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Abstract

The study of viral communities has revealed the enormous diversity and impact these bio-

logical entities have on various ecosystems. These observations have sparked widespread

interest in developing computational strategies that support the comprehensive characteri-

sation of viral communities based on sequencing data. Here we introduce VIRify, a new

computational pipeline designed to provide a user-friendly and accurate functional and taxo-

nomic characterisation of viral communities. VIRify identifies viral contigs and prophages

from metagenomic assemblies and annotates them using a collection of viral profile hidden

Markov models (HMMs). These include our manually-curated profile HMMs, which serve as

specific taxonomic markers for a wide range of prokaryotic and eukaryotic viral taxa and are

thus used to reliably classify viral contigs. We tested VIRify on assemblies from two micro-

bial mock communities, a large metagenomics study, and a collection of publicly available

viral genomic sequences from the human gut. The results showed that VIRify could identify

sequences from both prokaryotic and eukaryotic viruses, and provided taxonomic classifica-

tions from the genus to the family rank with an average accuracy of 86.6%. In addition, VIR-

ify allowed the detection and taxonomic classification of a range of prokaryotic and

eukaryotic viruses present in 243 marine metagenomic assemblies. Finally, the use of VIR-

ify led to a large expansion in the number of taxonomically classified human gut viral

sequences and the improvement of outdated and shallow taxonomic classifications. Overall,

we demonstrate that VIRify is a novel and powerful resource that offers an enhanced capa-

bility to detect a broad range of viral contigs and taxonomically classify them.
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Author summary

Viruses are the most abundant biological entities on our planet. Some are relevant patho-

gens for public health or agriculture. Still, many also play ecological roles that are critical

for maintaining ecosystems. Most viruses are yet to be cultured, so their identification and

characterisation depend solely on the analysis of DNA or RNA obtained from the envi-

ronment. Unlike cellular organisms, viruses also lack a universal genetic marker that

allows taxonomic profiling of an environmental viral community. We have manually

curated a set of specific viral protein models that serve as taxonomic markers for a com-

prehensive range of viral taxa. Using these protein models, we developed VIRify, a

computational pipeline for the detection, annotation, and taxonomic classification of viral

sequences obtained from environmental DNA or RNA. Our new pipeline was efficient in

detecting and classifying sequences of viruses targeting bacteria or eukaryotic organisms

in mock microbial communities, samples from the world’s oceans, and a previously

assembled collection of human gut viruses. VIRify is user-friendly, requires minimal

interaction with the command line, and was developed with portability in mind. VIRify

can enhance the exploration of viral diversity in nature and support the detection of path-

ogenic viruses with pandemic potential.

Introduction

Viruses are the most abundant biological entities inhabiting our planet, with an estimated 1030

virus-like particles (VLP) present in the world’s oceans [1]. Even though viruses are often

acknowledged as disease-causing agents in animals and plants, many studies to date have dem-

onstrated the pivotal role that viruses play in shaping microbial populations, particularly in the

case of phages and their bacterial hosts [2–5]. The application of metagenomics-based

approaches in these studies facilitated the culture-independent exploration of microbial com-

munities, resulting in the expansion of the span of viral-host interactions that could be charac-

terised. This approach has revealed a vast extent of uncharacterised viral genetic diversity

known as "viral dark matter" [6–11] and led to the discovery of numerous uncultivated virus

genomes (UViGs) [12–15]. Studies, especially in oceanic environments, have demonstrated

the importance of viruses in biogeochemical cycling and metabolic modulation of ocean

microbes [12,16,17].

A review paper of the TARA Oceans project highlighted the urgent need for automated

approaches to systematically organise the enormous virus sequencing data beyond the species

level [18]. Several computational tools and resources that offer a solution to this challenge have

been developed and made publicly available in the last two decades [19–21]. One of the most

prominent and currently available tools is VConTACT2, which employs data on proteins

shared between phage genomes to build a similarity network that is further analysed to identify

clusters of evolutionarily related phages [22]. An alternative approach to the taxonomic classi-

fication of viruses involves protein profile HMMs representing clusters of homologous pro-

teins or protein domains, which in turn serve as markers for different viral taxa, a strategy

used for example by ClassiPhage [23]. Phage classification with ClassiPhage demonstrated

agreement with the reference taxonomy from the International Committee on Taxonomy of

Viruses (ICTV), although the generation and testing of the taxon-specific profile HMMs was

solely focused on phages targeting members of the bacterial family Vibrionaceae [23]. More

recently, a set of 31,150 profile HMMs representing proteins predicted in viral genomes from
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NCBI were used as the basis for a set of Random Forest classifiers aimed at assigning viral tax-

onomy at the order, family, and genus ranks [24]. These classifiers demonstrated very high

classification accuracy (� 89%) at all the aforementioned ranks, suggesting that these profile

HMMs (or ViPhOGs as they were named) could be the foundation for a new method that tax-

onomically classifies viral genomic sequences present in metagenomic datasets.

Existing pipelines such as VirMiner, iVirus and KBase enable taxonomic and functional

characterisation of viral contigs in metagenomic datasets [25–27]. More recently, Hecatomb

and MetaPhage were released to provide the scientific community with scalable and portable

resources for the taxonomic profiling of viral communities, using metagenomic reads as input

[28,29]. Here we present VIRify, a new pipeline that predicts virus-like sequences using canon-

ical viral signals and annotates contigs using a comprehensive collection of profile HMMs,

including our set of manually curated ViPhOGs. VIRify reduces false-positive predictions and

prioritises portability via its implementation as a containerised Nextflow workflow [30], which

can be directly integrated into already existing platforms such as MGnify [31]. The VIRify

pipeline is freely available at https://github.com/EBI-Metagenomics/emg-viral-pipeline. We

showcase the application of VIRify based on two viral mock communities mostly comprised of

phages [32] but also eukaryotic viruses [33], as well as 243 metagenome assemblies of the

TARA Oceans project [12], and a previously generated collection of 57,866 viral genomic clus-

ters (VCs) from globally-distributed human gut metagenomic datasets [34].

Methods

Manual curation of virus-specific protein HMMs and definition of model-

specific bit score thresholds

We manually curated a set of taxon-specific profile HMMs by searching the original ViPhOG

database [24] against all entries in UniProtKB (February 2019 version). This was achieved

using hmmsearch (v3.2.1) and setting a per-sequence reporting e-value threshold of 1.0x10-3.

The resulting output was analysed using in-house python scripts (https://github.com/

EBI-Metagenomics/emg-viral-pipeline/tree/master/bin/models_vs_uniprot_check) to identify

which ViPhOGs could be used as taxon-specific markers, hereafter referred to as informative

ViPhOGs. These were identified after applying the following steps to the hmmsearch output of

each ViPhOG:

1. Reported taxonomy identifiers (taxid) were recorded, along with the highest bit score

obtained for each one of them and their associated taxa at the genus, subfamily, family and

order ranks.

2. For each one of the target taxa recorded in the previous step, the corresponding highest bit

scores were sorted and a bit score range was defined using the lowest and highest of these

values.

3. Starting with the target taxa at the genus rank, it was determined whether the query

ViPhOG was associated with a single taxon or the bit score range for the best taxon did not

overlap with the range obtained for the remaining taxa. If either of these conditions was ful-

filled, then the query ViPhOG was selected as informative at the genus rank. Otherwise, the

procedure was repeated at the subfamily, family and order ranks, until the query ViPhOG

could be selected as informative for any of them. If the query ViPhOG was not assigned to

any taxon at the searched ranks, it was considered non-informative.

