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Abstract

The time-varying reproduction number (Rt) is an important measure of epidemic transmis-

sibility that directly informs policy decisions and the optimisation of control measures.

EpiEstim is a widely used opensource software tool that uses case incidence and the

serial interval (SI, time between symptoms in a case and their infector) to estimate Rt in

real-time. The incidence and the SI distribution must be provided at the same temporal

resolution, which can limit the applicability of EpiEstim and other similar methods, e.g. for

contexts where the time window of incidence reporting is longer than the mean SI. In the

EpiEstim R package, we implement an expectation-maximisation algorithm to reconstruct

daily incidence from temporally aggregated data, from which Rt can then be estimated.

We assess the validity of our method using an extensive simulation study and apply it to

COVID-19 and influenza data. For all datasets, the influence of intra-weekly variability in

reported data was mitigated by using aggregated weekly data. Rt estimated on weekly

sliding windows using incidence reconstructed from weekly data was strongly correlated

with estimates from the original daily data. The simulation study revealed that Rt was well

estimated in all scenarios and regardless of the temporal aggregation of the data. In the

presence of weekend effects, Rt estimates from reconstructed data were more successful

at recovering the true value of Rt than those obtained from reported daily data. These

results show that this novel method allows Rt to be successfully recovered from aggre-

gated data using a simple approach with very few data requirements. Additionally, by

removing administrative noise when daily incidence data are reconstructed, the accuracy

of Rt estimates can be improved.
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Author summary

EpiEstim is a tool used to estimate the time-varying reproduction number, Rt, using only

daily incidence data and the serial interval (SI) distribution—the estimated time between

symptom onset in a case and their infector. Rt indicates whether case numbers are rising

(Rt > 1) or falling (Rt < 1), with implications for disease control programmes. Frequently,

incidence data are not reported daily, and when the SI of a disease is shorter than the tem-

poral aggregation of incidence data, tools such as EpiEstim cannot be applied. Here, a

novel method allows Rt to be estimated directly from reconstructed daily incidence data,

using only aggregated incidence and the SI distribution. We validate our approach using

influenza and COVID-19 data, alongside simulated incidence, to explore numerous epi-

demic scenarios. Trends in Rt estimated from reported daily incidence data can be recov-

ered from daily incidence reconstructed from aggregated data. When administrative noise

(e.g., weekend effects) is added to simulated incidence, Rt estimates from reconstructed

data are more accurate, mitigating the impact of prominent ‘noise’ in daily reported inci-

dence. Now implemented in EpiEstim, the method typically takes just a few seconds to

run, making the tool applicable to a wider range of epidemic contexts.

Introduction

As infectious disease outbreaks become more common, it is increasingly important to rapidly

characterise the threat of emerging and re-emerging pathogens [1]. Transmissibility, i.e. a

pathogen’s ability to spread through a population, can be quantified using the time-varying

reproduction number, Rt, defined as the average number of infections that are caused by a pri-

mary case at time t of an outbreak. Rt signals whether an outbreak is growing (Rt > 1) or

declining (Rt < 1), and whether current interventions are sufficient to control the spread of

the disease.

One of the most popular tools for real-time Rt estimation, the R package EpiEstim, relies on

observing the incidence data and supplying an estimated serial interval (SI) distribution—the

time between symptom onset in a case and their infector. EpiEstim requires that the SI distri-

bution and incidence data are supplied using the same time units. This can be problematic

when daily incidence data is not reported, which is common for many diseases, such as influ-

enza, Zika virus disease, and most notifiable diseases in countries such as the UK and the US

[2–5]. Additionally, several studies intentionally aggregate data to reduce the impact of daily

reporting variability; administrative noise, such as “weekend effects”, are characterised by a

drop in reported cases over weekends, due to reduced care seeking and longer delays in report-

ing, followed by a peak on Mondays [6,7]. A commonly used workaround is to aggregate the

SI distribution to match the frequency of incidence reporting [8,9], however this is not possible

if the SI is shorter than the aggregation of data. For example, influenza-like illness is typically

reported on a weekly basis, but influenza has an estimated mean SI of 2–4 days [10,11]. Simi-

larly, reporting of COVID-19, which has an estimated SI of 3–7 days, has typically moved

from daily to weekly [12,13]. Therefore, enabling estimation of Rt from temporally aggregated

data is critical to ensure methods such as EpiEstim are widely applicable [14].

