetic effects of all single mutations on both open and closed states of the chan-

nel. Together with dynamic properties derived from atomistic simulations, these physical

descriptors allow the training of random forest models that could reproduce unseen experi-

mentally measured shifts in gating voltage, ΔV1/2, with a RMSE ~ 32 mV and correlation

coefficient of R ~ 0.7. Importantly, the model appears capable of uncovering nontrivial physi-

cal principles underlying the gating of the channel, including a central role of hydrophobic

gating. The model was further evaluated using four novel mutations of L235 and V236 on

the S5 helix, mutations of which are predicted to have opposing effects on V1/2 and suggest

a key role of S5 in mediating voltage sensor-pore coupling. The measured ΔV1/2 agree

quantitatively with prediction for all four mutations, with a high correlation of R = 0.92 and

RMSE = 18 mV. Therefore, the model can capture nontrivial voltage gating properties in

regions where few mutations are known. The success of predictive modeling of BK voltage

gating demonstrates the potential of combining physics and statistical learning for overcom-

ing data scarcity in nontrivial protein function prediction.
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Author summary

Deep machine learning has brought many exciting breakthroughs in chemistry, physics

and biology. These models require large amount of training data and struggle when the

data is scarce. The latter is true for predictive modeling of the function of complex pro-

teins such as ion channels, where only hundreds of mutational data may be available.

Using the big potassium (BK) channel as a biologically important model system, we dem-

onstrate that a reliable predictive model of its voltage gating property could be derived

from only 473 mutational data by incorporating physics-derived features, which include

dynamic properties from molecular dynamics simulations and energetic quantities from

Rosetta mutation calculations. We show that the final random forest model captures key

trends and hotspots in mutational effects of BK voltage gating, such as the important role

of pore hydrophobicity. A particularly curious prediction is that mutations of two adja-

cent residues on the S5 helix would always have opposite effects on the gating voltage,

which was confirmed by experimental characterization of four novel mutations. The cur-

rent work demonstrates the importance and effectiveness of incorporating physics in pre-

dictive modeling of protein function with scarce data.

Introduction

Generating quantitative models linking the sequence of a protein to its function remains a

grand challenge in computational biophysics. Machine learning has enabled enormous

advances in many key fields [1–3], most notably for predicting folded protein structures from

their sequences [4–8]. There is significantly less data available describing how mutations affect

the function of a specific protein, especially for complex systems like transmembrane (TM)

ion channels [9–11]. Here, high-throughput approaches for functional characterization is not

available and functional characterization of mutant proteins is laborious. For example, the

available number of mutants with functional data is usually limited to a few hundred even for

some of the most important ion channels [12–14]. Furthermore, these mutations are often dis-

tributed very nonuniformly on the protein, concentrating on certain regions perceived to be

functionally important and only involving limited types of mutations (e.g., A or Q scanning).

The severe data scarcity makes it generally unfeasible to derive predictive functional models of

these complex proteins using the traditional data-centric machine learning approaches [15–

17]. There is a great need for developing new approaches that allow the construction of reliable

predictive models of protein function using limited but precious available mutagenesis data.

Such models are crucial for one to better reconcile nontrivial and convoluted effects of muta-

tions and uncover deeper mechanistic insights into the function of the target protein.

Overcoming the data scarcity problem requires additional information from independent

sources. This could include multisequence alignment and structural data [18–23]. At a more

fundamental level, the correlation between protein sequence and function is determined by

the laws of physics, albeit the correlation is complex and of extremely high-dimension. In prin-

ciple, physics-based molecular dynamics (MD) simulations could be used to generate complete

trajectories and derive any kinetic and thermodynamic properties required for predicting the

functional effects of any mutation, given a realistic energy function and unlimited computa-

tional power [24–28]. Indeed, physics-based MD simulations have been a workhorse for

computational studies of protein function, and their reach has expanded greatly in recent

years, thanks to advances in efficient GPU-accelerated algorithms [29–33], special-purpose
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Anton supercomputers [34–36], and improved general-purpose protein force fields [37–39].

Nonetheless, limitations on the force field accuracy and computational cost persist, and these

limitations prevent direct application of physics-based modeling and simulation for general

prediction of protein function. Instead, deriving predictive models of protein function will

require integration of (sparse) functional data, sequence, structure, and physics-based

properties.

One simple and attractive approach of incorporating physics in machine learning to first

use physics-based modeling and simulation to annotate the effects of each mutation on the

protein structure and dynamics as well as conformational energetics. These physics-derived

features could then be supplied to statistical learning algorithms to uncover transferable corre-

lations for functional prediction even with sparse mutational data. Machine learning methods

have been used to combine the general semi-empirical and physics-based terms with thermo-

stability data of proteins to build more powerful models of thermostability [40–44]. In a recent

review of protein stability prediction, it was observed that the general performance of a wide

range of models has stagnated at root-mean squared error (RMSE)� 1 kcal/mol and R� 0.4–

0.6 [45]. The integration of physics-derived features using machine learning has been extended

to a wide array of protein-specific targets where sufficient data exists, such as in GPCRs

[46,47], amyloid formation [48–53], and binding affinity in several proteins such as Hsp70

chaperones [54,55], SH3 domains [56], or major histocompatibility complex [57]. Incorporat-

ing MD-derived data in machine learning to predict function is an increasingly popular

approach [58–61]. However, quantitative prediction of protein-specific functional properties,

particularly large proteins involving multiple conformations, such as KCNQ1 channels [62],

remains challenging.

In this work, we focus on the big potassium (BK) channel, also known as MaxiK, KCNMA1
or Slo1, which plays a central role in regulating K+ influx during membrane repolarization and

is expressed in a variety of tissues including in smooth muscle cells, cardiac muscles, skeletal

muscles, and neurons [64–67]. BK channel mutants have been implicated in disease, including

stroke, hearing loss, asthma, and a wide array of neurological disorders [67–73]. A reliable pre-

diction of the functional effects of mutation would allow electrophysiologists to better target

their efforts in characterizing novel mutations, and aid in the diagnosis of the molecular mech-

anism of novel mutations as they are identified [68,69]. Functional BK channels are homo-tet-

ramers, with each monomer composed of three major domains: voltage-sensor domain

(VSD), pore-gating domain (PGD) and cytosolic tail domain (CTD) (Fig 1A). On the N-termi-

nal side, the VSD consists of the four canonical TM helices S1-S4 plus an additional S0 helix.

The PGD contains TM S5 and S6 and the selectivity filter. Finally, the CTD contains two RCK

domains (RCK1 and RCK2) per monomer and is responsible for sensing intracellular Ca2+

binding. BK channels can be activated independently by Ca2+ and membrane voltage [74–76].

