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Abstract

The study of protein folding mechanism is a challenge in molecular biology, which is of great

significance for revealing the movement rules of biological macromolecules, understanding

the pathogenic mechanism of folding diseases, and designing protein engineering materi-

als. Based on the hypothesis that the conformational sampling trajectory contain the infor-

mation of folding pathway, we propose a protein folding pathway prediction algorithm

named Pathfinder. Firstly, Pathfinder performs large-scale sampling of the conformational

space and clusters the decoys obtained in the sampling. The heterogeneous conformations

obtained by clustering are named seed states. Then, a resampling algorithm that is not con-

strained by the local energy basin is designed to obtain the transition probabilities of seed

states. Finally, protein folding pathways are inferred from the maximum transition probabili-

ties of seed states. The proposed Pathfinder is tested on our developed test set (34 pro-

teins). For 11 widely studied proteins, we correctly predicted their folding pathways and

specifically analyzed 5 of them. For 13 proteins, we predicted their folding pathways to be

further verified by biological experiments. For 6 proteins, we analyzed the reasons for the

low prediction accuracy. For the other 4 proteins without biological experiment results,

potential folding pathways were predicted to provide new insights into protein folding mecha-

nism. The results reveal that structural analogs may have different folding pathways to

express different biological functions, homologous proteins may contain common folding

pathways, and α-helices may be more prone to early protein folding than β-strands.

Author summary

The study of protein folding mechanism is an important part of basic science and has vital

significance in many aspects. The key to the study of protein folding mechanism is to cap-

ture the conformational changes from the fast protein folding process. Biological experi-

ments are more difficult to obtain protein metastable structures than computational

methods. It is computationally expensive to simulate the complete folding pathway of

macromolecular proteins by molecular dynamics methods. Here, we design a protein

folding pathway prediction method based on conformational sampling to provide new

ideas for existing research. This method obtains the structural information of the
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intermediate state through large-scale sampling and clustering, combines the resampling

algorithm to explore the transition probability of the intermediate state, and predicts the

protein folding pathway. The results show that we validate the method on five widely stud-

ied proteins, and also reveal the folding mechanism of some proteins. And Pathfinder

complements the existing protein folding data from the perspective of computational sim-

ulation, which needs to be further verified by biological experiments. Finally, Pathfinder

predicts unresolved protein folding pathways, providing insights into unknown folding

mechanisms.

Introduction

The splendid computational success of AlphaFold2 [1] and RoseTTAFold [2] in protein struc-

ture prediction may have solved the static single domain protein folding problem [3]. The

AlphaFold database [4] and recent predictions of more than 200 million protein structures

provide reference structure information for nearly every known protein [5]. Although, the

greatly improved prediction of protein 3D structure from sequence achieved by the Alpha-

Fold2 has already had a significant impact on biological research [6], but challenges remain

[7,8]. Almost all computational methods are unable to predict accurate protein folding path-

way [9–11]. This is because protein folding is a dynamic process of exploring the overall energy

landscape and locating heterogeneous local energy basins to obtain its functional structure and

conformations [12]. The study of folding mechanism is of great significance for the formation

of inclusion bodies [13] and for revealing the second genetic code [14]. Many pathological

conditions are also fundamentally rooted in the misfolding, aggregation, and accumulation

that occurs in protein folding [15], such as Alzheimer’s disease [16], Parkinson’s disease [17],

and other diseases. Understanding the folding mechanism can provide important implications

for the treatment of these diseases [18], as well as facilitate the design of proteins with unique

functional characteristics [19,20], and the exploration of protein allosteric [21]. The conforma-

tional heterogeneity of different states in protein folding, such as unfolded state [22], misfolded

state [23], intermediate state [24], and transition state [25], is crucial for an accurate under-

standing of folding mechanisms [26].

There are biological experimental methods to explore protein intermediate states and fold-

ing pathways [27–32], such as hydrogen deuterium exchange mass spectrometry [33] and cir-

cular dichroism spectrum [34]. However, biological experimental methods are difficult to

obtain high-resolution spatial and temporal data on the folding process. This is because the

biological process by which proteins fold into their unique native state occurs within seconds

to minutes [35], and metastable conformations are more difficult to detect due to their short

lifetime and low occupancy [36]. This makes it challenging to explore intermediate states with

biological experimental methods.

Computational simulation of protein folding can make up for the deficiency of biological

experimental methods, and is an effective way of studying protein folding pathways [37].

Molecular Dynamics Simulation (MD) is one of the methods for computationally simulating

protein folding, which can simulate the complete folding process of small molecules [38]. MD

combined with Markov models can analyze folding and functional dynamics in long trajecto-

ries [39]. Machine learning facilitates protein folding simulations by extracting essential infor-

mation and sampling of rare events from large simulated datasets [40]. Convolutional neural

networks learn continuous conformational representations generated from protein folding

simulations to predict biologically relevant transition paths [41]. Integrating biological
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experimental structural constraints into MD models significantly explored protein dynamics

trajectories [42]. The current mainstream method is combining biological experiments and

MD to explore protein folding mechanism. However, MD are more applied to the simulation

of short trajectories between states, and it is still challenging to simulate the complete folding

process [37]. Our recent work (PAthreader) [43] identifies remote homologous structures

based on the three-track alignment of distance profiles and structure profiles originated from

Protein Data Bank (PDB) [44] and AlphaFold database by deep learning. Based on the recog-

nized homologous templates, PAthreader further explored protein folding pathways by identi-

fying folding intermediates, but it has limitations on proteins that lack remote homologous

template information.