In this study, we combine an expectation-maximisation (EM) algorithm with the renewal

equation approach implemented in EpiEstim to reconstruct daily incidence from aggregated

data and estimate Rt. We assess the performance of the method using influenza and COVID-

19 data, in addition to an extensive simulation study.
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Methods

EpiEstim

EpiEstim uses the renewal equation (Eq 1), a form of branching process model [15]. In this for-

mulation, the incidence of new symptomatic cases at time t (It) is approximated by a Poisson

process, where It-s is the past incidence, and gs is the probability mass function of the serial

interval.

It � Pois Rt

Xt

s¼1
It� sgs

� �
ð1Þ

With EpiEstim, Rt can be assumed to remain constant within user defined time windows,

which smooth out estimates.

Extending EpiEstim for coarsely aggregated data

We extended EpiEstim to estimate Rt from aggregated incidence data, where each aggregation

window (w) is>1 day, whilst still conditioning on an assumed serial interval distribution (gs).

We use an EM algorithm to iteratively reconstruct daily incidence from aggregated data, and

in turn estimate Rt. We present the method with weekly data in mind, but the method and

software can be applied to any temporal aggregation (Fig 1 and S1 Appendix pp 23–24).

We define:

• I = {It}t=1,. . .,T the vector of unobserved daily incidence,

• A = {Aw}w=1,. . .,W the vector of observed aggregated incidence, so that for each aggregation

window w Aw ¼
Ptw

t¼tw� 1þ1
It

• R∗ ¼ R∗w
� �

w¼1;...;W the vector of reproduction numbers corresponding to each incidence

aggregation window. The � indicates that this is only used in the EM algorithm to recon-

struct the daily incidence I, and is distinct from the final estimated R.

We use the following indexes:

• t for days (t = 1, . . ., T),

• w for aggregation windows (w = 1, . . ., W),

Fig 1. Schematic of the EM algorithm approach used to reconstruct daily incidence (I) from temporally aggregated incidence data (in this case weekly, A). The

algorithm is initialised with a naive disaggregation of the weekly incidence (assuming constant daily incidence throughout the aggregation window, left panel).

The resulting daily incidence is then used to estimate the reproduction number for each aggregation window, in this case for each week, R* (expectation step,

central panel). R* is converted into a growth rate (see Eq 7), which is in turn used to reconstruct daily incidence data, whilst ensuring that if I were to be

reaggregated it would still sum to the original weekly totals (maximisation step, right panel). The process cycles between the expectation and maximisation steps

until convergence.

https://doi.org/10.1371/journal.pcbi.1011439.g001
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• i for iterations of the EM algorithm (i = 0, . . ., 10).

In the following, the bold notation signifies vectors. Our overall goal is to maximise the

marginal likelihood function

P IjAð Þ ¼
Z

P I; R∗jAð ÞdR∗ ¼
Z

P IjR; Að ÞP R∗jAð ÞdR∗: ð2Þ

This marginal likelihood seeks to compute daily incidence while marginalising over the

conditional probability distribution of the reproduction number. Loosely, the statistical goal is

to produce a series of reproduction numbers that can reconstruct daily incidence while still

being consistent with the observed aggregated incidence. We use an expectation maximisation

scheme to approximate this marginal likelihood at low computational cost. The algorithm

involves three steps: initialisation, expectation, and maximisation.

Initialisation

The algorithm is initialised (step i = 0) by disaggregating the aggregated incidence by piecewise

constant functions (constant daily incidences across each aggregation window). That is, for

aggregation window w covering days t = tw−1 + 1, . . ., tw:

Iði¼0Þ

t ¼
1

tw � tw� 1

Aw: ð3Þ

Note that this allows non-integer incidence counts.

For iteration i� 1 of the algorithm, we iterate over two steps: expectation and

maximisation.