To leverage the data obtained from the analysis described above and set inclusion bit score

thresholds suitable for each model, we defined two bit score thresholds (S1 and S2) for each
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informative ViPhOG. S1 was defined as the minimum bit score associated with the ViPhOG’s

target taxon, whereas S2 was set as the maximum bit score obtained for other viral taxa identi-

fied through the previously described procedure. For the cases in which no further taxa were

reported at the same rank as the target taxon, only S1 was set for the corresponding informa-

tive ViPhOG. Next, we define GA (gathering), TC (trusted cutoff), and NC (noise cutoff)

parameters of each informative ViPhOG model. GA thresholds define reliable, curated thresh-

olds for family memberships, NC thresholds describe the highest-scoring known false positive,

and TC thresholds refer to the score of the lowest-scoring known true positive that is above all

known false positives, which reflects a similar strategy to Pfam [35]. In addition, each parame-

ter (GA, TC, NC) defines two thresholds for reporting and inclusion scores: the per-sequence

threshold (GAseq, TCseq, NCseq) and the per-domain threshold (GAdom, TCdom, NCdom). We

used our previously defined bit score thresholds S1 and S2 to set these six parameters specifi-

cally for each informative ViPhOG model as follows:

GAseq;TCseq ¼ S1

GAdom;TCdom ¼ S1 � 3 if ðS1 � 3Þ > S2; else S1

NCseq;NCdom ¼ S2

S1 was added as TC and GA per-sequence threshold, and trimmed by three bit to apply a per-

domain threshold. Trimming was only applied if S1 did not drop below S2. The S2 bit score

was unmodified and used as both per-sequence and per-domain NC. For the cases in which

no S2 bit score was recorded, the noise cutoff was omitted and the sequence-specific S1 value

was trimmed by three bits to allow less restrictive predictions. Finally, the values set for the

GA, TC, and NC parameters were added to the header section of each informative ViPhOG’s

HMM file.

Coverage of current viral taxonomy and calculation of taxon-specific

ViPhOG-to-CDS ratios

The set of informative ViPhOGs was screened to keep the ones that were associated with valid

taxa in the latest release of ICTV’s viral taxonomy MSL#38. These were subsequently employed

to determine the extent to which the lineages comprising the current viral taxonomy are cov-

ered by our set of informative ViPhOGs. A cladogram that included all viral genera and corre-

sponding ancestral taxa in NCBI’s Taxonomy database from January 2023 was built using the

ete3 python package [36,37]. The number of informative ViPhOGs identified for each viral

genus was mapped on the cladogram using the interactive Tree of Life (iTOL) resource and

the associated annotation file for plotting numeric data as bars [38]. In addition, taxa in the

subfamily, family and order ranks for which at least one informative ViPhOG had been identi-

fied were highlighted using iTOL’s annotation file for labelling nodes with symbols (S1 Fig).

Viral taxa linked to the informative ViPhOGs were categorized as prokaryotic or eukaryotic

based on their target host. Currently known viral-host relationships were retrieved from

Virus-Host DB (release 214 from November 2022), which contained 12,032 viral entries tar-

geting eukaryotes and 5,491 viral entries targeting either bacteria or archaea [39].

For each taxon associated with any of the informative ViPhOGs or that is part of the viral

lineages covered by them, we determined the ratio between the number of associated informa-

tive ViPhOGs and the average number of CDS. To calculate this ratio, the number of informa-

tive ViPhOGs for taxa in the subfamily, family and order ranks included the models linked to

the corresponding descendant taxa, in addition to those directly linked to them. To determine
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the average number of CDS per taxon, we identified all viral assemblies from NCBI’s Assembly

database that had been deposited until November 2022 and whose CDS had been annotated.

We retrieved the corresponding assembly report files and used them to extract the taxids and

number of CDS per assembly. The taxids were employed to retrieve the taxa at the genus, sub-

family, family and order ranks included in the lineage of each assembly, using the ete3 python

package. For each one of these taxa, the average number of CDS and corresponding standard

deviation were calculated based on the assemblies belonging to each one of them. Finally, we

calculated the ratio between the number of informative ViPhOGs associated with each taxa

and the corresponding average number of CDS, which was ultimately defined as taxon-specific

ratio (TSR). The value of this parameter was set to 1 for the cases in which the number of infor-

mative ViPhOGs was higher than the average number of CDS.

Preparation of mock metagenome assemblies for benchmarking

Paired-end reads of six virus-enriched samples were downloaded from ENA (study:

PRJEB6941; runs: ERR575691, ERR575692, ERR576942, ERR576943, ERR576944,

ERR576945) and concatenated to make a single input file [32]. Before assembly, host contami-

nation was removed by k-mer-based decontamination against the mouse genome (Ensembl

GRCm38, primary assembly) with BBDuK v38.79 from the BBTools suite (https://sourceforge.

net/projects/bbmap/) using a k-mer size of 27. To include a metagenome assembly that also

comprised eukaryotic viruses, we further obtained paired-end reads of seven virus-enriched

samples (study: PRJNA319556; runs: SRR3458563-3458569) [33].

For the combined data sets within both studies, two individual metagenome assemblies

were performed by first cleaning the reads with fastp v0.20.0 [40] and passing them to metaS-

PAdes v3.14 [41] using default parameters. The ‘—only-assembler’ parameter was used to gen-

erate the assembly of the combined Neto read sets due to memory constraints. We used

QUAST v5.0.2 [42] to assess basic quality metrics of the assemblies. The two assemblies (here-

after named Kleiner and Neto assemblies) can be downloaded from the Open Science Frame-

work (https://doi.org/10.17605/OSF.IO/FBRXY).

Selection and comparison of virus prediction tools

We used the multi-tool workflow “What the Phage” (WtP) [43] for comparing different virus

prediction tools in an attempt to identify the best tool combination for a comprehensive initial

virus prediction of our pipeline. We run WtP release v0.9.0, including VirSorter (with and

without virome option), VirFinder (default and VF.modEPV_k8.rda models), PPR-Meta,

DeepVirFinder [44], MARVEL [45], metaPhinder [46], VIBRANT [47], VIRNET [48], Phi-

garo [49] and sourmash [50] on the Kleiner and Neto assemblies. The analysis was performed

on contigs that were at least 1.5 kb long to filter out shorter contigs with potentially few ORFs,

which are less likely to be correctly classified by our ViPhOG-based taxonomic annotation

pipeline. Previous studies have revealed that viral genomes shorter than 1.5 kb tend to code for

no more than 5 proteins [24]. Based on a previous study in which global oceanic viral popula-

tions were surveyed, we manually updated the parameter configuration file of WtP to include

all VirSorter predictions from categories 1–5 and to filter VirFinder results by p-values < 0.05

and scores� 0.7 [12].

To assess the performance of each viral prediction tool and the tool combination imple-

mented in VIRify, we identified the viral contigs in the Kleiner and Neto assemblies by align-

ing them to the genomes of the viruses that comprised the corresponding mock communities.

For both mock communities, the set of viral genomes used as targets for the alignments

included all the viruses listed in the corresponding studies, and the putative prophages
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predicted in the genomes of the bacteria that were either part of the mock communities or

used for propagating the mock community phages. Thus, prophage prediction was conducted

for the following bacterial genome sequences: Pseudomonas savastanoi pv. phaseolicola strain

HB10Y (GCF_001294035), Salmonella enterica subsp. enterica serovar Typhimurium str. LT2

(NC_003197), Listeria monocytogenes EGD-e (NC_003210), Bacteroides thetaiotaomicron
VPI-5482 (NC_004663), Enterococcus faecalis V583 (NC_004668), Escherichia coli B strain

C3029 (NZ_CP014269), Lactobacillus acidophilus strain ATCC 4356 (GCF_000786395), Bifi-
dobacterium animalis subsp. lactis ATCC 27674 (GCF_001263985), B. thetaiotaomicron strain

ATCC 29741 (GCF_004349615) and E. coli DSM 30083 (NZ_CP033092). Prophages were pre-

dicted from the listed bacterial genomes using VirSorter [51], selecting the Viromes database

and activating the virome decontamination mode, and PHASTER [52].

VirSorter predictions in categories 4 and 5, and PHASTER predictions classified as Intact

or Questionable were clustered using cd-hit-est with a sequence identity cut-off of 0.9 and

default settings [53]. The set of putative prophages selected for each mock community

included all VirSorter category 4 predictions, PHASTER Intact prophages, and regions that

were reported both as VirSorter category 5 predictions and PHASTER Questionable pro-

phages. Contigs from each mock community assembly were aligned to the corresponding set

of viral genomes using nucmer v3.23 with default settings [54], and contigs were identified as

viral when at least 70% of their length was covered by an alignment with at least 90% sequence

identity. Following the identification of viral contigs within the Kleiner and Neto assemblies,

the performance of the viral predictions tools tested using WtP and the combination selected

for VIRify was measured via the calculation of the F1-score (S2 Fig).

