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Abstract

Musculoskeletal geometry and muscle volumes vary widely in the population and are intri-

cately linked to the performance of tasks ranging from walking and running to jumping and

sprinting. As an alternative to experimental approaches, where it is difficult to isolate factors

and establish causal relationships, simulations can be used to independently vary musculo-

skeletal geometry and muscle volumes, and develop a fundamental understanding. How-

ever, our ability to understand how these parameters affect task performance has been

limited due to the high computational cost of modelling the necessary complexity of the mus-

culoskeletal system and solving the requisite multi-dimensional optimization problem. For

example, sprinting and running are fundamental to many forms of sport, but past research

on the relationships between musculoskeletal geometry, muscle volumes, and running per-

formance has been limited to observational studies, which have not established cause-

effect relationships, and simulation studies with simplified representations of musculoskele-

tal geometry. In this study, we developed a novel musculoskeletal simulator that is differen-

tiable with respect to musculoskeletal geometry and muscle volumes. This simulator

enabled us to find the optimal body segment dimensions and optimal distribution of added

muscle volume for sprinting and marathon running. Our simulation results replicate experi-

mental observations, such as increased muscle mass in sprinters, as well as a mass in the

lower end of the healthy BMI range and a higher leg-length-to-height ratio in marathon run-

ners. The simulations also reveal new relationships, for example showing that hip muscula-

ture is vital to both sprinting and marathon running. We found hip flexor and extensor

moment arms were maximized to optimize sprint and marathon running performance, and

hip muscles the main target when we simulated strength training for sprinters. Our simula-

tion results provide insight to inspire future studies to examine optimal strength training. Our

simulator can be extended to other athletic tasks, such as jumping, or to non-athletic appli-

cations, such as designing interventions to improve mobility in older adults or individuals

with movement disorders.
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Author summary

Our study addresses the challenge of determining optimal musculoskeletal parameters for

tasks like sprinting and marathon running. Existing research has been limited to observa-

tional studies and simplified simulations. To overcome these limitations, we developed a

differentiable musculoskeletal simulator to optimize running performance. We replicated

past findings and uncovered new insights. We confirmed the benefits of increased muscle

mass for sprinters and identified key factors for marathon runners, such a mass in the

lower end of the healthy BMI range and an increased leg-length-to-height ratio. Hip mus-

culature was found to be critical for both sprinting and marathon running. Our simula-

tion results have practical implications. They can inform customized strength training for

sprinters and marathon runners. Additionally, the simulator can be extended to other ath-

letic tasks, benefiting various sporting events. Beyond athletics, our open-source simulator

has broader applications. It can determine minimal strength requirements for daily activi-

ties, guide strength training in the elderly, and estimate the effects of simulated musculo-

skeletal surgery.

Introduction

Performance of tasks ranging from rising from a chair to competing in Olympic-level sporting

events depends on precise coordination of many muscles. Variations in an individual’s muscu-

loskeletal geometry and muscle volumes affect performance for many movement tasks [1–3],

but our ability to identify cause-effect relationships has been limited because quantifying the

effects of changing a person’s musculoskeletal geometry or muscle volumes on task perfor-

mance is complex.

Musculoskeletal simulation could allow researchers to quantify the effects of variations in

body segment dimensions and muscle properties on performance. Simulation allows us to

observe the influence of variables that cannot be changed in an experiment (e.g., the height of

a runner) and enables us to examine whether specific muscular and skeletal features that have

been associated with the performance of a task causally contribute to task performance. Previ-

ous simulation studies have opened the door to this possibility but have been limited by simpli-

fied representations of the musculoskeletal system [4–6]. The majority use gradient-based

trajectory optimization, which requires gradient computations that are computationally

expensive because there are typically non-differentiable expressions requiring the use of finite

differentiation [7]. To understand the effects of body segment dimensions and muscle proper-

ties on task performance using finite differentiation to compute gradients will lead to days or

weeks of computation time. Automatic differentiation, a faster alternative to finite differences,

has been applied to speed up musculoskeletal simulation (e.g. [8,9]). More recently, Falisse

et al. [10] implemented a framework that is based on the commonly used OpenSim models

and software [11]. However, the algorithm requires body segment dimensions and muscle

properties to be fixed. Our simulator can optimize both body segment dimensions and muscle

volumes of a complex, three-dimensional muscle-driven musculoskeletal model for a range of

tasks. By implementing a musculoskeletal simulator that is fully differentiable with respect to

both body segment dimensions and muscle volumes, we have enabled simulations to be com-

pleted within hours on a standard computer. To test and apply this new simulator, we used it

to study the role of body segment dimensions and muscle volumes in sprinting and marathon

running performance.
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The 100m dash is arguably the most prestigious event in track-and-field [12,13], and mara-

thon running serves as a frontier of human endurance [14,15]. Success in these two events has

been associated with different skeletal and muscular features, largely through observational

studies. For example, Sedeaud et al. [1] found that mean height, mean body mass index (BMI),

and variability in BMI decreased with increasing distance of the event in which male runners

specialized. Size, proportions, and other aspects of musculoskeletal geometry have also been

associated with an advantage in sports such as speed skating and swimming [2], and cycling

[3].

Compared to the general population, sprinters exhibit specialization in musculoskeletal

geometry, such as a more limited height range (i.e., sprinters are typically not very short or

tall) [16]. Although extremes of height are rare in sprinters [16], body height was not associ-

ated with performance in 100m personal best times in a group of sprinters [17]. Body propor-

tions, however, might be important for sprint performance. For example, Tomita et al. [18]

found that a greater tibia-to-femur length was associated with better performance in 400m

runners. They posit that a greater tibia-to-femur length reduces the leg’s moment of inertia

with respect to the hip and thus reduces positive work done by the hip flexors during the

swing phase of running. Top sprinters have highly developed musculature for both the lower

and upper body, as established via both medical imaging [19] and external measurements

[17,20–22]. In a group of competitive sprinters, greater thigh girth, hip strength, and body

mass index (BMI) was associated with greater sprint performance as assessed via personal best

times [17,23]. Further, greater relative muscle volume in the hip muscles has been shown to

differentiate elite sprinters, sub-elite sprinters, and non-sprinters [19]. With hip musculature

suggested as a limiter of sprinting performance, stronger hip muscles and a deeper (i.e. greater

along the anteroposterior axis) pelvis, which increases the moment arms of hip muscles, might

be advantageous.