Conformational sampling algorithms such as Monte Carlo (MC) can be applied to folding

simulations of template-free and larger proteins [45]. The CA-CB side chain model combined

with MC kinetics to identify the protein folding pathway and the interaction pairs during the

folding process [46,47]. Protein folding pathway can be predicted in minutes or hours by pre-

dicting residue contacts using coarse-grained modeling and efficient combinatorial schemes

[48]. Moreover, Equilibrium Monte Carlo simulations can also be combined with unfolding

simulations at high temperatures to predict the relative rates of different transitions in protein

folding pathways [49]. Conformational sampling tends to fall into local energy traps. Recently,

we have developed several methods (MMpred [50], SNfold [51]) to compensate for this defi-

ciency. The MMpred aims to explore the complete energy landscape and improve sampling

efficiency, which can be beneficially applied to explore heterogeneous conformations.

MMpred has localized promising energy basins in parallel on multiple trajectories, combining

a greedy search strategy with distance-constrained information to infer the final structure.

SNfold overcomes high-energy barriers and avoids resampling of exploration regions to obtain

diverse heterogeneous conformations in the energy landscape. These state-of-the-art confor-

mational sampling algorithms are mainly used in protein structure prediction. However, the

idea of exploring multiple states can be effectively applied to protein folding pathway

prediction.

In this work, we propose a protein folding pathway prediction algorithm (Pathfinder)

based on conformational sampling. We obtain the structural information of the seed states

through large-scale sampling and explore state transition probabilities through resampling.

Pathfinder captures the information (seed states, sampling states and transition probabilities)

to predict folding pathways. Pathfinder is tested on our developed dataset (34 proteins). For 11

widely studied proteins, we correctly predicted their folding pathways (Fig A in S1 Text) and

specifically analyzed 5 of them, including the B1 domain of protein L and protein G, the two

SRC homology 3 domains and the LysM domain. For 13 proteins (Fig B in S1 Text), we pre-

dicted their folding pathways, which need to be further verified by biological experiments. For

6 proteins (Fig C in S1 Text), we analyzed the reasons for the low prediction accuracy. For the

other 4 proteins without biological experiment results, potential folding pathways were pre-

dicted to provide new insights into the protein folding mechanism. Analyzing of the above

results, we found some protein folding mechanisms.

Results

Evaluation metric

Related studies have shown that the logarithm of experimental protein folding rates depends

on the local geometry and topology of the protein’s native state [52]. Contact order is a metric

of protein topology complexity and stability, reflecting the relative importance of local and

nonlocal contacts to protein structure [53]. Contact order has a statistically significant

PLOS COMPUTATIONAL BIOLOGY Protein folding pathway prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011438 September 11, 2023 3 / 18

https://doi.org/10.1371/journal.pcbi.1011438


relationship with protein folding dynamics [54]. Contact order accurately assesses the protein

folding pathway, especially those whose folds collapse to stabilize globular shapes. However,

contact order may have limitations in special cases as shown in Fig D in S1 Text. Therefore,

this work verifies the accuracy of the prediction by comparing with the existing biological

experiment results. The contact order is defined as:

CO ¼
1

L � Ncon

XNcon

DSij ð1Þ

where Ncon is the number of residues whose distance between them is less than 8Å. The ΔSij is

the sequence separation between residue i and j, and L is the length of the protein. On this

basis, the residue contact order of i -th Rco(i) was designed to assess the local folding comple-

tion of intermediate states:

Rco ið Þ ¼
XNdis

i
DSij
dij

ð2Þ

where Ndis
i is the number of residues whose distance are less than 20Å from i -th residue. The

dij is the distances between residue i and j. The contact order can evaluate the degree of folding

completion through the intermediate state structure information. The residue contact order

can capture the folding nucleus information and key residue information during the folding

process, as described in Fig E in S1 Text.

Folding pathway with experimental validation

The GB1 and LB1. The IgG-binding B1 domain of protein G (GB1, Fig 1a) and IgG-bind-

ing B1 domain of protein L (LB1, Fig 1d) are often used as model proteins for folding mecha-

nism studies. GB1 has a wide range of biomedical uses and studies of protein folding and

stability [55], and extensive experimental results and computational simulations exploring the

complete folding pathway [46]. Both GB1 and LB1 contain an α-helix and four β-strands, but

their sequence similarity is low and their folding pathways differ. Related studies have shown

that the hairpin structure (folding nucleus) plays a crucial role in global folding [46].

The predicted protein folding pathways are shown in Fig 1b and 1e. The result shows that

GB1 first forms an α-helix, meanwhile the β-turns (47D, 48A, 49T) at the C-terminus has

started to form, which may be a sign that I2 of GB1 (called GI2) start to form. Then the β3 and

β4 formed as shown in GI2. In addition, the β1 and β2 of GI2 is represented in helical, which is

different from the native structure in Fig 1a. This is because the unstable structure in the inter-

mediate state usually exists as a disordered region, and it may be replaced by secondary struc-

tures such as helices and loops in fragment assembly. Finally, a hairpin structure composed of

β1 and β2 is formed at the N-terminus (as shown in N’). Our GB1 predictions are complete

consistent with biological experiments [56–58] and contain structural information for the

folding stage. As shown in Fig A in S1 Text, the folding pathway of GB1 can be clearly observed

through the residue contact orders in the intermediate state. Therefore, after normalizing the

residue contact orders, the color of the scale in the lower right corner of Fig 1 shows the folding

degree of the residues.

