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Abstract

Linear parametric state-space models are a ubiquitous tool for analyzing neural time series

data, providing a way to characterize the underlying brain dynamics with much greater sta-

tistical efficiency than non-parametric data analysis approaches. However, neural time

series data are frequently time-varying, exhibiting rapid changes in dynamics, with transient

activity that is often the key feature of interest in the data. Stationary methods can be

adapted to time-varying scenarios by employing fixed-duration windows under an assump-

tion of quasi-stationarity. But time-varying dynamics can be explicitly modeled by switching

state-space models, i.e., by using a pool of state-space models with different dynamics

selected by a probabilistic switching process. Unfortunately, exact solutions for state infer-

ence and parameter learning with switching state-space models are intractable. Here we

revisit a switching state-space model inference approach first proposed by Ghahramani and

Hinton. We provide explicit derivations for solving the inference problem iteratively after

applying a variational approximation on the joint posterior of the hidden states and the

switching process. We introduce a novel initialization procedure using an efficient leave-

one-out strategy to compare among candidate models, which significantly improves perfor-

mance compared to the existing method that relies on deterministic annealing. We then uti-

lize this state inference solution within a generalized expectation-maximization algorithm to

estimate model parameters of the switching process and the linear state-space models with

dynamics potentially shared among candidate models. We perform extensive simulations

under different settings to benchmark performance against existing switching inference

methods and further validate the robustness of our switching inference solution outside the

generative switching model class. Finally, we demonstrate the utility of our method for sleep

spindle detection in real recordings, showing how switching state-space models can be

used to detect and extract transient spindles from human sleep electroencephalograms in

an unsupervised manner.
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Author summary

An inherent aspect of brain activity is that it changes over time, but existing methods for

analyzing neuroscience data typically assume that the underlying activity is strictly sta-

tionary, i.e., the properties of that activity do not change over time. One way of handling

time-varying data is to break the data into smaller segments that one assumes to be quasi-

stationary, but this approach only works if signals vary gradually, and tends to perform

poorly when changes are rapid or the target activity is transient in nature. A class of mod-

els called linear switching state-space models can explicitly represent time-varying activ-

ity, but they pose another set of challenges: exact solutions for such models are intractable,

and existing approximate solutions can be highly inaccurate. In this work we present a

solution for linear switching state-space models that is able to recover the underlying hid-

den states and model parameters for time-varying dynamics in a way that is robust to

model mis-specification and that outperforms previously proposed methods. We demon-

strate the utility of our method by applying it to the problem of sleep spindle detection

and show that switching state-space models can automatically detect transient spindle

activity from human sleep electroencephalograms.

Introduction

State-space modeling is a promising and versatile analytic approach for characterizing neural

signals that has received substantial attention over many decades [1]. State-space models can

be highly effective for analyzing neural time series data, particularly if the model formulation

and parameterization are able to accurately represent the dynamics of the data generating pro-

cess [2–4]. Powerful neural data analysis methods have been developed using stationary linear

models [1, 5–9], for which inference and learning algorithms can be readily derived using

well-established methods. However, real neural signal dynamics are more often time-varying,

due to either intrinsic fluctuations of physiological states or extrinsic influences from cognitive

and environmental processes [10–15]. Accordingly, mismatches between chosen state-space

models and true underlying dynamical processes can be a major source of error in such algo-

rithms [16].

In practice, researchers can manage variations in temporal dynamics by allowing the model

parameters to vary across time or fitting different model parameters to consecutive windows

of data. Thresholds can also be used to exclude outliers and limit the range of time series data

within some neighborhood where a locally time-invariant approximation remains valid. These

approaches can be effective when the time-varying activity can be tracked by changing param-

eter values within a given model class, or when the temporal dynamics evolve slowly compared

to the window length. However, they fall short when the neural signals of interest are by defini-

tion transient. Examples of such transient activity are abundant in neuroscience, including epi-

leptic bursts, hippocampal ripples, and event-related potentials [17–21]. In other scenarios,

neural dynamics can change abruptly at unpredictable times, for instance, during anesthesia-

induced burst-suppression, different stages of sleep, and modulations from active learning and

behavioral responses [22–30]. Time-varying parameters or windowed approximations would

perform sub-optimally at best in these cases, and could miss rapid transitions in the dynamics

if the scale of temporal variation or window length is mis-specified.

State-space models with switching have been proposed to represent signals that are com-

posed of multiple segments with different dynamics, under the assumption that each segment

is approximately linear and stationary. Two distinct approaches have been taken to develop
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corresponding algorithms for these switching state-space models. In one approach, approxi-

mate solutions were developed based on existing solutions [31] to stationary Gaussian state-

space models, or Gaussian SSM for short. These early studies recognized the intractability of

accounting for all possible switching transitions whose combinations grow exponentially with

the length of the time series [32, 33]. Nevertheless, efficient inference algorithms have been

developed by assuming that the transitions between multiple state-space dynamics follow a

hidden Markov model (HMM) process and by approximating the conditional means and

covariances of Gaussian hidden states [34–38]. These methods have focused on the filtered

estimates of the switching model probabilities and therefore on the ability to forecast a transi-

tion in dynamics. While this inference is relevant in control systems and econometrics, data

analysis questions in neuroscience are more often centered on segmenting a given time series

into periods with distinct neural dynamics and subsequently characterizing the properties of

those dynamics. Likely for this reason, these inference algorithms have not been extensively

applied in neural signal processing.

In another more recent approach, advances in Bayesian methods have enabled the develop-

ment of several new algorithms for switching state-space models [39–41]. These methods

assume similar switching dynamics undergoing HMM transitions but leverage Markov chain

Monte Carlo sampling techniques to perform state estimation and parameter learning. The

adoption of blocked Gibbs sampling [41, 42] for switching state-space models is particularly

powerful, as it allows extensions with non-parametric [39] and generalized linear models [42,

43] as well as with traditionally intractable structures such as recurrent dynamics [41]. These

state-of-the-art methods have been successfully applied to the analysis of neural signals [43–

47]. Empirical studies so far using these algorithms have employed less structured hidden

state-spaces with dense transition matrices. A limitation of this general-purpose approach is

that the candidate models may be less interpretable in relation to the neural mechanisms being

studied compared to simpler and physiologically motivated models [48]. So far, the Bayesian

sampling methods have been successfully applied to segmentation problems using high-

dimensional embedding of neural signals [43–47]. Meanwhile, state-space models employing

quasi-stationary sliding windows with closed-form solutions have been used to characterize

time-varying signals [49–52]. The performance of such models in time-varying scenarios

could benefit from extensions to incorporate switching dynamics.

In 2000, Ghahramani and Hinton proposed an insightful solution for switching state-space

models inspired by variational approximations from graphical models [53]. Their generative

models were similar to the hybrid models combining Gaussian SSMs and HMM, and they

derived inference and learning computations in the recent Bayesian framework. But, instead

of relying on Gibbs sampling, their approximate inference and learning solution utilized tradi-

tional exact inference algorithms as building blocks. The Ghahramani and Hinton algorithm is

uniquely situated between the above two eras of research on switching state-space models, and

it provides an opportunity to combine strengths from both approaches to study neural activity

with transient dynamics using interpretable models and optimized approximations. This algo-

rithm provides an accessible entry point to switching state-space models and facilitates con-

struction of time-varying models of neural activity that could be further developed using more

recent Bayesian methods. Despite the important and significant conceptual advance described

by Ghahramani and Hinton, its applications in neuroscience have also been limited. Overall,

the likelihood function for switching state-space models is non-convex and solutions are there-

fore sensitive to the initialization conditions. To address this issue, Ghahramani and Hinton

used deterministic annealing, enabling the algorithm to perform comparably to past inference

methods, but with little improvement. Moreover, the complexity of the algorithm and its

computational requirements may have limited its adoption.
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In this paper we introduce methods to significantly improve switching state-space model

inference and learning under the framework initially proposed by Ghahramani and Hinton.

First, we present a simple but rigorous derivation of the inference algorithm [53] under the

variational Bayes approximation and expectation-maximization (EM) frameworks, complete

with all closed-form equations involved along with practical considerations when applying this

method to neuroscience problems. We then describe a novel initialization procedure that

addresses the crucial challenge of navigating the non-concave log-likelihood function to find

relevant optimal solutions. We show results on how this method significantly improves over

deterministic annealing, enabling variational inference to outperform past inference algo-

rithms. We also show that our approach improves parameter recovery, which makes it possible

to more accurately characterize time-varying dynamics. We then extend the generative model

structure to accommodate more complicated switching state-space models including nested

models, which are frequently encountered in many applications including neuroscience.

Finally, we apply the variational Bayesian learning algorithm to a long-standing problem of

sleep spindle detection from electroencephalography (EEG) recordings during sleep in

humans and show compelling results that switching state-space models can reliably identify

transient neural activity.

Results

Throughout this work, we use regular and boldface lowercase letters to denote scalars and vec-

tors, respectively. Matrices are denoted by boldface uppercase letters or by regular uppercase

letters when the matrices are one-dimensional. The transpose of a matrix M is denoted by M>,

and Mij indicates the element of the matrix at the ith row and jth column position. A variable

indexed with another discrete variable s taking values in {1, � � �, M}, e.g., z(s), refers to the fol-

lowing:

zðsÞ ¼

zð1Þ s ¼ 1

zð2Þ s ¼ 2

..

.

zðMÞ s ¼ M:

8
>>>>><

>>>>>:

We consider switching state-space models to consist of a set of M uncorrelated linear

Gaussian SSMs encoding arbitrarily distinct dynamics and an HMM of a discrete variable s
taking values in {1, � � �, M}. The hidden states of Gaussian SSMs evolve in parallel and are

allowed to be of different dimensions with appropriate mapping to observations. At every time

point, the HMM selects one of the Gaussian SSMs to generate the observed data, giving rise to

the switching behavior of this generative model. However, this flexible switching structure

comes with high computational complexity: exact inference of the hidden states from observed

data quickly becomes intractable, even for M = 2 with moderately long time series.

It has been noted that when the switching states are known, the hidden states of Gaussian

SSMs can be efficiently estimated. Conversely, one can infer the hidden HMM states given the

Gaussian SSM states [53]. Based on this insight, the intractability can be circumvented by

using a surrogate distribution, q, which approximates the intractable posterior, p. Specifically,

we introduce two auxiliary variables gðmÞt and hðmÞt : gðmÞt acts as the model evidence for the mth

Gaussian SSM to produce the observed data in the absence of known Gaussian SSM states,

while hðmÞt represents the model responsibility for the mth Gaussian SSM to explain the

observed data when the switching states are unknown. Therefore, alternately updating gðmÞt and
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hðmÞt allows us to efficiently estimate posterior distributions of all hidden states in closed-form.

The functional forms of these variables are obtained by maximizing a closeness metric between

the two distributions p and q. This procedure is known as variational approximation [54, 55].

We can also use this approximate variational inference within an instance of generalized EM

algorithm to learn (fine-tune) the Gaussian SSM and HMM parameters when the model

parameters are unknown (unsatisfactory). Fig 1 outlines this variational Bayesian learning

algorithm for switching state-space models.

The variational inference procedure requires a good initialization of gðmÞt or hðmÞt so that they

can be iteratively updated to drive the surrogate posterior q closer to the intractable true poste-

rior p as described in Materials and methods. Given the non-convex nature of the problem, a

good initialization should lead to a good local minimum. In practice, having an informed ini-

tialization is often difficult since no prior information on the discrete variable st is available.

One interesting quantity available from closed-form state inference is an interpolated density,

defined as the conditional probability distribution of any particular observation, given all past

and future observations. This interpolated density allows us to devise an informative initializa-

tion of the iterative variational inference procedure, instead of using deterministic annealing

[53] (see details in section Initialization of fixed-point iterations of Materials and methods).

Concretely, we use this density to compare between the Gaussian SSMs and establish the initial

weights for the HMM, gðmÞt , which enables us to achieve superior performance in both segmen-

tation and parameter estimation.