Compared to the general population, distance runners are shorter, have lower BMIs [20,24]

and have a greater tibia-to-femur length ratio [25,26]. In trained distance runners, a greater

relative tibia-to-femur length ratio is also associated with better running performance [26], as

is a greater relative lower limb length [25,27]. Distance runners, compared to sprinters, have

lower maximal isometric knee flexor and extensor torques, in absolute terms and when nor-

malized by body weight [28].

While the observational studies described above reveal associations between performance

and musculoskeletal features, they are limited in their ability to identify cause-effect relation-

ships. To overcome this, Deane et al. [29] conducted an interventional experiment, which

revealed that hip flexor training significantly improves 40-yd dash times. However, such inter-

ventional studies are rare, costly, and difficult to control (e.g., hip flexor training might

increase strength of additional muscle groups).

Past simulation studies have explored causal relationships between a musculoskeletal mod-

el’s capacity (e.g., maximal joint torques or muscle force) and performance in sprinting [30],

jumping [4,5,31] and gymnastics [32]. However, these studies have been limited in their ability

to capture the complexity of the musculoskeletal system as it applies to athletic performance

[33]. For example, previous simulation studies that investigated jumping performance did not

include muscles [5] or included only six muscles and were restricted to two dimensions [4,31].

Two simulation studies have revealed how muscle force-length-velocity relationships influence

sprinting capacity, but were limited to 2D models driven by nine muscles [6,34]. No simula-

tion studies have comprehensively investigated how differences in body-segment dimensions

affect running performance.

In this study, we developed a three-dimensional musculoskeletal simulator that is fully dif-

ferentiable with respect to both body-segment dimensions and muscle properties to analyze
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the effects of body-segment dimensions, muscle volume, and distribution of muscle volume

on sprinting and marathon running performance. We sought to determine how body-segment

dimensions affect maximal sprinting speed and the metabolic cost of running a marathon at

moderate speed. We also simulated how optimized, targeted strength training improves sprint-

ing and marathon running performance. Understanding the influence of body segment

dimensions and muscle volume distribution on performance can inform the selection of sports

in which to compete and personalize training to help maximize performance. Our simulator is

open source and enables researchers to conduct additional studies investigating the relation-

ships between musculoskeletal parameters and increased performance, as in sport, or reduced

performance, as can result from injuries, diseases, and disorders.

Methods

Overview of performed simulations

We performed ten predictive simulations of a running gait (overview in Table 1) using the

three-dimensional musculoskeletal model developed by Hamner and colleagues [32], which

includes 92 muscle actuators, 8 torque actuators, and 31 degrees of freedom. The generic

model represents a male subject with a stature of 1.81m and mass of 75kg, corresponding to

the 73rd and 63rd percentiles for 30 year old males in the United States [35], and that matches

the strength of a young healthy subject capable to performing athletic activities. The model has

been tested and used in many previous studies, including studies of walking [10], running

[10,36] and sprinting [37,38].

To simulate marathon running, we imposed a running speed of 3.33m/s and minimized

lower limb energy expended over the marathon distance [10]. To simulate sprinting, running

speed was maximized for a single simulated half gait cycle. We thus ignore the acceleration

phase of sprinting and limit ourselves to simulating the maximal velocity. In all simulations,

we optimized the excitations of the muscles and torque actuators to achieve the performance

criterion of interest (i.e., marathon or sprint performance).

To answer our research questions, we performed simulations with a generic model that

maximize sprinting performance (sim1) and marathon performance (sim2). Next, we

Table 1. Summary of the ten predictive simulations. The task simulated is either sprinting or marathon running. Motor coordination is always a decision variable,

whereas body segment factors and muscle volume scaling factors are either set to the values of a model or also optimized. The model name describes which model is used

or results from the simulation. We finally mention which figure in the results section displays results from each simulation.

Task Motor coordination Body segment scaling factor Muscle volume scaling factor Model name Figure

1 Sprinting decision variable generic generic generic 1.A,1.C,1.D,2.A

2 Marathon decision variable generic generic generic 1.B,1.C,1.D,2.B

3 Sprinting decision variable decision variable scaled with body mass sprint-optimized body segments 1.A,1.C,1.D,1.E,1.

F

4 Marathon decision variable decision variable scaled with body mass marathon-optimized body

segments

1.B,1.C,1.D,1.E,1.

F

5 Marathon decision variable sprint-optimized body segments sprint-optimized body segments sprint-optimized body segments 1.B

6 Sprinting decision variable marathon-optimized body

segments

sprint-optimized body segments marathon-optimized body

segments

1.A

7 Sprinting decision variable generic decision variable sprint-optimized muscle volumes 2.A, 2.C, 2.D, 3

8 Marathon decision variable generic decision variable marathon-optimized muscle

volumes

2.B, 2.C, 2.D,

9 Marathon decision variable generic sprint-optimized muscle volumes sprint-optimized muscle volumes 2.B

10 Sprinting decision variable generic marathon-optimized muscle

volumes

marathon-optimized muscle

volumes

2.A, 3

https://doi.org/10.1371/journal.pcbi.1011410.t001
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performend simulations that optimized body-segment dimensions (i.e., the three-dimensional

dimensions of each segment) for sprinting (sim3) and marathon performance (sim4). When

scaling the skeleton, we chose to scale muscle volumes proportionally to the change in whole

body mass with a 1:1 ratio. Individual body segments are scaled by assuming constant density.

As such, the mass percentage of muscle and fat tissue remains constant for models of different

sizes and thus a heavier model has stronger muscles. Scaling the segments affects the bone

geometry, muscle attachment points, muscle moment arms, and muscle properties, such as

optimal fiber length and tendon slack length. As such, these simulations yielded a model with

sprint-optimized skeleton body segment dimensions and a model with marathon-optimized

body segment dimensions. Next, we evaluated these new models on the opposite tasks being

marathon running (sim5) and sprinting respectively (sim6). Next, we performed simulations

that optimized the distribution of added muscle volume (i.e., optimal distribution of muscle

volume when adding 5% of the total muscle volume) for sprinting (sim7) and marathon run-

ning (sim8) which yielded models with sprint-optimized and marathon-optimized muscle vol-

umes. Finally, we also evaluated these models on the opposite task (sim9 and sim10).