As shown in 1f, the I1 of LB1(called LI1) suggest that the β1 and β2 hairpin structures at the

N-terminal are formed earlier than the β3 and β4 structures, which was different from the fold-

ing mechanism of GB1. After β3 and β4 folding, the loop of LB1 folds to stabilize. Similarly, C-

terminal β turns (61D, 62K, 63G) and β4 start to form in the LI1. The predicted results of LB1

are almost consistent with the biological experiments [59], but the order of helix and N-termi-

nal hairpin structure formation is missing. By analyzing the conformational structure of the
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sampling process (Fig F in S1 Text), we found that the sampling occupancy rate of these two

structures is low, and the clustering structure is mainly the process of β3 and β4 and loop. This

is because the fragment assembly method completes both the helix and sheet folding early in

conformational sampling.

As shown in Fig 1c and 1f, the contact order of their intermediate states showed an upward

trend, reflecting the degree of globular protein folding. The folding of LI2 to N’ is mainly

affected by loop adjustment, and the degree of folding is much lower than that of β-strand for-

mation from the I1 of LB1 to LI2. In addition, related studies have shown that the formation

order of the hairpin structure is crucial to the folding rate and stability [57]. The above results

suggest that structural analogs may have different folding pathways and provide material for

protein design.

Inspired by this difference in folding mechanism, the GB1 mutant NuG2 (PDB ID: 1mi0)

was designed [59]. We also predicted the folding pathway of the NuG2 as shown in Fig A in S1

Text. The results show that NuG2 not only has the folding pathway of LB1 protein, but also

may have the folding pathway of the original GB1 protein as shown in Fig G in S1 Text.

SRC Homology 3 Domain

The study on the folding of SRC Homology 3 Domain provides extremely valuable informa-

tion for the molecular mechanism of amyloid formation and the cytotoxicity of protein aggre-

gates, which is of great significance for better understanding the pathological process and

exploring the possibility of future treatment [60]. Extensive experimental and theoretical stud-

ies explored the natively stable intermediate states and complete folding pathways of the SH3

protein, and found that the unfolded state of β5 may be responsible for misfolding [61].

Here, we predicted the folding pathway of SH3 from Escherichia coli (eSH3, Fig 2a) and

chicken c-Src-SH3 domain (cSH3, Fig 2d). Interestingly, the folding pathways and the contact

order of intermediate states are almost identical for the two proteins. First, the I1 in Fig 2b and

2e show that a folded nucleus consisting of β2, β3, and β4 forms. Then, both loops marked in I2

of Fig 2b and 2e is called RT-Src loop, which is gradually formed. Finally, the folding nucleus

is used as the support point to drive the formation of β1 and β5 at the N-terminal and C-termi-

nal of the protein to complete the folding. The predicted results are completely consistent with

Fig 1. Folding pathway of GB1 (PDB ID:1pgb) and LB1 (PDB ID:1hz5). (a) and (d) are the native structure of GB1

and LB1. (b) and (e) are the folding pathway of GB1 and LB1 including intermediate states. (c) and (f) are the contact

orders of the intermediate states. Residue contact order values are normalized and represented on the structure as

color.

https://doi.org/10.1371/journal.pcbi.1011438.g001
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the biological experimental results [62], which verifies the effectiveness of Pathfinder.

Although there are differences in the intermediate state structures of the two SH3 proteins, the

order of key local structures is highly consistent. Furthermore, we respectively predict the fold-

ing pathways of three homologous proteins of Escherichia coli SH3 protein mutant (PDB ID:

1srl), Caenorhabditis elegans SH3 (PDB ID: 1b07) and human Fyn SH3 (PDB ID: 5zau) in Fig

A in S1 Text. In these SH3, the formation of folded nucleus composed of β2, β3, and β4 can be

observed, and the RT-Src loop usually only forms a rough outline. Therefore, it may be the

instability of the RT-Src loop leads to insufficient constraints on β5 during SH3 folding,

Fig 2. Folding pathways of eSH3 (PDB ID:1shg) and cSH3 (PDB ID:4jz4). (a) and (d) respectively their native

structures. (b) and (e) are folding pathway including the intermediate states. (c) and (f) are contact order of

intermediate states.

https://doi.org/10.1371/journal.pcbi.1011438.g002

Fig 3. Folding pathway of LysM (PDB ID: 1e0g). (a) is the native structure of the LysM protein. (b) is the contact

order of the intermediate states. (c) is the folding pathway including the intermediate states and their residue contact

order.

https://doi.org/10.1371/journal.pcbi.1011438.g003
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leading to misfolding. The result also show that these homologous proteins may share the

same folding pathway.