In the following results sections, we first show simulation studies to assess the performance

of such variational inference and learning. As performance metrics, we evaluate segmentation

accuracy of a time series by learned switching states against the ground truth, and parameter

estimation errors where applicable, to compare the proposed algorithm with a few existing

switching inference algorithms. In addition, we investigate the effects of varying data length on

segmentation and parameter learning metrics. Lastly, we model real-world human sleep EEG

using switching state-space models and apply the proposed algorithm to detect the occurrence

of sleep spindles in an unsupervised manner.

Segmentation with posterior inference

We first focus on the variational inference part (E-step) of the algorithm that approximates the

true posterior distribution p with a structured approximate posterior distribution q via fixed-

point iterations (see the Variational approximation of hidden state posterior section of Materi-

als and methods). To demonstrate improvements with our novel initialization procedure

using the interpolated density, we repeated the simulations from [53] using the following

switching autoregressive (AR) models of order 1:

xð1Þt ¼ 0:99 xð1Þt� 1 þ wð1Þt ; wð1Þt � N ð0; 1Þ

xð2Þt ¼ 0:90 xð2Þt� 1 þ wð2Þt ; wð2Þt � N ð0; 10Þ

yt ¼ xðstÞt þ vt; vt � N ð0; 0:1Þ:

The starting points for each AR model were drawn from the same distribution as their

respective state noises. The switching state st followed a binary HMM process with initial pri-

ors ρ1 = ρ2 = 0.5 and a symmetric state-transition probability matrix with ϕ11 = ϕ22 = 0.95, ϕ12

= ϕ21 = 0.05. We generated 200 sequences of 200 time points from the above generative model

and analyzed the segmentation accuracy of inference algorithms given the true parameters.

Four inference algorithms were compared: static switching [33], interacting multiple mod-

els (IMM) [35], variational inference with deterministic annealing (VI-A) [53], and our
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Fig 1. Flowchart of the variational Bayesian learning as an instance of generalized EM algorithm. M Gaussian

SSMs, indexed by m 2 {1, � � �, M}, is parameterized by
n

μðmÞ;QðmÞ
0
;FðmÞ;QðmÞ;GðmÞ

o
and augmented with an HMM

parameterized by ρ and ϕ. The HMM determines the switching among the Gaussian SSMs to produce observed data.

The observations are corrupted by observation noise with covariance R and indexed by t 2 {1, � � �, T}. We introduce

gðmÞt and hðmÞt , two variational summary statistics, to approximate the true posterior distribution p with a different

distribution q. The E-step requires inference of the hidden states, achieved through fixed-point iterations that improve

the variational approximation incrementally. Once the E-step has stabilized, model parameters are updated in the M-

step. The convergence of the inner (E-step) iterations and outer (EM) iterations, index by i, is checked using the

negative variational free energy Fðq; θÞ. This algorithm outputs 1) posterior estimates of model parameters, θ̂ , 2) state

inferences, i.e., the means and covariances of Gaussian SSM hidden states, x̂ ðmÞtjT and Σ̂ðmÞtjT , and 3) estimates of M model

probabilities of generating the observation at each time point, p̂ tjTðmÞ.

https://doi.org/10.1371/journal.pcbi.1011395.g001
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proposed variational inference with interpolated densities (VI-I). Static switching assumes the

switching state st to be independent across time points and applies the Bayes rule directly for

switching inference [33]. IMM utilizes Gaussian merging to approximate the posterior distri-

bution at each time point to estimate the switching state [35]. VI-A was initialized with a tem-

perature parameter T ¼ 100 that decreased to T ¼ 1 over 12 fixed-point iterations with

T iþ1 ¼
1

2
T i þ

1

2
. For comparison, VI-I also ran for 12 fixed-point iterations. Switching states

were labelled with a 0.5 threshold on the posterior model probabilities.

An example simulated y is shown in Fig 2a along with the estimated switching state by ran-

dom segmentation and the four inference algorithms. Histograms of percentage correct seg-

mentation (Fig 2b) verify that the same results of VI-A are obtained as in [53] with mean

accuracy 0.810. Surprisingly, both static switching and IMM were more accurate, with means

at 0.827 and 0.864, respectively. VI-I achieved the best mean accuracy at 0.890, surpassing the

other algorithms. Notably, in terms of the precision of correct segmentation, i.e., the width of

the histograms in Fig 2b, all of static switching, IMM, and VI-I show superior performance

over VI-A.

Segmentation with parameter learning

An important advantage of the variational Bayesian framework over other approximate infer-

ence algorithms is the ability to learn model parameters using a generalized version of EM.

When the underlying parameters are unknown, an accurate learning algorithm can improve

segmentation performance over an arbitrary selection of parameters; conversely, if the learn-

ing algorithm is inaccurate, segmentation could become unreliable.

To investigate switching segmentation when the model parameters are unknown and must

be learned from data, we conducted simulations similar to the study above using the following

Fig 2. Simulation results: Segmentation performance when true parameters are known. (a) An example simulated sequence switching between two AR1 models with

different dynamics. The top panel shows the time trace with the two states marked in different colors. The bottom panel shows switching inference results on this

example given true parameters of the underlying generative model. Time points estimated to be in the first model (st = 1) are marked in colored dots for each inference

method, with accuracy shown in parentheses. (b) Histograms of segmentation accuracy across 200 repetitions. The mean segmentation accuracy for each method is

displayed and marked by the dashed red line. True = ground truth; Random = random segmentation with a Bernoulli process; Static = static switching method;

IMM = interacting multiple models method; VI-A = variational inference with deterministic annealing (orange color); VI-I = variational inference with interpolated

densities (blue color).

https://doi.org/10.1371/journal.pcbi.1011395.g002
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generative model:

xð1Þt ¼ 0:90 xð1Þt� 1 þ wð1Þt ; wð1Þt � N ð0; 2Þ

xð2Þt ¼ 0:70 xð2Þt� 1 þ wð2Þt ; wð2Þt � N ð0; 10Þ

yt ¼ xðstÞt þ vt; vt � N ð0; 0:1Þ:

Initial state values followed their model-specific state noise distributions. An HMM process

identical as before was used for the switching state st, and we again generated 200 sequences of

200 time points. We initialized all algorithms with random parameters drawn from uniform

distributions centered around the true values for the lth sequence:

Fð1Þ ¼ 0:90; Fð1Þl � U ½0:8;1:0�

Fð2Þ ¼ 0:70; Fð2Þl � U ½0:6;0:8�

Qð1Þ ¼ 2; Qð1Þl � U ½1;3�

Qð2Þ ¼ 10; Qð2Þl � U ½5;15�

R ¼ 0:1; Rl � U ½0:01;0:2�

ϕ11 ¼ ϕ22 ¼ 0:95; ϕ11;l ¼ ϕ22;l � U ½0:9;0:99�

where the notations for model parameters are described in the Real- and discrete-valued state-

space models section of Materials and methods.

We compared the same four algorithms: for static switching and IMM inference algo-

rithms, we estimated the segmentation of sequences using the randomly initialized parameters,

since parameter learning is not part of these algorithms; for the VI-A EM and VI-I EM learn-

ing algorithms, we ran both the fixed-point iterations during the E-step and generalized EM

iterations until convergence (see the Fixed-point iterations section of Materials and methods

and S3 Appendix). The same temperature decaying in the variational inference analysis was

used for the VI-A EM learning at every E-step. Switching states were labelled with a 0.5 thresh-

old on the posterior model probabilities.

Percentage correct segmentation histograms show performance degradation as expected

across all algorithms compared to inference with true parameters (Fig 3a). Despite the use of

incorrect parameters, static switching and IMM achieved reasonable segmentation accuracy at

0.750 and 0.809, respectively, which decreased by 6–7% compared to the previous section

where the true parameters were used. Notably, VI-A EM was much less accurate, with a mean

accuracy of 0.705. In contrast, VI-I EM maintained excellent segmentation accuracy, outper-

forming the other algorithms, with a mean of 0.849 that only decreased 4.1% compared to the

previous section. This pattern of better segmentation accuracy of VI-I EM over others was rep-

licated when the same simulation study was repeated across a wide range of data length (see

Fig 3c). Unlike static switching and IMM, both EM methods achieved greater segmentation

accuracy as data length increased, followed by eventual plateauing. However, VI-I EM reached

its plateau at a much higher accuracy than VI-A EM.

To characterize the robustness of variational learning and the ability to recover generative

model parameters via EM, we analyzed the converged model parameters produced by the two

variational learning algorithms relative to the true values (Fig 3b). Across model parameters,

VI-A EM failed to identify the true values in most cases, suggesting the algorithm got trapped

in local maxima of log-likelihood (see S4 Appendix for an analysis of negative free energy),

which explains the poor segmentation accuracy in Fig 3a. VI-I EM estimated model
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Fig 3. Simulation results: Segmentation performance when true parameters are unknown. (a) Histograms of segmentation accuracy across 200 repetitions of

sequences of 200 time points. Since the true parameters were not known, they were estimated using an instance of EM algorithm for VI-A and VI-I inference starting

from a random initialization. Static switching and IMM treated those random initialization as true model parameters. The mean segmentation accuracy for each method

is displayed and marked by the dashed red line. The mean accuracy previously obtained using true parameters is shown in gray. Random = random segmentation with a

Bernoulli process; Static = static switching method; IMM = interacting multiple models method; VI-A EM = variational EM learning with deterministic annealing

(orange color); VI-I EM = variational EM learning with interpolated densities (blue color). (b) Swarm plots showing the distributions of model parameters learned by

the variational learning algorithms for sequences of 200 time points. Uniform distributions used to sample initial parameters are marked in bold fonts on the y-axes, as

well as using solid black lines (true values) and dotted gray lines (upper and lower bounds of the ranges). (c) Changes of mean segmentation accuracy over sequences of

varying data lengths. Shaded bounds denote the standard error of the mean around the average accuracy values. (d) Mean parameter estimation errors from the true

values across 10 EM iterations for two different data lengths. For transition matrix F and state noise variance Q, normalized error is defined as abs(estimated—true)/true,

and averaged across the two switching models. Absolute error is defined as abs(estimated—true). Shaded bounds denote the standard error of the mean around the

average error values.

https://doi.org/10.1371/journal.pcbi.1011395.g003
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parameters that have distributional modes at the true values, indicating more successful

parameter recovery than VI-A EM.

Tracking updated model parameters through 10 EM iterations reveals that estimated

parameters converged quickly (*5 EM iterations) to their stationary values (Fig 3d). On aver-

age, the stationary values obtained by VI-I EM were closer to the true values than VI-A EM,

which is consistent with Fig 3b. Additionally, some VI-A EM estimated parameters converged

away from the true values. Increasing the data length reduced estimation errors in both meth-

ods while requiring slightly more EM iterations to reach desired convergence. The observation

noise variance R did not vary substantially during EM iterations, since its magnitude was

much smaller compared to the state noise variances Q{1,2} (see S4 Appendix). Lastly, both

methods tended to overestimate the probability of HMM to stay in the same model, a bias due

to finite sampling that was attenuated for a longer data length (Fig 3d).

All of the simulations produced similar results when they were repeated with less informa-

tive distributions for model parameter initialization, albeit with slightly less accurate segmen-

tation (see S4 Appendix). Overall, the variational learning method with interpolated densities

showed robustness under uncertain model parameters.

Extensions of model structure and parameter estimation

The simulations studied so far employ observations that switch between two AR1 models.