Differentiable musculoskeletal simulator

We developed a differentiable musculoskeletal simulator (Fig 1) to enable efficiently perform-

ing the described simulations. Every function within this simulator is differentiable; thus, we

can rapidly obtain the gradient of the output with respect to all its inputs using automatic dif-

ferentiation rather than finite differencing, and all gradients are continuous.

At each timestep of a simulation our musculoskeletal simulator gives the state derivatives

given the state and decision variables. The state x 2 R254
� �

of the musculoskeletal simulator is

determined by the activations am 2 R
92

� �
of the 92 included lower limb muscles, the force in

each tendon Ft 2 R
92

� �
, the activation of the eight torque actuators of the upper limb degrees

of freedom aT 2 R
8

� �
, and the generalized positions q 2 R31

� �
and velocities _q 2 R31

� �
,

including the six degrees-of-freedom of the pelvis and 25 joint angles:

x ¼ am; aT; Ft; q; _q½ �

The decision variables that form the input to the musculoskeletal simulator at each timestep

are the muscle em 2 R
92

� �
and torque actuator excitations eT 2 R

8
� �

, the scaling factors of the

skeleton segments ðps 2 R
3x18Þ and scaling factors of the muscle volumes ðpVmuscle

2 R92Þ.

The state derivatives are described by muscle activation dynamics [40], with activation and

deactivation time constants 15ms and 60ms respectively:

_am ¼ f act;musc em; amð Þ;

muscle-tendon dynamics [40]:

_F t ¼ f mt a;Ft; lmtðq; psÞ;
_lmtðq; _q; psÞ; pmðpsÞ

� �
;

torque actuator activation dynamics [10]:

_aT ¼ f act;torque eT; aTð Þ ¼
eT � aT

0:035
;

and skeleton dynamics [41]:

€q ¼ f s q; _q; Ft; psð Þ ¼ M q; psð Þ
� 1 G q; psð Þ þ C q; _q; psð Þ þ τ Ft; aT; q; _q; psð Þ þ f c q; _q; psð Þ
� �

;
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where em are the muscle excitations, lmt muscle-tendon lengths, _lmt muscle-tendon velocities,

ps the skeleton parameters, pm the muscle parameters, eT the torque actuator excitations, τ bio-

logical joint torques, fc the function describing the generalized forces that result from contact,

M the mass matrix, G the vector of gravitational forces, and C the vector of Coriolis and cen-

trifugal forces. The force-length and force-velocity relationships are identical to [40] and were

not adapted to reflect specialized characteristics due to different fiber type distributions in

sprinters vs distance runners [42,43]. Contact is modelled using a Hunt-Crossley model and

occurred between eight contact spheres attached to each of the feet and the ground. The loca-

tion and properties of these contact spheres are as described in [39].

The biological joint torques are the result of the torques generated by the muscles (τm), the

torques generated by the torque actuators for the upper limbs (τT) and passive joint torques

Fig 1. Our differentiable musculoskeletal simulator generates the derivatives of the state variables given the state variables (muscle activations am,

torque actuator activations aT, tendon forces Ft, generalized positions q and velocities _q) and the decision variables (skeleton segment scaling factors ps,
muscle volume scaling factors pVmuscle

, muscle excitations em, torque actuator excitations eT). This is achieved by evaluating a set of dynamics equations:

activation dynamics, torque actuator dynamics, muscle dynamics, and skeleton dynamics. Evaluating muscle and skeleton dynamics depends on the

outputs of musculoskeletal geometry computations (i.e., muscle-tendon lengths lmt and velocities _lmt and muscle moment-arm matrices R) and on the

scaled muscle parameters (pm,scaled). Since the scaling of the skeleton and muscle volumes are decision variables, we formulated musculoskeletal

geometry computation, muscle parameter scaling and skeleton dynamics as a differentiable function of these decision variables. The dotted boxes

indicate the parts of the simulator where we turned non-differentiable computation used in OpenSim and Falisse et al. [39] into differentiable

computation. Tendon forces are mapped to joint muscle torques (τm) by the moment-arm matrix (R). Torque actuator activations are scaled to torque

actuator torques (τT) by a scaling factor of 150 [10]. A contact function (fcontact) based on the Hunt-Crossley contact model gives the generalized forces

resulting from contact (fc).

https://doi.org/10.1371/journal.pcbi.1011410.g001
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(τpas):

τ ¼ τm þ τT þ τpas;

τm ¼ R q; psð Þ∗Ft;

τT ¼ 150∗aT;

τpas ¼ kU;1:e
kU;2ðq� θU Þ þ kL;1:e

kL;2ðθL � qÞ þ 0:1 _q

The muscle torques result from matrix multiplication between the muscle forces with R(q,

ps) the 92x31 matrix of moment arms of the muscles with respect to the joints. The torque

actuator torques result from scaling the torque actuator activations that are bounded between

-1 and 1 with 150Nm as a scaling factor mapping torque actuator activation to torque [10,38].

The passive joint torques (τpas) consist of joint limit torques to model ligaments for the

muscle driven joints and damper joint torques for all joints with a damping constant of 0.1

Nm.s/rad. The joint limit torques are parametrized by six parameters (kU,1, kU,2, θU, kL,1, kL,2,

θL) describing the exponential decay and increase across the range of motion for every joint

coordinate. The parameters are taken from [44].

Finally, for the metatarsophalangeal joint, which is not muscle actuated, a spring-damper

joint torque is added that has different parameters depending on whether sprinting (stiffness:

40 Nm/rad, damping: 0.4 Nm.s/rad) [38] or marathon running (stiffness: 25 Nm/rad, damp-

ing: 1.9 Nm.s/rad) [39] is simulated.

The skeleton parameters ps 2 R
3x18

consist of three scaling factors for each body segment,

one for scaling each dimension. When scaling the model, we assume the following 18 bodies:

the pelvis, trunk+head, plus two of each of the talus, mid- and hindfoot, toes, shank, thigh,

upper arms, lower arms, hands. To simplify the problem, we use constraints to impose symme-

try and to require identical scaling factors for the trunk+head, upper arms, lower arms, and

hands, and identical scaling factors for talus, mid- and hindfoot and toes. Importantly, scaling

the body segments affects the following quantities in the skeleton dynamics: M, G, C, fc, τ
defined above.