Cryo-EM structures have been determined for BK channels in both Ca2+-bound (open) and

-free (closed) states [63,77–79]. In contrast to Kv channels, the VSDs are not domain-swapped

with respect to the PGD in BK channels. Curiously, the pore of BK channels remains physically

open even in the closed state, in contrast to the homologous MthK [80]. Atomistic MD simula-

tions revealed that the deactivated pore readily undergo hydrophobic dewetting transition

[81,82], forming a vapor barrier for ion permeation. A physically open pore in deactivated BK

channels is consistent with several key experimental findings, particularly puzzling accessibil-

ity to pore blockers [83,84] and methanethiosulfonate reagents [85]. Extensive efforts have

been dedicated to understand the function and regulation of BK channels over the last three

decades [86–109]. A key experimental measure of the effect of each mutant on function is shift

in the voltage required for achieving half of the maximum ionic conductance (ΔV1/2), as illus-

trated in Fig 1B for WT and V236W mutant BK channels. Our experimental study and
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literature search yielded 473 total mutations characterized by patch-clamp electrophysiology

experiments at 0 μM Ca2+ (see Methods), which are concentrated in the TM domains and the

interface between TM and CTD (Fig 1C). Notwithstanding these extensive efforts, the molecu-

lar basis for voltage-gating and allosteric mechanisms of BK channels remain poorly understood

[64,110] and no model exists that can reconcile the available mutational data and predict the

functional effects of novel mutations. Note that 473 existing mutations, while an enormous

body of work, only represents ~3% of single mutations to structurally resolved regions of the

channel and<2% of all possible single mutations to the gene. A reliable predictive model of the

voltage-gating property of BK channels is highly nontrivial due to the data scarcity problem.

To evaluate if incorporating physics could help overcome data scarcity in modeling BK

voltage gating, we derive a large array of physics-based features to quantify the effects of each

mutation on the structure, interaction and energetics of the channel in both open and closed

states. These features were combined with additional ones that capture structure-derived prop-

erties such as secondary structure or functional domains, the change in hydrophobicity of the

amino acid, and evolutionary sequence conservation. We then evaluated various statistical

learning models, and the random forest model was selected as giving the best and most consis-

tent results. The final predictive model was able to reproduce unseen experimentally measured

shifts in the BK gating voltage, ΔV1/2, with a RMSE ~ 32 mV and correlation coefficient of R ~

0.7, which is superior to control models trained without physics-derived features. Importantly,

predictions from the final model captures some of the known but nontrivial mechanistic prop-

erties of BK channels. For example, the model captures the important role of inner pore hydro-

phobicity for BK activation, which is not directly encoded in any of the input features but

consistent with the hydrophobic gating mechanism [81,82,111]. We further validated a promi-

nent but curious pattern revealed by the model, that mutations of residues L235 and V236 on

S5, would have opposing effects on ΔV1/2. We expressed four novel mutations and the mea-

sured ΔV1/2 agree with the prediction with a high correlation of R = 0.92 and RMSE = 18 mV.

The success of a predictive model of BK voltage gating not only provides a useful tool for iden-

tifying mutational hotspots on the BK channel relevant to voltage gating, but also supports the

importance and efficacy of incorporating physics to overcome data scarcity in predictive

modeling of protein function.

Fig 1. Overview of the BK channel structure, voltage gating, and mutations. A) Cryo-EM structure of the Ca2+-bound structure of human BK channels

(PDB: 6V38 [63]) embedded in a lipid bilayer. The protein is drawn in cartoon style, with the PGD colored in green, VSD in red, RCK1 in purple and RCK2 in

blue. The Ca2+-binding sites are shown in yellow with bound Ca2+ ions shown as orange spheres. Bound K+ ions in the selectivity filter are shown as gold

spheres. The lipid aliphatic chains are drawn in gray bonds, with the polar head groups in dark grey spheres. This snapshot was taken from an MD-equilibrated

simulation. B) Normalized ionic conductance-voltage (G-V) curves measured for the WT and V236W mutant BK channels. Dashed lines plot the Boltzmann

fits for each curve (see Methods). The black arrows mark the WT V1/2 as well as the shift (ΔV1/2) for V236W with respect to the WT. C) All residues with a

mutation in the dataset (see Methods) drawn in different-colored van der Waals spheres. The rest of the BK channel is drawn in transparent black Cartoon.

https://doi.org/10.1371/journal.pcbi.1011460.g001
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Results and discussion

Physics-based features describe key properties of BK channels

We used molecular modeling and simulation to derive a large array of physics-based features to

quantify the effects of all possible mutations on the structure and interactions of BK channels in both

open and closed states (see Methods). These descriptors are summarized in Table A in S1 Text. A

major class of these descriptors are energetics calculated using Rosetta [112–114], which quantify the

relative free energy shift of the channel open-close equilibrium caused by a mutation (ΔΔG) (Fig 2A).

Fig 2. Overview of key physics-based descriptors. A) Total Rosetta ΔΔΔG scores as a function of residue number (ResID). B)

Rosetta dispersion (fa_atr) ΔΔΔG. C) Rosetta solvation (fa_sol) ΔΔΔG. D) Cα-Cα covariance matrix within the monomer in the closed

state, averaged across 4 monomers, derived from atomistic MD simulation in explicit solvent and membrane. E) Row of covariance

matrix in (D) corresponding to the pore-lining residue A316.

https://doi.org/10.1371/journal.pcbi.1011460.g002
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Specifically, we used the Franklin2019 Rosetta energy function [114] that include a physics-based

implicit membrane model IMM1 [115]. This modified Rosetta energy function has been shown to

accurately predict folding free energies of membrane protein mutants [116–119]. From the Rosetta

ΔΔG calculations, we also obtained individual energy terms due to the pair-wise additive nature of

the energy function. These individual terms quantify the contributions of different physical interac-

tions and thus provide useful additional information for training the predictive model. For example,

the attractive and repulsive Lennard-Jones potential terms (fa_atr, Fig 2B and fa_rep) capture favor-

able packing or unfavorable clashes of the mutation. The solvation free energy term (fa_sol) captures

the effects of solvent exposure or burial of different side chains on the channel open-closed equilib-

rium (Fig 2C).

In addition, atomistic MD simulations were performed to characterize the flexibility (root-

mean square fluctuation, RMSF in Table B and Fig A in S1 Text), the percent of solvent-acces-

sible surface area (SASA; Fig A in S1 Text), and calculate covariance matrix of dynamic fluctu-

ation (Fig 2D). The covariance matrix captures allosteric dynamic coupling between key

residues, such as A316 and V278, with the rest of the channel. Here, A316 locates in the middle

of the inner pore that undergoes hydrophobic dewetting transition during deactivation (Fig

2E). V278 packs against the S5 helix as part of the so-called pore helix between the filter and

the S5 helix. This residue was selected because it contained several large-shift mutations and

had a covariance row not colinear with the row corresponding to A316. We hypothesized that

the coupled motion with the pore in the closed state would contain information relevant to

predicting the gating transition. Note that MD simulations were performed for the wild-type

(WT) channel in the closed state, as the dynamic properties are largely dictated by the topology

and usually insensitive to single mutations. We also calculated a set of properties from the

equilibrated closed state conformation to annotate the structural context of each residue site,

including solvent and lipid exposure, pore-lining and secondary structure. We included the

change in hydrophobicity from WT to mutant [120]. Sequence conservation was characterized

using the SIFT tool [121], which incorporates genomic-level information to describe the func-

tional impact of a mutation.