While the findings are useful as a proof of principle for variational Bayesian learning, they are

not representative of neural signals in real applications that require switching inference, as

such signals usually have more complex dynamics. In addition, a binary HMM switching

between two parallel processes introduces large change-point deviations as can be seen in Fig

2a, which might be trivially detected by looking at the first derivative of the time series. To

address these gaps, we conducted simulation analyses using a single bivariate AR1 model that

switches between two state-transition matrices. Specifically, the generative model is as follows:

xt ¼

"
0:5 FðstÞ12

0 0:5

#

xt� 1 þ wt; wt � N

 

0;

"
2 0

0 2

#!

yt ¼

"
1 0

0 1

#

xt þ vt; vt � N 0;
0:1 0

0 0:1

#" ! 

where Fð1Þ12 ¼ 0:5 and Fð2Þ12 ¼ 0. The switching state st followed a binary HMM process as before

with initial priors ρ1 = ρ2 = 0.5 and a state-transition probability matrix with ϕ11 = ϕ22 = 0.95,

ϕ12 = ϕ21 = 0.05. Therefore, this generative model consists of two identical AR1 models where

the second model has time-varying influence on the first. An example simulated time series y

is shown in Fig 4 along with the resultant segmentation by the four inference algorithms using

true parameters. We generated 200 sequences of 200 time points and analyzed the segmenta-

tion accuracy of inference algorithms given the true parameters. The same temperature param-

eters as before were used for variational inference with deterministic annealing. Both VI-A

and VI-I ran until convergence of the fixed-point iterations. Switching states were labelled

with a 0.5 threshold on the posterior model probabilities.

It is evident from both the generative model equations and the example time series that this

is a more difficult inference problem than previous studies using two AR1 models with uncou-

pled dynamics. Nevertheless, all inference algorithms provided informative estimates com-

pared to random segmentation, with the variational inference algorithms obtaining better

accuracy results (Fig 5a). VI-I produced segmentation with the best accuracy mean at 0.741,

followed by VI-A at 0.719. Static switching and IMM had worse performance at 0.634 and
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Fig 4. Simulation results: Example segmentation on data generated from a different switching model class when true parameters are known. The top two panels

show the two sequences, y1 and y2, recorded as a bivariate observation y. Sequence y2 has a non-zero influence on sequence y1 as shown by the upward arrows, according

to a switching state st. The time traces are also marked with different colors for the two switching states. The bottom panel shows the results of switching inference on the

example data given true parameters. Time points estimated to be in the first model (st = 1) are marked in colored dots for each inference method, with accuracy shown in

parentheses. True = ground truth; Random = random segmentation with a Bernoulli process; Static = static switching method; IMM = interacting multiple models

method; VI-A = variational inference with deterministic annealing (orange color); VI-I = variational inference with interpolated densities (blue color).

https://doi.org/10.1371/journal.pcbi.1011395.g004

Fig 5. Simulation results: Segmentation performance on data generated from a different switching model class. (a) Histograms of segmentation accuracy given true

parameters across 200 repetitions. (b) Histograms of segmentation accuracy when model parameter were unknown across 200 repetitions. We followed the same strategy

stated in Fig 3 when the true model parameters were not available. In both (a) and (b), the mean segmentation accuracy for each method is displayed and marked by the

dashed red line. Random = random segmentation with a Bernoulli process; Static = static switching method; IMM = interacting multiple models method;

VI-A = variational inference with deterministic annealing (orange color); VI-I = variational inference with interpolated densities (blue color). VI-A/VI-I EM denote the

EM learning algorithms with the corresponding initialization procedure during E-steps.

https://doi.org/10.1371/journal.pcbi.1011395.g005
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0.704 respectively. We note that the true generative model in this simulation is different from

the assumed generative model employed during inference. Nonetheless, we see that VI-I still

provides useful switching inference. This feature is discussed in more detail in the forthcoming

section.

Next, we proceed to variational learning when model parameters are unknown. We initial-

ized all algorithms for the lth sequence with parameters drawn from uniform distributions cen-

tered around the true values:

Ffn21g ¼ 0:5; F11;l; F22;l; F
ð1Þ

12;l � U ½0:4;0:6�
Q11 ¼ Q22 ¼ 2; Q11;l;Q22;l � U ½1;3�
R11 ¼ R22 ¼ 0:1; R11;l;R22;l � U ½0:01;0:2�

ϕ11 ¼ ϕ22 ¼ 0:95; ϕ11;l ¼ ϕ22;l � U ½0:9;0:99�:

Multivariate static switching and IMM were applied using the randomly initialized parame-

ters. For VI-A EM and VI-I EM learning algorithms, we ran both the fixed-point iterations (E-

step) and generalized EM iterations until convergence. Identical annealing and switching state

decision thresholds were used as before.

With the M-step of variational learning in this analysis, we demonstrate an important

extension of the structured variational approximation to support jointly estimated parameters

across models. Specifically, the structured variational algorithms assume the following genera-

tive model structure in this bivariate AR1 example:

xð1Þt ¼ Fð1Þxð1Þt� 1 þ wð1Þt ; wð1Þt � N
�
0;Qð1Þ

�

xð2Þt ¼ Fð2Þxð2Þt� 1 þ wð2Þt ; wð2Þt � N
�
0;Qð2Þ

�

yt ¼

"
1 0

0 1

#

xðstÞt þ vt; vt � N ð0;RÞ

where the two candidate models have distinct transition matrices F(1) and F(2) that could be

updated separately during the M-step, likewise for Q(1) and Q(2). However, the true generative

model suggests that if two parallel models are used to approximate the switching dynamic,

they should share all parameters except the F12 element of the state-transition matrix that gates

the effect of the second sequence on the first sequence. Simple manipulations of the update

equations can exploit this shared structure to reduce the set size of estimated parameters and

pool information across candidate models. This joint parameter learning across models is

described in detail in S2 Appendix.

As expected, the segmentation results in Fig 5b show slightly inferior performance com-

pared to when using true parameters. The VI-I EM algorithm achieved the best mean accuracy

at 0.732. Distributions of converged parameters were comparable between VI-I EM and VI-A

EM (see S4 Appendix), suggesting better segmentation could still be obtained in the absence of

obvious improvement in parameter recovery. In addition, when compared against a few differ-

ent variational algorithms that are able to assume the accurate generative model structure

using a single hidden state [41], VI-I EM also showed improved segmentation consistently

(see S4 Appendix for more details).

This simulation study suggests that our method could be effective in analyzing neural sig-

nals that exhibit subtle switching dynamics, and in time-varying Granger causality problems

particularly when the causal structure is changing rapidly [56–59]. In the current setting, the

switching state can provide a statistical inference on the improvement of temporal forecasting
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of the first sequence by the second sequence at every time point, without relying on log-likeli-

hood ratio tests and windowing [60–63]. Our method also estimates parameters shared

between the “full” and “reduced” models, while taking the observation noise into account [61,

64]. This application can be extended to higher-order models in a straightforward manner.

Switching state-space oscillator models

The performance of methods based on parametric state-space models, such as the switching

inference algorithms studied here, is ultimately dependent on how well the chosen model class

represents the signal of interest. Oscillations are ubiquitous in neural signals, and therefore

they need to be modeled with high sensitivity and specificity for the methods to capture any

transient oscillations. Here, we employ a recently developed state-space model that is uniquely

suited for modeling oscillations [65]:

"
xt;1
xt;2

#

¼ a
coso � sino

sino coso

" #
xt� 1;1

xt� 1;2

" #

þ
wt;1

wt;2

" #

;
wt;1

wt;2

" #

� N 0;

"
s2 0

0 s2

# !

yt ¼ 1 0½ �

"
xt;1
xt;2

#

þ vt; vt � N ð0;RÞ:

This model can be viewed as a phasor rotating around the origin with frequency ω (in radi-

ans) in the real and imaginary plane whose projection onto the real line produces the observed

oscillation [66]. We refer to this model as an oscillator hereafter.

In many neuroscience applications, neural systems may exhibit different states defined by

distinct combinations of oscillations, and the system may transition between these neural

states over time. To test the applicability of our switching inference method for analyzing neu-

ral oscillations, we conducted a simulation study using hidden states composed of oscillators.

We simulated up to 5 simultaneous oscillations at different frequencies with model parameters

a = 0.98, σ2 = 3 and R = 1 for 10 seconds under a sampling rate of 100 Hz. The frequencies

were set at 1, 10, 20, 30, and 40 Hz respectively. With n total underlying oscillations, one can

generate 2n − 1 possible states, each with a different combination of the oscillations. We used a

multinomial switching variable st taking 2n − 1 values to select one of the states at each time

point, to determine which oscillations were observed. The switching states followed an HMM

process with uniform initial priors and a symmetric state-transition probability matrix with

0.98 on the diagonal. We repeated this data generation process 200 times for each of n = 2, � � �,

5 with the above oscillators. Fig 6a shows one such simulation instance where n = 5.

For example, if there are two oscillations with one at 1 Hz and the other at 10 Hz, there are

three possible switching states, and the observation equation takes the form:

yt ¼ GðstÞxðstÞt þ vt; vt � N ð0;RÞ

Gð1Þ ¼
�

1 0
�
; Gð2Þ ¼

�
1 0

�
; Gð3Þ ¼

�
1 0 1 0

�

where the hidden states xð1Þt consist of only the 1 Hz oscillation, xð2Þt of only the 10 Hz oscilla-

tion, and xð3Þt of both oscillations. The switching state st therefore takes values in {1, 2, 3}. We

note that candidate models with more oscillators will inherently be favored by log-likelihood

measures, owing to their higher numbers of degrees of freedom. To account for this, we mean-

centered the model evidence of each candidate model when initializing the E-step, as described

in detail in S3 Appendix.

We compared the segmentation accuracy of VI-A and VI-I given true parameters as we

increased the number of underlying oscillations from 2 to 5. For simplicity, we considered the
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scenario where the model parameters are known, but as in previous examples, variational

learning of the model parameters via EM is certainly possible. In practice, target neural oscilla-

tions are often characterized with stationary methods first; these models could be used as-is for

inference, or to initialize model parameters for variational learning. Fig 6b shows that as the

number of switching states increased, the accuracy of VI-A dropped precipitously while VI-I

maintained good segmentation accuracy. VI-I was able to segment complicated switching tra-

jectories close to the ground truth, such as in the example displayed in Fig 6c with 31 possible

switching states from 5 oscillations, while VI-A failed to do so as shown in Fig 6d. These results

demonstrate that our switching inference method is capable of modeling transient oscillations

in a manner that scales well to higher-dimensional problems.

Fig 6. Simulation results: Segmentation performance on switching state-space oscillator models when true model parameters are known. (a) Power spectra of

simulated oscillations at different frequencies; spectral estimation obtained via multitaper method that utilized 6 tapers corresponding to a time half-bandwidth product

of 4. (b) Changes of mean segmentation accuracy over the number of switching states, as the number of underlying oscillations varies between 2 and 5. Shaded bounds

denote the standard error of the mean around the average accuracy values across 200 repetitions. (c) An example switching state path with 5 underlying oscillations and

31 possible switching states. (d) Estimated switching states with variational inference. VI-A = variational inference with deterministic annealing (orange color);

VI-I = variational inference with interpolated densities (blue color).

https://doi.org/10.1371/journal.pcbi.1011395.g006
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Real-world application: Spindle detection

Sleep spindles are transient oscillatory bursts of neural activity observed in EEG recordings

during non-rapid eye movement (NREM) sleep, with waxing and waning waveforms in the

sigma frequency range (12 Hz–16 Hz) that last 0.5 s–3 s and that occur on a background of

slow waves (0.5 Hz–2 Hz) [67]. In this section, we describe a novel spindle detection algorithm

to illustrate how our developed switching method can be easily applied in the context of neural

signal processing. As we will show, switching state-space models provide a rigorous and proba-

bilistic framework for detection and extraction of spindles from sleep EEG recordings in an

unsupervised way.