The skeleton segment scaling factors are also an input to the musculoskeletal geometry

computation that calculates the muscle-tendon lengths, muscle-tendon velocities and

moment-arm matrix as a function of the generalized coordinates, generalized velocities and

skeleton segment scaling factors:

lmt;
_lmt;R

h i
¼ f lmt ;_lmt ;R

q; _q; psð Þ:

The Hill-type muscle parameters pm consist of: the muscle physiological cross sectional area

(PCSA), the specific tension of muscle fibers (σ), tendon slack length (lT,s), optimal fiber length

(lm,opt), pennation angle (αm) and tendon stiffness (kT) [40]. The cross-sectional area and spe-

cific tension determines the muscle maximal isometric force:

Fmax;iso ¼ PCSA∗s

From the PCSA and the optimal fiber length, the muscle volume is calculated:

Vmuscle ¼ PCSA∗lm;opt

which is an input to several other computations including the metabolic energy consumption

[45].
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To mimic strength training, we allowed Vmuscle of individual muscles to be scaled by a scal-

ing factor pVmuscle
:

Vmuscle;scaled ¼ pVmuscle
� Vmuscle

and as such changing the muscle maximal isometric force. When the skeleton was scaled Vmuscle

changed with a 1:1 ratio to the change in skeleton mass. In this case, PCSA could not be directly

calculated from Vmuscle,scaled as lm,opt was first scaled to lm,opt,scaled (see next paragraph).

When scaling the skeleton, the tendon slack length and optimal fiber length are adapted as

well depending on the total length change of the muscle tendon unit length when the model is

placed in the anatomical pose (q = 0):

lm;opt;scaled ¼ lm;opt �
f lmt

0; psð Þ

f lmt
0; 1ð Þ

:

The same ratio is applied to scale tendon slack length.

Scaled muscle parameters are thus a function of original muscle parameters, the scaling fac-

tors of the skeleton segments and the scaling factor for the muscle volume:

pm;scaled ¼ f ðpm; ps; pVmuscle
Þ

Turning non-differentiable into differentiable computation

Optimizing the skeleton body segment dimensions is not feasible using the state-of-the-art

musculoskeletal simulator OpenSim [11] and Simbody [41] due to its non-differentiable com-

putation. The simulator from Falisse et al. [10] enables differentiable computation for a part of

the OpenSim-Simbody simulator and serves as a starting point for our simulator. However,

the simulator of from Falisse et al. [10] is not differentiable with respect to all musculoskeletal

variables of interest. As such, an important technical contribution of our work is to make the

entire musculoskeletal simulator differentiable. We identified two non-differentiable opera-

tions when relying on OpenSim and Simbody. First, musculoskeletal geometry computations,

lmt;
_lmt;R ¼ f lmt ;_lmt ;R

q; _q; psð Þ, are non-differentiable with respect to generalized coordinates

(q), velocities ( _q) and skeleton segment scaling factors (ps), and the first-order derivatives are

not guaranteed to be continuous. Second, the skeleton dynamics, €q ¼ f s q; _q; Ft; psð Þ, are non-

differentiable with respect to ps, which determines the contributions of M, G, C, fc to the skele-

ton dynamics.

Differentiable musculoskeletal geometry computation

We implemented the musculoskeletal geometry computation as a differentiable neural net-

work function:

lmt;
_lmt;R ¼ f lmt ;_lmt ;R

q; _q; psð Þ:

Musculoskeletal geometry computation in OpenSim is executed as follows: first, based on

the skeleton segment scaling factors the bone geometries, muscle attachment points, muscle

via points and muscle wrapping surfaces are adapted, next, using the scaled geometry the mus-

cle-tendon lengths and moment arms are calculated. Both parts are implemented in OpenSim

as non-differentiable operations with non-continuous first-order derivatives.
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To resolve this, we implemented a shallow (two hidden layers) neural network to calculate

lmt, R for every muscle. Having a differentiable function for the computation of lmt for each

pose (q) and set of skeleton segment scaling factors (ps) allows us to have a differentiable func-

tion to perform muscle parameter scaling pm;scaled ¼ f ðpm; ps; pVmuscle
Þ. Finally, the muscle-ten-

don velocities are computed using the chain rule:

_lmt ¼
@lmt

@q
� _q:

Having a separate neural network for every muscle reduces computational complexity, as

we can take into account that every muscle only attaches to a limited number of bones.

We used OpenSim to generate training data and started from the generic OpenSim model

for running [36]. We scaled 2,000 versions of this model using the OpenSim Scale tool [11].

The scaling factors, that serve as input to the Scale Tool, are a 54x1 vector (representing the

three dimensions of the 18 bodies of the model), of which each element is drawn from a uni-

form distribution: U(0.8,1.2). Based on variation in the ANSUR II dataset, we chose the respec-

tive lower and upper limits of 0.8 and 1.2 as these cover most of the variation in an adult

population [46].

With the scaled models at our disposal, we generated training samples for all the different

muscles. For every training sample, we randomly selected one of the 2000 models and ran-

domly drew a joint pose from a uniform distribution that has lower and upper limits according

to the joint range of motion. We put the model in that joint pose and observed the muscle ten-

don length and moment arm with respect to the joint coordinates that are actuated by the

muscle. Depending on whether the muscle actuates, one, two or more joint coordinates, we

drew 20,000, 82,000, or 200,000 training samples for that muscle.

We then trained a separate neural network for each muscle using Adam [47], a stochastic

gradient descent algorithm commonly used to optimize neural networks, with a mean-

squared-error loss over 1,000 epochs and a batch size of 64. We used feedforward neural net-

works with ‘tanh’ activation functions and two hidden layers. The size of the hidden layers was

8, 12, or 16 depending on whether the muscle actuates 1, 2 or more joint coordinates.

We experimented to minimize the size of the neural networks to reduce computational

complexity without sacrificing accuracy of the approximation. With the described set-up we

confirmed that our predictive simulations of running at 3.33m/s yielded kinematics and mus-

cle activation very close to those with the original OpenSim model and for OpenSim models

with all scaling factors at 0.85 or 1.15.

The neural networks approximate the relationships in OpenSim between (1) joint coordi-

nates and segment dimensions and (2) moment arms and muscles lengths. Discontinuities

and non-smooth transitions in OpenSim moment arms and muscle lengths are smoothed

because of the relatively shallow and small neural networks we used.