The output from WtP was visualised in UpSet plots and presence/absence maps that indi-

cated whether an input contig was predicted as viral or not by each of the assessed tools

(S3 Fig). MARVEL and VIRNET predictions were not included for the Neto assembly because

both tools failed to process this assembly for unidentified technical reasons.

VIRify taxonomic annotation pipeline description

Identification of putative viral sequences. Based on the results obtained with WtP and

the procedure previously employed in a global oceanic survey of viral populations, it was deter-

mined that VIRify’s detection of putative viral contigs would be carried out with VirFinder,

VirSorter and PPR-Meta, while putative prophage detection would be conducted with VirSor-

ter only (Fig 1) [12,51,55,56]. Viral prediction with VirSorter is carried out using parameters

‘—db 2’ and ‘—virome’ when the processed metagenomic assemblies are generated from vir-

ome datasets (as was the case for VIRify’s benchmarking with the Kleiner and Neto assem-

blies), otherwise the latter parameter is not set. Putative prophages are retrieved from

VirSorter predictions in prophage categories 4 and 5 as defined by the tool. Detection of puta-

tive viral contigs with VirFinder is conducted using the classifiers in the model file VF.mod-

EPV_k8.rda, which was trained using sequences from prokaryotic and eukaryotic viruses

(available at https://github.com/jessieren/VirFinder). Predicted viral contigs are classified into

two different categories within the VIRify pipeline as follows: contigs reported by VirSorter in

categories 1 and 2 are placed in the high-confidence category, whilst the low-confidence cate-

gory includes contigs that satisfy any of the following conditions:

• Reported by VirFinder with p<0.05 and score�0.9.

• Reported by VirFinder with p<0.05 and score�0.7, and also reported by VirSorter in cate-

gory 3.

• Reported by VirFinder with p<0.05 and score�0.7, and also reported as phage by PPR-Meta.
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Finally, CheckV [57] is employed to assess the quality and completeness of the categorised

viral genome contigs.

Annotation of putative viral sequences with informative ViPhOGs. Protein-coding

sequences within putative viral contigs and prophages are detected with Prodigal v2.6.3 [58],

using the standard bacterial/archaeal translation table (-g 11) and the metagenomic prediction

mode (-p meta) (Fig 1). A recent study in which the performance of a range of ORF-prediction

tools was assessed for the viral genomes available in NCBI’s RefSeq reported that Prodigal was

the most accurate tool for DNA viruses, which account for ~97% of the viral genomic

Fig 1. Overview of the VIRify pipeline. (A) Starting from a set of contigs (fasta file) the pipeline preprocesses the input sequences (ID renaming, length

filtering) and predicts contigs from a putative viral origin that are split into high confidence (HC), low confidence (LC) and putative prophage (PP) sets. Each

selected contig is then annotated and assigned to a taxonomy, if possible. All results (annotated viral contigs) are quality-controlled with CheckV, and finally

summarised and visualised. (B) The assigned taxonomy is based on the informative ViPhOG hits per contig and performed on genus, family, subfamily and

finally order rank. We consider high-confidence and low-confidence ViPhOG hits and discard non-informative models where no clear taxonomy signal could

be assigned. TSR—taxon-specific ratio; �CDS�taxon—taxon average CDS; σCDStaxon—taxon CDS standard deviation.

https://doi.org/10.1371/journal.pcbi.1011422.g001
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sequences currently available in public databases [59,60]. Amino acid sequences derived from

the predicted coding sequences are scanned with the complete ViPhOG database using

hmmscan v3.2.1 [61] and the model-specific bit score thresholds defined as previously

described, to supersede any thresholding based on statistical significance alone. To apply the

defined model-specific thresholds, we set the—cut_ga option during execution of the

hmmscan command. However, to account for the set of ViPhOGs for which no bit score

thresholds were defined (and therefore set to 0), an additional post-processing filter is applied

to the full-sequence e-values reported in the hmmscan output (E�1.0×10−3).

Taxonomic assignment of putative viral sequences. In-house python scripts (see https://

github.com/EBI-Metagenomics/emg-viral-pipeline) are employed for parsing the hmmscan

results and to provide a taxonomic assignment for all putative viral contigs and prophages,

based on the reported hits against the ViPhOG database. Starting at the genus rank, the algo-

rithm checks all taxa associated with the reported informative ViPhOGs, sorts them in descend-

ing order based on the proportion of corresponding hits, and iterates through them until it

identifies a taxon that fulfils the conditions set in our voting system. The first of these conditions

is that the proportion of hits for a candidate taxon must be equal to or higher than 0.6 x TSR.

The default value of 0.6 sets a maximum threshold for the number of hits required to call a

taxon, but the TSR leads to a reduction in the threshold value that is consistent with the density

of informative ViPhOGs linked to each taxon. The second condition checks whether the num-

ber of CDS in the contig is not significantly larger than the average number of CDS calculated

for the candidate taxon (i.e. CDScontig � �CDStaxon þ 2∗sCDStaxon). This condition was set to

reduce the number of wrong taxonomic assignments, as it prevents the classification of contigs

into taxa where the average number of CDS is significantly lower than the contig CDS count. If

either of the conditions is not satisfied, the algorithm continues the iteration over the remaining

taxa until it finds one that satisfies them. If the iteration finishes without success, the algorithm

shifts to the next taxonomic rank and repeats the described procedure. The process is repeated

at the subfamily, family, and order ranks until a taxon that satisfies the voting system’s condi-

tions is found, in which case the algorithm reports the corresponding viral lineage (Fig 1).

Visualization of assigned viral taxonomies and ViPhOG hits. Putative viral contigs with

and without an assigned taxonomy are visualized using interactive Krona [62] and Sankey

plots inspired by the Pavian package [63]. ORFs identified with Prodigal and their correspond-

ing informative ViPhOG hits are visualized for each contig using the ChromoMap package

v0.2 [64]. The package does not visualize exact start and stop positions for each ORF but

instead relies on a more general grid view, thus visualizing the general coverage of annotated

ORFs for each contig.

Analysis of 243 TARA Oceans assemblies with VIRify

We obtained 243 ocean microbiome assemblies from ENA (https://www.ebi.ac.uk/ena/

browser/view/PRJEB22493), generated as part of the TARA Oceans microbiome study [12].

The FASTA identifiers include the size fraction of the corresponding sample; thus samples

enriched for viruses are labeled with the suffix _0.1–0.22. All assemblies were filtered to retain

contigs that were at least 5 kb long and these were screened for viruses using VIRify and setting

the—virome option to activate VirSorter’s virome decontamination mode.

Taxonomic classification of 57,866 VCs from the Gut Phage Database

(GPD)

The GPD is a collection of phage genomic sequences that includes prophages from cultured

gut bacteria and putative phage sequences retrieved from assemblies of globally-distributed
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human gut metagenomes [34]. A representative sequence for each of the 57,866 VCs in the

GPD was selected by choosing the corresponding entry with the highest CheckV quality and

completion values. The complete set of representative sequences was analysed with VIRify,

using the “—onlyannotate” option to skip the viral prediction step and apply the taxonomic

classification pipeline to all the input sequences. The results obtained for all the classified rep-

resentative sequences were collated and summarised in a Sankey plot.

Selection and comparison of virus-specific protein profile HMM databases

The taxonomic assignment of VIRify relies purely on our own protein profile HMM database,

their taxonomy, and model-specific bit score cutoffs. In an effort to be comprehensive, our pipe-

line also provides the option of additional annotations by incorporating 25,399 models from the

VOGdb (http://vogdb.org/), 25,281 viral protein family (VPF) models from IMG/VR [60],

9,911 models from RVDB v17.0 [65,66], and 9,518 models from pVOG [67]. VIRify can use all

databases to individually annotate proteins from all putative viral contigs, using hmmscan with

default values and an e-value cutoff of 0.001. However, the final taxonomic assignment provided

for the putative viral contigs relies exclusively on our curated set of ViPhOGs.