To model slow oscillations (δ) and spindles (B) during sleep, we consider two independent

state-space oscillators within a set of two candidate models:

xð1Þt ¼

"
adRðdÞ 0

0 aBRðBÞ

#

xð1Þt� 1 þ wð1Þt ; wð1Þt � N 0;

"
ðs2Þ

dI2 0

0 ðs2Þ
BI2

# !

xð2Þt ¼ adRðdÞ xð2Þt� 1 þ wð2Þt ; wð2Þt � N ð0; ðs2Þ
dI2Þ

where xð1Þt ¼
h

xdð1Þt;1 ; x
dð1Þ

t;2 ; x
Bð1Þ

t;1 ; x
Bð1Þ

t;2

i>
and xð2Þt ¼

h

xdð2Þt;1 ; x
dð2Þ

t;2

i>
; and

yt ¼ GðstÞxðstÞt þ vt; vt � N ð0;RÞ

Gð1Þ ¼
�

1 0 1 0
�
; Gð2Þ ¼

�
1 0

�

where I2 is an identity matrix, and for f 2 {δ, B}, Rðf Þ ¼
�
cosof � sinof

sinof cosof

�

. An HMM pro-

cess determines the switching state st taking values in {1, 2} across time. This model represents

transient sleep spindles by switching between two “neural states”: one with both slow oscilla-

tions and spindles, and the other with only slow oscillations. Furthermore, the slow (δ) oscilla-

tor parameters are shared between the two candidate models to reflect the stationary dynamics

of slow oscillations in the background.

To perform spindle segmentation, we initialized oscillator parameters as described in the

Initialization of Gaussian SSM parameters section of Materials and methods. Briefly, the entire

time series was modeled with a stationary state-space model including both slow oscillation

and spindle oscillators, and parameters were learned through a standard EM algorithm. For

variational learning, we derived M-step equations that considered the slow oscillators jointly

across both candidate models, to update a single set of parameters for slow waves. In other

words, the dynamics of the slow oscillations were modeled by pooling together segments

regardless of the presence of sleep spindles. As we describe in S2 Appendix, this inference

model structure can be viewed as close approximations to a range of other possible generative

models for spindles. Lastly, the HMM switching process was initialized with initial state priors

ρ1 = ρ2 = 0.5 and a state-transition probability matrix with ϕ11 = ϕ22 = 0.99, ϕ12 = ϕ21 = 0.01

that were updated during the M-steps. As mentioned in the earlier section, models with more

hidden oscillation components will be favored by log-likelihood measures during learning.

Thus, we again matched the ensemble averages of model evidence when initializing each E-

step (see S3 Appendix). For VI-A EM, we used the same temperature decay as before.

We first compared variational learning methods with other inference algorithms on a short

segment of EEG data recorded during sleep. In addition to static switching and IMM, we also

analyzed a special Gaussian merging algorithm derived for Gaussian SSMs where only the

observation matrix is allowed to switch [34]. Fig 7b shows that these inference-only algorithms

performed poorly, even in this case with strong spindle activity: their posterior model
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probabilities were biased to select spindles due to the nested structure of the candidate models.

On the other hand, VI-A EM labelled spindles that appeared reasonable given the EEG wave-

form and spectrogram. In comparison, VI-I EM produced segmentation results that were

more accurate with tighter margins around spindles (Fig 7a). We note that the posterior

model probabilities for VI-A EM and VI-I EM were more polarized (i.e., closer to either 0 or

1) compared to the other inference methods. This is a feature of the fixed-point iterations as

described in Materials and methods, pushing the model responsibility hðmÞt away from 0.5. We

Fig 7. Real-world example: Comparisons of switching inference algorithms for sleep spindle detection. (a) In the

top three panels, the spindle activity is visualized using a spectrogram, the original time trace, and after being bandpass

filtered within 10 Hz–16 Hz. The fourth panel shows the posterior model probabilities of st = 1 estimated by variational

EM learning with interpolated densities (VI-I EM, blue color). The margins of spindle events identified by VI-I EM are

also marked with vertical dashed lines. The last two panels display the estimated real (blue) and imaginary (magenta)

spindle waveforms with 95% confidence intervals from posterior covariances. The learned spindle center frequency is

displayed in blue in parentheses. (b) Estimated posterior model probabilities of st = 1 by other algorithms in

comparison. A model probability closer to 1 suggests the presence of spindles (S = Spindle), while being closer to 0

indicates no spindle (NS = No Spindle). The 0.5 model probability is marked with gray horizontal dashed lines. VI-A

EM = variational EM learning with deterministic annealing (orange color); Static = static switching method;

IMM = interacting multiple models method; S&S 1991 = the Gaussian merging method in [34].

https://doi.org/10.1371/journal.pcbi.1011395.g007
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show in S4 Appendix that a softer segmentation can be obtained using interpolated densities,

while a harder segmentation is also possible via the Viterbi algorithm [68].

Besides estimating posterior model probabilities for spindle detection, this approach pro-

vides other parametric characterizations of spindle activity, such as the center frequency. For

example, in Fig 7a, the algorithm learns that the spindles are centered around 12.7 Hz. In addi-

tion, the underlying spindle (and slow oscillation) waveform can be extracted via the inference

procedure without any bandpass filtering (see Fig 7a). While the spindle waveform appears

similar to the bandpass filtered signal, unlike bandpass filtering we can construct confidence

intervals around the estimated spindle activity. We also emphasize that bandpass filtering

requires a pre-defined frequency band, and this could introduce serious biases if the spindle

frequency gets closer to the boundaries. Furthermore, the current method naturally limited

spindle activity to the statistically relevant periods without arbitrary thresholding. Finally,

these estimated hidden oscillator states (i.e., the real and imaginary parts) can be readily used

to compute instantaneous amplitude and phase for downstream hypothesis testing [69, 70].

Next, we applied the best performing VI-I EM method to three randomly selected 30 s

NREM stage 2 sleep recordings, robustly extracting sleep spindles across all time points (Fig

8). In addition, we compared the segmentation results to spindles identified by a wavelet-

based automatic spindle detector [71], which has been shown to correspond well to human

expert scoring [72]. Every spindle identified by the conventional method was also captured by

VI-I EM. However, there were many other spindle events labelled by VI-I EM that were missed

by the current “clinical standard”. These events nevertheless showed obvious sigma-frequency

power, suggesting a potentially inadequate detection by expert scoring. Furthermore, wavelet-

based detection relied on arbitrary thresholds that only selected the strongest portion of a spin-

dle activity. In contrast, actual spindles likely lasted for a longer duration, as evident both from

the spindle waveforms estimated by VI-I EM and from the original signal time traces (Fig 8).

These results demonstrate that switching oscillator models with variational learning could

detect spindles in an unsupervised manner that may be more reliable than expert scoring. In

each recording, VI-I EM learned individualized parameters for the oscillators to best capture

the time-varying amplitudes, frequencies, and waveform shapes of the underlying spindles.

The posterior model probabilities of the HMM process provide a probabilistic criterion for

spindle detection, which is not achievable with a simple fixed threshold on bandpass filtered

data as in the de facto practice in sleep research.

Discussion

In this paper we presented an algorithm for inference and learning with switching state-space

models. This method holds promise in modeling time-varying dynamics of neural signals, in

particular, neural time series data such as EEG. It takes a Variational Bayes approach to

approximate the otherwise intractable posterior and enables state estimation and system iden-

tification via a generalized EM algorithm. We showed extensive simulation results on how the

method can provide accurate segmentation of piece-wise linear dynamic regions, even when

the true model parameters were unknown. We also extended the generative model structure to

higher dimensions and to more subtle switching transitions instead of jumping between inde-

pendent state-space models with distinct dynamics. Accordingly, we derived parameter learn-

ing rules that were modified to encode this structure and to provide more efficient parameter

updates with joint estimation across switching models. Finally, we applied this learning algo-

rithm to a real-world neural signal processing problem of sleep spindle detection, providing

excellent detection and extraction of spindles with a rigorous statistical characterization.
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Fig 8. Automatic segmentation of sleep spindles using the VI-I EM method. Three 30 s EEG recordings of NREM-2 sleep

were segmented with the variational EM learning method with interpolated densities (VI-I EM) to identify spindles in an

unsupervised manner. In each of the (a)-(c) recordings, the three sub-panels visualize spindle activity using a spectrogram, the

original time trace, and the estimated real part of spindle waveform with 95% confidence intervals from posterior covariances.

The learned spindle center frequencies are displayed in blue in parentheses. The estimated posterior model probabilities for the
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Taken together, our results add to a growing literature on how switching state-space models

can provide powerful statistical inferences to study neural signals.

We were inspired by an earlier, influential paper by Ghahramani and Hinton that applied

the variational approximation to switching state-space models [53], but we introduced several

important innovations that significantly improved the performance of the variational EM algo-

rithm for these models in practice. In addition, we described in detail a simpler derivation of

variational algorithms for such models. Ghahramani and Hinton utilized the same basic form

of generative models presented here, but postulated the functional forms of the marginal dis-

tributions by introducing additional parameters gt and ht and solved for their optimal values

by minimizing the KL divergence between the exact and approximate Hamiltonian functions.

In contrast, we derived the optimal functional forms of hidden state marginals to maximize

the negative variational free energy, which is mathematically equivalent to minimizing the KL

divergence. In this way, we obtained expressions for gt and ht as summary statistics of the hid-

den state marginals directly from the variational posterior (see the Variational approximation

of hidden state posterior section of Materials and methods).

Given the non-convexity of the problem, robust initialization of the generalized EM itera-

tions, in particular of the fixed-point iterations during the E-step, is crucial for achieving reli-

able segmentation and avoiding trivial local maxima in the negative free energy. Ghahramani

and Hinton proposed a deterministic annealing approach [53], which can be viewed as a form

of variational tempering [73]. As discussed in [53] and analyzed in this paper, the annealed

learning does not improve performance over traditional inference-only algorithms. We pro-

posed a novel initialization strategy for gt, based on the insight that interpolated densities pro-

vide a local statistical comparison between the candidate models, agnostic of switching

dynamics. The interpolated densities therefore provide natural starting values for gt, which

serves as the surrogate observation probabilities in the HMM switching process. Our results

showed that this technique significantly improved the segmentation accuracy and system iden-

tification of our algorithm compared to the deterministic annealing approach. We found that

this more informed initialization was essential in more complicated scenarios, such as time-

varying bivariate AR processes and switching oscillator models, or in practical neural signal

processing applications, such as sleep spindle segmentation.

This algorithm provides a unique take on inference and learning for switching state-space

models. Compared to traditional inference-only algorithms, also known as assumed density

filtering (ADF) [74], the variational learning method allows iterative parameter tuning that

improves segmentation. These learned parameters also allow us to characterize the properties

of the underlying physical system, which may be important in scientific applications such as

neural signal processing. Recent algorithms have explored smoothed inference by extending

ADF algorithms [75–77]. In contrast, our approach provides an elegant solution for smoothed

inference using familiar message-passing algorithms such as the Kalman filter, RTS smoother,

and forward-backward algorithm, which are applicable after the conditional dependencies

between the real- and discrete-valued hidden states are ignored under the parallel-model varia-

tional approximation [53]. This approach is an instance of structured variational inference for

time series data [55].

Other variational learning methods have been developed for switching linear dynamical

systems [78–80] based on the same principle of approximating intractable posterior with

candidate model with both slow oscillations and spindles are overlaid on the time traces in blue lines. Shaded pink bars indicate

spindles identified by a wavelet-based method for comparison. S = Spindle; NS = No Spindle.

https://doi.org/10.1371/journal.pcbi.1011395.g008
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factorized distributions. A notable difference is that these methods assume a single multi-

modal hidden state that is modulated by the switching state instead of the multiple parallel

state-space models in our generative process. As we explored in the bivariate AR1 simulation

and spindle analyses, multiple parallel models can be an effective way to approximate multi-

modality: the hidden states in parallel models are suppressed when they are not contributing

to the observed data, since the Kalman filtering and smoothing within each model are weighed

by the model responsibility ht. In addition, when multiple models contain hidden states

reflected in the observed data, the smoothed estimates across parallel models are closely linked

since they are all conditioned on the same observed data. A future study could compare these

two approaches and characterize their computational costs and learning performance. Never-

theless, our initialization strategy using interpolated densities could still be helpful in these

multi-modal variational learning algorithms. Given that the observed data have a sufficiently

high sampling rate relative to the underlying state-transition dynamics, interpolated densities

can provide local comparisons among switching states to warm start the E-steps of variational

learning algorithms close to the desired optimal solution.