Differentiable skeleton dynamics

Skeleton dynamics are based on SimBody [41]. We adapted the source code transformation

tool from [48] to enable automatic differentiation of the skeleton dynamics with respect to the

segment scaling parameters ps. This source code transformation tool analyzes a given func-

tion’s source code and outputs the gradient of that function. The source code transformation

tool takes a customized.cpp description of the SimBody skeleton model and its skeleton

dynamics as a function to analyze and differentiate. The tool also requires a description of the

variables with respect to which it will generate the gradient. In addition to the state-of-the-art

implementation, where the functions take generalized coordinates, velocities, and
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accelerations as differentiable input, we extended its functionality to be differentiable with

respect to the geometrical scaling factors of each segment. Therefore, we added functions to

define how these geometrical segment scaling factors change the mass, center-of-mass loca-

tion, and inertial properties for every segment. Next, we added functions to define how these

segment scaling factors change rotational and translational offsets across the kinematic tree of

the skeleton. These functions mimicked how segment scaling factors affect these model prop-

erties when using the OpenSim Scale tool, but in a smooth and differentiable way.

Trajectory optimization

Each predictive simulation was solved as a trajectory optimization problem. We simulated

steady-state gait (running and sprinting) and assumed symmetry. As such we only needed to

simulate half a gait cycle while imposing symmetry, as well as continuity and periodicity con-

straints for the appropriate states.

For every trajectory optimization problem, we optimized at least the motor coordination,

consisting of muscle (em) and torque excitations (eT), and the initial state of the musculoskele-

tal system (x(t0)).

For simulations where we optimized either body segment dimensions or muscle volume

scaling to maximize task performance, we solved a trajectory optimization problem where

either the skeleton scaling parameters (ps) or the scaling of muscle volumes (pVmuscle
) were

added to the optimization variables. Note that if ps is optimized this directly determines pVmuscle

as muscle volume is scaled with change in mass.

Objective function

The minimal energy objective for marathon running was adapted from Falisse et al. [10] and

consists of five main contributions:

Jmarathon ¼
Jmetabolic þ Jam þ Jacc þ Jlimit þ JaT

lgait cycle

with Jmetabolic the squared muscle metabolic energy based on the Bhargava model [45] of meta-

bolic energy expenditure, Jam the sum of squared muscle activations modelling muscle fatigue,

Jacc the sum of squared joint accelerations modelling motion smoothness, Jlimit the sum of

squared limit joint torques modelling avoidance of ligament strain, and JaT the sum of squared

upper limb torque actuator activations modelling upper body fatigue and energy expenditure.

The sum of these terms is normalized by the length of the gait cycle. The metabolic cost of run-

ning a marathon, which is reported in the results as marathon performance is computed by

multiplying
Jmetabolic
lgait cycle

with the length of a marathon: 42,196 m.

A straightforward sprint objective to maximize the average velocity was chosen:

Jsprint ¼ � v
2

avg þ 1e� 6∗Jmarathon

with a small contribution of the marathon energy term to improve the numerical condition of

the optimization problem.

Constraints and bounds

Muscle excitations and activations are bound to be between 0 and 1, whereas torque actuator

excitations are bounded between -1 and 1. We include path constraints to avoid penetration

between body segments and additional bounds for the joint ranges of motion. These ranges of
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motion are generous and typically not reached for most degrees of freedom as the modelled

passive forces representing ligaments provide a physical joint limit. However, for the upper

limb degrees of freedom we use a more strict and representative range of motion that was

reached in some simulations. This choice was made as we did not model muscular or ligamen-

tous structures to limit these. Similarly, hip inward (-10˚) and outward rotation (+10˚) as well

as knee extension (0˚) bounds were typically reached. For the remaining variables (muscle

lengths, joint velocities, muscle velocities, joint accelerations) we use generous bounds that

were there to improve numerical stability during optimization and were not reached.

For the simulations of marathon running we imposed the average speed to be 3.33m/s.

For simulations where the skeleton scaling parameters, ps, were optimized, these were

bounded between 0.8 and 1.2. We also imposed a constraint on the Body Mass Index to be

between 17.5 and 25.5 to represent a healthy person.

When simulating strength training, the increase of individual muscle volumes was limited

to 20% and the total increase in muscle volume summed over all muscles was limited to 5% of

the initial total muscle volume.

Direct collocation and implicit dynamics

To improve numerical conditioning, we formulated muscle and skeleton dynamics with

implicit rather than explicit differential equations. We therefore introduced derivatives of ten-

don force and coordinate accelerations as additional controls, and we imposed the nonlinear

dynamic equations describing muscle contraction and skeleton dynamics as algebraic

constraints.

We used direct collocation to transcribe each trajectory optimization problem into a large

sparse nonlinear program. We used a third-order Radau quadrature collocation scheme with

50 mesh intervals per half gait cycle and solved the resulting NLP with the solver IPOPT. All

gradients were computed using automatic differentiation, where we relied on CasADi [49].

Because we fix the number of mesh intervals for every simulation problem, we made the

mesh interval length a variable to accommodate for different possible stride lengths at a given

speed.

Results

Optimizing model body-segment dimensions improves sprinting (17%)

and marathon performance (36%)

Optimizing the model’s body-segment dimensions for sprinting increased maximum speed by

17% (Fig 2A; 9.49 m/s for the sprint-optimized body-segment dimensions compared to 8.13

m/s the generic model). Optimizing body-segment dimensions for marathon running reduced

the lower limb energy cost of running a marathon at 3.3 m/s by 36% (Fig 2B; 2074 kcal for the

marathon-optimized body-segment dimensions compared to 3267 kcal for the generic

model). The sprint-optimized model was heavier than the generic model, but height did not

change markedly (Fig 2C and 2D; 83.6 kg, 1.81 m for the sprint-optimized model compared to

75.2 kg, 1.81 m for the generic model), while the marathon-optimized model was lighter and

shorter than the generic model (Fig 2C and 2D; 54.2 kg, 1.76 m for the marathon-optimized

model). Predictions for mass and height fell within the range of values found in the top seven

fastest all-time male 100m sprinters and marathon runners (Fig 2C and 2D).