To compare the annotations provided by all five databases, we ran hmmscan on all pre-

dicted proteins from putative viral contigs detected in the two mock community assemblies

(Neto and Kleiner) and the 243 TARA Oceans assemblies. To allow for a better comparison

against the other databases, we distinguished hits against the ViPhOG models into hits only

based on an e-value cutoff of 0.001 and hits additionally identified using our predefined

model-specific bit score thresholds.

General implementation of VIRify

VIRify is implemented using the workflow management system Nextflow [30], and an over-

view of the pipeline is given in Fig 1. All third-party tools are encapsulated in software contain-

ers to allow easy distribution of the pipeline on local, cluster, or cloud systems. Custom Python

scripts connect the output and input of the tools used and are available via GitHub (https://

github.com/EBI-Metagenomics/emg-viral-pipeline/tree/master/bin). With configured Next-

flow and Docker [68] installations, VIRify can be simply downloaded and run with a single

command: nextflow run EBI-Metagenomics/emg-viral-pipeline -r v1.0—help. All required

databases and metadata files are automatically downloaded and stored for later (offline) reuse.

We always recommend running a stable release version from the repository, which can be

selected via the -r flag. Different Nextflow profiles allow the execution on a local system or

cluster (currently supported are LSF and SLURM). The pipeline may also be run in an “anno-

tation” mode that skips the prediction of putative virus sequences and directly assigns viral tax-

onomies to all the input contigs. Please note that until version v1.0, the pipeline was

implemented back-to-back in Nextflow and CWL [69]. Both workflow implementations were

using the same scripts and software containers. However, to reduce maintenance and to fully

focus on one implementation, from v1.0 all pipeline updates will be introduced only in

Nextflow.

Results

Viral diversity is comprehensively covered by the set of manually curated

informative ViPhOGs

The original ViPhOG database [24] consists of 31,150 profile HMMs that were created using

proteins from viral genomes found in NCBI’s databases. Based on the search of homologous
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sequences in the UniProtKB database and the subsequent analysis conducted on the output

data, we identified 20,266 informative ViPhOGs that could serve as taxonomic markers for

viral taxa present in the current version of ICTV’s taxonomy (MSL#38). Fig 2 indicates the

number of informative ViPhOGs obtained for each of the analysed taxonomic ranks (genus,

subfamily, family and order), and for each rank, it illustrates the number of targeted taxa that

correspond to either prokaryotic or eukaryotic viruses. Overall, 83.1% of the informative

ViPhOGs were linked to taxa at the genus level and the numbers identified for the remaining

ranks decreased from the subfamily to the order level. Furthermore, the percentage of infor-

mative ViPhOGs associated with eukaryotic viral taxa was slightly larger than the percentage

of those associated with prokaryotic viral taxa (53.2% and 46.8%, respectively).

Regarding the coverage of currently known viral taxa, the informative ViPhOGs cover 18.6,

31.8, 20.9 and 10.8% of genera, subfamilies, families and orders represented in the viral NCBI

taxonomy retrieved in January 2023 (S1 Fig). A comparison with the coverage of the viral

NCBI taxonomy from March 2020 demonstrated an evident reduction in taxonomic coverage

for all analysed ranks, which in turn provides a clear picture of the broad changes the viral tax-

onomy has undergone in the last few years. Nevertheless, our set of informative ViPhOGs

includes taxonomy markers for many representative viral lineages within the ubiquitous and

widely-described class Caudoviricetes, the eukaryotic virus order Herpesvirales, and the

eukaryotic viral families Mimiviridae, Coronaviridae, and Poxviridae, among others. More-

over, based on the coverage of the NCBI viral taxonomy of January 2023, our set of informative

ViPhOGs covers 38.6% of all the lineages represented by the currently known viral diversity in

at least one taxonomic rank (S1 Fig).

Fig 2. Number of informative ViPhOGs identified for different viral taxonomic ranks. 31,150 ViPhOGs were

searched against all entries in UniProtKB, and based on the output they were designated as specific for different viral

taxa (see Methods). Purple refers to specific ViPhOGs assigned to prokaryotic viral taxa, whereas yellow indicates

specific ViPhOGs for eukaryotic viral taxa.

https://doi.org/10.1371/journal.pcbi.1011422.g002
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VIRify accurately classifies viruses on co-assemblies of two largely viral

mock communities

VIRify was tested on datasets generated from viral mock communities to evaluate its viral

sequence prediction performance and compare its taxonomic assignments with the taxonomy

of the viruses present in the communities. The selected datasets were generated for two differ-

ent studies that evaluated a range of viral enrichment and purification procedures that were

applied to mock microbial communities. Kleiner et al. [32] sequenced a mock microbiome

prepared in mouse faeces using bacterial and phage cultures (germ-free C57BL/6 J mice). The

samples contained six different phages in varying concentrations: P22, T3, T7, ɸ6, M13 and

ɸVPE25. Neto et al. [33] constructed a mock microbiome comprised of four common gut bac-

teria and nine highly diverse viruses, most of which represent the eukaryotic viral families Cir-
coviridae, Parvoviridae, Polyomaviridae, Alphaflexiviridae, Reoviridae, Coronaviridae,
Herpesviridae and Mimiviridae, and including a phage from the family Ackermannviridae (for-

merly classified in the family Myoviridae). The nine viruses differ highly in genome length

(1.8 kb to 1,180 kb), genome type (dsDNA, dsRNA, ssDNA, ssRNA), and genome composi-

tions (linear, circular, segmented). Co-assemblies of datasets obtained from viral-enriched

samples were generated for each of the selected studies and used as input for the VIRify pipe-

line. The Kleiner co-assembly comprises 5,310 contigs, of which 224 are� 1.5 kb with an N50

of 74,309 bp. The Neto co-assembly comprises 341,587 contigs, of which 1,686 are� 1.5 kb

with an N50 of 16,751 bp. Thus, 95.78% of the contigs in the Kleiner assembly, and 99.51% of

the contigs in the Neto assembly are shorter than 1500 bp.

VIRify comprehensively selects putative viral contigs. We ran a modified version of

WtP (see Methods) on both mock community assemblies (Kleiner, Neto) to compare ten dif-

ferent tools for virus prediction. S2 Fig illustrates the performance of all the assessed tools for

each of the analysed mock community assemblies. Our results show that a selection of VirSor-

ter, VirFinder, and PPR-Meta sufficiently represented a common proportion of putative viral

contigs from both mock community assemblies across all compared prediction tools (Figs 3A,

S2 and S3). Thus, the combination of these tools was selected as VIRify’s method for viral con-

tig prediction, although the selection of putative viral contigs from this combination is sub-

jected to a set of rules similar to the selection criteria used in a previous study of global oceanic

viral populations (see Methods section for further details) [12]. Table 1 summarises the viral

contig prediction results obtained with VIRify for the Kleiner and Neto assemblies.

For the Kleiner assembly, 17 contigs were identified as viral based on their alignment to the

genome sequences of the phages that comprise the corresponding mock community (Fig 3A).

VIRify identified 76.5% of the viral contigs in the Kleiner assembly and reported only one false

positive prediction (NODE_192_length_1740_cov_2.233828), which also received no CheckV

quality score. For the remaining contigs that VIRify predicted as viral, CheckV categorised six

as high-quality, one as medium-quality, six as low-quality and the rest were undetermined

(Fig 3A). All true negative predictions matched entries in NCBI’s RefSeq corresponding to Sal-
monella genomes, an observation consistent with the significant amount of Salmonella DNA

that was previously detected in all of the viral-enriched samples used for obtaining the Kleiner

assembly [32]. Regarding the reported false negatives, 3 corresponded to prophages predicted in

the genome of Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 and the

remaining one matched entries in NCBI related to phage M13. According to the calculated

F1-scores, the viral prediction tools that performed best for this assembly were VirSorter (using

the virome decontamination mode) and VIRify, both of which had an F1-score of 0.84 (S2 Fig).

Regarding the Neto assembly, alignment of contigs to the genome sequences of the mock com-

munity viruses identified 259 of them as viral. In this case, VIRify identified 51.7% of the viral
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contigs present in the assembly, and 21.6% of the contigs reported as viral were false positives.