More recent algorithms for switching state-space models embrace a Bayesian approach by

using sampling techniques to obtain posterior distributions. Some of these methods can simul-

taneously learn the number of switching states [39] and more complicated recurrent structures

[41]. Recurrent neural networks can also be adapted to support Kalman updates in a deep

state-space model and to characterize switching dynamics after training [81]. These methods

have varying computational cost and complexity, which require careful adaptation for neural

signal processing or biomedical applications. A few studies have applied variational inference

on more elaborate model structures and showed meaningful segmentation with neural signals

[43–47].

In comparison to the existing applications of switching state-space models, we focus on

interpretable linear Gaussian SSMs that can faithfully capture the distinct dynamics observed

in neural signals. By applying an intuitive variational approximation on several candidate

models constructed from clinical and neuroscience domain knowledge, the variational learn-

ing method we described here provides a general solution for segmenting a given time series

into neural dynamic states of interest. This method, however, still has limitations encountered

in other switching state-space modeling algorithms. First, many of the methodological consid-

erations we described here, including the bias of log-likelihoods in nested structures, apply to

other methods. In addition, a single phenomenon or physical process may have multiple

switching state-space representations. For example, the process described in the univariate

AR1 simulations can have an alternative generative process: two univariate hidden states may

be concatenated into a single bivariate hidden state with fixed dynamics, while an observation

matrix gets modulated by the switching state to choose particular indices of the bivariate hid-

den state. Parameter learning and interpretation can be difficult in this scenario if the parame-

ters for the SSM dynamics and the corresponding observation matrices are both learned from

the observed data. Thus, we opted to use fixed observation matrices as a constraint to facilitate

recovering unique solutions. We nonetheless provide expressions to update the observation

matrices in Eq 28, as in some neuroscience applications, switching observation matrices may

best encode neural dynamics of interest. In this scenario, they can be learned in a data-driven

way with our approach after sharing all SSM parameters across candidate models, analogous

to constraining to a stationary SSM dynamic in a single multi-modal hidden state [75].

Our assumed generative structure, consisting of multiple independent dynamical models,

permits efficient closed-form computations on the approximate posterior using existing state-

space inference algorithms. While the fixed-point iterations and parameter updates can be rig-

orously derived and familiar methods can be easily plugged in, the non-concave negative free
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energy poses challenges for inference, including frequent local maxima with polarized model

probability estimates that we report here. An alternative to the generalized EM algorithm is

blocked Gibbs sampling, which has been successfully applied to switching state-space models

[39–41]. A future direction for further development could be to apply blocked Gibbs sampling

[82] to the class of neural oscillator models, in a manner that uses the interpolated density to

improve computational efficiency.

In the same vein of simplifying the state estimation using using sampling techniques, black-

box variational inference is also applicable to switching state-space models [83–85]. Black-

box variational approximations are attractive because they provide a general-purpose tool

requiring almost no distributional assumptions on the dynamical systems. However, they

might not achieve as good performance in cases where we can identify candidate models and

their switching structure from prior domain knowledge (see S4 Appendix for an example with

the bivariate AR1 simulations). In addition, closed-form inferences tend to have greater

computational efficiency than sampling techniques despite the requirement for fixed-point

iterations, which converge quickly when the parallel models are reasonably initialized. One

clear advantage of sampling techniques is that they are readily applicable in the case of non-lin-

ear observation models, such as observations generated by counting processes (e.g., point pro-

cesses to model neural spiking activity with history dependence [86]). In this context, we note

that our approach can also be extended to such non-linear observation models with relatively

small effort. For example, point process observations can be handled by replacing Kalman fil-

tering with extended Kalman filtering [87] or unscented Kalman filtering [88], with the rest of

the switching inference procedure unaltered.

In general, the variational inference algorithm described here is best suited for scenarios

where an informed guess of model parameters can be used for initialization. From a neural sig-

nal processing perspective, we are equally concerned about characterizing interpretable hidden

dynamics of different neural states and achieving accurate segmentation of time-varying activ-

ity due to transitions among them. This intention is reflected in our use of multiple models in

parallel, which compete with each other to explain observed data, rather than using a larger

array of models with arbitrary structures and parameterizations that are intended to approxi-

mate neural dynamics of interest. In contrast, the parallel models we use favor a more parsimo-

nious and informed set of candidate models to obtain interpretable characterization of

dynamics and accurate segmentation. The use of the interpolated density is consistent with

this premise, since it better exploits prior domain knowledge and the carefully constructed

candidate models. In cases where there is an unknown number of switching states, the dynam-

ics are less well-characterized, or the goal is to fit to data as well as possible, a number of sam-

pling-based algorithms such as in [39, 41, 42, 44] could be highly effective.

The sleep spindles analyzed here serve as a good example of scenarios where switching

state-space models can be directly applied to achieve much more powerful analyses than stan-

dard methods employed in the field. Spindles have been studied with visual scoring by trained

human experts for decades [89], until recent efforts to develop reliable detection algorithms

[90] in light of their integral roles in normal sleep physiology, memory consolidation, and psy-

chiatric and neurodegenerative diseases [91]. While different in the exact implementation,

almost all spindle detection algorithms are fundamentally based on setting an arbitrary thresh-

old and picking strong transient signals in predefined frequency ranges [72], which is severely

biased as shown in a recent study [92]. With informed prior knowledge of sleep oscillations,

state-space oscillator models can be constructed. The exact parameters of these models should

be learned from data since they vary across individuals and different stages of sleep. But one

can decide on the number of switching models and their compositions given domain knowl-

edge of sleep and the target spindle detection problem. In this study, we show that the
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variational learning method can robustly extract sleep spindles from NREM2 sleep in an unsu-

pervised manner, which obviates the need for thresholding. At the same time, variational

learning can better characterize spindle properties such as frequency and amplitude by focus-

ing on periods when they are statistically detectable. As mentioned earlier, the use of state-

space oscillator models allows one to directly estimate instantaneous amplitude, phase, and

frequency without relying on traditional bandpass filtering and Hilbert transform [69], as well

as to easily obtain derived measures such as phase–amplitude coupling [70]. In addition, the

state-space formulation also allows for filtered estimates of posterior switching state probabili-

ties for online detection of sleep spindles, making it potentially suitable for real-time applica-

tions (see S4 Appendix for an example). Thus, there are numerous analytical advantages to a

switching state-space modeling approach to detect and extract spindles.

Similar applications can be widely found across neuroscience: burst-suppression induced by

anesthetic drugs, epileptic bursts, event-related potentials during cognitive tasks, spike train

recordings, or simply behavioral responses over a block of trials [1]. Switching state-space mod-

els provide a statistical framework to investigate temporal variations and extract distinct states

that are ubiquitous in different datasets. Thus, we advocate for a broad adoption of switching

methods in place of previous windowing techniques that limit the analysis of neural signals.

Conclusion

In this paper, we explored the use of switching state-space models for neural signal processing.

We demonstrated the promising performance of a variational learning algorithm with interpo-

lated densities, both in simulations and when applied to spindle detection in real sleep EEG

data. Our method can be widely applied to neuroscience problems when the observed dynamics

show transitions between periods that can be modeled by linear Gaussian state-space models.

Materials and methods

Definitions

We denote a sequence of values or vectors defined for t = (0), 1, � � �, T as {•t}, with f�tg
b
a indi-

cating t = a, � � �, b. We denote the matrix trace operator by Tr{•}. Finally, by zt � N ðμ;ΣÞ, we

mean the Gaussian distribution:

pðztÞ ¼ j2pΣj� 1=2exp �
1

2
ðzt � μÞ>Σ� 1ðzt � μÞ

� �

ð1Þ

Real- and discrete-valued state-space models. A state-space model (SSM) defines a prob-

ability density of real-valued time series data, {yt}, by relating them to a sequence of hidden

state vectors, {xt}, which follow the Markov independence property so that the joint probability

for the state sequence and observations can be factored as:

pðfyt; xtgÞ ¼ pðx0Þ
YT

t¼1

pðxtjxt� 1ÞpðytjxtÞ ð2Þ

In its simplest form, the transition and output processes are linear and time invariant,

incorporating multivariate Gaussian uncertainties [93]:

xt ¼ Fxt� 1 þ wt; wt � N ð0;QÞ ð3Þ

yt ¼ Gxt þ vt; vt � N ð0;RÞ ð4Þ
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where F, G are called state-transition and observation matrices. Provided p(x0) is Gaussian,

this set of equations defines a joint Gaussian density on {yt, xt}—we use the term Gaussian

SSM to denote a model of this form.

A closely related type of state-space models has hidden states, {st}, which are discrete-val-

ued, i.e., a multinomial variable that can take one of K values. Using the Markov independence

property, the joint probability for the discrete-valued state sequence and observations can be

again factored as in Eq 2, with st taking place of xt:

pðfyt; stgÞ ¼ pðs0Þ
YT

t¼1

pðstjst� 1ÞpðytjstÞ ð5Þ

The state-transition probabilities, p(st|st−1), are specified by a K × K state-transition matrix,

ϕ. If the observed data are also discrete symbols taking one of L values, the observation proba-

bilities can be fully specified by a K × L observation matrix, ψ. This type of models is known as

hidden Markov models (HMM) [94–96].

Next, we outline the various existing exact inference and learning algorithms associated

with Gaussian SSM and HMM, in order to define the terminologies used throughout this

paper. These algorithms will serve as the building blocks for inference and learning computa-

tions of switching state-space models described later.

State estimation. Given the observations and model parameters, inferring the hidden

states of SSM has well-established solutions in the literature for linear Gaussian SSM with

parameters {F, Q, G, R} and for HMM with parameters {ϕ, ψ}.

For Gaussian SSM, the joint distribution of the observations and hidden states given in Eq 2

is Gaussian, so inference on the hidden states also induces Gaussian posteriors. Various differ-

ent application scenarios call for three kinds of inference problems: filtering, smoothing, and

prediction [97]. Filtering deals with computing the posterior distribution p
�
xtjfytg

t
1

�
of the

current hidden state, xt, conditioned on the observations up to time t. The recursive algorithm

that carries out the computation is known as Kalman-Bucy filter [31]. The smoothing problem

addresses finding the posterior probabilities p
�
xtjfytg

T
1

�
of the hidden states xt given also

future observations, i.e., up to time T> t. A similar recursive algorithm running backward

from T to t implements the computation [98]. This backward recursion, combined with the

Kalman filter running forward recursions from time 1 to t, is called Rauch-Tung-Striebel (RTS)

smoother [99]. Finally, prediction computes the posterior predictive distribution p
�
xtþtjfytg

t
1

�

of the future hidden states, xt+τ, conditioned on observations up to time t, as well as

p
�
ytþtjfytg

t
1

�
given the observation matrix that relates future hidden states to observations.

For HMM, there are two similar inference problems of interest [94]. First, the recursive for-

ward-backward algorithm computes the posterior probabilities of the discrete hidden states

given observations from time 1 to T. As the name suggests, the forward pass computation steps

are analogous to the Kalman filter, while the backward pass steps are analogous to the RTS

smoother. The second form of inference deals with decoding the most likely sequence of hidden

states that could generate the observations. A well-known solution is given by the Viterbi algo-

rithm that relies on similar forward and backward passes through all time points [68].

System identification. The problem of finding the model parameters {F, Q, G, R} and

{ϕ, ψ} is known as system identification in the engineering literature. In the most general form,

these problems assume that only the observed data sequence is accessible. Given the probabilis-

tic nature of the models, one can choose to either seek a single locally optimal point estimate of

the parameters (Maximum likelihood (ML) or Maximum a posteriori (MAP) learning) or follow
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a Bayesian approach to compute or approximate posterior distributions of the model parameters

given the data. In the system identification context, estimates from the former category (i.e., ML

or MAP learning) are more popular and make use of the EM algorithm [100]. The EM algo-

rithm alternates between optimizing the posterior distribution of the hidden states given current

parameter estimates (the E-step) and updating the parameter estimates from the optimized pos-

terior distribution of the hidden states (the M-step). This general procedure is guaranteed to

increase the log-likelihood of the observed data sequence w.r.t. the model parameters [100].

