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Abstract

Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an indispensable tool for

the study of particle size distributions in biopharmaceutical industry, for example, to charac-

terize protein therapeutics and vaccine products. In particular, the diffusion-deconvoluted

sedimentation coefficient distribution analysis, in the software SEDFIT, has found wide-

spread applications due to its relatively high resolution and sensitivity. However, a lack of suit-

able software compatible with Good Manufacturing Practices (GMP) has hampered the use

of SV-AUC in this regulatory environment. To address this, we have created an interface for

SEDFIT so that it can serve as an automatically spawned module with controlled data input

through command line parameters and output of key results in files. The interface can be inte-

grated in custom GMP compatible software, and in scripts that provide documentation and

meta-analyses for replicate or related samples, for example, to streamline analysis of large

families of experimental data, such as binding isotherm analyses in the study of protein inter-

actions. To test and demonstrate this approach we provide a MATLAB script mlSEDFIT.

Author summary

Sedimentation velocity analytical ultracentrifugation (SV-AUC), a classical first-principles

based method to study size-distributions of macromolecules and particles in solution, has

become a popular technique in a variety of disciplines, such as physical biochemistry,

structural biology, supramolecular chemistry, and nanoparticles due to its high resolution,

wide size-range, and label-free detection. It has also assumed an important role in phar-

maceutical development of therapeutics and vaccines. One factor complicating the imple-

mentation of SV-AUC in biotechnology is the lack of compatibility of the most widely

used software, SEDFIT, with regulatory requirements in the good manufacturing practices

(GMP) environment. In this paper we present a solution to this problem, by introducing a

command line interface that permits automated configuration of SEDFIT, data loading,

and retrieval of results. In this way, SEDFIT may be used as a computational module inte-

grated in GMP-compliant software. We demonstrate the validity of the results from this

approach. In addition, this automation facilitates meta-analyses of families of SV-AUC

experiments, for example, in binding isotherm analysis of interacting macromolecules.
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Introduction

Sedimentation velocity analytical ultracentrifugation (SV-AUC) is a classical first-principles

based method to study particles that sediment or float as a result of a gravitational field gener-

ated in a centrifuge [1–3]. In the last two decades, this technique has been used in a growing

number and types of applications, coinciding with a significant advance in the computational

data analysis [4]. Specifically, the combination of efficient Lamm equation modeling [5], novel

size-distribution techniques for direct data fitting with and without diffusional deconvolution

[6–8], and systematic noise analysis [9,10] as combined in the ls-g*(s) and the high-resolution

c(s) approach implemented in the software SEDFIT has garnered widespread applications.

These include analyses of size-distributions, hydrodynamic properties, and interactions of par-

ticles across the entire size-range accessible to SV-AUC from below 1 kDa to above 10 GDa,

ranging from small carbohydrates and peptides [11–13] to proteins and protein complexes

[14–17], carbohydrates [18], synthetic polymers [19], small and large nanoparticles [20,21],

multi-protein complexes and interacting systems [15,22–25], lipid vesicles and emulsions

[26,27], viral particles [28–34], and entire cellular organisms [35], at concentrations from pico-

molar to millimolar [3,36,37]. Due to the high resolution and sensitivity, and the measurement

of particle sedimentation free in solution in the absence of surfaces or labels, this approach has

also proven to be advantageous in biotechnology for the characterization of therapeutic and

vaccine products, for example including antibody and other protein therapeutics [38–47], pro-

tein/polymer conjugates [48,49], and AAV products [28–32].

One of the challenges of applying SV-AUC in the context of biopharmaceutical production

is the lack of software compliant with current good laboratory practices (cGLP) and current

good manufacturing practices (cGMP) that satisfies part 11 of Title 21 of the Code of Federal

Regulations; Electronic Records; Electronic Signatures (21CFR11) by FDA [50]. Other existing

limitations are the required expertise and the laboriousness of serial analyses, for example, of

replicate sets or of titration series in the study of interacting systems [43,44,51]. Both would

greatly benefit from some degree of automation and streamlining of the data analysis. For this

purpose, the present work presents an extension of the SEDFIT software for partially auto-

mated operation through the use of a command line interface. The interface allows starting

SEDFIT in a specific state, as well as communicating data, analysis parameters, and results.

Any secondary software utilizing this interface can spawn SEDFIT, automatically load specific

data, execute a specific model for analysis, and retrieve the best-fit results of SEDFIT for docu-

mentation, further aggregation, and to carry out meta-analyses of multiple sedimentation coef-

ficient distributions. While this allows streamlined SV-AUC analysis of replicates and titration

series, importantly, this approach will be particularly suitable for preserving custody of data

and associated analysis results and generating audit trails consistent with 21CFR11.