Among the false negatives, 75.2% of the contigs were derived from the genome of the mimivirus

included in the mock community. In addition, 23.2% of the false negatives were contigs that ran-

ged in size from 1,515 to 5,906 bp and that corresponded to prophages identified in the genomes

of the E. coli and B. thetaiotaomicron strains included in the mock community. Based on the

F1-scores, the tools that performed best for the Neto assembly were PPR-Meta (0.84), VirFinder

with the VF.modEPV_k8.rda model (0.63) and VIRify (0.62) (S2 Fig). In total, VIRify predicted

170 contigs of the Neto co-assembly as viral, of which CheckV rated two as high-quality, three as

medium-quality, 142 as low-quality, and 24 as indeterminate.

Fig 3. Exemplary viral contig selection and annotation procedure for the Kleiner co-assembly. (A) Comparison of virus predictions for the Kleiner co-

assembly performed with various tools run via WtP. Shown are the 35 contigs (rows) predicted as viral by at least one of the tested tools. The column with red

squares highlights the contigs manually identified as viral, as described in the methods section. Blue squares indicate contigs predicted as viral by VirSorter

(virome decontamination mode), VirFinder (VF.modEPV_k8.rda model) or PPR-Meta. The column with green squares indicates the viral contigs reported by

the prediction approach implemented in VIRify, based on the results from WtP (see Methods section). Yellow squares indicate CheckV-quality results for

contigs selected by VIRify that are either high-quality, medium-quality, low-quality or not-determined; going from dark (high-quality) to light yellow (not-

determined). (B) ORFs predicted with Prodigal and annotated with the informative ViPhOGs for the 14 contigs identified as viral by VIRify. Of these, eleven

were predicted as high confidence (HC) and three as putative prophages (PP). No low-confidence viral predictions were reported for the Kleiner co-assembly.

The coloured contig labels indicate the CheckV scores: red—high-quality, orange—medium-quality, yellow—low-quality, and black—not-determined. Dark

grey bars indicate predicted ORFs without any ViPhOG hit, while green bars indicate ViPhOG hits based on the model-specific bitscores. (C) Predicted viral

sequences and corresponding taxonomic assignments based on informative ViPhOG hits for the Kleiner co-assembly.

https://doi.org/10.1371/journal.pcbi.1011422.g003

Table 1. VIRify’s viral prediction results for two mock community assemblies. The analyses were conducted for all assembled contigs longer than 1.5 kb.

Assembly Total contigs Viral contigs True positives True negatives False positives False negatives

Kleiner 224 17 13 206 1 4

Neto 1686 259 134 1390 37 125

https://doi.org/10.1371/journal.pcbi.1011422.t001
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Overall, the calculated F1-scores revealed that VIRify and PPR-Meta were the tools that per-

formed best for predicting viral contigs from the analysed mock community assemblies

(S2 Fig). VIRify had a better performance than PPR-Meta on the Kleiner assembly, particu-

larly due to its ability to predict prophages from assembled bacterial contigs (e.g. NODE_1_-

length_514496_cov_72.252612 and NODE_5_length_111535_cov_40.991774) and due to

PPR-Meta being less precise than VIRify, as evidenced by the higher number of false positive

predictions reported by the former (Fig 3A). By contrast, PPR-Meta performed better than

VIRify on the Neto assembly because the former tool had a higher recall rate that allowed the

recovery of 87.6% of the mimivirus contigs, whereas VIRify recovered only 55.2% of the con-

tigs derived from this virus.

Taxonomic classification of phage contigs and putative prophage regions down to the

subfamily and genus ranks. The taxonomic annotation performed with VIRIfy on the Klei-

ner assembly classified six of the putative viral contigs as members of the class Caudoviricetes
(Fig 3B and 3C). Among them, two within the genus Teseptimavirus, three within the subfam-

ily Sepvirinae, and one within the subfamily Tunavirinae. In addition, one contig correspond-

ing to phage FX174, which is commonly used as a positive control in sequencing experiments,

was correctly classified as a member of the subfamily Bullavirinae (class Malgrandaviricetes).
Among the seven contigs with an assigned taxonomy, two were predicted by VirSorter to be

putative prophage sequences (Fig 3B) which likely derived from bacterial contamination in

the samples [32]. Of the six phages potentially included in the Kleiner co-assembly, VIRify

identified and classified contigs that correspond to phages P22 (NODE_20), T3 (NODE_23),

and T7 (NODE_22). While contigs derived from phages T3 and T7 were correctly classified in

the Teseptimavirus genus, the contig from phage P22 was incorrectly classified as a member of

subfamily Sepvirinae. However, both phage P22 and subfamily Sepvirinae belong to class Cau-
doviricetes, thus VIRify was able to classify the contig from phage P22 into the correct class.

Overall, two of the phages from the original mock community present among the putative

viral contigs were correctly classified by VIRify at the genus rank, one contig from phage

FX174 was correctly classified at the subfamily rank, and one additional phage from the mock

community was correctly classified at the class rank.

The pipeline reported a long 86 kb contig (NODE_8) from ɸVPE25 among the high-confi-

dence viral contigs, whose taxonomic lineage was not identified, likely due to the low number

of ViPhOG hits reported (Fig 3B). Phage M13 could not be identified either, as it was only

assembled in small fragments due to low sequencing coverage, an observation that was consis-

tent with the results reported previously [32]. The M13 genome is 6.4 kb long and metaSPAdes

only recovered two contigs in the high confidence set that matched different parts of the

phage’s genome (NODE_113 with 2,682 bp and NODE_193 with 1,739 bp). Similarly, phage

ɸ6 was not even detected by [32] after sequencing their viral-enriched samples, which explains

why no contigs were identified for this phage in our coassembly.

Comprehensive detection of prokaryotic and eukaryotic viruses from a highly diverse

mock-virome. Taxonomic annotation of the reported 170 putative viral contigs in the Neto

assembly revealed that 6 of them were classified as members of the class Caudoviricetes and

115 were classified in the orders Imitervirales (107 contigs), Nidovirales (2), Ortervirales (2),

Herpesvirales (1), Petitvirales (1), Pimascovirales (1), and Reovirales (1) (Fig 4). Among them,

we found members of the virus families Ackermannviridae, Mimiviridae, Drexlerviridae, Her-
pesviridae, Microviridae, Iridoviridae, Sedoreoviridae, Coronaviridae, and Retroviridae. For all

these families, VIRify was also able to classify contigs at the subfamily level and some were also

classified at the genus level: 97 contigs to Mimivirus, 2 contigs to Alphacoronavirus, 1 contig to

Limestonevirus, and 1 contig to Rotavirus (Fig 4). The taxonomic classifications provided by

VIRify were compared with the taxonomy of the genomes from which the analysed contigs
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were derived. We determined as a result that VIRify’s taxonomic classification had an accuracy

of 94.2% for the putative viral contigs detected in this assembly.