For Gaussian SSM, the E-step is realized by the RTS smoother, and the M-step takes the form

of a linear regression problem [93]. For M-steps with ML estimates, the linear regression prob-

lem remains unconstrained. On the other hand, for M-steps with MAP estimates, priors on the

model parameters put constraints on the log-likelihood. Update equations can be derived in

closed-form after taking derivatives with respect to each of the model parameters [93].

In the case of HMM parameters, the E-step utilizes the forward-backward algorithm to

infer the posterior probabilities of the hidden states [94]. The M-step uses the expected counts

of the discrete-valued state transitions and observations to update the state-transition and

observation matrices with ML or MAP estimates. This procedure, also known as the Baum-

Welch algorithm [101], predates the EM algorithm above.

Switching state-space models

We employ one particular form of switching state-space models that allows time-varying

dynamics among arbitrary real-valued state-space models with stationary parameters [53]. In

addition to its more general formulation compared to modeling time-varying parameters

within a single model, this construction offers an elegant solution under the variational Bayes-

ian framework [54] as detailed later. The generative model consists of M linear Gaussian SSMs

indexed by numbers from 1 to M which each contain continuous real-valued states, and one

HMM whose states take on discrete integer values from 1 to M. Furthermore, the states within

each of the Gaussian SSMs are assumed to evolve independently from other models. The dis-

crete HMM too is independent of the Gaussian SSM and decides which one of the M state-

space models is generating the current observation data point. The directed acyclic graph cor-

responding to this conditional independence relation is shown in Fig 9.

The real-valued hidden states in the M Gaussian SSMs are labelled as
n
xðmÞt

o
with m 2 {1,

� � �, M}, the discrete-valued hidden states of HMM as {st} where st 2 {1, � � �, M}, and the real-

valued observations as {yt}. The joint probability for the observations and hidden states there-

fore factors nicely as:

p
�n

yt; x
ð1Þ
t ; � � � ; x

ðMÞ
t ; st

o�
¼

YT

t¼1

p
�
ytjx

ð1Þ

t ; � � � ; x
ðMÞ
t ; st

�

�
YM

m¼1

 

p
�
xðmÞ0

�YT

t¼1

p
�
xðmÞt jx

ðmÞ
t� 1

�
!

� p ðs0Þ
YT

t¼1

pðstjst� 1Þ

ð6Þ

where all three parts have the familiar forms from classical Gaussian SSM and HMM literature.

We provide each of these expressions below.

First of all, conditioned on the discrete hidden state, st = m, the observation is simply a mul-

tivariate Gaussian variable from the observation equation of the mth Gaussian SSM. The
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probability distribution of the observation vector is given by:

p
�
ytjx

ð1Þ
t ; � � � ; x

ðMÞ
t ; st ¼ m

�
¼

j2pRj� 1=2exp
�

�
1

2

�
yt � GðmÞxðmÞt

�>
R� 1

�
yt � GðmÞxðmÞt

�� ð7Þ

where R is the observation noise covariance matrix, and G(m) is the observation matrix of the

linear Gaussian SSMs indexed by m.

Secondly, the real-valued states of the M Gaussian SSMs evolve independently and in paral-

lel, with dynamics specified by the model-specific state-transition matrix, F(m), and state noise

covariance, Q(m), starting from different initial states, N
�

μðmÞ;QðmÞ
0

�
:

p
�
xðmÞ0

�YT

t¼1

p
�
xðmÞt jx

ðmÞ
t� 1

�
¼

�
�
�2pQðmÞ0

�
�
�
� 1=2

exp
�

�
1

2

�
xðmÞ0 � μðmÞ

�>
QðmÞ

0

� 1 xðmÞ0 � μðmÞ
� ��

�

YT

t¼1

�
�
�2pQðmÞ

�
�
�
� 1=2

exp
�

�
1

2

�
xðmÞt � FðmÞxðmÞt� 1

�>
QðmÞ

� 1
xðmÞt � FðmÞxðmÞt� 1

� ��

ð8Þ

Lastly, the discrete-valued switching state evolves according to the HMM specified by the

M ×M state-transition matrix ϕ and initial state probabilities ρ, independent of the other M

Fig 9. Generative structure with parallel switching state-space models. A directed acyclic graph is shown to

represent the conditional independence structure between the M real-valued Gaussian hidden state sequences fxðmÞt g

for m 2 {1, � � �M}, a discrete-valued hidden Markov chain {st}, and the observed data {yt} up to time T. In this

generative structure, the observation at a given time point depends only on the hidden states of the M Gaussian models

at that point, with the discrete-valued state selecting one of the models to produce the observation, hence the name

switching.

https://doi.org/10.1371/journal.pcbi.1011395.g009
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Gaussian SSMs with real-valued states:

pðs0Þ
YT

t¼1

pðstjst� 1Þ ¼
YM

m¼1

ρ1½s0¼m�
m

YT

t¼1

YM

m;n¼1

ϕ1½st¼m;st� 1¼n�
m;n ð9Þ

Intractable posterior of hidden states. With the generative model defined, state estima-

tion and system identification problems need to be solved. As reviewed above, both problems

are encompassed in the EM algorithm, which alternates between 1) finding the posterior dis-

tribution of the hidden states
n
xð1Þt ; � � � ; x

ðMÞ
t ; st

o
given the current values of model parameters,

and 2) optimizing the model parameters given expectations of hidden states under the poste-

rior distribution from (1). However, the hidden state posterior here cannot be computed

explicitly. To illustrate this difficulty, we start with the complete log-likelihood of observations

and hidden states:

log p
�n

yt; x
ð1Þ
t ; � � � ; x

ðMÞ
t ; st

o
jθ
�

¼ �
T
2
logj2pRj �

1

2

XT

t¼1

XM

m¼1

1½st ¼ m�
�
yt � GðmÞxðmÞt

�>
R� 1

�
yt � GðmÞxðmÞt

�

�
1

2

XM

m¼1

log
�
�
�2pQðmÞ0

�
�
� �

1

2

XM

m¼1

�
xðmÞ0 � μðmÞ

�>
QðmÞ

0

� 1 xðmÞ0 � μðmÞ
� �

�
T
2

XM

m¼1

log
�
�
�2pQðmÞ

�
�
� �

1

2

XM

m¼1

XT

t¼1

�
xðmÞt � FðmÞxðmÞt� 1

�>
QðmÞ

� 1
xðmÞt � FðmÞxðmÞt� 1

� �

þ
XM

m¼1

1½s0 ¼ m� log ρm þ
XT

t¼1

XM

m;n¼1

1½st ¼ m; st� 1 ¼ n� logϕm;n

ð10Þ

where θ≜
nn

μðmÞ;QðmÞ
0
; FðmÞ;QðmÞ;GðmÞ

o
; ρ; ϕ;R

o
, for m = 1, � � �, M, is the set of parameters

of the distributions that fully characterize the switching state-space generative model in Fig 9.

Note that the HMM process does not have a separate observation probability parameter (e.g.

ψ). Once the switching state is fixed to st = m, the observation equation dynamic of the corre-

sponding mth Gaussian SSM in the second term of Eq 10 specifies the likelihood of generating

the observation at that time point.

State estimation, i.e., the E-step, is computationally difficult because of the products

between the discrete switching states of the HMM and the real-valued states of the Gaussian

SSMs. This conditional dependence between the hidden states (the ‘two’ causes) when condi-

tioning on the observations (the ‘common’ effect) has been described in the causal inference

literature [102, pp.40–45]. Graphically, conditioning on the children of v-structures results in

a graph with parents connected with undirected edges for the new conditional (in)dependence

relation (Fig 10a). The new edges introduced make it challenging to express the exact hidden

state posterior in a factorized form. In particular, the individual Markov independence prop-

erty within each Gaussian SSM is no longer present, since conditioning on xðmÞt� 1jfytg alone

does not make xðmÞt jfytg conditionally independent from the history xðmÞ0;���;t� 2jfytg due to the

new viable paths through the other Gaussian SSMs. Then exact inferences can only be solved

after considering the combinations of states across all Gaussian SSMs and HMM. For example,

the optimal filtering problem alone requires a bank of elemental estimators with the size of the

bank increasing exponentially with time [32], so naturally the smoothing problem, i.e., state
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estimation of p
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st

o
jfytg

�
, becomes intractable. Without the hidden state pos-

terior distribution estimated, system identification, i.e., parameter learning, cannot be per-

formed either under the classical EM algorithm [93].

Variational approximation of hidden state posterior. One possible solution is to use the

Variational Bayes technique to approximate the true posterior of the hidden states,

p
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st

o
jfytg

�
[53]. The idea is to work within a subspace of tractable posterior

probability distributions defined over the hidden states, and choose the optimal approxima-

tion, q
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st

o�
, based on a lower bound on the marginal log-likelihood of obser-

vations:

log pðfytgjθÞ ¼ log
X

fstg

Z

dfxtgp
�n

yt; x
ð1Þ

t ; � � � ; x
ðMÞ
t ; st

o
jθ
�

¼ log
X

fstg

Z

d
n
xð1Þt ; � � � ; x

ðMÞ
t

o
q
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st

o�
�

p
�n

yt; x
ð1Þ
t ; � � � ; x

ðMÞ
t ; st

o
jθ
�

q
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st

o�

�
X

fstg

Z

d
n
xð1Þt ; � � � ; x

ðMÞ
t

o
q
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st

o�
�

log
p
�n

yt; x
ð1Þ
t ; � � � ; x

ðMÞ
t ; st

o
jθ
�

q
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st

o�

¼ Eq log
p
�n

yt; x
ð1Þ
t ; � � � ; x

ðMÞ
t ; st

o
jθ
�

q
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st

o�

2

4

3

5≜Fðq; θÞ

ð11Þ

known as the negative variational free energy [54, 103, 104]. Since the distribution q is

approximating the true posterior, the conditioning on {yt} in the expression

q
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st j fytg

o�
is already implied, therefore omitted in all q notations.

The choice of q
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st

o�
¼ p
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st

o
jfytg

�
maximizes the nega-

tive free energy so that it reaches the true log-likelihood. However, since exact E-step is intrac-

table due to the structure of the posterior distribution, we consider the following family of

distributions that factor over the HMM and Gaussian SSMs, i.e.,

P ¼
n
q
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st

o� �
�
� qð�Þ ¼ qðfstgÞq

�n
xð1Þt ; � � � ; x

ðMÞ
t

o�o
ð12Þ

In other words, we get rid of the dependence between the switching state and real-valued

states by limiting to distributions within this functional subspace. The graphical model corre-

sponding to this conditional independence relation is shown in Fig 10b. It only remains to

find the optimal approximate posterior q
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st

o�
that is the closest to the true

posterior p
�n

xð1Þt ; � � � ; x
ðMÞ
t ; st

o
jfytg

�
. Since negative free energy is a lower bound on the mar-

ginal log-likelihood, we use the negative free energy as a measure of one-sided closeness to

PLOS COMPUTATIONAL BIOLOGY Switching state-space modeling of neural signal dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011395 August 28, 2023 27 / 41

https://doi.org/10.1371/journal.pcbi.1011395


choose the optimal approximation as following:

qθ ¼ arg max
q2P

Fðq; θÞ ð13Þ

We proceed to a direct derivation of the optimal functional forms of the approximate poste-

rior. Within the functional subspace P, the negative free energy can be simplified:

Fðq; θÞ ¼
DD

log p
�n

yt; x
ð1Þ
t ; � � � ; x

ðMÞ
t ; st

o
jθ
�E

s

E

x

� hlog qðfstgÞis �
D
log q

�n
xð1Þt ; � � � ; x

ðMÞ
t

o�E

x

ð14Þ

where

hf is ≜
X

fstg

qðfstgÞ f

hf ix ≜
Z

d
n
xð1Þt ; � � � ; x

ðMÞ
t

o
q
�n

xð1Þt ; � � � ; x
ðMÞ
t

o�
f

Following the development in [54], the optimal functional forms for the variational log-

posteriors to maximize Eq 14 are given as:

log qðfstgÞ ¼
D
log p

�n
yt; x

ð1Þ
t ; � � � ; x

ðMÞ
t ; st

o
jθ
�E

x
� log z ð15Þ

log q
�n

xð1Þt ; � � � ; x
ðMÞ
t

o�
¼
D
log p

�n
yt; x

ð1Þ
t ; � � � ; x

ðMÞ
t ; st

o
jθ
�E

s
� log z0 ð16Þ

with z and z0 being normalizing constants so that the posteriors sum or integrate to 1.