As illustrated in the present work, the results from such command-line controlled analyses

are equivalent to the standard entirely manual use of SEDFIT. Due to the universality of

SV-AUC, this approach can be applied to the analysis of therapeutic proteins, carbohydrates,

nucleic acids, protein/polymer conjugates, any viral vectors (recombinant or wildtype) includ-

ing adeno-associated virus (AAV), adenovirus, and lentivirus, lipid vesicles and lipid-based

nanoparticles, metal- and other nanoparticles with and without protein conjugates or associ-

ated macromolecules such as loaded nucleic acids or proteins.

Method

The general strategy for command line operated SEDFIT is for it to be spawned by a secondary

software, initiating a controlled input of data and providing a controlled return of the analysis
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results (Fig 1). This will allow logging of all activities and safely record results for further pro-

cessing. SEDFIT may be also manually executed from the command line, for example, from

within the DOS command prompt in Windows, although this would not take advantage of

much of the graphical user interface for loading and saving data that is provided in the conven-

tional stand-alone operation of SEDFIT. As a roadmap for the envisioned incorporation of

command line operated SEDFIT into secondary software, we have created a set of MATLAB

scripts mlSEDFIT, which can be freely downloaded from sedfitsedphat.nibib.nih.gov/software.

The command line-controlled run of SEDFIT requires three command line parameters.

The first is a number that identifies the SEDFIT mode of operation, at present with possible

values of “111” and “112”. The mode “111” will invoke SEDFIT with a standard menu allowing

the full range of SEDFIT analyses models, and “112” will present SEDFIT with a reduced set of

menu functions more narrowly tailored to elementary size-distribution analyses. In this

Fig 1. Flowchart for the use of SEDFIT in command line operation with a secondary software. The secondary

software organizes access control and preprocesses data. After SEDFIT is spawned by the secondary program, it reads a

specifically formatted input file, and provides a graphical user interface with options controlled by the secondary

program. Upon termination of SEDFIT analysis, its output files are read, and quality control, postprocessing and

documentation by the secondary program can take place. This flow allows a single or multiple copies of SEDFIT to be

utilized solely as a computational module within a framework of the secondary program, which may enforce GMP

compatibility, incorporate results into meta-analyses, and/or provide an expert system or AI for automated analysis

and quality control.

https://doi.org/10.1371/journal.pcbi.1011454.g001
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restricted mode, non-standard settings are inaccessible to the operator. Different values of this

command line parameter are possible in future implementations with alternate behavior. The

second command line parameter is an arbitrary string that serves to identify the SEDFIT call.

It will be repeated by SEDFIT after completion of the analysis, and thereby provides a layer of

security that the reported results do belong to the requested analysis. The third parameter is

the path of the input file. For example, the command line could be “sedfit.exe 111
handshakestring c:\datafolder\TestInput.xml” (without the quotes) where

‘handshakestring’ can be replaced by any string, and ‘c:\datafolder\TestInput.xml’ should be

replaced by the appropriate directory and filename to point to a valid xml input file in the cor-

rect format.

An example for an input file is provided in S1 File. For convenience in generating and pars-

ing the input file, it is in xml format version 1.0, as indicated in the first line by the prolog

string <?xml version="1.0" encoding="UTF-8"?>. This is followed by the root

‘cGMPSedfitCall’ as written in an initial <cGMPSedfitCall> call, which is paired with a

final </cGMPSedfitCall> statement at the end of the file. In between these opening and

closing root identifiers are the analysis parameters. They can be in any order, but must adhere

to the xml syntax of <ParameterName>value string</ParameterName>, where

‘ParameterName’ is any of the identifiers described below, and ‘value string’ can be a number,

a file path, the string TRUE, FALSE, or other string, as appropriate for the parameter. A com-

plete list of all parameters, their purpose and possible values can be found in Table 1. Unless

the menu of SEDFIT is restricted (in mode “112”, see above), all parameters can also be set

later as usual in the SEDFIT user interface by the operator.

While most of the input parameters are strictly related to the data analysis, some are related

to the SEDFIT interface and analysis flow. Most importantly, the parameter

AllDoneFlagFile will establish the path and name of the file that will be created upon

completion of the SEDFIT analysis. For example, it might be called ‘c:\datafolder\finished.txt’.