Contigs classified as members of subfamilies Sepvirinae and Tunavirinae matched entries

in NCBI’s nr database corresponding to phages of E.coli, suggesting that these were most likely

derived from DNA contamination by the bacterial component of the mock community. No

Fig 4. Predicted ORFs and corresponding ViPhOG annotations and taxonomy assignments for the Neto co-assembly. (A) ViPhOG-annotated ORFs for

all contigs predicted as viral with high confidence (HC) and low confidence (LC) for the Neto assembly. Note that due to the high number of LC hits, only a

selection of contigs is shown. The coloured contig labels indicate the CheckV scores: red—high-quality, orange—medium-quality, yellow—low-quality, and

black—not-determined. VIRify assigned the genus Alphacoronavirus to NODE 82 based on seven informative ViPhOG model hits that are additionally shown

as a circular visualization. NA—no taxonomy could be assigned due to missing model support. (B) Neto contigs predicted as viral with high and low

confidence and their taxonomic assignments based on the ViPhOG model hits. Both visualizations can be automatically produced by VIRify and were only

slightly manually adjusted via Inkscape.

https://doi.org/10.1371/journal.pcbi.1011422.g004
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contigs from the viruses that represented the families Circoviridae, Polyomaviridae, and Alpha-
flexiviridae were detected among the length-filtered contigs by blastn, and therefore no contigs

were assigned to any of the corresponding taxonomic lineages. Eight contigs ranging from

1,543 to 2,356 bp and coming from viruses belonging to the families Parvoviridae, Sedoreoviri-
dae and Herpesviridae were detected among the set of low-confidence viral contigs. One of

these was correctly classified at the subfamily rank (Alphaherpesvirinae) and another was cor-

rectly classified at the genus rank (Rotavirus). No contig was classified within the viral lineage

that includes the family Parvoviridae.
One 7,051 bp putative viral contig was classified in the subfamily Orthoretrovirinae, which

does not match the lineage of any of the viruses included in the mock community. However,

when this contig was used as query for a search of NCBI’s nr nucleotide database with mega-

blast, the top hits corresponded to porcine endogenous retroviral sequences, including several

complete genomes of this type of virus (e.g. accession number EF133960.1, 97.93% identity, e-

value 0.0). This result indicates that the classification of the mentioned contig as a member of

Orthoretrovirinae was correct, and that this virus was a contaminant that was likely present in

the stock of the Porcine circovirus included in the mock community.

VIRify comprehensively reveals virus taxonomies in global ocean

ecosystems

To showcase the utility of VIRify in uncovering viral diversity in ocean environments, we ran

VIRify on 243 assemblies provided by the TARA Oceans project [12,17,18], including 20 sam-

ples processed via 0.1–0.22 μm filters and thus potentially enriched for viral sequences [12]. As

expected, we identified more complete/high-quality viruses in such samples enriched for

smaller viruses in comparison to samples derived from larger 0.45–0.8 μm filters (Fig 5A).

Across all assemblies and including high and low confidence viral predictions, the following

viral families were detected with at least 10 putative viral sequences assigned to them: Strabo-
viridae (n = 4,128), Mimiviridae (3,627), Phycodnaviridae (2,281), Drexlerviridae (931), Here-
lleviridae (764), Salasmaviridae (363), Autographiviridae (326), Microviridae (83), Poxviridae
(37), and Iridoviridae (31) (S4 Fig). In addition, we saw differences in the amount of predicted

viral contigs between samples obtained from the same location but with DNA extracted using

different filter sizes. For example, in CEUO01 (TARA_124_MIX) filtered for 0.1–0.22 μm

(SAMEA2622799) 219 contigs were assigned to the class Caudoviricetes, whereas for the same

sample material, but filtered for 0.45–0.8 μm (SAMEA2622801), only 32 Caudoviricetes contigs

were found (Fig 5A). Interestingly, members of the genus Prasinovirus (large double-stranded

DNA viruses that belong to the order Algavirales) were predominantly found in low confi-

dence sets of 0.22–3 μm filtered fractions, which suggests that these viruses would have been

missed if only VirSorter had been used on the data (Fig 5B).

A previous study in which the aforementioned marine samples were analysed reported that

the majority of identified viruses were members of the recently abolished viral families Myovir-
idae, Siphoviridae and Podoviridae [12,70]. Following these changes in the viral taxonomy, we

can assume that the majority of the viruses identified in the mentioned study were members of

the class Caudoviricetes, as this new taxon groups all tailed viruses formerly classified in the

three abolished families. The results obtained with VIRify confirmed this observation, as 52%

of the contigs classified at the family rank were assigned to taxa within the class Caudoviricetes.
Furthermore, the family Phycodnaviridae had been identified as one of the most abundant

viral families in the marine samples, and the results obtained with VIRify confirmed this

observation.
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Fig 5. Viruses predicted and annotated by VIRify for 243 TARA Oceans assemblies. The assembly identifiers include information

about the size fractionation of the corresponding sample. For example, samples obtained by smaller filter size 0.1–0.22 μm (and so

expected to be enriched for smaller viruses) are labelled with the suffix _0.1–0.22. (A) Shows a selection (filters 0.1–0.22 μm and 0.45–

0.8 μm) of 41 samples and the number of predicted viruses based on high confidence (VirSorter categories 1 and 2) and low

confidence (VirSorter category 3 and combined VirFinder and PPR-Meta results) hits. More viruses are found for smaller filter sizes,

as expected. Assemblies based on smaller filter sizes are highlighted in bold. For visualization purposes, we summarize high and low

confidence predictions for samples labelled with the filter sizes 0.1–0.22 and 0.45–0.8. (B) Selection of 0.22–3 μm filtered samples with

a high number of predicted prasinoviruses, large double-stranded DNA viruses belonging to the order Algavirales. These viruses are

predominantly found in the low confidence set; thus they would have been missed if only VirSorter were run on the data but are

predicted by our combination of VirFinder and PPR-Meta.

https://doi.org/10.1371/journal.pcbi.1011422.g005
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VIRify expanded the number of taxonomically classified VCs from the

GPD and provided higher resolution classifications

Genetically-related entries in the GPD had been previously sorted into 57,866 VCs, using a

graph-based clustering approach [34]. Using the reported CheckV quality and completion val-

ues, we selected a representative sequence from each VC. According to the published GPD

metadata, 7,432 of these representative sequences had been previously classified and 99% of

them were reported as members of the abolished phage families Myoviridae, Siphoviridae and

Podoviridae. We analysed the selected representative sequences with VIRify to assess whether

our pipeline could provide updated taxonomic classifications for them.

VIRify provided taxonomic classifications for 13,651 of the analysed representative

sequences, which corresponds to an increase of 83.7% from the number reported previously.

The vast majority of these classifications were to lineages within the class Caudoviricetes
(98%), whereas most of the remaining sequences were classified in the families Iridoviridae,
Microviridae and Herpesviridae (Fig 6).

Fig 6. Taxonomic classification of representative sequences from the GPD. One representative sequence from each of the 57,866 VCs present in the GPD

was selected based on their reported CheckV quality and completion values. The representative sequences were analysed with VIRify using the ‘—onlyannotate’

option to obtain taxonomic classifications for them. The taxa displayed in the Sankey plot correspond to those in which at least 10 representative sequences

were classified.

https://doi.org/10.1371/journal.pcbi.1011422.g006
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The families and subfamilies most commonly reported in the results include phages that

target bacteria from the phyla Proteobacteria, Bacillota (i.e. Firmicutes) and Actinomycetota,

all of which have been reported as common members of the human gut microbiome [71]. In

particular, the families Drexlerviridae, Salasmaviridae and Herelleviridae have already been

identified as frequent members of the human gut virome [72,73]. Interestingly, the sequences

classified in the subfamilies Nymbaxtervirinae and Arquatrovirinae corresponded to putative

phages targeting bacteria from either the Bacillota or Actinomycetota phyla. Previous studies

have provided evidence indicating that phages targeting bacteria from these two phyla share a

common ancestry, which hints at the possibility of cross-phyla phage-host interactions [74].

ViPhOG models comprehensively cover viral proteins

Our comparison of virus-specific protein profile HMM databases included in VIRify showed

that the ViPhOG models covered a large proportion of potentially viral CDS in agreement

with the other databases (Fig 7A). In total, we predicted 1,204,455 CDSs from all high-confi-

dence viral contigs that VIRify reported for the 243 TARA assemblies, of which the ViPhOGs

covered 56.7% (49.4% with applied bit score threshold) and thus were only slightly outper-

formed by the VOGdb (56.8%). The largest set of shared annotations comprised 284,791 CDS

annotated as viral based on models from all compared databases except the RVDB (Fig 7A). In

addition, the RVDB had the least predictions, with only 15.3% annotated CDS compared to all

other databases. Our model-specific bit score filtering reduces the amount of CDS annotations

derived from ViPhOGs by 7.3% (87,869 CDS) (Fig 7A). While this might lead to the loss of

potentially informative annotations that could be used for taxonomy assignment, we also

remove false positive model hits, as shown in Fig 7B. Interestingly, the VPF derived from the

IMG/VR database, which also includes novel viral sequences derived from metagenome

approaches, comprises a large proportion of unique models that match 117,962 CDS (9.8%)

that are not covered by any of the other annotated databases. On the other hand, a significant

number of CDS are annotated by models from the other databases but missed by the VPF

models.