The above features describe as much as possible potentially physical consequences of muta-

tions that may be relevant for predicting of their impacts on the open-closed equilibrium of

BK channels (and thus voltage gating properties). Note that the correlation of these raw fea-

tures with ΔV1/2 is complex and any of these features alone is insufficient to predict ΔV1/2

directly. For example, the total Rosetta ΔΔΔG score or its components have no direct predic-

tive power for ΔV1/2, (Fig B in S1 Text). The key is thus to integrate these physical features

with available experimental data using machine learning methods to uncover any hidden, non-

trivial correlation between the various features and the functional output of known mutations.

Random forest best captures key trends of available experimental data

We have measured ΔV1/2 of 230 single mutations, and in addition obtained ΔV1/2 for 243

mutations from literature (see Methods and SI; full Excel file of mutations available at https://

github.com/enordquist/bkpred). These data contain mutations ranging from mild ΔV1/2 ~ 0

mV to severe (> 50 mV) (Fig C in S1 Text (panel A)), and from all three major domains (Fig

1C), though the majority falls in the TM region and specifically the pore (Fig C in S1 Text

(panel B)). Using these data from a total of 473 mutations, we trained and tested a variety of

machine learning models, including linear regression with l2 regularization (Ridge regression),

support vector regression (SVR), k-nearest neighbors (KNN), random forest (RF), gaussian

process (GP) and multi-layer perceptron (MLP), using a grid search of the hyperparameters

and 5-fold cross validation (Table B in S1 Text). The performance of various models was
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mainly assessed by examining Pearson’s correlation coefficient (R), RMSE, and Enrichment

Factor (EF) (see Methods). The results suggest that RF performs best at balance between mini-

mizing overfitting in training and maintaining a comparable performance on the test set with

average Pearson correlation coefficient of R = 0.79. MLP with a single 100-node layer had simi-

lar performance on the test data with an R = 0.77. However, it appears to suffer from substan-

tial overfitting, with a large discrepancy between training and test RMSEs (2 vs 30 mV). The

KNN, SVR, and GP models appear to suffer less from overtraining than the RF model, but its

overall performance on test data was somewhat worse than RF with an R ~ 0.73, 0.69, and

0.57, respectively. The rest of the models evaluated all performed far more poorly (see Table B

in S1 Text). Note that the RF model still suffers from overfitting. The model, trained with the

optimal hyperparameters (bold entries in Table B in S1 Text), achieves R = 0.97 and

RMSE = 17 mV on the full training set (80% of all data) but only R = 0.79 and RMSE = 32 mV

on the test set (the remaining 20%) (Fig D in S1 Text, lower right). This is likely due to the

small dataset size as well as non-uniform distributions of the mutations on the protein. As

illustrated in Fig C in S1 Text, existing mutations concentrate heavily on the TM domains and

regions of CTD involved in interaction with the TM domains or Ca2+ binding. Furthermore,

most mutations have modest effects on V1/2 with shifts no greater than 50 mV, while only 10%

of the total of 473 mutations lead to large shifts of ±100 mV or greater (Fig C in S1 Text).

To obtain a more robust assessment of RF’s performance across the full dataset, and more

importantly, to better estimate its performance on unseen mutations, we resampled the full

dataset and performed cross-validation on four additional 80/20 splits of the full dataset. For

completeness, the performance of all models is given for all five splits. The results are shown in

Fig 3 for the RF model and summarized in Table 1 for all models. The RF model’s performance

was relatively robust across the five splits with R = 0.54–0.80, RMSE = 30–35 mV, and

EF = 2.2–3.3 (Table 1). The model appears to perform better, particularly with a higher R and

EF, when the data coverage is similar to the coverage in the training set. For example, in split

2, the fraction of mutations with |ΔV1/2|> 50 mV is ~19%, substantially lower than across the

whole dataset (~23%) or in the other four splits (23% - 26%) This is consistent with the model’s

performance being hindered by limited data and substantially different distributions in the

training and test sets. The results on the five independent splits shows that the model’s perfor-

mance across the whole sequence space will not be as good as the best of these splits, but realis-

tically can be expected to provide significant improvement from random selection of

mutations. This is highlighted by the EF of 2–3, suggesting that mutations selected near the

top of the predicted distribution, regardless of the semi-quantitative nature of the predictions,

is sufficient to give 2–3 times greater enrichment of large shifts (e.g., more than ±50 mV) than

by randomly drawing from the experimental dataset directly. The results of validation using

random splits of the dataset demonstrate that, while a model trained this way is not expected

to be quantitatively accurate across all unseen data, it can likely be used to scan for hotspots of

large shifts or uncover prominent physical trends in mutational effects of channel function.

Importance of physics-based features

We first evaluated the importance of various input features to the final RF model’s perfor-

mance by examining the mean decreases in Gini impurity scores. As shown in Fig E in S1

Text, depicting a representative feature importance, most of the top-ranking features are phys-

ics-based, including the dynamic coupling to the pore-lining residue A316, RMSF, and solva-

tion and dispersion terms. To further test the importance of the physics-based features, we

trained a best-effort control RF model using the same random forest hyperparameters but

omitting all features derived from Rosetta or MD simulations. Instead, we supplement the
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sequence and structure features with 19 previously-published principle component descriptors

[122] derived from over 500 biochemical and biophysical properties of amino acids from the

AAIndex database [123]. Specifically, we use the changes from WT to mutant AAIndex values

for each of these features. As summarized in Fig F in S1 Text and Table 1, the control models

performed significantly worse without physics-based features, with R = 0.1–0.6, RMSE = 29–

39 mV, and EF = 1.5–3.0. The average R is only 0.38, far below ~0.7 achieved with physics-

based features. The models become much more sensitive to overfitting, manifested as large

performance gaps on training vs test (Fig F in S1 Text). This strongly supports the importance

of including physics-based features in overcoming the data scarcity problem and generating

transferable predictive models of protein function.

Fig 3. Results of training and validation in 5 random train/test data splits. Correlations of predicted and true ΔV1/2

for 5-fold cross-validation on 80% of dataset (blue) and independent test validation on the remaining 20% (orange).