Importantly, this file must not exist prior to the SEDFIT call, such that its creation can be used

as a convenient flag to the secondary software that SEDFIT has created the results files and was

exited. The only content of this file will be the handshake string (second command line param-

eter, see above), which may be checked by the secondary software for consistency with the call-

ing parameter. The parameter OutputResultsDirectory is a path that points to the

directory where SEDFIT will create several output files describing the results after conclusion

of the analysis, as detailed below. For example, the string ‘c:\datafolder\analysisresults\results1’

will cause SEDFIT to create the subfolder ‘results1’ within the existing ‘c:\datafolder\analysis-

results’ directory, and all results files will be located in this ‘results1’ subfolder. Finally, it is pos-

sible to use a parameter PassThrough to declare any string that, for convenience and

clarity, should be repeated in the output xml file. For example, this could be a sample name,

user notes, or some additional control strings to be recorded alongside the results. It may also

be itself an xml-formatted string, but in this case it should not contain any regular parameter

identifiers used in the SEDFIT interface to avoid conflicts.

To define the data to be analyzed, the input file must specify the folder containing the

SV-AUC scan files in the parameter DataDirectory, the parameter Channel that identifies

the scan file extension, and the parameters FirstScan, LastScan, and ScanInterval
that specify the set of scans to be loaded. It is assumed that the scan files are in the customary

SV-AUC numeric format with leading zeros. This information substitutes for manually invoking

the Load New Files function in the Data menu of SEDFIT. For example, if DataDirectory is

‘c:\datafolder\Run158’, Channel is ‘IP2’, FirstScan is ‘1’, LastScan is ‘101’, and

ScanInterval is ‘10’, SEDFIT will load 11 files named ‘c:\datafolder\Run158\00001.ip2’, ‘c:

\datafolder\Run158\00011.ip2’, ‘c:\datafolder\Run158\00021.ip2’, . . ., ‘c:\datafolder\Run158
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Table 1. List of Input Parameters. Input parameters will be read from a file named as third command line parameter. It is in xml format and parameters are case sensi-

tive. An example can be found in S1 File.

Parameter Name Values Purpose

AllDoneFlagFile path to non-existent file in existing

directory

creation of this file will serve as a flag that SEDFIT analysis has concluded

OutputResultsDirectory path to non-existent directory folder location where results files will be saved

PassThrough arbitrary string for additional information, such as sample name, to be repeated in output file; can be xml

formatted

DataDirectory path to data folder for accessing scan files

Channel file extension of scan file defines cell number and scan type

FirstScan integer first scan to be loaded

LastScan integer last scan to be loaded

ScanInterval integer interval of scans to be loaded

FilterDataSpikes TRUE/FALSE switch to filter adventitious spikes in scan files

DataSpikeThreshold floating point number threshold for recognition of isolated data spikes

Meniscus floating point number air/solution interface distance from center of rotation, in cm

MeniscusLowerLimit floating point number lower limit of meniscus during fit

MeniscusUpperLimit floating point number upper limit of meniscus during fit

Bottom floating point number distal end of the solution column, in cm from center of rotation, in cm

BottomLowerLimit floating point number lower limit of bottom position during fit

BottomUpperLimit floating point number upper limit of bottom position during fit

LeftFitLimit floating point number minimum radial position of the data range included in the analysis, in cm

RightFitLimit floating point number maximum radial position of the data included in the analysis, in cm

AutoRun TRUE/FALSE switch to automatically call the “Run” command after loading data

AutoFit TRUE/FALSE switch to automatically call the “Fit” command after loading data and optional “Run”

AutoSubtractSystematicNoise TRUE/FALSE switch to subtract all best-fit systematic noise components from the data in the scan file

display of the SEDFIT window

ShowResidualsHistogram TRUE/FALSE switch to display the residuals histogram next to the residuals overlay in the SEDFIT

window

Model ‘cofs’ or ‘lsgofs’ (no quotation marks) model selection

Resolution integer number of grid points in the distribution

Smin floating point number minimum s-value of the distribution

Smax floating point number maximum s-value of the distribution

GridfromFile TRUE/FALSE switch to read the distribution grid from “sdist” file

UseLogSpaceSgrid TRUE/FALSE switch to abandon equidistant spacing of grid points in favor of logarithmic spacing

RegularizationType ‘maxent’ or ‘Tikhonov’ (no quotation

marks)

defines the regularization used in the distribution analysis

RegularizationPvalue floating point number p-value for scaling the extent of regularization, between 0.5 and 1.0

SuppressBaselineCorrelation TRUE/FALSE switch to use Bayesian prior to reduce correlation of smallest s-value in the distribution with

baselines

NumberComputationThreads integer number of computing cores available for SEDFIT

FittingAlgorithm ‘Simplex’ or ‘Levenberg-Marquardt’ (no

quotation marks)

choice of algorithm for non-linear regression

StartingFrictionalRatio floating point number frictional ratio value to be used for c(s) analysis