Expectation

First, we compute the expectation

EPðR∗jA; Î ið ÞÞ P I; R∗jAð Þ½ �: ð4Þ

This expectation computes the average reproduction number over each data aggregation

window, given the original observed aggregated incidence and the previous (ith) iteration of

the estimate of daily incidence. To compute this, we use the renewal approach from EpiEstim

where the posterior distribution of reproduction numbers is found analytically as

P R∗jIð Þ ¼
QW

w¼1
PðR∗wjIÞ, with P R∗wjI

� �
~ Gamma(shape = αw, scale = βw) and where aw ¼

aþ
Ptw

s¼tw� 1þ1
Is and bw ¼ 1= 1

bþ
Ptw

s¼tw� 1þ1

Ps
u¼1

Is� uguÞ
�

, where a and b are the shape and scale

of the Gamma prior distribution for Rw.[15] The expected value for the reproduction number

is therefore calculated as:

R̂∗ðiÞ
w ¼

aþ
Ptw

s¼tw� 1þ1
Î ði� 1Þ
s

1

bþ
Ptw

s¼tw� 1þ1

Ps
u¼1

Î ði� 1Þ
s� u gu

ð5Þ

Maximisation

The maximisation step consists of recovering the most likely daily incidence from the expected

R* i.e. maximising P(I, R*│A), or maximising P(I, R*)/ ∏t�1 P(It│I0, . . ., It−1, R*), subject to

the constraint that daily incidence sums to the aggregated incidence i.e. Aw ¼
Ptw

t¼tw� 1þ1
It.

In our renewal equation context, It│I0, . . ., It−1, R follows a Poisson distribution with mean

Rw ∑s It−s gs (where w is such that tw−1 < t� tw), and therefore has mode Î ðiÞt ¼ bRw

P1

s¼1
Î ðiÞt� sgsc
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which we approximate as:

Î ðiÞt ¼ R̂∗ðiÞ
w

Xt

s¼1
Î ðiÞt� s gs: ð6Þ

Wallinga and Lipsitch [16] demonstrate, conditional on the generation time distribution,

analytical correspondence between reproduction number R and growth rate r through the link

function:

R ¼
1

P1

s� 1
expð� rsÞgs

ð7Þ

We therefore assume local exponential growth so that Eq 6 is equivalent to:

Î ðiÞt ¼ kwe
r̂∗ ið Þ
w ðt� tw� 1Þ; ð8Þ

where r̂∗ðiÞw is the exponential growth rate over aggregation window w, obtained from R̂∗ðiÞ
w

using the link function in Eq 7.

kw is calculated to ensure the sum of daily incidence values adds up to the observed weekly

totals:

kw ¼
Aw

Ptw
t¼tw� 1þ1

exp r̂∗ ið Þ
w ðt � tw� 1Þ

� � ð9Þ

We then use the estimate of I from Eq 8 in the maximisation step and iterate, thus complet-

ing the algorithm (Eq 5 for the expectation step and Eq 8 for the maximisation step). At this

point, I can be used to estimate the full posterior distribution of R over any time window using

EpiEstim (hereafter, this final R is referred to as Rt).

Given the rapid computational time and convergence (see S1 Appendix pp 10 and 22), the

default number of iterations was set to 10 in the R package. However, a convergence check

ensures that the final iteration of the reconstructed daily incidence does not differ from the

previous iteration beyond a tolerance of 10−6, and the number of iterations can be modified by

the user.

Case studies

We chose datasets where incidence data was available daily, and then artificially aggregated

them to weekly counts. Rt was estimated from daily incidence that was reconstructed from

weekly aggregated data using our new approach, and compared to Rt estimates obtained from

the reported daily incidence using the original EpiEstim R package. All Rt estimates were

made using both daily and weekly sliding time windows, and we refer to those estimates as

daily Rt estimates and weekly Rt estimates respectively.

We considered three characteristics: 1) mean Rt estimates, 2) uncertainty in the Rt esti-

mates, and 3) the classification of Rt as increasing, uncertain or declining (S1 Appendix pp

8–9). To compare the performance of this approach to the original method, we assessed the

correlations between each of the three characteristics when using the reported and recon-

structed incidence. For the mean Rt estimates and uncertainty in Rt estimates, we assessed the

linear relationships using the Pearson correlation coefficient (where values closer to +1 are

indicative of a strong positive correlation).