Analysis of the optimized body-segment dimensions and resulting joint-torque capacities

revealed the hip muscles as important drivers of sprinting and marathon running performance

(Fig 2E and 2F). The increased pelvis depth in both the sprint-optimized and marathon-

PLOS COMPUTATIONAL BIOLOGY Simulated musculoskeletal optimization for sprinting and distance running

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011410 February 23, 2024 11 / 24

https://doi.org/10.1371/journal.pcbi.1011410


optimized models (Fig 2E) increased the moment arms of the hip flexors and extensors, lead-

ing to increased hip flexion and extension joint torque capacity (Fig 2F). In the sprint-opti-

mized model, the stronger muscles, due to increased mass, further contributed to increased

joint-torque capacity. Despite the smaller and weaker muscles in the marathon-optimized

Fig 2. Sprinting speed (A), marathon lower limb energy cost (B), height (C), mass (D) for the generic model and models with optimal body-segment dimensions for

sprinting and marathon running. The dots and names in (C) and (D) represent the seven all-time fastest male 100m and marathon runners. In (E) the scaling of

individual body segments are shown for the three dimensions: length, width, and depth. The scaling factors are normalized to the generic model. In (F) the figure shows

the joint torque capacity of the sagittal plane degrees of freedom for the different models normalized by the capacity of the generic model.

https://doi.org/10.1371/journal.pcbi.1011410.g002
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model, which were reduced to between 55–75% of the generic model because the model was

shorter and thinner, the hip flexion and extension capacities were maintained at about 80%

and 72%, respectively, of the generic model due to increased moment arms. At the knee and

ankle, the sprint-optimized model showed little change in torque capacity, while the mara-

thon-optimized model showed reduced capacity at both joints, due to lower mass and smaller

muscles.

A longer shank was beneficial for both sprinting (+4%) and marathon running (+20%),

whereas thigh lengths were maintained in the sprint-optimized model and slightly shorter

(1%) in the marathon-optimized model compared to the generic model (Fig 2E). Width and

depth of the shank, thigh and foot segments were reduced in both the sprint- and marathon-

optimized models, reducing lower-limb inertia.

The sprint-optimized and generic models sprinted with similar step lengths (1.92 m and

1.93 m, respectively), but the sprint-optimized model sprinted with increased step frequency

(4.9 Hz vs 4.2 Hz). The marathon-optimized and generic models both ran at marathon pace

with a 0.94 m step length and step frequency of 3.5Hz.

Training the hip muscles and plantarflexors is beneficial for sprinting

The model “trained” to optimize sprint performance realized a 9.2% higher sprinting speed

(8.88 m/s) compared to the generic model (8.13 m/s) (Fig 3A), while the model “trained” for

the marathon reduced the energetic cost of running a marathon by 1.5% compared to the

generic model (Fig 3B). Optimized strength training for marathon running was also beneficial

for sprinting, evidenced by a 2.3% increase in sprinting speed for marathon-optimized

strength. Marathon performance after optimal sprint strength training changed minimally

(0.3%). The sprint-optimized model sprinted with a longer step length than the generic model

(2.07 m vs. 1.94 m) and a slightly increased step frequency (4.3 Hz vs. 4.2 Hz). The marathon-

optimized and generic model both ran at marathon pace with a 0.94 m step length and step fre-

quency of 3.5Hz.

The model with sprint-optimized muscle volumes had increased joint torque capacity pri-

marily for hip flexion, hip extension, knee flexion, and ankle plantarflexion (Fig 3C). Among

the muscles with hip flexion moment arms, iliacus, adductor longus, psoas, and tensor fascia

latae were beneficial to strengthen (Fig 3D, hip flexion). Among the muscles with hip exten-

sion moment arms, biceps femoris longhead, adductor longus, and semimembranosus (Fig

3D, hip extension) were selected as muscles to strengthen. For the ankle plantarflexors, the

optimizer suggested strengthening the soleus, and medial and lateral gastrocnemius (Fig 3D,

ankle plantarflexion).

We analyzed joint torques during sprinting to understand how the optimized models capi-

talized on increased muscle volumes. The temporal profiles of the joint torques for the generic

model and the two optimized models are similar (Fig 4). However, the model with added mus-

cle volume optimized for sprinting produced a greater peak ankle plantarflexion torque during

stance (Fig 4, ankle torque) and a greater peak knee extension torque (Fig 4, knee torque) com-

pared to the generic model. Shortly after take-off, the two optimized models generated more

hip flexion torque (Fig 4, hip torque). In terminal swing phase, the sprint optimized model

generated more hip extension torque and both optimized models generated higher knee flex-

ion torque (Fig 4, hip and knee torque).

Simulator performance and validity

Simulations in this study took 30 minutes to 4 hours to converge, when running on a laptop

(11th Gen Intel Core i9 2.5GHz CPU). Prior to these adaptations, an optimization of the type
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Fig 3. Sprinting speed (A) and marathon lower limb energy cost (B) for the generic model and models after optimal ‘strength

training’ for sprinting and marathon running. (C) shows the joint torque capacity of the sagittal degrees of freedom for the

different models normalized by the capacity of the generic model. (D) shows normalized muscle maximal isometric force for

the different models organized per degree of freedom.

https://doi.org/10.1371/journal.pcbi.1011410.g003
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used in this study took several days. The range of computation times across several similar

optimization problems is expected due to the non-convexity and high non-linearity of the

optimization problems [50] that stem from muscle-tendon dynamics [51] and contact dynam-

ics [41,52].

Our simulated kinematics represent many of the key features of experimentally measured

kinematics during running and sprinting, giving confidence in the validity of the musculoskel-

etal model to address our study aims. However, there are also some discrepancies: during

swing, simulated hip and knee flexion angles were smaller than observed in experiments for

both sprinting and marathon running. A detailed comparison is made in the Supplementary

Materials (Figs A and B in S1 Text for marathon running and Figs C and D in S1 Text for

sprinting).

Predicted marathon energy consumption for the generic model (3267kcal at 75.2kg) was

similar to experimental values measured in 10 recreational marathon runners (2792±235kcal

at 72.3kg) [53]. Predicted maximal sprinting speeds were 33% slower than elite sprinting

speeds.

Discussion

Our simulations revealed skeletal geometries and muscle volume distributions that are favor-

able for sprinting and marathon running, as well as new cause-effect relationships between

skeletal geometry, strength, sprinting speed, and marathon running economy. In agreement

with experiments [1,19,20,24], sprinting speed improved with additional muscle volume,

mainly concentrated at the hip, and marathon economy improved with smaller and lighter

body segments and an increased leg-length-to-height ratio. Our simulations also revealed

potential mechanisms underlying these relationships. For example, we found that increased

hip muscle volume allowed for a faster swing-leg recovery during sprinting, enabling greater

step frequency and longer stride lengths. This was the case in our optimizations for both body

segment dimensions and muscle volumes. Increased ankle plantarflexor strength was required

to generate higher ground reaction forces at these faster sprinting speeds. We also found that

an increased shank-to-thigh length ratio and a longer total leg length, without concomitant

changes in step length, improved marathon running economy.