FrictionalRatioFitted TRUE/FALSE switch to optimize the frictional ratio in non-linear regression

MeniscusFitted TRUE/FALSE switch to optimize meniscus position

BottomFitted TRUE/FALSE switch to optimize bottom position

BaselineFitted TRUE/FALSE switch to optimize radial- and time-invariant baseline

RINoiseFitted TRUE/FALSE switch to optimize radial-invariant baselines

TINoiseFitted TRUE/FALSE switch to optimize time-invariant baselines

(Continued)
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\00101.ip2’. Scan data not conforming to the assumed filename convention should be renamed

accordingly by the secondary software prior to spawning SEDFIT. The parameters

FilterDataSpikes and DataSpikeThreshold will control whether to ignore isolated

spikes in the scan data and the threshold for defining a spike, analogous to the corresponding

Loading Options and Tools function of the Options menu of SEDFIT. If the parameters relating

to spike filtering are not set then the default filtering with a threshold of 0.4 will be applied.

The input parameters related to the SEDFIT workflow include AutoRun and AutoFit,

both of which take Boolean values TRUE or FALSE. If TRUE they will automatically initiate

the SEDFIT Run or Fit command, respectively, directly after loading the data. This will be

equivalent to manually invoking these commands from the SEDFIT menu. (It should be noted

that when using AutoFit the analysis is carried out before the SEDFIT window appears on

the screen.) To enhance the performance of SEDFIT, a parameter

NumberComputationThreads can be set according to the computational cores that SED-

FIT should employ for multithreaded computations. In c(s) distribution analyses in SEDFIT,

key computational steps will be approximately n-fold faster if n> 1 threads are specified and

available [52]. While the default is 2, the optimal value will depend on the computer hardware

and on concurrently running software, which may be other instances of SEDFIT. The best

choice for n is usually the total number of processing cores of the computer used. Finally,

parameters related to the graphical data presentation are ShowResidualsHistogram and

AutoSubtractSystematicNoise, which will take Boolean values TRUE or FALSE and

control the visual appearance of the SEDFIT analysis window as in their corresponding SED-

FIT menu functions [9,10,53]. In addition to changing the graphical display of the SEDFIT

window during data analysis, an image of this window will be saved for documentation at the

end of the analysis. Scan data, best-fit values, and residuals will also be saved in an output file,

so that the graph showing the quality of fit can be recreated (see below).

Ancillary parameters needed for the analysis are the estimated locations of the meniscus

and bottom of the solution column, and their fitting limits. Meniscus and Bottom, as well

as LeftFitLimit and RightFitLimit, are specified as numerical values in cm from the

center of rotation, and will function equivalently to their customary graphic input in SEDFIT.

During the SEDFIT analysis, they can still be readjusted by the operator or by the fitting rou-

tine. If the parameter MeniscusFitted is set TRUE, the meniscus value will be optimized

during the fit, remaining within the bounds specified in the MeniscusLowerLimit and

MeniscusUpperLimit parameters (which should bracket the Meniscus value and be

smaller than LeftFitLimit). Fitting for the meniscus is usually recommended, and there-

fore coarse initial estimates may suffice, for example, from a table of expected solution column

heights dependent on filling volume in standard double-sector cells provided in [3], from a

simple identification of the meniscus artifact in scan files, or from a preliminary analysis. Anal-

ogous parameters are available for fitting the bottom of the solution column (Table 1), how-

ever, unless significant back-diffusion is affecting the sedimentation process, typically the

bottom position does not need to be fitted in standard analysis and the corresponding value

for BottomFitted would be FALSE.

Table 1. (Continued)

Parameter Name Values Purpose

Vbar floating point number partial-specific volume to be used in hydrodynamic scaling law to scale diffusion coefficient

from frictional ratio in c(s) analysis, in mL/g

BufferDensity floating point number density of solvent, in g/mL

BufferViscosity floating point number viscosity of solvent, in g/mL

https://doi.org/10.1371/journal.pcbi.1011454.t001
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Most importantly, the parameter Model specifies the data analysis model. It currently can

take string values of ‘lsgofs’ for the ls-g*(s) model [7,8] and ‘cofs’ for the c(s) model [6,7]. Speci-

fying these models is equivalent to their selection in the Model menu of SEDFIT. Both are sed-

imentation coefficient distribution models that require definition of the discrete grid of s-
values through Smin, Smax, and Resolution. Analogous to the manual entry of these

parameters in the model parameter boxes of SEDFIT, they take numerical values describing

the range of the distribution and the number of grid points. Alternatively, if the parameter

GridfromFile is set TRUE, the grid of s-values can be read from a file ‘sdist’ with the same

extension as the scan files (such as ‘sdist.ip2’) that must be located in the same folder as the

scan data. This text file will automatically be created after each analysis and contains a single

column of s-values of the distribution grid, but it can also be edited and augmented and serve

as a template for new distribution analyses with custom-spaced grid, for example, to efficiently

describe very small or very large sedimenting species outside the range of the majority particles

of interest. Another option to modify the grid is UseLogSpaceSgrid, which when TRUE
abandons equidistant grids in favor of logarithmically increasing s-value intervals. When using

the command line interface these grid functions operate identically with their common stand-

alone use of SEDFIT.