The gamma distributed priors for R* and Rt were set to a mean and standard deviation of 5

(shape = 1, scale = 5), which is the default prior parameterisation used in EpiEstim. The
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rationale behind this choice is that it ensures that one will not conclude R< 1 unless the data

strongly supports that. The user can set the prior themselves.

Influenza

We obtained a five-week subset of a dataset (11th December 2009—14th January 2010) on US

active component military personnel (employed by the military as their full-time occupation)

that made an outpatient visit to a permanent military treatment facility describing a respira-

tory-related illness. This daily incidence by date of presentation at a clinic was originally

obtained by Riley et al. from the Armed Forces Health Surveillance Center and were digitally

extracted for use here.[17] We used a mean SI of 3.6 days and SD of 1.6 days.[10]

COVID-19

Incidence of UK COVID-19 cases and deaths were taken from the UK government website

[18]. For COVID-19 cases, we obtained ninety-seven weeks of data (21st February 2020 to 30th

December 2021) for incidence by date of specimen, which is the date that a sample was taken

from an individual which later tested positive. For COVID-19 deaths, we used ninety-six

weeks of data (2nd March 2020 to 2nd January 2022) for incidence by date of death within

twenty-eight days of a positive test. We assumed a mean SI of 6.3 days and SD of 4.2 days [12].

In the S1 Appendix, we also apply the EM algorithm to weekly incidence data for Zika virus

disease to assess the performance of the method on a non-respiratory pathogen.

Simulation study

We considered scenarios where Rt either remained constant or varied over time, with a step-

wise or gradual change. For each scenario, one hundred seventy-day epidemic trajectories

were simulated using a Poisson branching process as implemented in the R package projec-

tions [19]. Daily datasets were aggregated weekly and used to estimate Rt using the proposed

method; these values were compared to Rt estimates obtained from simulated daily data using

the original EpiEstim R package. We explored the impact of weekend effects on Rt estimates,

the ability to supply alternative temporal aggregations of data e.g., three-day, ten-day, or two-

weekly aggregations, the ability to detect mid-aggregation variations in transmissibility, and

finally, the number of iterations required to reach convergence when reconstructing daily inci-

dence data. The full simulation study description and details can be found in S1 Appendix.

Results

Hereafter, we refer to reported and reconstructed incidence data, these are the reported daily

incidence and the daily incidence that has been reconstructed from weekly aggregated data,

respectively.

Influenza

The reconstructed incidence of influenza was much smoother than the reported incidence,

which showed clear weekend effects and lower reported cases on two public holidays, both

occurring on Fridays (Fig 2A and S1 Appendix p 8). Considering weekly sliding Rt first, there

was a high correlation in both the mean Rt estimates derived from each dataset (R2 = 0.91, Fig

2C and S1 Appendix p 2) and their associated uncertainty (R2 = 0.93, Fig 2D). The overall

agreement in the classification of Rt reached 81.8% (see methods and S1 Appendix p 9).

In contrast, mean daily Rt estimates differed markedly depending on whether the reported

or reconstructed data were used, with an R2 of 0.13 and much higher mean Rt and uncertainty
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in estimates obtained from reported data (Fig 2E and 2F). Higher mean Rt estimates coincided

with large peaks in the reported daily incidence (typically on Mondays), as daily Rt estimates

were not smoothed and therefore more affected by intra-weekly variability (S1 Appendix p 2).

The overall agreement in the classification of daily Rt estimates was much lower, with only

44.4% agreement (S1 Appendix p 9).

In this case study, the greatest differences in Rt estimates tended to correspond to time peri-

ods when the reported and reconstructed incidence data were most dissimilar (Fig 2B and S1

Appendix p 3). There was no apparent pattern in the estimates with regard to the outbreak

phase, i.e. early, mid or late-phase, but this is likely due to this dataset being a snapshot of inci-

dence taken from within an established epidemic (Fig 2).

