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Abstract

Evolutionary dynamics in spatially structured populations has been studied for a long time.

More recently, the focus has been to construct structures that amplify selection by fixing

beneficial mutations with higher probability than the well-mixed population and lower proba-

bility of fixation for deleterious mutations. It has been shown that for a structure to substan-

tially amplify selection, self-loops are necessary when mutants appear predominately in

nodes that change often. As a result, for low mutation rates, self-looped amplifiers attain

higher steady-state average fitness in the mutation-selection balance than well-mixed popu-

lations. But what happens when the mutation rate increases such that fixation probabilities

alone no longer describe the dynamics? We show that self-loops effects are detrimental out-

side the low mutation rate regime. In the intermediate and high mutation rate regime, amplifi-

ers of selection attain lower steady-state average fitness than the complete graph and

suppressors of selection. We also provide an estimate of the mutation rate beyond which

the mutation-selection dynamics on a graph deviates from the weak mutation rate approxi-

mation. It involves computing average fixation time scaling with respect to the population

sizes for several graphs.

Author summary

Evolutionary and ecological dynamics is strongly affected by the underlying population

structure. Evolutionary graph theory considers networks in which individuals are placed

on the nodes and replace each other via the links. Amplifiers and suppressors of selection

are particularly intriguing structures that can effectively change the selective advantage of

a mutant compared to unstructured populations. For very low mutation rates, strong

amplification requires that mutants can replace their parents via self-loops. We show that

this beneficial role of self-loops is reversed when the mutation rate is increased: In this

case, self looped-graphs have a lower average fitness in mutation-selection balance. More

generally, we show that suppressors of fixation—structures that reduce the fixation of

mutants regardless of their relative fitness—can increase the fitness in mutation selection

balance both for weak mutation and for strong mutation. This calls for a closer investiga-

tion of structures other than the amplifiers of selection.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011387 September 1, 2023 1 / 32

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sharma N, Yagoobi S, Traulsen A (2023)

Self-loops in evolutionary graph theory: Friends or

foes? PLoS Comput Biol 19(9): e1011387. https://

doi.org/10.1371/journal.pcbi.1011387

Editor: Yamir Moreno, University of Zaragoza:

Universidad de Zaragoza, SPAIN

Received: March 27, 2023

Accepted: July 25, 2023

Published: September 1, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011387

Copyright: © 2023 Sharma et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript. Our code and date is

available at https://gitlab.gwdg.de/nsharma/self_

loops_egt.

Funding: This work was funded by the Max Planck

Society. The funders had no role in study design,

https://orcid.org/0000-0002-0669-5267
https://doi.org/10.1371/journal.pcbi.1011387
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011387&domain=pdf&date_stamp=2023-09-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011387&domain=pdf&date_stamp=2023-09-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011387&domain=pdf&date_stamp=2023-09-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011387&domain=pdf&date_stamp=2023-09-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011387&domain=pdf&date_stamp=2023-09-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011387&domain=pdf&date_stamp=2023-09-14
https://doi.org/10.1371/journal.pcbi.1011387
https://doi.org/10.1371/journal.pcbi.1011387
https://doi.org/10.1371/journal.pcbi.1011387
http://creativecommons.org/licenses/by/4.0/
https://gitlab.gwdg.de/nsharma/self_loops_egt
https://gitlab.gwdg.de/nsharma/self_loops_egt


1 Introduction

Evolutionary graph theory (EGT) studies the role of spatial structure in evolutionary dynam-

ics [1]. In this framework, a spatially structured population is modelled as a graph with

nodes representing asexually reproducing individuals, while the links dictate the interactions

among these nodes. In general, the links of a graph can be weighted and directed. So far, the

main focus of the EGT has been to study quantities like fixation probability and fixation

times for different graphs. The fixation probability is the probability that a mutant individual

takes over the population of wild-types, and the time it takes to do so, is called the fixation

time. The fixation probability is a central object in evolutionary biology [2–6]. For low muta-

tion rates, it determines the rate of evolution [7, 8]. Based on the fixation probability, most

graphs can be categorised into two categories: Amplifiers of selection and suppressors of

selection [9]. An amplifier of selection is a structure that—compared to the complete graph

(the well-mixed population)—has higher probability to fix beneficial mutants, and lower

probability to fix deleterious mutants [10]. On the other hand, a suppressor of selection has

higher probability to fix deleterious mutants, and lower probability to fix beneficial mutants

than the complete graph.