The c(s) analysis applies diffusional deconvolution to achieve sedimentation coefficient dis-

tributions with high hydrodynamic resolutions. When using the SEDFIT command line inter-

face, the most commonly used standard c(s) variant is applied where the diffusion coefficients

associated with each sedimentation coefficient are based on a hydrodynamic scaling law via a

constant hydrodynamic frictional ratio. Thus, the parameter

StartingFrictionalRatio must be set. The numerical values of the predicted diffu-

sion coefficients also depend on the partial specific volume Vbar (to be specified in mL/g)

and the buffer density BufferDensity (in g/mL). During the analysis, non-linear regres-

sion will be used to optimize the frictional ratio during the fit when

FrictionalRatioFitted is TRUE. It should be noted that, unless the final frictional

ratio is to be interpreted quantitatively, the partial specific volume values can be rough esti-

mates. The distribution analysis also requires regularization to avoid spurious peaks and error

amplification [6,52], which is set through the parameter RegularizationType. It cur-

rently can take values ‘maxent’ for maximum entropy regularization or ‘Tikhonov’ for Tikho-

nov-Philips regularization [6]. As is standard in SEDFIT, the tolerated increase in the root-

mean-square deviation (rmsd) of the fit allowed for regularization is scaled by F-statistics and

a p-value specified in the parameter RegularizationPvalue [7]. Since sedimentation

patterns of very small particles are very similar to baseline offsets, a correlation between base-

lines and distribution values at small s-values can exist. As shown previously, this correlation

can be suppressed through a Bayesian prior at the smallest s-value [54], and this is specified by

setting the parameter SupressBaselineCorrelation to TRUE.

Lastly, details of the fit can be specified through the command line interface. The fitting

algorithm is chosen by setting the parameter FittingAlgorithm to either ‘Simplex’ or

‘Levenberg-Marquardt’. In addition to the above mentioned fitting of meniscus and bottom of

the solution column and the frictional ratio, the treatment of baselines can be specified in the

parameters BaselineFitted, RINoiseFitted, and TINoiseFitted. If set to TRUE
this will cause a spatio-temporally uniform baseline, a time-dependent baseline, and/or a radial-

dependent baseline to be fitted during the nonlinear regression, respectively [9,10]. It should be

noted that even when the SEDFIT operation is set to automatically execute a Run and Fit com-

mand, these procedures can be interrupted and/or manually executed by the SEDFIT operator

as usual. Even in the reduced SEDFIT menu it is possible to readjust solution column parame-

ters and other fitting parameters to achieve the best fit prior to concluding the analysis. The
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usual side effect of the SEDFIT analysis is the creation of the above mentioned ‘sdist’ file con-

taining the s-value grid of the distribution analysis, as well as a file named ~tmppars that, when

manually reloading the scan files will allow to restore the last best-fit analysis. Both files are

located in the data directory and have the same file extension as the scan files loaded.

When the operator invokes the Exit function of SEDFIT, several files are created prior to

the termination of the SEDFIT process and placed in the designated output folder defined in

the OutputResultsDirectory parameter. The first is a bitmap image of the SEDFIT

window, saved as ‘screenshot.bmp’. Besides the graphical display of the scan file overlay and

fit, residuals overlay, distribution, and optional residuals bitmap, it shows the customary infor-

mational text that provides information about the data files and fitting parameters including

the overall rmsd of the fit. Further, it creates text files ‘RInoise.dat’ and ‘TInoise.dat’ which

contain two columns with the best-fit time- and radial-dependent baseline values. A file

‘ScanRMSD.dat’ provides information about the rmsd of the fit to each scan file separately.