Fig 10. Posteriors of switching state-space models. (a) True posterior distribution. This is the resultant graph encoding the conditional independence

relation after conditioning on the observed data {yt} up to time T. The new edges between the hidden states make exact inference intractable. (b)

Approximate posterior distribution. Compared to the true posterior, a structured approximation decouples the hidden Gaussian state-space models

from each other and from the switching state. On this approximate distribution, efficient closed-form inference can be performed. The marginal

distributions of the Gaussian hidden states {xt} and the discrete-valued switching state {st} are now inter-dependent through variational summary

statistics gðmÞt and hðmÞt .

https://doi.org/10.1371/journal.pcbi.1011395.g010
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Substituting the expressions from Eq 10 into Eq 15 reveals that the variational log-posterior

of the switching state can be written as:

log qðfstgÞ ¼
XM

m¼1

1½s0 ¼ m�log ρm þ
XT

t¼1

XM

m;n¼1

1½st ¼ m; st� 1 ¼ n� log ϕm;n

þ
XT

t¼1

XM

m¼1

1½st ¼ m�gðmÞt � log z

ð17Þ

with gðmÞt ≜ �
1

2

��
yt � GðmÞxðmÞt

�>
R� 1

�
yt � GðmÞxðmÞt

��

x
ð18Þ

This equation is identical to the log-posterior density of the discrete-valued states in an

HMM with observation probabilities proportional to expfgðmÞt g. In other words, gðmÞt functions

as the model log-evidence of the mth state-space model in generating the data at time t in the

HMM process. Thus, the desired posterior distribution, i.e., q(st = m) at individual time points,

can be expressed in terms of the forward-backward variables (αt(m), βt(m)) from the forward-

backward algorithm [94] and computed efficiently (S3 Appendix).

Similarly, using the expressions from Eqs 10 and 16, we obtain the following variational

log-posterior of the real-valued states in the Gaussian SSMs:

log q
�n

xð1Þt ; � � � ; x
ðMÞ
t

o�
¼ �

1

2

XM

m¼1

�
xðmÞ0 � μðmÞ

�>
QðmÞ

0
� 1 xðmÞ0 � μðmÞ
� �

�
1

2

XM

m¼1

XT

t¼1

�
xðmÞt � FðmÞxðmÞt� 1

�>
QðmÞ

� 1
xðmÞt � FðmÞxðmÞt� 1

� �

�
1

2

XT

t¼1

XM

m¼1

hðmÞt

�
yt � GðmÞxðmÞt

�>
R� 1

�
yt � GðmÞxðmÞt

�
� log z

0

ð19Þ

with hðmÞt ≜ h1½st ¼ m�is ð20Þ

that factorizes over the M parallel state-space models, i.e.,

log q
�n

xð1Þt ; � � � ; x
ðMÞ
t

o�
¼
XM

m¼1

log q
�n

xðmÞt

o�
ð21Þ

Each of the log-posteriors within the sum takes the familiar Gaussian density form:

log q
�n

xðmÞt

o�
¼ �

1

2

�
xðmÞ0 � μðmÞ

�>
QðmÞ

0

� 1 xðmÞ0 � μðmÞ
� �

�
1

2

XT

t¼1

�
xðmÞt � FðmÞxðmÞt� 1

�>
QðmÞ

� 1
xðmÞt � FðmÞxðmÞt� 1

� �

�
1

2

XT

t¼1

hðmÞt

�
yt � GðmÞxðmÞt

�>
R� 1

�
yt � GðmÞxðmÞt

�
� log z

0

m

ð22Þ

that can be computed using a forward pass through Kalman filter, followed by a backward pass

through RTS smoother to get the posterior mean and covariance matrices,
n
xðmÞtjT ;Σ

ðmÞ
tjT ;Σ

ðmÞ
t;t� 1jT

o
, as shown in S3 Appendix.
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Given the third term in Eq 22, Kalman smoothing here should be modified to use R=hðmÞt as

the observation noise covariance. Scaling the observation noise leads to an intuitive interpreta-

tion: when hðmÞt ! 0, resulting in high effective observation noise, the hidden state update that

follows one-step prediction during Kalman filtering is effectively skipped for that time point;

when hðmÞt ! 1, the hidden state is updated as in recursions without switching. In this sense,

hðmÞt represents the model responsibility of the mth state-space model in generating the

observed data at the time point t.
Fixed-point iterations. The variables gðmÞt and hðmÞt are the bridges between the distribu-

tions p and q, replacing the stochastic dependencies with deterministic quantities. The varia-

tional log-posterior of the discrete switching states {st} in Eq 18 involves some summary

statistics of the real-valued states fxð1Þt ; � � � ; x
ðMÞ
t g w.r.t. the approximate distribution q, and

vice-versa in Eq 20. This motivates an iterative procedure to update the forward-backward var-

iables and posterior means and covariances in a cyclic fashion to find the optimal variational

parameters
n
atðmÞ; btðmÞ; x

ðmÞ
tjT ;Σ

ðmÞ
tjT ;Σ

ðmÞ
t;t� 1jT

o
:

1. Run forward-backward algorithm to update {αt(m), βt(m)}.

2. Compute hðmÞt from the updated {αt(m), βt(m)}.

3. Run Kalman filter and RTS smoother to update
n
xðmÞtjT ;Σ

ðmÞ
tjT ;Σ

ðmÞ
t;t� 1jT

o
.

4. Compute gðmÞt from the updated
n
xðmÞtjT ;Σ

ðmÞ
tjT

o
.

During these iterations, the negative variational free energy can be computed using log-like-

lihood values from the Kalman filter and forward-backward algorithm as shown in S1 Appen-

dix. We stop the fixed-point iterations when the model evidence and model responsibility, i.e.,

fgðmÞt ; hðmÞt g, have stabilized or when the negative free energy stops increasing (see S3

Appendix).

Under the assumed generative structure in Fig 9, the true posterior p is expected to contain

polarized values (e.g., with model probabilities close to 1 or 0) due to a few factors. First, each

transition between candidate models introduces a discontinuity in the observation sequence at

the switch point, as the realization trajectories from different SSMs are distinct from each

other. Second, since the SSM hidden state trajectories consist of multiple time points, they

reside in a high dimensional space. The dimensionality further increases as SSM state dimen-

sion increases. Because of this high-dimensionality, the separation between any two candidate

models becomes very substantial. Third, real recordings often have infrequent transitions

between distinct dynamics. This empirical skewness leads to a high probability to stay within

the same candidate model. Such probability propagates as a strong prior across time points

amplifying the effect of the other factors in polarizing the values of posterior estimates.

Correspondingly, the fixed-point iterations could polarize the values of hðmÞt through the

reciprocal interdependence between gðmÞt and hðmÞt . The observation noise covariance during

Kalman smoothing is scaled by the model responsibility as R=hðmÞt to produce the model log-

evidence following Eq 18. This log-evidence is then used by the forward-backward algorithm

to compute the model responsibility for the next pass of fixed-point iterations. Thus, this cycle

could amplify the hðmÞt for the best candidate model toward 1 while pushing the others close to

0, effectively assigning each time point to one of the candidate models instead of maintaining a

mixture of models. This empirical behavior of the fixed-point iterations appears similar to
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automatic relevance determination [105], with GðmÞxðmÞt treated as features weighted by hðmÞt at

each time point. However, the log-likelihood expression and therefore the pruning mechanism

of the respective solutions are different.

It should be emphasized that the negative variational free energy is not jointly concave w.r.

t. the values of gðmÞt and hðmÞt . In fact, the free energy landscape contains abundant local maxima,

and the fixed-point iterations stop updating whenever a local maximum is reached. Empiri-

cally, the fixed-point iterations indeed recover polarized hðmÞt even when the segmentation

accuracy is low, i.e., when sub-optimal local maxima are reached. This behavior makes proper

initialization the most important factor in the performance of the current variational inference

approach. We address this technical challenge below in section Initialization of fixed-point

iterations.

Parameter learning using generalized EM algorithm. Once the approximation of the

hidden state posterior can be computed efficiently, one can employ an EM-like algorithm to

learn the model parameters of the Gaussian SSMs and HMM. To this end, starting from an ini-

tial guess of model parameters, we first repeat the fixed-point iterations until convergence to

find the optimal variational parameters,
n
atðmÞ; btðmÞ; x

ðmÞ
tjT ;Σ

ðmÞ
tjT ;Σ

ðmÞ
t;t� 1jT

o
, which parameterize

the approximate hidden state posterior (E-step). Next, we update the model parameters of the

individual Gaussian SSMs and HMM to maximize the negative variational free energy using

the converged variational parameters (M-step). Iterating between these two steps constitutes

an instance of generalized EM algorithm where in lieu of data log-likelihood, a lower bound on

the log-likelihood is maximized over successive iterations [106]. It should be noted that while

derivations differ, the overall form of this algorithm is the same as in [53]. A flowchart of this

variational learning algorithm is shown in Fig 1.

In the following section, we derive closed-form update equations for the model parameters

of the Gaussian SSMs and HMM, given the approximate hidden state posterior. We note that

these M-step equations can be derived from the complete log-likelihood expression in Eq 10

under the expectation w.r.t. the variational approximate distribution q, because only the first

term in Eq 14 depends on the parameters θ. It is therefore sufficient to maximize this term for

an optimization problem analogous to Eq 13 but over θ.

Specifically, at the ith EM iteration, with the converged variational parameters,
n
atðmÞ; btðmÞ; x

ðmÞ
tjT ;Σ

ðmÞ
tjT ;Σ

ðmÞ
t;t� 1jT

oi
, we compute the following summary statistics:

AðmÞ ≜
XT

t¼1

E
�

xðmÞt� 1x
ðmÞ
t� 1

>

�

¼
XT

t¼1

ΣðmÞt� 1jT þ xðmÞt� 1jTx
ðmÞ
t� 1jT

>

BðmÞ ≜
XT

t¼1

E
�

xðmÞt xðmÞt� 1

>

�

¼
XT

t¼1

ΣðmÞt;t� 1jT þ xðmÞtjT x
ðmÞ
t� 1jT

>

CðmÞ ≜
XT

t¼1

E
�

xðmÞt xðmÞt
>

�

¼
XT

t¼1

ΣðmÞtjT þ xðmÞtjT x
ðmÞ
tjT

>

ptjTðmÞ≜ P½st ¼ m� ¼ E½1½st ¼ m�� ¼ hðmÞt

pt;t� 1jTðm; nÞ≜ P½st ¼ m; st� 1 ¼ n� ¼ E½1½st ¼ m; st� 1 ¼ n��

S3 Appendix provides full recursions used to compute these summary statistics, which are
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needed to take the expectation of the complete log-likelihood in Eq 10:

E
h
log p

�n
yt; x

ð1Þ
t ; � � � ; x

ðMÞ
t ; st

o
jθ
�i

¼ �
T
2
logj2pRj �

1

2

XM

m¼1

log
�
�
�2pQðmÞ0

�
�
� �

T
2

XM

m¼1

logj2pQðmÞj

�
1

2

XM

m¼1

XT

t¼1

hðmÞt Tr
�

R� 1 yt � GðmÞxðmÞtjT

� ��
yt � GðmÞxðmÞtjT

�>
þ GðmÞΣðmÞtjT G

ðmÞ>
� ��

�
1

2

XM

m¼1

Tr
�

Q0
ðmÞ� 1 xðmÞ0jT � μðmÞ

� ��
xðmÞ0jT � μðmÞ

�>
þ ΣðmÞ0jT

� ��

�
1

2

XM

m¼1

Tr
�

QðmÞ
� 1

CðmÞ � BðmÞFðmÞ> � FðmÞBðmÞ> þ FðmÞAðmÞFðmÞ>
� ��

þ
XM

m¼1

p0jTðmÞlog ρm þ
XT

t¼1

XM

m;n¼1

pt;t� 1jTðm; nÞlogϕm;n

ð23Þ

The optimal parameters, θi≜
nn

μðmÞ i;QðmÞ
0

i
; FðmÞ

i
;QðmÞ

i
;GðmÞ

i
o
; ρi; ϕi;Ri

o
for m = 1, � � �, M,

which maximize Eq 23, can be obtained in closed-form by taking individual partial derivatives.