COVID-19 cases

The reconstructed incidence of COVID-19 smoothed out intra-weekly variability, caused by

factors such as weekend effects (Fig 3A and S1 Appendix pp 7–8). Weekly sliding Rt estimates

Fig 2. Rt estimates from daily incidence that was either reported or reconstructed from weekly aggregated influenza data. A) The reported (grey)

and reconstructed (green) daily incidence of influenza by date of presentation at a military clinic. B) Squared error of the daily (orange) and weekly

sliding (pink) Rt estimates that were made from reconstructed daily data compared to those obtained from the reported daily data. Rt estimation starts

on the first day of the second aggregation window (day 8—18th December 2009) and is plotted on the last day of the time window used for estimation

(i.e., starting on day 9 (19th December) for daily estimates and day 14 (24th December) for weekly estimates). Note: the x-axis is shared with the

incidence plot above. C & E) Correlation between the weekly sliding (C) and daily (E) mean Rt estimates using reconstructed data (y-axis) and reported

daily data (x-axis). Vertical and horizontal lines depict the 95% credible intervals (95% CrIs) and dotted lines show the threshold of Rt = 1. D & F)

Correlation between the uncertainty in the weekly sliding (D) and daily (F) Rt estimates, defined as the width of the 95% credible intervals, using the

reconstructed (y-axis) and reported (x-axis) daily data. The colour of the points in panels C-F correspond to the epidemic phase, i.e. the early (19th– 30th

December for daily estimates, or 24th– 30th December for weekly sliding estimates), middle (31st December– 6th January) or late (7th– 14th January)

phase of the data, shown by the strip in panel A. Solid lines show the linear model fit with 95% confidence intervals (grey shading). Dashed lines

represent the x = y line.

https://doi.org/10.1371/journal.pcbi.1011439.g002
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obtained from reconstructed and reported incidence were similar, both in their means (R2 =

0.98) and their level of uncertainty (R2 = 0.99, Fig 3C and 3D and S1 Appendix p 4). Mean

daily Rt estimates were less well correlated (R2 = 0.67), although the difference is less marked

than in the influenza case study (Fig 3E), and the uncertainty in the estimates was similar

across both approaches (R2 = 0.97, Fig 3F). Most of the discrepant Rt estimates and higher lev-

els of uncertainty coincide with the early phase of the outbreak when incidence was lower (Fig

3E and 3F). Outside of periods of low incidence, the largest differences in Rt estimates tended

to correspond to time periods with greater disparities between the reported and reconstructed

incidence data (Fig 3B and S1 Appendix p 5). The overall agreement in the classification of Rt

estimates was higher than for influenza, with 74.4% and 94.9% agreement for daily and weekly

sliding Rt estimates respectively (S1 Appendix p 9).

COVID-19 deaths

The reported incidence of COVID-19 deaths was much less influenced by day-to-day varia-

tion. The reconstructed daily incidence was more similar to the observed daily data than in the

Fig 3. Rt estimates from daily incidence that was either reported or reconstructed from weekly aggregated COVID-19 case data. A) The reported

(grey) and reconstructed (green) daily incidence of COVID-19 by date of specimen. B) Squared error of the daily (orange) and weekly sliding (pink) Rt

estimates made from reconstructed data compared to those obtained from the reported daily data. Rt estimation starts on the first day of the second

aggregation window (day 8—28th February 2020) and is plotted on the last day of the time window used for estimation (i.e., starting on day 9 (29th

February) for daily estimates and day 14 (5th March) for weekly estimates). Note: the x-axis is shared with the incidence plot above and the y-axis has

been limited to 0.5 for clarity. C & E) Correlation between the weekly sliding (C) and daily (E) mean Rt estimates using reconstructed (y-axis) and

reported (x-axis) daily data, starting on day 30 due to low incidence. Vertical and horizontal lines depict the 95% credible intervals (95% CrIs) and

dotted lines show the threshold of Rt = 1. D & F) Correlation between the uncertainty in the weekly sliding (D) and daily (F) Rt estimates, defined as the

width of the 95% credible intervals, using the reconstructed (y-axis) and reported (x-axis) daily data. The colour of the points in panels C-F correspond

to the epidemic phase, i.e. the early (21st March– 12th October 2020), middle (13th October 2020—22nd May 2021) or late (23rd May– 30th December

2021) phase of the data, shown by the strip in panel A. Solid lines show the linear model fit with 95% confidence intervals (grey shading). Dashed lines

represent the x = y line.

https://doi.org/10.1371/journal.pcbi.1011439.g003
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previous case studies (Fig 4A). Both weekly and daily Rt estimates obtained from weekly data

were highly consistent with those obtained from daily observations (R2 = 0.98 and R2 = 0.80

respectively, Fig 4C and 4E). The overall agreement in Rt classifications for daily estimates was

the highest of all case studies at 85.8%, and 93.3% for weekly Rt estimates (S1 Appendix p 9).