This may help to recognize trends or outliers. The file ‘distribution.dat’ contains two columns

with the distribution in form of grid s-values vs. c(s) values. This distribution file can later be

integrated used for further analysis in the secondary software. A file ‘dfr.dat’ saves the fitted

boundary data for recreation of the data and fit overlay plot, and a residuals plot or bitmap. It

is an ASCII text file in the form of a matrix with columns: radius (TI noise), TI noise, RI noise,

radius (scan 1), raw data (scan 1), fit value (scan 1), radius (scan 2), raw data (scan 2), fit value

(scan 2), etc., and rows corresponding to consecutive radii or scan times, respectively. Finally,

SEDFIT creates an output file ‘ResultParameters.xml’ in the same xml format as the input file

and containing the same parameters, some of which may have changed due to adjustments

during the fit or by operator actions. Such changes may be registered in the spawning pro-

gram. In addition, it reports the SEDFIT version, file paths of all input SV-AUC scan data files

and all output files, as well as the PassThrough parameter.

As statistical measures of the quality of fit the output file reports the overall rmsd (RMSD),

the number of data points fitted (RMSD-points), the sum of squared residuals

(RMSD-SSR), the runs test Z-value (RunsTestZ), and the histogram H (HistogramH)

[7,53]. Additional information about the data include whether scan file time stamps could be

accessed for correction (CheckTimeStamps) [55], the rotor speed (RotorSpeed), the

time and accumulated ω2t value of the last scan (tLastScan and w2tLastScan), the rotor

temperature at the time of the first and last scan (TemperatureStart and

TemperatureEnd), as well as the temperature average and largest temperature difference

(TemperatureAverage and TemperatureDiffMax-Min). These parameters may be

used for experimental quality control to flag the possible presence of convection artifacts

[56,57]. A full list of the output parameters can be found in Table 2.

To indicate termination of the SEDFIT analysis and to allow hand-over to the secondary

software, the AllDoneFlagFile is created. As mentioned above, this ASCII text file con-

tains as sole entry the handshake string from the command line starting SEDFIT. Creation of

this file also indicates that the other results files have been created, which will not be the case if

SEDFIT is prematurely exited.

In summary, to access the SEDFIT command line interface any secondary software must

carry out the following tasks (Fig 1): 1) organize data such as scan files and starting analysis

parameters; 2) generate an input xml file that contains the desired SEDFIT completion flag file

(which must not exist yet) and designate the directory for results files; 3) execute SEDFIT with

the command line parameters, including a handshake string; 4) wait for completion of the

analysis by periodically checking for the creation of the specified completion flag file contain-

ing the handshake string; 5) read the results from the xml and other output files created by

SEDFIT; 6) perform optional quality checks, optional integration of the distribution results,
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carry out secondary analyses, and/or write automated reports. These tasks can be wrapped in

access controlled environment, as necessary in the GMP setting. To allow efficient analyses of

a large number of samples, the SEDFIT interface can be run in multiple instances side-by-side;

if care is taken to create unique AllDoneFlagFile files and

OutputResultsDirectory locations, different SEDFIT instances will operate

completely independently of each other.

Results

To test the command line interface we wrote a family of MATLAB scripts for data input and

retrieval of results, termed ‘mlSEDFIT’. The script may be taken as a template for further mod-

ification. We applied it to the analysis of stressed NISTmAb monoclonal antibody [58] that is

partially denatured and presents a series of oligomeric populations and a multimodal sedimen-

tation boundary (Fig 2). Using the AutoRun and AutoFit option, the non-linear regression

converges at an rmsd of 0.006743 OD (Fig 2, solid lines) with a best-fit meniscus at 6.1657 cm,

a best-fit frictional ratio of 1.37, and the c(s) distribution shown in Fig 3.

Table 2. List of Additional Output Parameters. Output will be written in an xml formatted file in the designated output folder. Output parameters include the same

parameters regarding data, model, and solution conditions as the input parameters, but also include the additional parameters in this table.

Parameter Name Values Purpose

SEDFITVersion string document the SEDFIT version

ScreenShotPath path to screenshot.bmp

file

documented screenshot at end of analysis

CofsDataPath path to distribution.dat

file

two-column ASCII text file with the best-fit sedimentation coefficient distribution for further analysis

TINoisePath path to TInoise.dat file two-column text file with TI noise profile as function of radius to aid in graphical display of scan files

RINoisePath path to RInoise.dat file two-column text file with RI noise as function of time to aid in graphical display of scan files

ScanRMSDpath path to ScanRMSD.dat

file

two-column text file with local rmsd for each scan file, to detect outliers and trends

ScanDataFilesLoaded list of paths document all the scan files that were fitted

PassThrough arbitrary string for additional information, as specified in the input parameter file

CheckTimeStamps TRUE/FALSE for documentation whether time stamps of the scan files were accessible for scan time correction

RotorSpeed integer rpm of the experiment, as read from scan files

Wavelength floating point number wavelength entry read from the scan files

w2tLastScan floating point number ω2t entry read from last scan file

tLastScan floating point number time entry read from last scan file

TemperatureStart floating point number temperature entry read from first scan, to document temperature discrepancies as a possible source of convective

artifacts

TemperatureEnd floating point number temperature entry read from last scan

TemperatureAverage floating point number average temperature entries from all scans