LysM domain. The lysin domain (LysM) is a ubiquitous and versatile peptidoglycan-

binding module found in bacterial proteins [63]. Because of the simple structure and impor-

tant biological significance of this protein, a large number of studies have analyzed the folding

transition state and folding pathway of this protein [64–66]. The protein consists of 48 residues

with a secondary structure arrangement of βααβ and a highly robust folding pathway.

The folding pathway predicted by Pathfinder is shown in Fig 3b, which includes the inter-

mediate state of only α-helix formation and the process of β-strand formation. The folding

pathway of LysM is relatively clear, and the folding degree of residues can be clearly analyzed

through the residue contact order. The two α-helices in the middle of I1 form a folding

nucleus. The inward extrusion of the two stable α-helices then drives the two ends to fold

(intermediate state 2). Finally, two β-strands formation of LysM completes the folding. The

result is highly consistent with biological experiments [67].

By comparing the intermediate state data or folding pathway information collected in rele-

vant literature with the predicted results by Pathfinder, we verified the folding pathways of 11

proteins. The above is the specific analysis of 5 proteins, and the folding pathways of the

remaining 6 proteins are shown in Fig A in S1 Text.

Protein folding pathways to be validated

Because it is difficult to obtain the intermediate state, biological experiments usually study the

folding mechanism by analyzing the key residues in the folding process. Pathfinder predicts

protein heterogeneous conformation and folding pathways by sequence and native state. This

may provide new ideas for the study of folding mechanism. The 13 proteins in Fig B in S1 Text

require further validation because of the lack of intermediate state data. In addition, we found

that for proteins with both α-helices and β-strands, the initial intermediate state often contains

helical structures. Furthermore, α-helical structures are generally believed to be more stable

due to having more hydrogen bonds than β-strands. Therefore, we thought that α-helices

might generally be easier to form early in folding.

Folding pathway without experimental validation

Response regulator proteins utilize distinct molecular surfaces in inactive and active confor-

mations for various regulatory intramolecular and intermolecular protein interactions [68].

Molecular dynamics simulations complement structural studies of conformational changes

under receptive domain switch function [69]. However, access to the heterogeneous confor-

mation required for MD is not easy. Pathfinder predicted the folding pathways of four related

proteins (as show in Fig 4), including a two-component response regulator from Cytophaga

hutchinsonii (PDB ID: 3ilh), a response regulator from Geobacillus stearothermophilus (PDB

ID: 6swl), a two-component response regulator from Clostridium difficile (PDB ID: 2qzj), and

a phosphotransferase in complex with a receiver domain (PDB ID: 4qpj).

Their contact orders all increase exponentially, indicating that the intermediate conforma-

tional structure occurs more in the early stage of folding. In the early stage of folding, these

proteins all form multiple α-helices, further illustrating that the helical structure may be

formed earlier than the β-strand. During the subsequent folding pathway, internal β-strands

are formed step by step. By comparing the intermediate states of these proteins, we found that

several α-helices and β-strands often form a super-secondary structure or folded nucleus. It is

the mutual extrusion and collapse of these folded nuclei that stabilize the protein fold.

PLOS COMPUTATIONAL BIOLOGY Protein folding pathway prediction
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Pathfinder can predict the protein folding pathway by sequence and native to study the protein

folding mechanism of the unresolved native conformation.

Discussion

We apply efficient sampling algorithms to explore intermediate states and develop a protein

folding pathway prediction algorithm based on conformational sampling. Pathfinder captures

information between intermediate states to predict protein folding pathways. The results show

that Pathfinder can extract the commonality from the folding pathways of multiple proteins,

and discover the folding mechanisms of some proteins. For example, structural analogs may

have different folding pathways to express different biological functions and provide insights

for protein design. The proteins of the SH3 family may have the same folding pathway, and the

instability of the loop region leads to insufficient force on the local structure, resulting in mis-

folding. During folding, α-helices may form earlier than β-strands because of the influence of

hydrogen bonds. Further, we explore the predictive preference of Pathfinder. We found that

Pathfinder more easily predicted proteins containing both β-strand or α-helix structures as

shown in result. For proteins containing only α-helix it may be biased due to the easier assem-

bly of helices by fragment assembly (Fig H in S1 Text).

As shown in Fig I in S1 Text, we performed a basic protein conformation sampling proce-

dure on the 1e0m protein and the 1opa protein to analyze their correctness of energy force

fields. The results show a situation where 1e0m protein energy cannot be reduced. This also

shows that the appropriateness of the energy force field affects the accuracy of protein folding

Fig 4. Folding pathways of four unexperimented proteins. Folding pathways include intermediate state structure

information and normalized residue contact order. The color annotation of residue contact order is consistent with the

intermediate state in Fig 1.

https://doi.org/10.1371/journal.pcbi.1011438.g004

PLOS COMPUTATIONAL BIOLOGY Protein folding pathway prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011438 September 11, 2023 8 / 18

https://doi.org/10.1371/journal.pcbi.1011438.g004
https://doi.org/10.1371/journal.pcbi.1011438


pathway prediction. Moreover, we analyzed the folding pathways of 6 proteins whose predic-

tion accuracy was insufficient as shown in Fig J in S1 Text. By evaluating the energy of the

intermediate state, we found that the energy of the intermediate state tended to decrease under

the ref2015 energy force field. However, the evaluation of the contact order showed that the

degree of folding did not show a clustering trend. Therefore, the inaccuracy of the energy force

field leads to the flawed prediction of the folding pathway. Since Pathfinder is based on the

simulation of protein folding guided by the Rosetta force field. Energy force fields trained with

deep learning may be applicable to folding pathway prediction for more proteins.