In a complete graph, every node is alike; therefore, the fixation probability for a mutant

starting from any of the nodes is equal. However, this is not true in general. For an arbitrary

structure, the fixation probability depends crucially on the node where the initial mutant

appears [11, 12]. Hence, the mutant initialisation scheme needs to be specified while stating

the fixation probability for a graph. Two commonly used mutant initialisation schemes are

uniform mutant initialisation and temperature mutant initialisation. Under the uniform

mutant initialisation scheme, the initial mutant is equally likely to appear in every node.

Under the temperature mutant initialisation scheme, the initial mutant appears in a node with

probability proportional to its temperature, where the temperature of a node is the sum of the

weights of the links directed towards the focal node [10]. In general, a graph can have very dif-

ferent fixation probability profiles under different mutant initialisation schemes. For example,

the star graph is an amplifier of selection under the uniform mutant initialisation scheme,

whereas, it is a suppressor of selection (in the limit of infinite population size) under the tem-

perature mutant initialisation scheme [13].

Recently, evolutionary dynamics on graphs has been studied beyond the fixation time scales

by allowing mutations to appear continuously [14–16]. The main quantities of interest in

those long-term mutation-selection dynamics are the mutation-selection balance [17] and the

mixing time, the time it takes for the dynamics to reach the steady-state [18, 19]. For very low

mutation rates, amplifiers of selection attain higher average steady-state fitness in the muta-

tion-selection balance than the well-mixed population, and, suppressors of selection attain

lower average steady-state fitness in the mutation-selection balance than the well-mixed popu-

lation [16]. A suppressor of selection attains lower average steady-state fitness in the mutation-

selection balance because it is worse in fixing beneficials mutants and better in fixing deleteri-

ous mutants than the complete graph. An amplifier of selection attains higher average steady-

state fitness in the mutation-selection balance, because it is better in fixing beneficial mutants

and in preventing the fixation of deleterious mutants. In Ref. [20], it has been proven that self-

loops are necessary to generate substantial amplification. While we know that in the low muta-

tion rate regime, the self-looped star—an amplifier of selection—adapts better than the com-

plete graph, it is not clear what happens to these self-looped amplifiers when the mutation rate

is increased beyond the low mutation rate regime. This is what we investigate here. We find

that self-loops can have a detrimental effect on average fitness when the mutation rate

increases.
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2 Methods

2.1 Moran Birth-death dynamics with mutation

To study evolutionary dynamics on graphs, we use the Moran Birth-death (Bd) updating. The

letter B of the shorthand Bd stands for birth, whereas d stands for death. In Bd updating selec-

tion operates during the birth event, and it is represented by the capital letter B. Death occurs

randomly with uniform probability, and it is represented by the small letter d. The first letter

of a shorthand represents a global event where every individual of the population participates.

The second letter of the shorthand represents a local event where only individuals neighbour-

ing the selected individual from the first event participate. More details on the types of evolu-

tionary update rules in spatially structured populations can be found in [21].

To study mutation-selection dynamics on graphs, we use a modified version of Moran Bd

updating where mutations occur with probability μ when an offspring is produced, see Fig 1.

One Moran Bd with mutation update step can be described as follows:

1. Birth: First, an individual at node i is selected with probability proportional to its fitness,
fiP

j
fj

to reproduce.