TemperatureDiffMax-

Min

floating point number range of temperature variation during the SV run

FittingStepsText string top line of the SEDFIT fitting information display, containing detailed information about the algorithm and steps

during non-linear regression

RMSD floating point number final rmsd of the fit

RMSD-points integer total number of data points fitted

RMSD-SSR floating point number sum of squared residuals of the fit

RunsTestZ floating point number result of the runs test for statistics of runs of positive and negative residuals, as a measure for randomness of

residuals

HistogramH floating point number statistical analysis of the similarity of the residuals histogram to a Gaussian

FrictionalRatio floating point number best-fit frictional ratio after c(s) analysis

https://doi.org/10.1371/journal.pcbi.1011454.t002
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It is possible to manually reload the command line generated analysis and inspect the fit

further. However, as an independent control we loaded the same data separately in standard

operation of SEDFIT and performed an analysis with the same model. It converged to an rmsd

of 0.006738 OD, with a best-fit meniscus at 6.1655 cm, a best-fit frictional ratio of 1.35, and a c
(s) distribution that is virtually identical in all aspects to the distribution from command line

operated SEDFIT analysis (Fig 3). Differences of< 0.01 S in sedimentation coefficients

and< 0.1% in population for all peaks are observed, which is better than the typical accuracy

and statistical precision of SV-AUC analysis.

Generally, one practical limitation in comparing analysis results can be the required graphi-

cal input of the fitting limits, which is replaced by numerical control in the command line

parameters. Similarly, detailed loading option preferences may differ in the two operation

modes. Furthermore, small and insignificant numerical differences in repeat analyses should

be expected with the Simplex algorithm for fitting, since this involves initial randomization of

fitting parameters. Small differences may also be found when adopting different paths in the

error surface during non-linear regression. In the present case, remaining insignificant differ-

ences in the fit are a result of a locally very flat error surface for the precise numerical value of

Fig 2. Sedimentation analysis of a stressed NISTmAb sample at 50,000 rpm and 20˚C using the command line

operation of SEDFIT. Top: Scan files and best fit (for clarity, showing black dots only for every 2nd data point of every

2nd scan) with a c(s) model automatically converged to a final rmsd of 0.006743 OD (colored lines). Progression of scan

time is indicated by color from purple to red. Middle and Bottom: Residuals bitmap and residuals overlay. Plot was

made using the software GUSSI [59], which is spawned from the script mlSEDFIT.

https://doi.org/10.1371/journal.pcbi.1011454.g002
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the frictional ratio parameter, which ultimately reflects the limit of diffusion information con-

tent of the broad sedimentation boundaries of the sample dataset used.

The script mlSEDFIT for testing and demonstrating the new interface is equipped with

functions for automatically pre-determining an estimate for the meniscus position for absor-

bance data prior to spawning SEDFIT, and for creating high-quality illustrations by spawning

the software GUSSI [59] utilizing the data, fit, and residuals values retrieved from SEDFIT

after the data analysis. In addition, it can integrate the distributions alternatively through a

graphical process or through pre-determined integration limits (Fig 4). Finally, it will save the

results alongside the SEDFIT output parameters. mlSEDFIT can be easily customized and

extended, and may be compiled to prevent further modification.

Discussion

SV-AUC has become an indispensable tool to study particle size distributions in science and

biopharmaceutical industry [38–40,56,60,61]. Therefore, implementation of SV-AUC analyses

in the GMP environment would be desirable. The lack of SV-AUC analysis compatible with

the GMP environment was previously discussed by Savelyev and colleagues [62]. Their soft-

ware ULTRASCAN GMP provides data access and analysis workflow control, but unfortu-

nately the SV-AUC data analysis in ULTRASCAN includes ad hoc algorithms that are

Fig 3. Comparison of c(s) distributions computed with the command line initialization of SEDFIT and with

manual operation. The distribution from command line operation (Fig 2), and exhibits a monomer peak at 6.477 S

with 29.20% of signal, a trace degradation product at 4.199 S with 0.95% of signal, a dimer peak at 9.473 S with 12.51%

of signal, and higher aggregates with collective sw 16.799 S and 51.77% of signal. The analogous manually operated

analysis producing a monomer peak at 6.481 S with 29.27% of signal, a degradation product of 4.178S with 0.92% of

the signal, a dimer peak at 9.488 S with 12.51% of signal, and higher aggregates with collective sw of 16.81 S with

51.73% of signal. Integration and plot were made using the software GUSSI [59], which can be spawned from the script

mlSEDFIT.