The parameter subset
n

μðmÞ;QðmÞ
0
; FðmÞ;QðmÞ;GðmÞ

o
can be updated for each Gaussian SSM

through the usual equations described in [93]:

μðmÞ i ¼ xðmÞ0jT ð24Þ

QðmÞ
0

i
¼ ΣðmÞ0jT þ xðmÞ0jT x

ðmÞ
0jT

>

� xðmÞ0jT μðmÞ
i>
� μðmÞ

ixðmÞ0jT

>

þ μðmÞ
i
μðmÞ

i>
ð25Þ

FðmÞ
i
¼ BðmÞAðmÞ

� 1
ð26Þ

QðmÞ
i
¼

1

T
CðmÞ � BðmÞFðmÞ i> � FðmÞ iBðmÞ> þ FðmÞiAðmÞFðmÞ i>
� �

ð27Þ

with a slight exception for G(m) due to the product with the switching state:

GðmÞ
i
¼

 
XT

t¼1

hðmÞt ytx
ðmÞ
tjT

>

! 
XT

t¼1

hðmÞt

�
ΣðmÞtjT þ xðmÞtjT x

ðmÞ
tjT

>
�
!� 1

ð28Þ

We note that since the M Gaussian SSMs have independent dynamics, these updates can be

completed efficiently in parallel.

Similarly, the usual update equations for an HMM can be used to update {ρ, ϕ} [101]:

ρi
m ¼ p0jTðmÞ ð29Þ

ϕi
m;n ¼

PT
t¼1

pt;t� 1jTðm; nÞ
PT

t¼1

PM
m¼1

pt;t� 1jTðm; nÞ
ð30Þ

As noted earlier, the observation probabilities of the HMM are not explicitly updated as a

parameter, since the variational model evidence, gðmÞt , is converged through the fixed-point
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iterations and used as point estimates of the (log) observation probability to relate the hidden

states of Gaussian SSMs to the observation at each time point.

Finally, the update equation for R pools the posterior estimates of hidden states across the

M Gaussian SSMs:

Ri ¼
1

T

XM

m¼1

XT

t¼1

hðmÞt ΩðmÞt ð31Þ

where ΩðmÞt captures the contribution from the mth model:

ΩðmÞt ¼
�
yt � GðmÞ

i
xðmÞtjT

��
yt � GðmÞ

i
xðmÞtjT

�>
þ GðmÞ

i
ΣðmÞtjT G

ðmÞ i> ð32Þ

This update equation for R is an instance of joint estimation of parameters shared among

Gaussian SSMs. In a more general case where each state-space model has its individual obser-

vation noise covariance R(m), the update equation takes the form:

RðmÞ i ¼
1

PT
t¼1

hðmÞt

XT

t¼1

hðmÞt ΩðmÞt ð33Þ

It is also possible for other Gaussian SSM parameters
n

μðmÞ;QðmÞ
0
; FðmÞ;QðmÞ;GðmÞ

o
to be

partially shared among different models. Closed-form update equations in these cases can be

derived. This extension exploits the flexibility of the variational Bayesian method to accommo-

date different generative models. Two such examples are studied in this paper, and we provide

the derivations of their update equations in S2 Appendix.

Initialization of fixed-point iterations. As shown above, the M-step equations provide

optimal updates of parameters in a convex optimization setting given the multivariate Gauss-

ian distribution q and the posterior hidden state estimates. In contrast, the fixed-point itera-

tions in the E-step are not guaranteed to achieve globally maximal negative free energy due to

the non-concavity of the negative free energy w.r.t. the variational parameters. This makes the

final approximate distribution at the end of fixed-point iterations very sensitive to initializa-

tion. Moreover, while the fixed-point iterations are defined explicitly step-by-step, it is not

obvious how to initialize these iterations. Thus, here we describe two practical initialization

approaches.

Deterministic annealing. This entropy-motivated initialization technique was proposed

along with the variational framework to alleviate getting trapped in local maxima during the

fixed-point iterations [53, 107]. Specifically, equal model responsibilities are used as the initial

hðmÞt at the onset of the first E-step, followed by RTS smoothing and forward-backward algo-

rithm to compute gðmÞt and hðmÞt with definitions modified by a temperature parameter T :

gðmÞt ¼
1

T
�

1

2

��
yt � GðmÞxðmÞt

�>
R� 1

�
yt � GðmÞxðmÞt

��

x

� �

ð34Þ

hðmÞt ¼
1

T
h1½st ¼ m�isð Þ ð35Þ

The temperature T cools over successive fixed-point iterations via the decay function

T iþ1 ¼ ðT i þ 1Þ=2. In essence, a larger T allows the iterations to explore a bigger subspace

with high negative free energy entropy, which gradually decreases in trying to identify an
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optimal approximate distribution. This initialization technique was necessary for the varia-

tional approximation to produce any reasonable results [53].

After the first E-step, hðmÞt is not re-initialized with equal model responsibilities to allow a

warm start in subsequent iterations. However, this makes the algorithm severely limited by the

results of the first round of fixed-point iterations. Under this initialization scheme, once the

hðmÞt for the mth model gets close to zero, that model cannot regain responsibility for that time

point in subsequent iterations. One may choose to reset the hðmÞt to be equal across models at

every E-step, but that tends to select only one of the Gaussian SSMs for the entire duration as a

local maximum. Regardless, with the model parameters fixed during the E-step, potential local

maxima are likely selected, since the annealing is equivalent across the M Gaussian SSMs.

Also, initializing hðmÞt with equal responsibilities assumes all models to explain all time points

equally well, which is certainly far from the true posterior p. Thus, a better initialization should

discern among the Gaussian SSMs and try to initialize closer to the global maximum.

Interpolated densities. Here we propose a different initialization technique that statistically

compares the M Gaussian SSMs for their likelihoods of generating the observation at each

time point. Specifically, we initialize gðmÞt using the interpolated density [108, 109], i.e., the

probability density of the observation at a given time point conditioned on all other time

points under the mth model.

gðmÞt ¼ log pðmÞðytjy1;���;t� 1;tþ1;���;TÞ ð36Þ

In other words, we attempt to initialize based on how well each Gaussian SSM predicts the

current observation, yt, based on all the past and future observations. We expect this informa-

tive initialization of gðmÞt to be close to the global maximum in general. Since conventional Kal-

man filtering and RTS smoothing cannot compute the interpolated density easily, we utilize a

different implementation (see S3 Appendix) [109].

This new initialization technique is well-grounded in the view of gðmÞt as the log-evidence of

generating the observation at each time point within the HMM of a discrete-valued state

st = m, with m 2 {1, � � �, M}. In the absence of known Gaussian SSM states, the next best choice

is to evaluate which model dynamic provides the closest interpolation from all other time

points for the current observation. It can also be seen as a “smoothing” extension of using fil-

tered densities in place of the HMM observation probabilities in the early switching state-

space model inference literature [34, 35, 75, 110].

As extensively analyzed in the Segmentation with posterior inference and Segmentation

with parameter learning sections in Results, variational inference and learning with interpo-

lated densities substantially improve over deterministic annealing and offer greater segmenta-

tion accuracy compared to the other switching inference methods. However, unlike the

definition of gðmÞt in Eq 18 that is comparable across arbitrary Gaussian SSMs due to the identi-

cal R, interpolated densities are bonafide normalized distribution density functions. Therefore,

the model-specific parameters (e.g. Q(m)), especially the hidden state dimensionality, could

bias the interpolated densities during the initialization. A simple heuristic is suggested in S3

Appendix to address this bias if present and shows robust performance in the spindle detection

problem.

Sleep spindle detection application

To demonstrate the utility of switching state-space models in neural signal processing, we ana-

lyzed EEG recorded during overnight sleep from a healthy young adult. The sleep EEG data

were collected at the Massachusetts General Hospital Sleep Center after obtaining written
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informed consent from the subject, and the study protocol was approved by the Massachusetts

General Hospital Human Research Committee. The recording was acquired using the

128-channel eego mylab EEG amplifier system (ANT Neuro, Enschede, The Netherlands) at a

sampling rate of 1 kHz. Ag/AgCl electrodes were arranged in an equidistant Waveguard mon-

tage (ANT Neuro). The ground and online reference electrodes were placed at the left mastoid

and a central electrode Z3, respectively. Sleep staging was scored by a trained polysomnogra-

phy technician following AASM guidelines [111].

EEG data segments were extracted from the periods scored as non-rapid eye movement

(NREM) stage 2 sleep, re-referenced to the common average reference, and then downsampled

to 100 Hz. We analyzed single-channel segments from a left parietal electrode LA2 (analogous

to C3 in the International 10–20 system). EEG spectrograms were computed using the multita-

per method [24] with 1 s window length and 95% overlap between adjacent windows (3 dis-

crete prolate spheroidal sequences tapers, corresponding to a time-half-bandwidth product of

2, and 210 minimum number of fast Fourier transform samples) after constant detrending

within the sliding window.

Initialization of Gaussian SSM parameters. As mentioned in the Real-world application:

Spindle detection section in Results, we modeled slow oscillations (δ) and sleep spindles (B)

observed in EEG recordings during NREM stage 2 sleep using Gaussian SSMs of the following

form:

"
xt;1
xt;2

#

¼ a
coso � sino

sino coso

" #
xt� 1;1

xt� 1;2

" #

þ
wt;1

wt;2

" #

;
wt;1

wt;2

" #

� N 0;

"
s2 0

0 s2

# !

ð37Þ

The Gaussian SSM parameters, {aδ, ωδ, (σ2)δ}, {aB, ωB, (σ2)B}, and the observation noise vari-

ance R need to be initialized in order to learn the optimal model parameters using the general-

ized EM algorithm. We accomplished this by fitting two oscillators (one in slow frequency

range, the other in spindle frequency range) to the EEG time series, assuming that both oscilla-

tions are present for the entire duration. This fitting was done using a standard EM algorithm

[48, 93] with the parameters initialized based on our prior knowledge of the typical frequencies

of these sleep oscillations:

ad ¼ 0:98 od ¼ 2p
1 Hz

100 Hz
ðs2Þ

d
¼ 1

aB ¼ 0:98 oB ¼ 2p
13 Hz
100Hz

ðs2Þ
B
¼ 1:

R ¼ 1

Initial states were taken as zero-mean white noise with variance of 3 and not updated. We

ran the EM algorithm for 50 iterations and used the resultant parameters as initial guesses for

the Gaussian SSMs in switching state-space models. For the switching inference algorithms

that do not have mechanisms to update model parameters, these parameters after the 50 EM

iterations were directly used to infer segmentation.

Priors for MAP estimates. Parameters in state-space models of the form in Eq 37 can be

subjected to prior distributions to yield MAP instead of ML estimation. We followed [48] to

impose priors on the rotation frequency, ω, and the state- and observation-noise variances, σ2

and R (see S3 Appendix). We used these MAP estimates throughout all the M-steps that

involve updating the Gaussian SSM parameters and the observation noise variance.
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