Discussion

Metagenomic surveys of different environments during the last few decades have had a pro-

found impact on the rate at which novel viruses are discovered [75]. Despite the resulting

sharp increase in the number of publicly available viral genomes, viruses remain relatively

understudied in many environments and the taxonomic profiling of viral communities is still

challenging due to the lack of universal genetic markers that support the phylogenetic resolu-

tion of viral taxa [76,77]. As a contribution to the currently available repertoire of tools

designed to address these challenges, we designed and implemented the VIRify pipeline for

detecting and taxonomically annotating viral contigs in metagenomic datasets.

The results presented here for the mock community assemblies demonstrated that VIRify is

a suitable pipeline for generating highly accurate taxonomic profiling of viral communities

present in metagenomic datasets. Compared with most of the tools currently used for detect-

ing viral contigs in metagenomic assemblies, VIRify demonstrated higher predictive perfor-

mance for contigs� 1.5 kb in both the Keiner and Neto assemblies (Figs 3A, S2 and S3).

Furthermore, using our manually-curated informative ViPhOGs led to the taxonomic classifi-

cation of putative viral contigs from the Neto assembly with an accuracy of 94.2%. Regarding

the Kleiner assembly, all classified putative viral contigs were assigned to the correct taxonomic

lineages at different degrees of resolution, with some classified up to the family rank and others
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classified up to the genus rank. The pipeline also provided taxonomic classifications for puta-

tive prophages identified in contaminant bacterial contigs from both mock assemblies.

VIRify’s viral prediction performance was the result of combining the effectiveness of Vir-

Sorter in predicting phage and prophage sequences [51,78], with the ability of PPR-Meta and

Fig 7. (A) Comparison of annotated CDS from VIRify’s high-confidence viral predictions from all 243 TARA Oceans assemblies. Our comparison shows that

the ViPhOG models comprehensively cover a large proportion of potentially viral CDS in agreement with other public databases. The RVDB had the fewest

predictions, with only 15.3% annotated CDS. Results of the VPF database, where models are derived from the IMG/VR database that also includes novel viral

sequences derived from metagenome approaches, comprise a large proportion of unique models that exclusively match 117,962 CDS (9.8%) that are not

covered by any of the other databases. However, a significant number of CDS are annotated by models from the other databases but missed by VPF. Our

model-specific bit score filtering (ViPhOG—threshold) reduces the number of CDS annotations derived from ViPhOGs by 7.3% (B) Visualization of predicted

(top row) and annotated ORFs for one exemplar contig from TARA Oceans assembly CEUI01. Grey bars indicate hits against an HMM of the corresponding

database, while informative ViPhOG hits with taxonomic information are shown in green. The top ViPhOG track shows hits filtered by bit score (or e-value if

no bit score could be assigned for a model, see Methods) and the bottom ViPhOG track shows e-value-filtered hits. (C) While the model-specific ViPhOG bit

score threshold can lead to the loss of potentially informative annotations for taxonomy assignment, it can also reduce the number of false positive model hits

and thus increase the overall accuracy of VIRify.

https://doi.org/10.1371/journal.pcbi.1011422.g007
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VirFinder’s VF.modEPV_k8.rda model to predict sequences from eukaryotic viruses, as evi-

denced by their F1-scores for the Neto assembly (S2 Fig). Overall, most of the viral prediction

tools evaluated here demonstrated a low performance for the Neto assembly, which indicates

that these tools were mainly developed for the detection of phages and are not suited for the

comprehensive detection of eukaryotic viral sequences. Considering that PPR-Meta was origi-

nally designed for detecting phages and plasmids [56] and that the Neto assembly mainly com-

prised eukaryotic viruses, it was striking to find that PPR-Meta was the tool that performed

best for this assembly. Nonetheless, we decided to keep the combination of VirSorter, VirFin-

der and PPR-Meta as VIRify’s viral prediction approach for two main reasons. The first is that

PPR-Meta’s underlying model was not explicitly trained to detect prophages in bacterial geno-

mic sequences. As the detection of both free viruses and prophages was critical to the aim of

providing comprehensive viral community profiling, we needed to include another viral detec-

tion tool capable of efficiently predicting prophages. VirSorter provides this functionality, as

has been demonstrated by many previous studies in which it was employed to detect pro-

phages in genome sequences from a diverse range of bacteria [13,78]. The second reason for

not using PPR-Meta on its own is that, despite its high sensitivity, it tends to call a relatively

higher number of false positives in comparison to other viral predictors [79]. Considering

PPR-Meta’s performance on the mock community assemblies, we reasoned it would be advan-

tageous to keep this tool within VIRify’s arsenal by combining its predictions with the ones

obtained with VirFinder to limit the number of false positive predictions.

Several studies have reported collections of profile HMMs for groups of orthologous viral

genes, such as pVOGs [67], vFAMs [80], RVDB [66] and VOGdb (http://vogdb.org/). Even

though some of these have been employed for viral taxonomic profiling, our informative

ViPhOGs stand out due to their bespoke bit score thresholds that were carefully selected to

decrease the likelihood of false positive taxonomic assignments. As illustrated in Fig 7B, using

the informative ViPhOGs with a single e-value threshold resulted in a higher chance of false

positive taxonomic annotations, as was the case for contig seq28589 from the assembly of the

TARA Oceans sample CEUI01 (study accession PRJEB7988). Therefore, our results indicate

that using curated bit score thresholds offers an adequate balance between predictive power

and classification accuracy. This strategy has been successfully implemented previously in

Pfam and TIGRFAMs, some of the most widely used protein family databases for the func-

tional annotation of genomes and metagenomes [35,81].

Another novelty of our curated set of informative ViPhOGs is the use of TSR to set taxo-

nomic assignment thresholds specific for each taxon. The TSR measures the density of

assigned informative ViPhOGs for each taxon present in the viral lineages covered by our set

of models. Thus, setting the taxonomic assignment threshold with this parameter allows the

algorithm to adjust its level of stringency for each individual taxon. This feature is particularly

advantageous for taxa characterised by relatively small genomes, for which there is a fewer

number of informative ViPhOGs in our collection. This benefit was especially evident during

the analysis of the Neto assembly, where the use of this feature increased the number of classi-

fied contigs from several of the eukaryotic viruses present in the mock community. A run of

VIRify with the taxonomy assignment threshold set to 0.6 for all taxa resulted in the absence of

short contigs (1,543–2,356 bp) classified in the subfamily Alphaherpesvirinae and the genus

Rotavirus. This result indicates that the use of taxon-specific thresholds improves the detection

of short contigs, by lowering the taxonomic assignment stringency.

We further showed that VIRify can be applied to metagenomic assemblies obtained from

large environmental studies, such as the TARA Oceans expedition [12,17,18]. In accordance

with a previous report, a high proportion of predicted viruses could not be taxonomically clas-

sified into a known viral family [12]. However, the majority of contigs that VIRify classified
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were assigned to different families within the class Caudoviricetes, which agrees with the previ-

ous observation that most of the classified viruses in these samples were members of the for-

mer phage families Myoviridae, Siphoviridae or Podoviridae. Also in agreement with the

previously reported study, the family Phycodnaviridae was one of the taxa most commonly

identified by VIRify among the analysed marine samples. Interestingly, prasinoviruses were

predominantly found in low confidence sets, thus, would have been missed by only running

VirSorter on the data (Fig 5B). Here, our combination of VirFinder and PPR-Meta predictions

helped to recover contigs that the pipeline could later taxonomically assign to this genus. Due

to their larger size, prasinoviruses are underrepresented in smaller size fractionated samples,

underlying the importance of appropriate filtering and enrichment steps and their combina-

tion to comprehensively collect viruses from environmental samples.