Discrepancies between the two mostly coincide with periods of particularly low incidence of

deaths (Fig 4B and S1 Appendix p 7). The overall lower incidence of COVID-19 deaths com-

pared to COVID-19 cases means there is greater uncertainty in Rt estimates in this case study

(Fig 4D and 4F and S1 Appendix p 6). However, there was minimal difference in the uncer-

tainty of estimates obtained from daily and weekly data (Fig 4D and 4F).

In all case-studies, incidence reconstructions converged within 10 iterations of the EM algo-

rithm. The overall process of Rt estimation from weekly aggregated data took three seconds or

less to run on MacOS (2 GHz Quad-Core Intel Core i5) 16GB RAM (S1 Appendix p 10); the

influenza scenario, with over 57,000 cases, took two seconds to run, whilst the COVID-19

cases and deaths scenarios, with an overall incidence over 149,000 and 13 million cases respec-

tively, took three seconds to run.

Fig 4. Rt estimates from daily incidence that was either reported or reconstructed from weekly aggregated COVID-19 death data. A) The reported

(grey) and reconstructed (green) daily incidence of COVID-19 by date of death within 28 days of a positive test. B) Squared error of the daily (orange)

and weekly sliding (pink) Rt estimates that were made from reconstructed data compared to those obtained from the reported daily data. Rt estimation

starts on the first day of the second aggregation window (day 8—9th March 2020) and is plotted on the last day of the time window used for estimation

(i.e., starting on day 9 (10th March) for daily estimates and day 14 (15th March) for weekly estimates). Note: the x-axis is shared with the incidence plot

above and the y-axis has been limited to 0.5 for clarity. C & E) Correlation between the weekly sliding (C) and daily (E) mean Rt estimates using

reconstructed (y-axis) and reported daily data (x-axis), starting on day 30 due to low incidence. Vertical and horizontal lines depict the 95% credible

intervals (95% CrIs) and dotted lines show the threshold of Rt = 1. D & F) Correlation between the uncertainty in the weekly sliding (D) and daily (F) Rt

estimates, defined as the width of the 95% credible intervals, using the reconstructed (y-axis) and reported daily (x-axis) data. The colour of the points

in panels C-F correspond to the epidemic phase, i.e. the early (31st March–20th October 2020), middle (21st October 2020—28th May 2021) or late (29th

May 2021—2nd January 2022) phase of the data, shown by the strip in panel A. Solid lines show the linear model fit with 95% confidence intervals (grey

shading). Dashed lines represent the x = y line.

https://doi.org/10.1371/journal.pcbi.1011439.g004
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Simulation study

The method performed well across all scenarios, successfully estimating Rt from the aggregated

simulated data, but unable to recover mid-aggregation window variations in transmissibility

(S1 Appendix pp 10–24). Convergence of the EM algorithm was quick, with negligible differ-

ences in the reconstructed incidence beyond 5 iterations (S1 Appendix pp 22–23).

When introducing weekend effects into simulated data, Rt estimates from reconstructed

incidence were more successful at recovering the true value of Rt than when using reported

incidence (S1 Appendix pp 20–21). The method can also be successfully applied to other tem-

poral aggregations of data, e.g. three-, ten- or fourteen-day windows (S1 Appendix pp 23–25).

Discussion

Estimates of the time-varying reproduction number (Rt) have frequently been used to inform

and guide policymaking during outbreaks, and a commonly used approach to estimate Rt is

EpiEstim, which relies on daily incidence data. However, maintaining daily incidence data-

bases requires substantial time and investment in resources, which is not always feasible, par-

ticularly for less acute or routinely reported diseases. Therefore, in practice, many diseases are

not reported on a daily basis, including influenza and other notifiable diseases in the UK and

US [2–5]. As the COVID-19 pandemic persists, daily reporting is also becoming less common

[20]. Coarsely aggregated data can be challenging to deal with in the context of Rt estimation

methods, restricting their applications in certain contexts. In this study, we develop a statistical

framework and tool that allows Rt estimation from aggregated incidence without introducing

bias. Using influenza and COVID-19 data, alongside a simulation study, we demonstrate how

a simple expectation-maximisation algorithm approach can rapidly reconstruct daily inci-

dence data and accurately estimate Rt.