Compared with traditional biological experiments, Pathfinder obtains approximate protein

intermediate state structures and, at the same time, predicts the order in which these interme-

diate states appear, enriching protein folding data. For molecular dynamics simulations, if the

protein sequence is too long, the vast calculation parameters will inevitably limit the simula-

tion of the folding process. The method can be combined with molecular dynamics simula-

tions to provide new insights into methods for computationally simulating protein folding. At

the same time, Pathfinder can analyze family proteins or protein collections under different

classifications, and explore protein folding mechanisms from a broader perspective.

Materials and methods

Protein conformational sampling can provide new ways to explore folding pathways. In this

study, we hypothesized that the protein folding information from unfolded state to folded

state may be implied in the conformational sampling process in the energy landscape [46,70],

and that the maximum probability path of state transition corresponds to the folding pathway.

Based on the above assumptions and inspired by hidden Markov model, we predict protein

folding pathways by the transition probability between metastable states inferred from sam-

pled conformations. Here, the metastable states located in local energy basins are named as

’Seed states’ (cyan structures, Fig 5), where the states in shallow basin of folding pathway are

Fig 5. Schematic diagram of folding pathway prediction based on conformational sampling. The yellow structures

are sampling states and cyan structures are seed states. The dotted arrows indicate the implicit transition between

intermediate states. Sampling states are obtained by the large-scale conformational sampling. The seed states and their

transition tendency are inferred by the resampling algorithm.

https://doi.org/10.1371/journal.pcbi.1011438.g005
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called ’Intermediate states’. We predicted the folding paths of 34 proteins and analyzed 5 of

them in combination with the evaluation metric.

Datasets

Because the conformational sampling process is greatly affected by the energy force field, we

predict the structures of 193 proteins through the basic Rosetta ab initio modeling algorithm

and the ref2015 energy force field. The test set we collected includes 34 proteins. The folding

data of 6 proteins are collected from the HDX experimental database of Start2Fold [71].19 pro-

teins are collected from the standardized protein folding database (PFDB) [72], the other 5

proteins come from our collection of related protein folding research papers. The above 30

proteins are included with known protein folding data, and related research papers are in the

appendix (Table A in S1 Text). We also collected 4 proteins with no experimental folding

information. We take the probability of the maximum transition path after normalization as

the confidence level of the prediction result. The folding pathway prediction confidence

(Table A in S1 Text) and algorithm running speed (Table D in S1 Text) of these 34 proteins are

given.

The pipeline of Pathfinder is shown in Fig 6, consists three stages: (A) seed generation, (B)

transition probability exploration and (C) folding pathway inference. The input is the query

sequence and native structure from PDB (or predicted model by AlphaFold2 if there is no

crystal structure in PDB). The output is the predicted protein folding pathway. Guided by the

energy function of ClassicAbinitio protocol in Rosetta [73,74], fragment assembly-based

Metropolis Monte Carlo (MMC) algorithm [75] is used for conformational sampling in the

stages (A) and (B). The fragment library is built by the Robetta fragment server (http://old.

robetta.org/). In the stage (A), a large-scale conformational sampling algorithm is used to

Fig 6. The pipeline of Pathfinder. (A) Seed generation. Sampling of large-scale conformational space by input

sequences. Cluster and output the seed states. (B) Transition probability exploration. The seed states in this stage

consists of the seeds obtained in stage A and the input native structure. (C) Folding pathway inference. The folding

pathway starts from the unfolded state and passes through several intermediate states to a near-native state (N’), which

is the closest conformation to native during sampling.

https://doi.org/10.1371/journal.pcbi.1011438.g006
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obtain a mass of decoys. The cluster centroid obtained by clustering is selected as the seed

state. In the stage (B), based on a modified energy function, conformational resampling is not

constrained by local energy traps to explore transition probabilities between seed states.

Finally, the protein folding pathways are inferred by transition probabilities using a dynamic

programming algorithm in the stage (C).

Seed generation

We use a large-scale conformational sampling with G MMC trajectories to explore energy

basins with high repetition rates in folding pathways. Each MMC trajectory generates about

360,000 conformations, where accepted conformations are saved as decoys. There are at least

13000 decoys from all MMC trajectories for cluster. We cluster decoys into centroids using

Spicker [76], and every 13,000 decoys are clustered into S centroids. Because of redundancy

among centroids, we merge centroids with TM-score>τ to generate N seed states. In particu-

lar, the lowest global energy basin is represented in the seed state 1 (illustrated in Fig 5) of the

input structure.

Transition probability exploration

Modified energy function. Different from the large-scale sampling, the purpose of resam-

pling algorithms is to explore the transition propensity of the seed states, rather than to simu-

late de novo protein folding. Because there are masses of energy barriers in the energy

landscape, the conformational sampling has the defect that it is difficult to jump out after

entering the local energy basin, which leads to low sampling efficiency.