https://doi.org/10.1371/journal.pcbi.1011454.g003
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mathematically uncertain in important aspects, and computationally excessively wasteful

requiring supercomputers [52]; therefore it has only a minor share in SV-AUC applications in

biopharmaceutical applications, the vast majority of which are carried out with the c(s) and ls-

g*(s) methods implemented in SEDFIT [7,41]. Furthermore, ULTRASCAN GMP presents a

closed system with pre-conceived workflow strategies and analyses that may not be suitable or

adaptable to different objectives. Moreover, it is linked to a particular version of the analytical

ultracentrifuge instrument, of which deficiencies for certain applications have been reported

[56], and which is currently incapable of providing independent operating system time-stamps

of the scan files to the analyst to verify time accuracy [55].

The availability of the computational interface for SEDFIT provides a computational core

for flexible state-of-the-art SV-AUC analysis as a module that can be easily embedded into

scripts and software satisfying GMP requirements, including auditable analysis trails and cus-

tody of data and results. For demonstration and customization, a generic MATLAB script for

spawning SEDFIT was developed, and similar access could conceivably be incorporated into

user-friendly software such as GUSSI [59], or into ULTRASCAN GMP [62] or other custom-

written GMP software. The extent to which 21CFR11 requirements are met will depend on the

spawning software, and the SEDFIT spawning mode chosen.

At present, the analysis still needs to be supervised, since manual adjustments to the fitting

parameters and model may be required to arrive at the best-fit analysis. This allows adventi-

tious scan files or other possible artifacts from experimental imperfections to be recognized

and their effect to be alleviated. Detailed protocols and instructions can be found in the litera-

ture [3,7,41,47,63–65], and for reliable results this guidance is equally valid when using the

command line interface. Nonetheless, the interface described here can provide a platform for

Fig 4. Example for postprocessing of results from SEDFIT analysis in mlSEDFIT. The output generated through the command line

interface can be read in the mlSEDFIT script. For example, integration of distribution peaks can be carried out in this script after mouse

clicks on the peaks in the distribution plot, as shown.

https://doi.org/10.1371/journal.pcbi.1011454.g004
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future improvements that conceivably may allow fully unsupervised analyses by expert systems

or AIs with automated meniscus recognition, adjustment of fitting limits, and judgment of fit

quality, which may be applied, for example, to replicate experiments. For series of equivalent

experiments, the present version already allows the result (for example, meniscus position or

frictional ratio) of an initial analysis to be automatically entered as starting parameters for a

following data set, thereby improving the efficiency of the analysis. Besides the GMP environ-

ment, this may be useful for analyzing large families of experimental data sets designated for

meta-analyses, such as collective integration of distributions for binding isotherms and their

analysis [23,51,65]. This ties in with developments of higher throughput experimental tech-

niques, such as pseudo-absorbance data acquisition without need of a reference sector [66]

and 3D-printed multi-sector centerpieces [67,68].

Another area for future expansion of the SEDFIT interface is the extension to allow pre-

selection of more sophisticated analysis models. For example, biopharmaceutical samples

often contain small co-solutes that sediment and create dynamic density and signal gradients,

both of which can be taken into account when analyzing macromolecular sedimentation [69–

71]. Similarly, different sedimentation configurations, such as analytical zone or band sedi-

mentation can be highly desirable for certain applications [31,34,72,73], and advanced regular-

ization methods may be advantageous [7,74,75]. While the corresponding analysis methods

are currently available if SEDFIT is spawned in the unrestricted mode, future releases may

allow passing their relevant parameters directly through the command line interface.

Importantly, since none of the computational functions from SEDFIT have been altered,

the results will remain the same as in the equivalent standard operation of SEDFIT. The com-

mand line interface solely modifies the data input and output, replacing manual startup and

loading of analysis files with automated pre-loaded SEDFIT. For this reason, the command

line mode of SEDFIT will be applicable to the same range of current and future applications.

With regard to the biopharmaceutical industry this includes studies of therapeutic peptides

and proteins, polymer conjugates, nucleic acids, carbohydrates, vectors for therapeutics or vac-

cines based on metal nanoparticles, lipid nanoparticles, viral vectors such as adenovirus, AAV

or lentivirus, and others. More generally, due to the universal nature of buoyant mass-based

separation in SV-AUC and the high sensitivity and hydrodynamic resolution of c(s) analysis in

SEDFIT, it will be applicable to study mass- and size-distributions of macromolecules and par-

ticles that differ in density from that of the formulation buffer across a mass range from 1 kDa

to>10 GDa, or a sedimentation coefficient range between 0.1 and 100,000 S [76,77].
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