In all case studies, direct comparisons between weekly sliding Rt estimates show that very

similar estimates can be made from the reported daily incidence and the reconstructed daily

incidence from weekly aggregated data. However, daily Rt estimates are more influenced by

noise, such as intra-weekly variability, leading to greater disparities in estimates between data-

sets. There are clear weekend effects exhibited in the influenza and COVID-19 case data (S1

Appendix p 8), leading to peaks and troughs in the reported incidence and the resulting daily

Rt estimates (Figs 2 and 3, S1 Appendix pp 2 and 4). Using reconstructed incidence consider-

ably smoothed the daily Rt estimates, removing the impact of weekend-effects. The overall

agreement in the classification of Rt as increasing, uncertain, or declining between estimates

made from each dataset rose substantially when some of the variability in the reported data

was smoothed by estimating Rt using weekly sliding windows (S1 Appendix pp 8–9).

Despite both being affected by weekly periodicity in reporting, concordance of Rt estimates

obtained from COVID-19 case data is considerably better than for influenza, perhaps due to

the greater quantity of data, with a very strong positive correlation between daily and weekly

Rt estimates (Fig 3). This is reflected in the high overall agreement in the classification of Rt

estimates obtained from the reported and reconstructed datasets. It is important to note that

outlying and much larger Rt estimates obtained from both datasets coincide with the early

phase of the epidemic, when incidence was lower and the prior for Rt (μ = 5, σ = 5) had more

weight on estimates.

During the early stages of epidemics, despite there being far fewer deaths than cases, death

data can sometimes be considered more reliable [21,22]. For example, case reporting is

affected by surveillance system quality and the robustness of testing practices, which can vary

considerably over the course of an epidemic, especially early on. COVID-19 incidence by date

of death is much less influenced by administrative noise in the data (S1 Appendix p 8), and the
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reconstructed incidence is most similar to the reported daily incidence of any case study.

Therefore, the greatest differences in Rt estimates from death data coincide with periods of low

incidence (S1 Appendix p 7) when uncertainty increases. Weekly sliding Rt estimates are

equally as correlated as those from COVID-19 case data, but daily Rt estimates are the most

strongly correlated of any dataset (Fig 4). Additionally, there is very high overall agreement in

the classification of daily and weekly Rt (S1 Appendix p 9). This provides further support that

differences between daily Rt estimates for influenza and COVID-19 cases is likely due to the

reconstructed incidence smoothing out weekly periodicity in reporting.

To investigate further, weekend effects were artificially introduced to data in the simulation

study (S1 Appendix p 20). We have shown that, when using reported incidence, Rt estimates

are all strongly influenced by weekend effects (regardless of the smoothing time-window).

Reconstructing daily incidence from weekly data completely removes the effect of noise from

resulting Rt values, greatly improving the accuracy of estimates. This demonstrates that it may

be beneficial to artificially aggregate daily data, as has been done in previous studies [6,7].

However, we did assume quite an extreme level of administrative noise, so in instances where

the pattern is less prominent, it may have less of an impact on estimates. Furthermore, this

smoothing effect could disguise genuine variations in transmissibility that occur mid-aggrega-

tion window, for instance, increased/decreased transmission over weekends (S1 Appendix sec-

tion 3g). Disentangling important temporal trends in Rt from noise in the data can be difficult,

and if aggregated data is used it will be at the cost of reduced temporal resolution in Rt

estimates.

This can be seen when the method is applied to data aggregated over longer timescales,

such as ten- to fourteen-days (S1 Appendix pp 23–25). This approach requires two layers of

smoothing: 1) the incidence is smoothed over each aggregation window during the reconstruc-

tion process and 2) Rt estimates are smoothed by the sliding window chosen by the user. If a

change in Rt occurs at the end of an aggregation window (i.e. on the last day), such as a sudden

decrease in Rt due to a strict lockdown, that change is detected with a lag, corresponding to the

length of the sliding window used for Rt estimation (S1 Appendix p 24). However, if the event

occurs mid-aggregation window, then in addition to the usual lag caused by the sliding win-

dow, estimates will be affected by the smoothing of the incidence within the aggregation win-

dow during reconstruction (S1 Appendix p 25). The change in Rt will seem more gradual over

the period that data are aggregated over and will appear to start earlier (corresponding to the

first day of the aggregation window). It is important for users to be aware of this, particularly

when using longer aggregations of data.