Therefore, we construct a modified energy function to facilitate sampling state transitions

by raising the energy basin and lowering the energy barrier as illustrate in Fig 7. The Ct is the t
-th conformation accepted in modified energy landscape, the Ct

origin is the original conforma-

tion in the unmodified energy landscape, and Ct−1 is (t − 1) -th conformation. Based on the

Fig 7. Schematic of the modified energy landscape. After modification, the energy basin is raised and the energy

barrier is lowered. And the relatively smooth energy landscape makes transitions between states easy.

https://doi.org/10.1371/journal.pcbi.1011438.g007
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modified energy function, Ct escapes the local basin more easily than Ct
origin. The modified

energy function f(Ct) guiding resampling is defined as:

f Ctð Þ ¼
Er C tð Þ; t ¼ 1

Er C tð Þ þ T tð ÞarctanðEp C tð ÞÞ; t > 1
; ð3Þ

(

where Er(Ct) is Rosetta energy function and Ep(Ct) is an energy function which designed to

modify the original energy function. T(t) is reduced as the number of samples increases to off-

set the large energy gap between the unfolded state and the folded state.

T tð Þ ¼
L

t þ mð Þ
; ð4Þ

where L is the length of the protein, the μ is the initial value to avoid excessive energy at the

beginning of sampling. The energy function Ep(Ct) is designed as:

Ep C tð Þ ¼ Ep Ct� 1ð Þ þ
Er Ct� 1ð Þ � Er Ctð Þð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S Ct;Ct� 1ð Þ

p ; t > 1; ð5Þ

where Ep(Ct−1) is the previously accumulated energy function to maintain enough energy to

rush out of the energy basin. S(Ct, Ct−1) is the dihedral angles difference between Ct and Ct−1,

designed as:

S Ct;Ct� 1ð Þ ¼
1

3L

XL

i¼1
ðφt

i � φt� 1

i Þ
2
þ ð�

t
i � �

t� 1

i Þ
2
þ ðot

i � o
t� 1

i Þ
2
; ð6Þ

where φt
i ; �

t
i and ot

i are the dihedral angles of i residue of t -th conformation. The modified

energy function was compared with the benchmark conformational sampling algorithm (Fig E

in S1 Text). The results show that the modified energy function can explore wider energy

basins and guide the conformational sampling process more quickly.

Seed states transition generation. In the funnel model, high-energy barriers exist around

local energy basins, and random jumps in sampling points between basins contain transition

information [35]. The resampling algorithm locates energy basins for sampling in conforma-

tional space based on sampling states and DMscore cutoff η. DMscore [50] is a structural simi-

larity metric we previously developed, focusing on secondary structure to determine the extent

of local energy basins. Based on the modified energy function, the resampling algorithm uti-

lizes conformational sampling to obtain potential seed state transition probabilities. Inspired

by hidden Markov models, the observation state is a representation of the hidden unknown

state. The state maximum probability path can be obtained by constructing the model and the

observation state. However, state transition path inference needs to obtain a continuous

sequence of observation states and cannot be directly used in random image sampling meth-

ods. Therefore, we generate a mass of sampling states to obtain state transitions by comparing

their structural similarity with the seed states. MMC trajectories are different from the contin-

uous trajectories of molecular dynamics simulations, including random conformational struc-

ture transitions. We define the state transition frequency matrix as B = {bij}, where bij is obtain

by resampling algorithm. We consider the sampled trajectory to enter this state region when

the DMscore between the sampling conformation and seed i is greater than ξ. At the same

time, we designed the unidirectionality of the transformation, that is, when the transmission

from i to j is the reverse of the previous transmission, the transmission frequency is not calcu-

lated, which helps to reduce the background noise generated by random sampling. The
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transition frequency of the seed states is calculated by resampling. We further process the B to

get the transition probability matrix A = {aij}, where aij ¼
bijPN

j
bij

.

Folding pathway inference

Based on the seed states transition probability matrix A, protein folding pathways are inferred

using a dynamic programming algorithm. The folding pathways are represented in the order

of seed states, which are inferred from the transition probability matrix. Based on the N seed

states obtained above, the optimal path is defined as I∗ ¼ ði∗
1
; i∗

2
; . . . ; i∗n; . . . ; i∗NÞ, where i∗n is the

optimal path from i∗
1

to i∗n. The i∗n ¼ cnðiÞ is defined as:

cn ið Þ ¼ arg max
1�j�N

pn ið Þ; i ¼ 1; 2; . . . ;N; ð7Þ

pn ið Þ ¼ max
1�j�N

pn� 1 jð Þaji; i ¼ 1; 2; . . . ;N; ð8Þ

where pn(i) is the maximum transition probability to i∗n, and aji is the transition probability

from seed i to seed j. Because of the imperfection of the Rosetta force field, it is difficult to sam-

ple protein conformations to the native state. Therefore, the known native structure is used as

the end point of the folding (ψ1(i) = 1), and the folding pathway I* is reversely inferred.

Supporting information

S1 Text. Supplementary tables and figures. Fig A. 11 validated protein folding pathways.