The dashed lines indicate trends for training and test, and the solid line marks x = y. The blue points show the

performance on the training dataset, with overall R = 0.97–0.98, RMSE = 16–17 mV. The orange points show the

independent test set with R = 0.54–0.80, RMSE = 30–35 mV.

https://doi.org/10.1371/journal.pcbi.1011460.g003
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Characteristics of the final RF model of BK voltage gating

Having robustly examined the RF model’s performance both on fitting training data and pre-

dicting unseen data using several random splits, we trained a production RF model with the

same hyperparameters but using all the available data. This was deemed prudent given the lim-

ited size of the dataset. This model was used to generate predictions throughout the rest of the

paper, and its performance is expected be largely similar to those trained with various 80/20

splits as reported in Table 1. The production RF model was used to predict the ΔV1/2 shift of

all 16264 single mutations for the 856 residues present in both Ca2+-bound and free structures,

available through GitHub at https://github.com/enordquist/bkpred) as well as part of the S1

Text. In Fig 4, we compare the maximum ΔV1/2 shift at each residue position derived from

available experimental data and RF prediction. As expected, RF predictions generally recapitu-

late the experimental pattern, showing that mutations near the pore or at the TM/CTD inter-

face tend to have large maximum effects, while those in the rest of CTD have much more

limited maximum impacts on voltage gating. While this agrees with the expectation that resi-

dues at or near the interface will contribute more to gating, the lack of large shifts in the CTD

regions distal to the TM domains likely also reflects a lack of experimental data in these regions

(Fig C in S1 Text). Furthermore, the structure of CTD is similar between the open and closed

states in most parts. As such, ΔΔΔG terms calculated from Rosetta are generally of smaller

Table 1. Goodness-of-fit metrics of RF models trained with and without physics-based features. Two sets of RF

models were trained and validated using five independent 80/20 splits of the dataset. The models trained without MD-

and Rosetta-derived features were supplemented with biochemical and biophysical features of amino acids derived

from the AAIndex database [123].

With physics-based features Without physics-based features

Split R RMSE (mV) EF R RMSE (mV) EF

1 0.79 32 3.0 0.42 37 2.8

2 0.54 30 2.4 0.10 29 1.5

3 0.69 35 2.2 0.45 39 2.2

4 0.80 31 3.3 0.27 33 3.0

5 0.70 31 2.4 0.60 36 2.4

https://doi.org/10.1371/journal.pcbi.1011460.t001

Fig 4. Maximum experimental (Expt) and predicted (RF) ΔV1/2 for mutations at each position. For each residue position, the maximum

shift was selected from available experimental mutants or predicted values of all possible mutations. Only two opposing monomers are shown

for clarity.

https://doi.org/10.1371/journal.pcbi.1011460.g004
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magnitude for these distal sites as compared to those in the TM region, which could presum-

ably translate to smaller predicted ΔV1/2 shifts. Nonetheless, the observation that the RF model

does not tend to extrapolate large shifts in distal regions of the channel is a desired behavior.

Note that, despite a respectable R of ~0.7, the final RF model tends to predict smaller ΔV1/2

magnitude than the true values (Fig 3). This is likely because of the imbalance of the number

of mutations with small ΔV1/2 versus those with large ΔV1/2 (Fig C in S1 Text). RF models are

trained to optimize the RMSE, not the slope of the correlation. Coupled with small data size,

RF models could have a tendency to under predict the slope of correlation [124]. The final RF

model of BK voltage gating thus appears to avoid predicting ΔV1/2 to be much larger than the

true ΔV1/2. As such, the predicted ΔV1/2 is largely semi-quantitative and should optimally be

used for determining if a mutation is likely to cause large ΔV1/2 shift, and if so, the direction of

the shift. As will be illustrated below, even such an apparently limited predictive capability, the

production RF model allows one to identify and investigate prominent features in mutational

effects of BK voltage gating, providing new insights and new directions for further mechanistic

studies.

The prediction error of the final RF model was further estimated using the standard boot-

strap aggregation (i.e., bagging) approach [125,126]. Fig G in S1 Text compares the estimated

and true errors for the test data using the same five random 80/20 splits used in Fig 3. The

results show that the predicted error correlates well with the true error when the data is a part

of the training set, but underestimates the true error in many cases for data outside the training

set. The predicted and true errors on test set have a modest average correlation of R ~ 0.47,

which is not surprising given the poor data coverage and the limited ability of the descriptors

to explain all variations in the data. Despite its limitations, the error should still be useful for

screening features or hotspots in the predicted distribution of mutational effects of BK voltage

gating.

RF predictions recapitulate hydrophobic gating mechanism

One of the most prominent predictions of the production RF model is that mutations in the

pore region tend to have large impacts on the gating voltage. More intriguingly, the model pre-

dicts that polar and charged mutations tend to reduce V1/2, or making the channel easier to

open, while hydrophobic mutations tend increase V1/2, or making the channel harder to open.

These trends are illustrated in Fig 5 for all mutations to N, K and V in the TM domains. Note

that, while N or K mutations can lead to positive ΔV1/2 values in the VSD or S5 (blue or red),

they always reduce V1/2 for pore-facing sites on S6 and the decreases are larger for K mutations

than N mutations. In contrast, V mutations on the pore-facing sites on S6 mostly increase V1/2

with the exception of L312V, which decreases V1/2 as do most other mutations at 312 including

L312I and L312A [92]. Importantly, while there is a relatively large number of mutations in

the training data in the pore (Fig 5, left half), there is nothing specific in this data set alone that

would suggest that other pore-lining residues should have similar effects on the channels

open-close equilibrium. Nonetheless, these intriguing predictions from the RF model are actu-

ally consistent with the hydrophobic gating mechanism proposed for BK channels [81,82,111].

Under this mechanism, the overall hydrophobicity of the inner pore determines the ability of

the pore to undergo hydrophobic dewetting and shut down ion permeation, which has been

shown to correlate well with the activation voltage in a previous free energy analysis [111].

This mechanistic understanding explains why the hydrophobicity and hydrophilicity of pore

mutations have large and predictable effects on BK voltage gating. It is remarkable that the RF

model recovers such a physical mechanism, apparently by recognizing patterns in the physics-

based features associated with known and unseen mutations in the pore.
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RF model correctly identifies a novel trend on mutational effects of key S5

sites

Another peculiar feature predicted by the RF model involves two neighboring sites on the S5

helix (Fig 6A). As summarized in Fig 6B, all mutations of L235 are predicted to shift V1/2 the

right (ΔV1/2 > 0), while mutation of V236 mostly shifts ΔV1/2 to the left (ΔV1/2 < 0) but with

smaller magnitudes. The S5 helix mediates the interaction between the VSD and the pore-lin-

ing S6 helices, and has been proposed to play a key role in the BK VSD-pore coupling [127–

129]. However, the specific roles of individual S5 residues or their interactions in the coupling

remain poorly understood. The experimental data set, at the time of model training, only

Fig 5. Experimental (Expt) and predicted (RF) ΔV1/2 of N-, K-, and V-scanning mapped onto the TM structure of

BK channels. The VSD, and PGD components: S5, S6 and selectivity filter, are denoted. The two domains are facing

one another as they would be in the structure (90˚ rotation), not mirror images of each other.

https://doi.org/10.1371/journal.pcbi.1011460.g005
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contained three hydrophobic mutations for these sites (L235W, V236A and V236W; see

Table 2). The predicted trend, if validated, thus would have profound implications on how the

S5-S6 and S5-VSD interfaces control the pore-VSD coupling in BK channels. A new mutation,

L235A, was published in December 2022, after the completion of our model training [127].