Another consideration is that the reconstructed incidence can have discontinuities in the

borders between aggregation windows (S1 Appendix pp 11–12). This occurs because in recon-

structing daily incidence we impose that, if it were to be re-aggregated, it would match the

original data. Methods that simply fit smoothing splines to weekly data, inferring daily case

counts from the daily difference in cumulative counts, are not affected by this [23,24]. To cir-

cumvent this problem, we recommend that sliding windows used to estimate Rt are at least

equal to or longer than the length of aggregation windows to reduce the impact of discontinui-

ties on estimates (S1 Appendix pp 23–25).

Alternative approaches include simple smoothing splines or LOESS to reconstruct daily inci-

dence from aggregated data (see S1 Appendix section 4), and modelling frameworks imple-

mented in the Epidemia and EpiNow2 R packages [6,21,25]. Daily infections are modelled as a

latent process, back-calculated from observed data on cases or deaths, depending on an appro-

priate infection to observation distribution. In addition, Epidemia integrates further informa-

tion, such as the infection ascertainment rate (for cases) or the infection fatality rate (for deaths)

[21]. This facilitates a ‘nowcasting’ approach, allowing users to estimate Rt directly from the
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unobserved infections, but they typically require more data (e.g. incidence of deaths and cases),

more assumptions (e.g. delay distributions and ascertainment rates), and are much more com-

putationally intensive, which can be a barrier to the adoption of such methods by users [14].

Here, Rt estimates are based on a single daily incidence reconstruction, meaning Rt can be

estimated very rapidly from aggregated data, which is particularly desirable during real-time

outbreak analysis [14]. A potential downside is that uncertainty in Rt estimates could be under-

estimated. However, the simulation study showed that the 95% credible interval of estimates

encompassed the correct value of Rt the majority of the time, and we found no substantial indi-

cation that this approach detrimentally affected our characterisation of the uncertainty.

Given that this method is directly derived from EpiEstim, it relies on similar assumptions

and caveats [15,26]. As time of infection is more difficult to observe than symptom onset, the

SI is typically used as an approximation of the generation time in the renewal equation, which

may introduce bias [27]. The SI, the level of undetected cases, and the reporting rate are

assumed to remain constant, which is often not the case in practice. Factors such as changes in

population immunity, and the introduction of interventions, can alter the SI throughout an

epidemic [28]. Whilst changing case definitions, new testing practices, and increased health-

care-seeking behaviour, can all affect case ascertainment.[15] Parameters chosen by users can

also influence estimation accuracy, for instance, the time window length for temporal smooth-

ing and the prior for Rt [26]. Finally, EpiEstim’s assumption of a Poisson likelihood may be a

limitation in instances when data is substantially overdispersed [29,30].

To make the method simple to implement for current and future users of EpiEstim, this

extension has been fully integrated with the ‘estimate_R()’ function in the original R package

on GitHub [31]. Just one additional parameter is required—the number of days data are aggre-

gated over (with some other optional parameters). The reconstructed daily incidence is also

generated as an output, so it is possible to use it in other analysis pipelines involving alternative

R estimation methods, which may perform better than EpiEstim in certain contexts, e.g. in ret-

rospective analysis (S1 Appendix pp 29–30) [30], or in the presence of delays in reporting [25].

More details regarding the applications of this method can be found in the package vignette

and associated examples [31].

Conclusion

We extended the widely used Rt estimation approach proposed by Cori et al., [15] and imple-

mented in the R package EpiEstim, to incorporate a new feature which allows Rt to be easily

estimated from any temporal aggregation of incidence data. We have demonstrated that the

method performs well using both simulated and real-world data, recovering or even improving

upon the estimates that would have been made from reported daily data. This extension is easy

to use and computationally efficient, which will enable epidemiologists and other public health

professionals to apply EpiEstim to a wider range of diseases and epidemic contexts.
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