Fig B. 13 protein folding pathways to be verified. Fig C. 6 defective protein folding path-

ways. Fig D. Two cases showing limitation of contact order. (a) is the contact order and

intermediate state line diagram of 5l8i protein. (b) is the intermediate state structure of 5l8i

protein. (c) is the line graph of contact order and intermediate state of 1opa protein. (d) is the

intermediate state structure of 1opa protein. It can be found that the contact order of interme-

diate state 1 is relatively high because there is a cavity in the middle of the structure in the

native state. In the metastable structure, the contact order of the intermediate state 1 is higher

than that of the intermediate state 2, which is about to form the cavity, because the cavity has

not yet been formed. Fig E. The spline connection graph of the normalized residue contact

order. (a) is a distance map of the intermediate states of the GB1 protein. (b) is the residue

contact order diagram of the intermediate state of GB1 protein, where orange represents the

intermediate state and gray represents the native structure. (c) The ratio of the residue contact

order between the intermediate state and the native structure is represented in color on the

structure. The more similar the residue contact order in the intermediate state is to the natural

structure, the higher the ratio, and the more it tends to blue. Comparing the residue contact

order with the native structure, the folding degree of the intermediate state and the order of

appearance of the secondary structure can be further analyzed. Furthermore, the residue con-

tact order information can be represented by a three-dimensional structure to better observe

the folding nucleus. Fig F. LB1 sampling process diagram. A total of 10125 accepted process

points were generated during one conformational sampling process of LB1. We gave the first

3000 sampling data and analyzed the first 30 conformations. And present part of the confor-

mation. Fig G. Predicted folding pathway of NuG2. The probability of the I1, I2 and N’ path-

way is 0.67 and the probability of the I1, I3 and N’ pathway is 0.32. Fig H. Folding pathway

prediction results of helical proteins. Pathfinder’s predictions for proteins containing only

α-helices may be biased. The intermediate state predicted by Pathfinder may complete the

assembly of the α-helix of each link in the early stage of folding, so that the sampling of the late
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stage is more about the sampling of the loop region. However, the experimental results shown

that the helix at both ends of the 1yyj protein is folded to be stable at the late stage of folding.

Fig I. Line graph of sampling times and energy. (a) is the sampling trajectory of 1e0m pro-

tein, and (b) is the sampling trajectory of 1opa. Among them, the protein energy of 1e0m has

almost no drop, and 1opa is more in line with the normal conformational sampling process.

Fig J. Prediction of defective protein folding pathway analysis. We analyzed the cause of

insufficient folding pathways for other proteins (PDB ID: 1hdn, 1tp3, 1ten, 1ubq, 3chy). Using

score_jd2 protocol to calculate the intermediate state of these proteins based on the ref2015
scoring function. We further use fastrelax to relax the intermediate states. The processed inter-

mediate state also uses the score_jd2 protocol to calculate the energy item, which is shown in

the fourth column of the figure. The results show that the intermediate states of 1ten and 1ubq

proteins follow the sampling process of energy decline in the ref2015 energy force field, which

indicates that the energy force field is biased in sampling the intermediate states of these two

proteins. Fig K. Sampling Process Analysis Diagram. (a) is the energy and RMSD scatterplot

of the conformations of the sampling process. Red dots are the conformations of the sampling

process under the modified energy force field. Black dots are the benchmark conformations of

Rosetta’s conformational sampling process. (b) is the trajectory of energy variation with the

number of samples. Red is the sampling trace of the modified energy force field, and black is

the sampling trace of the baseline Rosetta. Table A. The test set of Pathfinder. Table B. The

parameter of Pathfinder. Table C. Performance improvement table of modified energy

function (MEF). Table D. Table Running Speed of Pathfinder on dataset.
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62. Petzold K, Öhman A, Backman L. Folding of the α-spectrin SH3 domain under physiological salt condi-

tions. Arch Biochem Biophys. 2008; 474(1):39–47. https://doi.org/10.1016/j.abb.2008.02.042 PMID:

18358826

63. Bateman A, Bycroft M. The structure of a LysM domain from E-coli membrane-bound lytic murein trans-

glycosylase D (MltD). J Mol Biol. 2000; 299(4):1113–1119. https://doi.org/10.1006/jmbi.2000.3778

PMID: 10843862

64. Glasscock JM, Zhu YJ, Chowdhury P, Tang J, Gai F. Using an amino acid fluorescence resonance

energy transfer pair to probe protein unfolding: Application to the villin headpiece subdomain and the

LysM domain. Biochemistry. 2008; 47(42):11070–11076. https://doi.org/10.1021/bi8012406 PMID:

18816063

65. Cossio P, Marinelli F, Laio A, Pietrucci F. Optimizing the Performance of Bias-Exchange Metady-

namics: Folding a 48-Residue LysM Domain Using a Coarse-Grained Model. Journal of Physical Chem-

istry B. 2010; 114(9):3259–3265. https://doi.org/10.1021/jp907464b PMID: 20163137

66. Mesnage S, Dellarole M, Baxter NJ, Rouget JB, Dimitrov JD, Wang N, et al. Molecular basis for bacte-

rial peptidoglycan recognition by LysM domains. Nature Communications. 2014; 5:4269. https://doi.org/

10.1038/ncomms5269 PMID: 24978025

67. Nickson AA, Stoll KE, Clarke J. Folding of a LysM domain: Entropy-enthalpy compensation in the transi-

tion state of an ideal two-state folder. J Mol Biol. 2008; 380(3):557–569. https://doi.org/10.1016/j.jmb.