The experimental result confirms that replacing L with the smaller A does also increase V1/2,

but surprisingly, the shift is much larger than predicted and similar to that of the much larger

W mutation.

We further expressed and measured the G-V curves of four novel mutations, namely,

L235F, L235H, V236H, and V236N, with patch-clamp electrophysiology. We selected L235F

because of the high predicted ΔV1/2 of 59 ± 29 mV and its apparent similarity to W. L235H

and V236H were selected as a direct test of the predicted trend that mutations to these two

adjacent sites have opposite effects on BK voltage gating. Finally, we selected V236N as repre-

sentative of the effect of introducing a polar mutation with a small sidechain. The measured

current traces and the fitted G-V curves are shown in Fig 7A and 7B. The experimental results

confirm that both L235 mutations increase V1/2, while both V236 mutations reduce V1/2

(Table 2) This is fully consistent with the trend predicted by the RF model. Furthermore, the

Fig 6. S5 helix residues L235 and V236 and neighboring residues. A) Zoomed-in view of the PGD of two monomers, with L235 and V236

labeled and colored in red and blue bonds, respectively. The PGD helices S6 and S5, as well as the contacting VSD helix S4, are labeled. B)

Predicted ΔV1/2 of all mutations of L235 (red) and V236 (blue), arranged by increasing magnitude of predictions for L235X. Note that WT

“mutations”, L235L and V236V, reflect the inherent uncertainty of the RF model prediction.

https://doi.org/10.1371/journal.pcbi.1011460.g006

Table 2. Experimental and predicted ΔV1/2 of L235 and V236 mutations. The four novel mutations are bolded.>150 signifies the case where the complete G-V curve

could not be measured due to extremely low activity of the mutant. The WT “mutations”, L235L and V236V, reflect the inherent uncertainty of the RF model prediction.

“Previously acquired” denotes previously acquired data from the Cui lab that were available prior to model training. *The experimental result for L235A was published

after model training, so this mutation is also a true test case.

Mutation Experimental

ΔV1/2 (mV)

Predicted ΔV1/2 (mV) Reference

L235L 0 17 ± 8 -

L235W >150 113 ± 58 previously acquired

L235A >150 15 ± 6 [127]*
L235H 13 ± 6 42 ± 23 this study

L235F 56 ± 8 59 ± 29 this study

V236V 0 4 ± 6 -

V236A -38 ± 1 -19 ± 13 [87]

V236W -43 ± 6 -15 ± 5 previously acquired

V236H -35 ± 7 -16 ± 6 this study

V236N -11 ± 7 -15 ± 16 this study

https://doi.org/10.1371/journal.pcbi.1011460.t002
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predicted ΔV1/2 values are well correlated with the experimental results, with R = 0.92 and

RMSE = 18 mV (Fig 7C). The quantitative accuracy of these four novel mutations is better

than expected based on cross-validation (see Fig 3 and Table 1). The strong performance here

suggests that the RF model likely captures a nontrivial and robust feature of BK voltage gating.

We note that only three L235 and V236 mutations exist in the experimental data set used for

RF model training (Table 2). The ability of RF model to discover the distinct impacts of L235

and V236 mutations on voltage gating is noteworthy and speaks strongly to the importance

and impact of including physics in deriving more reliable predictive models of protein func-

tion from small datasets.

At this point, the mechanistic basis for the opposite effects of L235 and V236 mutations on

BK voltage gating is not understood. It is likely that the S5-S6 and S5-S4 interfaces have dis-

tinct roles in mediating the VSD-pore coupling (see Fig 6A). For example, because disruption

of the S5-S6 packing by any mutations appears to make it harder for the pore to open (thus

increase V1/2), it is likely that the native S5-S6 interactions favor the open conformations of the

pore formed by four S6 helices. Conversely, disruption of the S4-S5 packing tends decrease V1/

2, suggesting that this interface stabilizes the conductive, open-pore state. The implication is

Fig 7. Correlation of experimental and predicted ΔV1/2 for four novel L235 and V236 mutations. A) Current traces for the WT and

four mutant channels. B) Normalized conductance (G/Gmax) versus voltage (V) curves for the WT and four mutants. Dashed lines denote

the Boltzmann fits for each curve (see Methods). C) Correlation between measured and predicted ΔV1/2. Error bars report the predicted

RF error and the propagated error from the experimental fitting, respectively. The dashed red line represents the best linear fit with

R = 0.92, and the gray line plots y = x.

https://doi.org/10.1371/journal.pcbi.1011460.g007
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that resting VSDs may play a role in arresting the pore in the closed state, such that weakening

the link between VSD and the pore (through random L236 mutations) would generally allow

the pore to open more easily. These speculations will need to be more thoroughly tested, such

as using a combination of atomistic simulations and electrophysiology.

Conclusions

Predictive modeling of how mutations may affect the function of complex proteins frequently

suffers from the data scarcity problem because functional characterization of mutant proteins

can be time consuming. Incorporating the physics of protein structure, dynamics and interac-

tion could provide the additional information required for training reliable models using lim-

ited data set. In this work, we collected the voltage gating measurements of a total of 473 single

mutations of the BK channel, a key target of biological and biomedical interest, and con-

structed a predictive model of the effects of single point mutations on BK voltage-gating, by

leveraging high-resolution cryo-EM structures of both the conductive and non-conductive

states and an array of physics-based features derived from MD simulations and Rosetta muta-

tion analysis. These physics-based features annotate the dynamic and energetic consequences

of all mutations, allowing the use of machine learning to better uncover patterns and correla-

tions for predicting the voltage gating of all possible single mutation, even though the available

data provides a poor coverage of the sequence with many positions seeing at most one or no

mutations. The final RF model is able to predict shifts in the gating voltage of the BK channel

with a correlation of R ~ 0.7 and RMSE ~ 32 mV. Replacing the physics-based features with

protein-independent chemical and physical properties of amino acids through AAIndex [123]

drastically reduce the accuracy of the model trained using the same functional data set.