Fig 4. Joint torques for the sagittal-plane degrees of freedom across the sprinting cycle for the right leg. FLEX indicates flexion moment, EXT indicates

extension moment, DF indicates dorsiflexion moment, PF indicates plantarflexion moment.

https://doi.org/10.1371/journal.pcbi.1011410.g004
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Our musculoskeletal simulator is novel since it is differentiable with respect to body-seg-

ment dimensions and the inertial properties of a model. We achieved this by (1) formulating

the skeleton dynamics to be differentiable with respect to the geometries and inertial proper-

ties of the bodies and (2) approximating the computation of muscle wrapping with neural net-

works, using the musculoskeletal geometry of OpenSim [11] to train the networks. These

adaptations allowed us to generate three-dimensional simulations with detailed musculoskele-

tal models in hours instead of days.

Musculoskeletal simulation reveals determinants of sprinting performance

Our simulations indicate that increasing strength could improve sprinting performance. In the

case of the model with segment dimensions optimized for sprinting, the increase in perfor-

mance stemmed from both increases in muscle volume (strength) and optimized geometry.

This supports and explains the observation that sprinters, and athletes in sports where sprint-

ing gives an important advantage, are muscular and have an increased BMI [17,19,23].

In support of past correlations observed in experimental and simulation studies [19,37], we

identified hip musculature as an important limitation for top sprinting speed. Our sprint-opti-

mized models increased hip flexion and hip extension torque capacities by increasing the

moment arms and volumes for these muscles. Our simulated sprinting torques show that faster

sprinting goes along with higher hip flexion torques during early swing, to bring the swing leg

forward, and higher hip extension torques at the end of swing, to prepare for foot contact.

Dorn et al. [37] showed that the hip muscles, primarily the gluteus maximus and hamstrings,

are key contributors to propulsion at higher running speeds; we build on this work by showing

that increasing the moment-generating capacity of these muscles either by increasing moment

arms or increasing muscle volumes indeed leads to faster sprinting speeds.

In alignment with an observational study, which showed that knee flexor strength allowed

differentiation between untrained age-matched controls, sub-elite, and elite sprinters [19],

knee flexion strength was greater in the sprint-optimized models, with concomitant increases

in peak knee flexion torques during sprinting. The increased knee flexor capacity may be a

byproduct of the optimizer aiming to maximize ankle plantarflexion capacity, thereby increas-

ing the capacity of the gastrocnemii. Our simulations indicate that knee extension strength

may not be a key limiter of sprinting performance, which might explain why the study by

Miller et al. [19] could not differentiate elite and sub-elite sprinters based on knee extensor

muscle volumes. On the contrary, several other experimental studies associate greater maximal

knee extensor torques with faster sprinting [54,55]. However, this does not mean increasing

knee extensor strength is required to run faster. In our simulations, both models optimized for

sprinting produced greater knee extension torques at midstance, but they did not require a sig-

nificant increase in knee extension joint torque capacity to do so. These higher torques with

constant muscle force generating capacities could be explained by the interplay of several fac-

tors including higher muscle activation levels, different kinematics resulting in larger moment

arms, and the muscles operating at a more favorable section of the force-length and force-

velocity curves.

Our sprint-optimized simulations showed that increasing ankle plantarflexion capacity

improved sprinting performance, but prior experimental studies are conflicting. Several stud-

ies could not correlate ankle muscle volume to sprinting performance [19,56], but others asso-

ciated increased ankle plantarflexion strength with increased sprinting performance [30,54].

We found that the model with marathon-optimized body segments slightly increased maxi-

mum sprinting speed while having reduced absolute plantarflexion muscle volume, which

may help explain the conflicting results in prior experiments.
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Two mechanisms have been proposed in previous work as limiters of maximal running

speed: (1) decreasing ability to support body weight due to decreased stance time with increas-

ing running speed [57,58] and (2) inability to quickly propel the limb forward during early

swing, followed by energy removal in late swing to arrest forward motion and accurately posi-

tion the foot [59]. Miller et al. [34] analyzed the effect of changing the force-velocity relation-

ship on maximal running speed and analyzed whether changes in the force-velocity

relationship affect running speed through these mechanisms. While Miller et al. found that

both mechanisms could play a role, our simulations do not provide strong evidence for mecha-

nism (1). Stance-phase hip extension torques did not increase at higher running speeds and

although stance knee extension torques increased this did not require stronger vastii. The

increases in hip flexion and extension torques at higher speeds along with stronger hip and

knee flexor and hip extensor muscles in our optimizations provide support for mechanism (2).

In agreement with a study by Tomita et al. [18], we found that a long shank and high

shank-to-thigh ratio was optimal for sprinting. Because the shank is lighter than the thigh,

such geometry decreases lower limb inertia with respect to the hip, increasing the hip flexion

acceleration for a given level of hip flexion torque during early swing, without sacrificing leg

length. This advantage affects sprint technique, with the faster sprint-optimized model show-

ing increased step frequency rather than longer step length.

Lower body mass and specialized skeletal geometry affects marathon

performance more than increasing strength

When optimizing skeletal geometries, we constrained the body mass index (BMI) to be within

a healthy range (between 17.5 and 25.5). The lower limit captures the fact that athletes, and

nearly all humans, should maintain a BMI above 17.5 to prevent low bone density [60,61], hor-

monal issues [62], low energy availability [63], and an array of other health risks [64]. Because

our musculoskeletal model and optimization framework does not capture the detrimental per-

formance and health effects of these phenomena, we introduced this lower limit. It is impor-

tant to note that the optimization did not converge to a minimal achievable mass and

predicted a height and mass similar to top marathon runners [1,24]. Mass could have been fur-

ther reduced within the imposed BMI constraint by lowering shank and thigh length, which

would have diminished performance.

Our simulation results indicate that longer legs, a high leg-length-to-height ratio and a high

shank-to-thigh length ratio improve marathon economy, in line with experimental findings

[25,27]. Despite having longer legs, the model with segment dimensions optimized for mara-

thon running maintained stride length compared to the generic model when running at our

prescribed marathon pace. This seems counterintuitive, but experimental research has shown

that optimal stride length does not correlate well with leg length [65] and is subject specific

[66]. Further, stride length varies with speed, requiring different propulsive forces [67].