2008.05.020 PMID: 18538343

68. Gao R, Stock AM. Molecular strategies for phosphorylation-mediated regulation of response regulator

activity. Curr Opin Microbiol. 2010; 13(2):160–167. https://doi.org/10.1016/j.mib.2009.12.009 PMID:

20080056

69. Bourret RB. Receiver domain structure and function in response regulator proteins. Curr Opin Microbiol.

2010; 13(2):142–149. https://doi.org/10.1016/j.mib.2010.01.015 PMID: 20211578

70. Englander SW, Mayne L. The case for defined protein folding pathways. Proceedings of the National

Academy of Sciences. 2017; 114(31):8253–8258. https://doi.org/10.1073/pnas.1706196114 PMID:

28630329

71. Pancsa R, Varadi M, Tompa P, Vranken WF. Start2Fold: a database of hydrogen/deuterium exchange

data on protein folding and stability. Nucleic Acids Res. 2016; 44(D1):D429–D434. https://doi.org/10.

1093/nar/gkv1185 PMID: 26582925

72. Manavalan B, Kuwajima K, Lee J. PFDB: A standardized protein folding database with temperature cor-

rection. Sci Rep. 2019; 9(1):1–9. https://doi.org/10.1038/s41598-018-36992-y PMID: 30733462

PLOS COMPUTATIONAL BIOLOGY Protein folding pathway prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011438 September 11, 2023 17 / 18

https://doi.org/10.1038/s41598-022-09924-0
http://www.ncbi.nlm.nih.gov/pubmed/35430582
https://doi.org/10.1006/jmbi.1998.1645
http://www.ncbi.nlm.nih.gov/pubmed/9545386
https://doi.org/10.1038/83003
http://www.ncbi.nlm.nih.gov/pubmed/11135664
https://doi.org/10.1021/bi00181a032
https://doi.org/10.1038/13311
http://www.ncbi.nlm.nih.gov/pubmed/10504729
https://doi.org/10.1021/jacs.2c04488
http://www.ncbi.nlm.nih.gov/pubmed/35930769
https://doi.org/10.1126/science.1871600
http://www.ncbi.nlm.nih.gov/pubmed/1871600
https://doi.org/10.1038/89638
http://www.ncbi.nlm.nih.gov/pubmed/11427890
https://doi.org/10.1073/pnas.0308249101
http://www.ncbi.nlm.nih.gov/pubmed/15123800
https://doi.org/10.1371/journal.pone.0113224
https://doi.org/10.1371/journal.pone.0113224
http://www.ncbi.nlm.nih.gov/pubmed/25490095
https://doi.org/10.1016/j.abb.2008.02.042
http://www.ncbi.nlm.nih.gov/pubmed/18358826
https://doi.org/10.1006/jmbi.2000.3778
http://www.ncbi.nlm.nih.gov/pubmed/10843862
https://doi.org/10.1021/bi8012406
http://www.ncbi.nlm.nih.gov/pubmed/18816063
https://doi.org/10.1021/jp907464b
http://www.ncbi.nlm.nih.gov/pubmed/20163137
https://doi.org/10.1038/ncomms5269
https://doi.org/10.1038/ncomms5269
http://www.ncbi.nlm.nih.gov/pubmed/24978025
https://doi.org/10.1016/j.jmb.2008.05.020
https://doi.org/10.1016/j.jmb.2008.05.020
http://www.ncbi.nlm.nih.gov/pubmed/18538343
https://doi.org/10.1016/j.mib.2009.12.009
http://www.ncbi.nlm.nih.gov/pubmed/20080056
https://doi.org/10.1016/j.mib.2010.01.015
http://www.ncbi.nlm.nih.gov/pubmed/20211578
https://doi.org/10.1073/pnas.1706196114
http://www.ncbi.nlm.nih.gov/pubmed/28630329
https://doi.org/10.1093/nar/gkv1185
https://doi.org/10.1093/nar/gkv1185
http://www.ncbi.nlm.nih.gov/pubmed/26582925
https://doi.org/10.1038/s41598-018-36992-y
http://www.ncbi.nlm.nih.gov/pubmed/30733462
https://doi.org/10.1371/journal.pcbi.1011438


73. Das R, Baker D. Macromolecular modeling with Rosetta. Annu Rev Biochem. 2008; 77:363–382.

https://doi.org/10.1146/annurev.biochem.77.062906.171838 PMID: 18410248

74. Rohl CA, Strauss CEM, Misura KMS, Baker D. Protein Structure Prediction Using Rosetta. Methods

Enzymol. Methods in Enzymology. 383. 2004/04/06 ed: Elsevier; 2004. p. 66–93.

75. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of State Calculations by

Fast Computing Machines. The Journal of Chemical Physics. 1953; 21(6):1087–1092. https://doi.org/

10.1063/1.1699114

76. Zhang Y, Skolnick J. SPICKER: A clustering approach to identify near-native protein folds. J Comput

Chem. 2004; 25(6):865–871. https://doi.org/10.1002/jcc.20011 PMID: 15011258

PLOS COMPUTATIONAL BIOLOGY Protein folding pathway prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011438 September 11, 2023 18 / 18

https://doi.org/10.1146/annurev.biochem.77.062906.171838
http://www.ncbi.nlm.nih.gov/pubmed/18410248
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1002/jcc.20011
http://www.ncbi.nlm.nih.gov/pubmed/15011258
https://doi.org/10.1371/journal.pcbi.1011438