It is noted that the final RF model remains largely semi-quantitative due to the small train-

ing set, with a tendency to under-predict the magnitude of V1/2 shifts. Nonetheless, it is rela-

tively reliable for identifying mutations with large V1/2 shifts as well as the direction of the

shift. As such, the model allows one to identify and investigate prominent features and hot-

spots in mutational effects of BK voltage gating. We illustrate that the model correctly recapitu-

lates how changing the hydrophobicity and hydrophilicity of the pore can shift the gating

voltage, consistent with the underlying hydrophobic gating mechanism of BK channels. We

further investigated a curious prediction that mutations two adjacent residues on the S5 helix

would always have opposing effects on BK voltage gating. Specifically, all mutations of L235

would increase V1/2, while those of V236 would always decrease V1/2. This prediction is con-

firmed by experimental characterization of four novel L235 and V236 mutations, as well as a

fifth one published after the modeling training (L235A, [127]). The molecular basis of the

opposing effects of L235 and V236 mutations is not yet understood, but the implication is that

both S4-S5 and S5-S6 interfaces play key roles in mediating VSD-pore coupling in BK chan-

nels. It should be noted that both the hydrophobic gating and effect of L235/V236 mutations

are localized to the PGD, the region with the best experimental coverage.

The final RF model may be useful for scanning for additional hotspots and provide new

insights and new directions for further mechanistic studies. Therefore, we have made all the

predictions of the production model available in an excel file in the SI. In addition, we compile

a table of mutations implicated in KCNMA1-linked channelopathies [68,69,130,131], with

their known functional consequences and the predicted ΔV1/2 (Table C in S1 Text). These

mutations present significant challenges to the RF model, as the loss- or gain-of-function

could result from changes in Ca2+ or Mg2+ sensitivity, changes in the expression level, or even

to cellular effects like localization, aggregation, or degradation of the channel. These latter

effects are not captured in the RF model, so we don’t expect the model to be very useful beyond
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scanning for hotspots in the voltage-gating pathway near the PGD and VSD interface, where

many available mutations might lead to higher confidence predictions (Fig C in S1 Text).

Nonetheless, the success of the modeling approach employed here demonstrates that MD sim-

ulations and point-mutation calculations in empirical and statistical potentials like Rosetta are

a powerful way to annotate the effects of mutations, to allow the integration of physics training

machine learning models with limited data sets. The modeling is relatively inexpensive, even

for large membrane-protein systems like the BK channel, and the results can be impressively

accurate for the specific purpose of identifying high-confidence trends and hotspots, even if

quantitative agreement of effects to all protein sites remains elusive.

Methods

Electrophysiology data collection and preparation

We conducted a literature search for single mutations of the BK channel with V1/2 recorded at

any Ca2+ concentration [86–109]. In addition, many not previously published mutations have

accumulated in the Cui lab over the years. Each mutation is associated with the WT V1/2 mea-

surement and ΔV1/2. These data are included in the S1 Text as well as through GitHub (see

below). Some mutations have been reported in multiple papers from different labs. For the

most part, the ΔV1/2 values reported for the same mutant differ by less than 20 mV. In such

cases, we use the data from the Cui lab whenever possible to minimize variability. In five cases,

namely T189A, R201Q, R207Q, R213Q and K228Q, the differences in report ΔV1/2 values are

larger than 20 mV and average ΔV1/2 values were used. In total, we collected 473 single muta-

tions either in the hslo1 gene or compatible with the hslo1 gene that had a ΔV1/2 at nominally

0 μM Ca2+ (as of September 2022). There were 201 mutations with at least one additional ΔV1/

2 entry at higher Ca2+ concentration, often 1–10 μM. 101 mutations had an additional mea-

surement in the 10–100 μM Ca2+ range. Fewer than 100 had a reading at three or more Ca2+

concentrations simultaneously. We included mutations that had ΔV1/2 too large to be

recorded, often because the mutant’s V1/2 was above 300 mV or below -200 mV. We used flag

values set to the largest ΔV1/2 in the data set (370 and -300 mV, respectively) for all mutations

with very low or very high conductance. Furthermore, we applied a quashing function,

s DV1=2

� �
¼ DVmax � tanh

DV1=2

DVmax

� �
, with ΔVmax = 200 mV, so that the magnitude of ΔV1/2 values

would maximize at 200 mV. Note that the squashing function compresses the large shifts as

they grow above 100 mV, while having little or no effect on shifts less than 100 mV (Fig H in

S1 Text). The distribution of the final squashed ΔV1/2 values is shown in Fig C in S1 Text.

Structure preparation and Rosetta energy calculations

We used PDB entries 6V3G and 6V38 as starting structures for the Ca2+-free (closed) and

-bound (open) BK channels [63]. Only segments present in both structures were included,

assuming mutations on unstructured segments would have minimal energetic effects, leaving

856 residues. We used the Positioning of Proteins in flat and curved Membranes server [132]

to obtain the membrane-aligned pdb-format structure, then used the Rosetta tool “mp_span_-

from_pdb” to generate a Rosetta TM span file. We used the “clean_pdb.py” script included in

Rosetta tools to satisfy Rosetta’s internal formatting conventions. Residue IDs shown in this

work follow the PDB numbering unless otherwise noted. The formatted, initial PDB structures

were subjected to a relaxation with the fast relax protocol prior to the mutation energy calcula-

tions (see below), in which only sidechains were allowed to move.

We used PyRosetta4 [113] and the franklin2019 Rosetta score function for membrane pro-

teins [114,116] to calculate the energetic effects of point mutations on BK channels. The
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franklin2019 score function is identical to the standard Rosetta Energy Function 2015 [112],

except for the addition of an implicit membrane solvation term, which accounts the free

energy cost of transferring the residue from an aqueous to lipid environment. The latter is

based on the implicit membrane model IMM1 [115]. The “predict_ddG.py” script released

with PyRosetta was used for calculating the folding free energy, ΔGfold, for both open and

closed conformations. Mutations were first relaxed using the fast relax protocol, where side-

chains within 8 Å Cβ-Cβ distance cutoff were allowed to repack. The raw total Rosetta energies

were first smoothed before calculating the mutational effects, to prevent unphysically large

energies from yielding unreliable differences. The squashing function used is:

s scoreð Þ ¼ Emax � tanh score
Emax

� �
, with Emax = 50 Rosetta Energy Units (REUs). Application of the

squashing function truncates large scores arising from steric clashes to a maximum of 50

REUs, while having minimal effect on scores less than 25 REUs (e.g., see Fig G in S1 Text). The

final ΔΔΔG scores were calculated as follows to reflect the effect of mutation on the open-

closed equilibrium of BK channels:

DDDG ¼ ðDGopen
fold � DG

closed
fold Þmutant � ðDG

open
fold � DG

closed
fold ÞWT ð1Þ

The same formula was used to calculate the contributions of all Rosetta energy components,

as summarized in Table A in S1 Text. The Rosetta energy calculations were performed for all

16264 single mutants of BK channels represented on the structure. We also computed the

effect of each WT mutation, (e.g., A316A), effectively as a baseline in comparison to the true

mutants.