Reduced muscle strength might explain a smaller optimal stride-to-leg-length ratio for the

marathon-optimized model compared to the generic model, since larger steps lead to

increased peak joint torques and muscle forces.

The small effects of strength training on marathon performance (0.3% improvement) indi-

cate that strength training is less important for marathon runners than for sprinters. Therefore,

we do not discuss the redistribution of muscle volume for this case in detail, and suggest that

the results for the marathon-optimized model in Fig 2D should be interpreted with care. Nev-

ertheless, the marathon-optimized body segment dimensions indicate hip musculature as a

potential limiter, as hip flexion and extension capacity was mostly maintained in this model in

spite of the lower overall muscle volume. Strength training also has potential benefits for injury

PLOS COMPUTATIONAL BIOLOGY Simulated musculoskeletal optimization for sprinting and distance running

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011410 February 23, 2024 17 / 24

https://doi.org/10.1371/journal.pcbi.1011410


prevention [68] and could give a competitive edge when a race comes down to a sprint at the

end.

Simulated marathon running had a step frequency (210 steps per minute) that is higher

than what is typically observed in real-world sprinting (170 steps per minute) [69]. At a specific

speed, a runners’ preferred step frequency coincides with the metabolic energy minimum [69],

and model errors that affect metabolic energy computation could explain the higher simulated

step frequency. For example, the metabolic energy model used in our study might underesti-

mate the increasing metabolic cost of producing (the same) cyclic force at increased rates. This

phenomenon is described by Doke and Kuo [70] and also suggested by Swinnen et al. [71]. It

is hypothesized to be associated with activation-deactivation dynamics, and the cost of calcium

transport into the sarcoplasmic reticulum (SR) [72]. Next, the presence of an activation

squared in our objective function might bias the model to run with higher cadence as it has

been shown that some muscles operate at lower average activations at higher cadences [69].

Limitations

The results of our simulations are not guaranteed to be applicable to each individual because

the specific changes to create an optimized model depend on the body segment dimensions

and muscle strengths of the generic model. The body segment geometries, inertial properties,

and muscle geometry of the generic model are the synthesis of a series of carefully executed

studies [44,73–75] that resulted in a model to represent an average male of 1.81m and 75.1kg.

The muscle volumes of individual muscles in the model are based on detailed measurements

of muscles in cadavers of both young [76] and older adults [77]. The specific tension of indi-

vidual muscles, which scale the muscle volumes to maximal isometric forces, were scaled to

match maximal torque-angle relationships established by dynamometer measurements and

enable the model to reach realistic vertical jumping heights [44,78]. Since the development of

this model, many studies have proven its usefulness for simulations of different tasks. There

are many ways that a musculoskeletal model can be personalized to represent different individ-

uals. For example, the researchers in past studies have scaled a generic OpenSim [36] model’s

muscle volumes to simulate elite sprinting [38] and adapted musculoskeletal geometry for

deep squats [79]. Additional muscle parameters that could be individualized and potentially

contribute to performance in runners are the force-length, force-velocity and muscle activa-

tion times. These parameters vary according to muscle fiber type distribution, which is special-

ized in sprinters and distance runners [42,43]. In the current study, we chose to keep fiber type

constant to isolate the effects of musculoskeletal geometry and muscle mass distribution. Thus,

while the generic model has been carefully developed and tested, the specific numerical results

presented here depend on its properties. It is possible, however, to overcome this limitation

and to understand how performance depends on musculoskeletal parameters for a specific

person if a personalized musculoskeletal model is available. Developing personalized models is

a challenge for future research.

Another limitation of our study, and an interesting avenue for future work, lies in how we

scaled muscle volumes with scaling of the skeleton segments. A larger person will have greater

muscle volume than a smaller person with the same fat percentage. However, the assumption

used in this study of a linear increase in muscles volume distributed uniformly across muscles

influences simulated results. For example, in our simulator, the strength of all muscles

increased when the optimizer increased the size of the torso or upper arm. An alternate

approach to explore in future work is to assign each muscle to one or more segments and scale

muscle volume with the volume changes of the assigned segments.
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Our simulations of sprinting have lower hip and knee flexion angles during swing com-

pared to experimental measurements (Fig C in S1 Text), as observed in prior sprinting simula-

tions [80]. This might be due to passive hip and knee extension moments becoming large in

the model at the more extreme flexion angles. This is a known limitation of the model we

used, and attempts to mitigate this issue have been performed [79]. However, sprinting simula-

tions of the generic model with passive forces disabled did not result in larger knee flexion

angles, thus we decided not to decrease the passive muscle forces since this may compromise

the simulation of other motions for which the original model was developed.

The speeds at which we simulated marathon running and that we found for sprinting are

below elite level. The lower sprint speed is mainly due to the relative weakness of the muscles

in our generic model. When multiplying the maximal isometric force of all muscles in the

generic model by a factor of 2, as was done in several previous sprinting simulation studies

[36,38], the maximal running speed increased to 11.1m/s, which is closer to the fastest ever

recorded speed of 12.42m/s. The speed of 3.33m/s was chosen as a representative speed for the

marathon because it has a similar ratio to elite marathon running speed as the maximal run-

ning speed of the generic model to elite sprinting speed.

Our optimization is limited to maximizing speed and minimizing energy consumption and

ignores other important factors. For example, the segment scaling could potentially lead to

very narrow and long bone geometries that might be more prone to injury. Also, the optimal

running techniques simulated might induce high force peaks that generate painful joint loads,

and we did not limit these forces in the simulations. Although the vertical impulse is similar in

simulation and experiment, the simulated vertical ground reaction forces have a higher peak

compared to experimental data (Fig D in S1 Text).

Conclusions and future directions

Our open-source simulator was able to simultaneously optimize many musculoskeletal param-

eters in a three-dimensional simulation of running to uncover determinants of sprint and mar-

athon running performance. The simulator could also be used to optimize performance of

other athletic tasks such as jumping and accelerative running, which are important for many

sporting events. While the present study focused on athletic performance, our approach could

also be used in other applications where muscle strength or musculoskeletal geometry affect

mobility. For example, the simulator could determine minimal strength requirements to safely

perform activities of daily living, guide strength training interventions in elderly people who

struggle with specific activities of daily living, or help plan musculoskeletal surgery that aims to

enable or improve the performance of specific activities by changing musculoskeletal

geometry.
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