The use of VIRify to analyse a set of representative sequences from the GPD resulted in a

large increase in the number of taxonomically classified sequences (83.7%). The vast majority

of the sequences were assigned to families and subfamilies within the class Caudoviricetes,
which agrees with the former classifications reported in the GPD metadata. Furthermore,

phages classified in the reported taxa have been previously found to target bacteria within

some of the most frequently identified bacterial phyla in the human gut [71–73]. However, a

few of the representative sequences were classified in the families Iridoviridae and Herpesviri-
dae. Although the latter taxon has been reported as a frequent member of the human gut vir-

ome, it is likely that these results correspond to false positive assignments considering the

phage sequence prediction approach followed in the generation of the GPD [34,82]. Nonethe-

less, the number of sequences assigned to these taxa corresponds to only 0.72% of the total

number of representative sequences that VIRify classified. Overall, VIRify provided a more

comprehensive and updated taxonomic characterisation of the viral sequences that comprise

the GPD.

Despite the great performance observed for the analysed assemblies, our results revealed a

few limitations of the current VIRify pipeline. As evidenced by the analysis of the Neto assem-

bly, VIRify’s ability to detect contigs from eukaryotic viruses is currently suboptimal. Increas-

ing the pipeline’s sensitivity will require the careful evaluation of novel viral prediction tools

that could easily be incorporated or used to replace the ones currently used. For example, Vir-

Sorter might be replaced by the recently released VirSorter2 [83] in a future version of VIRify.

An additional limitation of VIRify is the existing bias in the extent to which the informative

ViPhOGs represent the different genera in the current viral taxonomy. We determined that

our current collection of informative ViPhOGs covers 38.6% of the lineages that comprise the

current viral taxonomy, which has evidently decreased in comparison with the value calculated

for the NCBI viral taxonomy from March 2020 (89.3%). This reduction in coverage reflects the

substantial changes that the viral taxonomy has experienced since the ViPhOGs were gener-

ated. Our results demonstrate that the informative ViPhOGs are a powerful resource for the

taxonomic classification of contigs from covered viral taxa, but it is imperative to generate new

ViPhOGs that expand the taxonomic coverage to provide the community with a general-pur-

pose viral analysis tool. This task will be central to the upcoming developments of VIRify.

Finally, the quality of the metagenomic assembly is key for VIRify’s performance due to the

challenge that short viral contigs pose on their detection by the viral prediction tools currently

used in the pipeline (Fig 3A). Furthermore, short contigs will generally contain fewer complete

CDS, and thus will be less likely to have the minimum number of ViPhOG hits required by the

pipeline to provide a taxonomic assignment.

VIRify is a novel HMM-based resource for viral taxonomic classification that can be

broadly classified as a protein similarity-based method. There are other types of approaches

that have been efficiently implemented for viral taxonomic profiling, such as the use of kmer

PLOS COMPUTATIONAL BIOLOGY VIRify, a viral sequence analysis pipeline using virus-specific protein profile HMMs

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011422 August 28, 2023 21 / 28

https://doi.org/10.1371/journal.pcbi.1011422


matching to a reference database of complete phage genomes. Phanta, a recently developed

tool for phage-inclusive gut microbiome profiling, takes advantage of a much larger number of

phages discovered through extensive analyses of the human gut microbiome, in comparison

with other biomes [84]. This tool uses a large database of gut phages and their associated taxo-

nomic information to perform taxonomic profiling using kmer-based searches, which allows

the analysis of phage communities from metagenomic reads. This is an advantage over meth-

ods that rely on metagenomic assemblies (such as VIRify) because the analysis of reads allows

the detection of low-abundance phages that are difficult to assemble into contigs [85,86]. How-

ever, the advantage of using protein profile HMMs is that they gather viral reference data in a

more efficient and compact way, in comparison with databases of complete genomes generally

required by kmer-based methods. This is particularly relevant in the case of Phanta, which was

designed to perform taxonomic profiling at the species level. Therefore, the combination of

VIRify with a larger collection of ViPhOGs covering the entire viral taxonomy would be easier

to implement as a general-purpose viral taxonomic profiling, than methods relying on the use

of collections of complete reference genomes.

Although VIRify has been benchmarked and validated with metagenomic data in mind, it

is also possible to use the pipeline to detect RNA viruses in metatranscriptome assemblies (e.g.

SARS-CoV-2, see [87]). Some additional considerations in this regard include 1) quality con-

trol, 2) assembly, 3) post-processing, and 4) classification. Some brief recommendations on

how to prepare metatranscriptome assemblies and run them through VIRify can be found in

the GitHub manual.

Overall, our results demonstrated the utility of VIRify for analysing viral communities in

metagenomic datasets. In contrast with other resources currently available, VIRify offers an

enhanced capability to predict contigs from eukaryotic viruses and the ability to taxonomically

classify viral contigs using a set of carefully curated HMMs and their bespoke bitscore thresh-

olds. Future versions of VIRify will attempt to improve even further the sensitivity of viral con-

tig prediction and to extend the ViPhOGs’ taxonomic coverage by including sequences from

uncultured viruses. In addition, the taxonomic classification of contigs from small viruses

could be improved by adjusting the taxonomic voting system to accommodate differences in

the number of available informative ViPhOGs and in the average genome size observed

between different viral lineages. VIRify will be fully integrated into the MGnify suite of meta-

genomic analyses hosted at the EMBL-EBI, which is continuously supported and updated to

suit the needs of the scientific community.

Runtime and resources

The pipeline runtime can vary significantly depending on the hardware and data size. For opti-

mal performance, we recommend running VIRify on high-performance computing (HPC)

systems or the cloud, especially for larger datasets. On a typical laptop with 8 cores, the pipeline

runs reasonably fast for small datasets, such as the two mock community data sets, taking

approximately 16 minutes for the Kleiner co-assembly and 30 minutes for the Neto co-assem-

bly. However, for larger datasets like the 243 TARA Ocean assemblies, the pipeline requires 2

days and 13 hours on an HPC system with SLURM and the default configuration profile for

cluster execution. This runtime estimate includes the execution time for each process, exclud-

ing database downloads. Keep in mind that the actual runtime can be influenced by factors

such as fluctuation and pending jobs due to high demand on the HPC. The RAM requirements

of the VIRify processes are generally low and can be run on a decent laptop (minimum 8 GB).

Experienced users can adjust CPU and RAM resources in the Nextflow configuration to opti-

mize performance on an HPC or cloud infrastructure. The disk space required by VIRify is
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generally reasonable compared to the input size. While Kleiner and Neto’s output folders com-

prised 130 and 270 MB, respectively, the full TARA run (including virus prediction and taxon-

omy assignment) required 174 GB. The GPD run, which skipped virus prediction and

performed only CDS detection and taxonomy assignment, required 12 GB of storage. In addi-

tion, intermediate files in the Nextflow working directory can take up much space; for exam-

ple, 263 GB of intermediate data were written to the work directory for all 243 TARA

assemblies, while less than 1 GB of space was used for Kleiner and Neto.

Supporting information

S1 Fig. Informative ViPhOGs’ coverage of viral taxonomy. Circular dendrograms showing

the NCBI virus taxonomy from March 2020 (upper panel) and January 2023 (lower pannel),

with taxa covered by informative ViPhOGs highlighted with either dots or bars, and using the

same colour scheme as in Fig 2. For the taxonomic ranks (order, family and subfamily) dots

were used to indicate whether any informative ViPhOGs were identified for the corresponding

taxon. By contrast, bars were used for taxa in the genus rank (tree’s leaves) to indicate the

number of different informative ViPhOGs identified for the corresponding genus, as indicated

by the numeric scale in the outer rings.

(PNG)

S2 Fig. F-score comparison for virus prediction results from the Kleiner and Neto assem-

blies for all tools run via WtP and VIRify (combination of VirSorter, VirFinder with VF.

modEPV_k8.rda model and PPR-Meta).

(PNG)

S3 Fig. UpSet output for the Neto assembly calculated with WtP. Viral prediction tools are

compared and overlapping sets are shown.

(PNG)

S4 Fig. Abundance plot of viral ranks predicted for 243 TARA Oceans assemblies (https://

www.ebi.ac.uk/ena/browser/view/PRJEB22493) using the VIRify pipeline. Combined

results for high confidence, low confidence, and putative prophage hits are shown. VIRify was

run in v0.2 and with the—virome option and a contig length filtering of 5000 nt.

(PDF)
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