Atomistic simulations and calculation of dynamical properties

The atomistic MD simulation were performed using the CHARMM36m protein [37] and

CHARMM36 lipid [133] force fields using Gromacs 2019 [31,134]. The simulation was initi-

ated from the closed state structure derived from PDB 6V3G [63]. The solvent boxes and simu-

lation inputs were generated using CHARMM-GUI web interface [135–138]. The solvated

system was energy minimized and equilibrated following the standard CHARMM-GUI Mem-

brane Builder protocols [135,137]. The final production MD simulation was run for 100 ns

with 2 fs step size. All hydrogen-containing bonds constrained with LINCS [139]. Electrostat-

ics were treated with the particle mesh Ewald algorithm [140] with a 12 Å cutoff, and van der

Waals forces were smoothly truncated from 10 to 12 Å. Nosé-Hoover thermostat [141,142]

was used to maintain the simulation temperature at 303.15 K with a coupling time τT = 1 ps-1.

The Parrinello-Rahman semi-isotropic barostat [143] was applied in membrane lateral direc-

tions to maintain a constant pressure of 1.0 bar with compressibility of 4.5x10-5 bar-1 and cou-

pling time τP = 5 ps-1.

We calculated three dynamical properties from the MD trajectory with snapshots taken

every 1 ns using CHARMM version 41a, including residue RMSF profile, Cα- Cα covariance

matrix, and average fractions of solvent-accessible surface area (SASA) of each sidechain. The

covariance matrix was calculated with CHARMM. The complete matrix corresponds to the

tetramer, so the portions corresponding to the intra-monomer and directly-neighboring-

monomer for residues A316 and V278, respectively. These two residues were selected because

each has multiple mutations with a significant ΔV1/2 and because their corresponding rows of

the covariance matrices were not correlated with one another. We used both the self-monomer

covariance matrices and neighboring-monomer covariance matrices, and the final matrices

were the average across all four monomers. We calculated RMSF of all Cα atoms using

CHARMM. Finally, we calculated the percentage of solvent-exposed surface area by
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calculating the SASA for each residue using CHARMM divided by the average SASA of a fully

solvent-exposed residue.

Additional structural and sequence-based features

Additional structural features were calculated from the equilibrated closed state structure

using CHARMM (Table B in S1 Text). We identified residues within 5 Å of any water mole-

cules and residues within 5 Å of any lipid molecules as water-exposed and lipid-exposed,

respectively. Residues that are both water and lipid exposed are identified as those at the mem-

brane interface (BORDER). The secondary structure of each residue (α-helix, β-sheet or coil)

was assigned using the Kabsch and Sander definition [144] as implemented in CHARMM.

Sequence conservation information was captured using predicted effect of single nucleotide

polymorphism from SIFT [121], a genomic-level tool based on the comparison of aligned

homologous sequences. This should account for the evolutionary pressure to conserve

sequences like the highly-conserved selectivity filter TVGYG sequence and ignore flexible

loops without strong sequence dependence across other channels. All the calculated features,

its abbreviated name, a brief description, and the type of calculation are listed in Table B in

S1 Text.

Statistical model selection, training and validation

We performed a grid search of hyperparameters for a variety of regression models in the

python scikit-learn library [145], including Ridge regression, SVR, KNN, RF, GP and MLP.

Prior to training, we examined the correlation of all the features we calculated in the previous

section and discarded features with correlation greater than 0.7, or where all mutations had

the same value, were removed, namely rama_prepro, yhh_planarity, hbond_lr_bb, and ref

(feature correlation matrix given in Fig I in S1 Text, feature names and descriptions given in

Table A in S1 Text). We then standardized the remaining features to have a mean of zero and

unit variance with the standard scalar in the scikit-learn preprocessing library. For training, we

first split the 473 single mutation data set randomly into 80% training and 20% testing using

the scikit-learn function train_test_split in the model_selection module. We then performed

the grid search of the key model parameters listed in Table B in S1 Text using 5-fold cross vali-

dation on the training data. As implemented in the scikit-learn models (RF, Ridge, SVR,

MLP), we used recursive feature elimination to train with an optimal feature set for each

model [146]. The space of model hyperparameters optimized over for each model, along with

the top performing parameters for each, is summarized in Table B in S1 Text. We selected the

RF model, as the resulting model gave optimal results on validation data while also being the

relatively insusceptible to variation in training data or choice of hyperparameters. The final RF

model hyperparameters are given in Table 3. There was no significant performance boost to

dropping any features from the RF model, which is expected from this type of models when

the features aren’t strongly correlated. The performance of the RF model on the 5-fold CV

splits and the 20% independent test set is reported in Fig D in S1 Text. The enrichment factor

(EF) is defined as:

EF ¼
ð%oftop10withDV1=2 > 50mVÞ þ ð%ofbottom10withDV1=2 < � 50mVÞ

f50

; ð2Þ

where f50 = 0.23, the fraction of mutations greater than ± 50 mV in the full dataset.

We noticed substantial variance across different splits owing to differences in the distribu-

tion of the experimental ΔV1/2 between train and test sets. We expected that the true model

performance might be under- or over-estimated given only a single random split. To better

PLOS COMPUTATIONAL BIOLOGY Predictive modeling of voltage gating of BK channels

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011460 September 15, 2023 17 / 27

https://doi.org/10.1371/journal.pcbi.1011460


estimate the RF model’s performance if trained on the full dataset, we performed the same

cross-validation on five separate 80/20 splits, and the RF model appeared relatively stable

across these tests (Fig 3). The final RF hyperparameters were then used to train a production

model on the complete dataset. The predictions of the production model are available as an

Excel sheet in the S1 Text as well as the GitHub repository (see below). Where shown, error

bars denote prediction uncertainty estimated using the bootstrap aggregation (bagging)

method for random forest regression described by Wager, et al. [125,126].

We used python3 for all the machine learning scripts including the pandas [147], scikit-

learn [145], and forestci [126] packages. All the numerical plots were generated using matplo-

tlib [148] and all the molecular rendering using VMD [149]. The relevant scripts and data files

are available at: https://github.com/enordquist/bkpred.

Experimental methods: Oocyte expression, mutagenesis, and

electrophysiology

The four novel mutations in this study (Table 4) were prepared using Pfu polymerase (Strata-

gene, La Jolla, CA) to overlap extension Polymerase chain reaction (PCR) from template of the

mbr5 splice variant of mslo1 (Uniprot ID: Q08460). We then sequenced the PCR-amplified

regions to confirm the mutations. mRNA was synthesized in vitro using T3 polymerase

(Ambion, Austin, TX) from linearized cDNA. Approximately 0.05–50 or 150–250 ng/oocyte

mRNA of the mutations was injected into stage IV-V oocytes from female X. laevis. After 3–6

days of incubation at 18˚C, the oocytes are prepared for electrophysiology recordings.

The experimental electrophysiology readings were collected from excised inside-out

patches on a set-up with an Axopatch 200-B patch-clamp amplifier (Molecular Devices, Sun-

nyvale, CA) and ITC-18 interface with Pulse acquisition software (HEKA Electronik, Division

Table 3. Final RF model hyperparameters. These parameters were selected based on initial 5-fold cross-validation

analysis on the 80% training data (see Table B in S1 Text). Description of hyperparameters were adapted from SciKit-

learn documentation.

Name Description Value

n_estimators Number of estimators in model (trees) in forest 500

min_samples_split Minimum samples to split internal node 2

max_leaf_nodes Maximum number of leaf nodes, best first 100

max_depth Maximum tree depth 20

max_features Maximum features to train with 1.0

ccp_alpha Cost-Complexity Pruning alpha 0.01

bootstrap Bootstrap Aggregation (BAGGing) True

oob_score Out-Of-Bag Score (error estimate) True

max_samples Maximum fraction of samples to train each tree with 1.0

min_samples_leaf Minimum number of samples in leaf 1

https://doi.org/10.1371/journal.pcbi.1011460.t003

Table 4. Boltzmann fit parameters of G-V curves.

V1/2 ± SEM (mV) b ± SEM (mV)

WT 176.2 ± 4.4 29.0 ± 4.0

L235H 187.9 ± 3.6 23.9 ± 3.3

L235F 230.7 ± 6.3 27.3 ± 6.7

V236H 139.8 ± 4.8 20.0 ± 4.2

V236N 164.5 ± 4.9 19.2 ± 4.3

https://doi.org/10.1371/journal.pcbi.1011460.t004

PLOS COMPUTATIONAL BIOLOGY Predictive modeling of voltage gating of BK channels

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011460 September 15, 2023 18 / 27

https://github.com/enordquist/bkpred
https://doi.org/10.1371/journal.pcbi.1011460.t003
https://doi.org/10.1371/journal.pcbi.1011460.t004
https://doi.org/10.1371/journal.pcbi.1011460


of Harvard Bioscience, Holliston, MA). We pulled the Borosilicate pipettes using a Sutter P-

1000 (Sutter Instrument, Novato, CA) to obtain 0.5–1.5 MO resistance for inside-out patches

obtained from the oocyte membrane. We obtained the current signals with low-pass-filtered at

10 KHz and digitized at 20-μs intervals. Two solutions were used in recording. The first was a

pipette solution (in mM): 140 potassium methanesulphonic acid, 20 HEPES, 2 KCl, 2 MgCl2,

pH 7.2. The second was the nominal 0 μM [Ca2+]i solution (in mM): 140 potassium methane-

sulphonic acid, 20 HEPES, 2 KCl, 5 EGTA, pH 7.1–7.2. There is about 0.5 nM free [Ca2+]i in

the nominal 0 [Ca2+]i solution.

We measured the macroscopic tail current at either -80 mV or -120 mV to determine the

relative conductance. The conductance-voltage (G-V) relationships were fitted using the Boltz-

mann function:

GðVÞ
Gmax

¼
1

1þ exp � zeðV� V1=2Þ

kT

� � ¼
1

1þ exp V1=2 � V
b

� � ; ð3Þ

where G/Gmax represents the ratio of conductance to maximal conductance, z denotes the

number of equivalent charges, e denotes the elementary charge, V denotes the membrane

potential, V1/2 is the voltage in mV at which G/Gmax reaches 0.5, k denotes Boltzmann’s con-

stant, T denotes absolute temperature, and b is the slope factor measured in mV. The fitted

parameters are reported in Table 4. Each G-V relationship presented in the figures is the aver-

age of 3–7 patches, and the error bars indicate the standard error of means (SEM). Similar pro-

tocols have been used for the 230 previously acquired mutations that had been expressed and

characterized in the Cui lab over the years.

Supporting information

S1 Text. Fig A. Mean RMSF (blue) and percent SASA (orange) by Residue ID (ResID). The

RMSF has the units of Å, and the mean percent SASA is a unitless percentage. These features

were calculated from 100 ns MD simulation of the deactivated BK channel. Fig B. Correlation

of experimental ΔV1/2 with the total Rosetta ΔΔΔG and LJ dispersion, the change in hydro-

phobicity upon mutation, and the Cα-Cα covariance with residue A316. The Pearson corre-

lation coefficient is R < 0.01. See method section for description of how the Rosetta ΔΔΔG

scores were calculated. Fig C. Distributions of (A) experimental ΔV1/2 values and (B) num-

ber of existing mutations along the sequence. Each histogram was generated using 100 bins.

(A) depicts the ΔV1/2 distribution after squashing between ± 200 mV (see Methods). The key

functional domains are highlighted beneath (B). Fig D. 5-fold cross-validation on initial

training split. In all panels, blue denotes a data point used to train that iteration of the model,

orange denotes validation or testing. The first five panels correspond to the 5-fold cross-valida-

tion within the training set (80% of the total data). The final panel (bottom right) was trained

on the full training set and validated using the rest 20% of the full data set. This split corre-

sponds to the 80/20 training/test split 1 from Table 1. Fig E. Feature Importance. Importance

is reported as the mean decrease in Gini impurity score. A larger decrease in this impurity

score means that using the feature in a branch of a tree often leads to greater ability to distin-

guish large and small shifts, for example. Names of features and their source are provided in

Table B in S1 Text. Fig F. Performance of control model trained without physics-based

descriptors. In all panels, blue dots denote data points used to train that iteration of the

model, and orange dots denote the independent test data. Fig G. Correlation of the true and

predicted error for the train and test sets of the five independent data splits. Blue and

orange dot represent training and test data, respectively. The dashed lines denote lines of best

fit with the same color scheme. The gray lines denote x = y. Fig H. Illustration of the
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squashing function for pre-processing of various raw quantities. The blue line plots the

original, un-squashed function as a reference. Fig I. Feature correlations. Correlation of the

features used in the model training. Correlation is reported as the Pearson correlation coeffi-

cient. Names and descriptions of features and their sources are provided in Table A in S1 Text.

Table A. List of features and their descriptions. All Rosetta terms are ΔΔΔG values between

the closed and open states as described in Methods. Table B. Summary of machine learning

models, hyperparameters trained in Grid Search, and training and validation correlation

(R) and RMSE from 5 independent splits of data. The set of hyperparameters which corre-

spond to top mean score are bolded. The pairs of scores correspond to all five splits of data.

Table C. Neurological BK channel mutants, channel activity phenotypes, functional mech-

anisms (if known), and predicted ΔV1/2 values. Abbreviations: VUS: Variant of Uncertain

Significance, NE: No effect, LOF: Loss of Function, and GOF: Gain of Function. The Coordi-

nation of Rare Diseases at Sanford (CoRDS) is a standardized patient registry in a de-identified

format. NP stands for No Prediction; the model doesn’t predict any shift for mutations to resi-

dues absent in either PDB structure.
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