2. Mutation: The offspring is identical to the parent individual with probability 1 − μ or a

mutant with probability μ. If the offspring is a mutant, its fitness f 0 is sampled from the

mutant fitness distribution z(f 0, fi) with fi being the parent’s fitness.

3. Death: A random neighbour of node i, say node k, is chosen for replacement with probabil-

ity
wikP

j
wij

. With probability,
wiiP

j
wij

, the same parent individual can be chosen for replacement

via a self-loop. The offspring finally replaces the chosen individual.

An individual’s fitness f belongs to a continuous interval bounded by fmin and fmax and

remains constant throughout the dynamics as long as it survives. The fitness of an individual is

also independent of the frequencies of other types of individuals. In this work, we primarily

consider uniform mutant fitness distribution, i.e., zðf 0; f Þ ¼ 1

fmax� fmin
. In Sec. 3.5, we investigate

evolutionary dynamics with Gaussian mutant fitness distribution.

Fig 1. Birth-death (Bd) updating with mutation. Here we show an example of the single time step of the Moran Bd

updating rule with mutation. First an individual is selected with probability proportional to its fitness to give birth to

an offspring. The offspring resembles the parent with probability 1 − μ, or mutates with probability μ. If the mutation

occurs, the offspring fitness f 0 is then sampled from the distribution z(f 0, f) with f being the parent’s fitness. In the

figure, we have shown the case when mutation takes place. The mutant offspring will then replaces one of the

individuals neighboring the parent individual, or the parent individual itself via the self-loop. The choice is made at

random with probability proportional to the outgoing weight from the parent node. Here, we have shown the case

when the parent individual is replaced by the offspring via the self-loop. The stronger the self-loop, more likely it is for

the parent to be replaced by its offspring.

https://doi.org/10.1371/journal.pcbi.1011387.g001
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At the level of graphs where each node is occupied by an individual, self-loops were intro-

duced as mathematical objects [13]. However, they make clear sense when each node of a

graph is occupied by a population. In that case, a graph is a population of populations [22]

where the dynamics in the regime of low migration rate can be interpreted as the dynamics on

a graph with strong self-looping [21, 23–27]. However, this work focuses on graphs with one

individual per node.

3 Results

3.1 Amplification in the low mutation rate regime

In this section we briefly summarise the results of Ref. [16] where the Moran Bd mutation-

selection dynamics was studied in the low mutation rate regime. In this regime, a newly

appeared mutant either reaches fixation or goes extinct before the next mutant appears in the

population [28, 29]. For low mutation rates, the population is effectively monomorphic

throughout the mutation-selection dynamics and thus, the dynamics can be modelled as a ran-

dom walk problem on a bounded fitness space where a steady-state is attained in the long run.

When a new mutation appears in the population, its fitness f 0 is sampled from the z(f 0, f) dis-

tribution with f being parent’s fitness. Only when the mutation also fixes (which happens with

probability �
T
G ðf

0; f Þ), the fitness of population G transitions from f to f 0. Thus, the combined

transition rate from point f to f 0 equal to �
T
G ðf

0; f Þ zðf 0; f Þm. The steady-state for a graph G sub-

jected to a low mutation rate can be computed by assuming detailed-balance [30] as

P∗Gðf Þ ¼
1

Z

df 0
�

T
G ðf

0; f Þ
�

T
G ðf ; f 0Þ

�
zðf 0; f Þ
zðf ; f 0Þ

:
ð1Þ

The fixation probabilities entering the steady-state expression 1 are temperature initialised

(T ), because when a new mutant appears in a homogeneous population, according to the

Moran Bd updating stated in Sec. 2.1, it is more likely to appear on the high temperature

nodes.

The fixation probability of a mutant with fitness f0 on the complete graph with background

fitness f is given by [10]

�
T
C ðf

0; f Þ ¼ �Cðf 0; f Þ ¼
1 �

f
f 0

1 �
�

f
f 0

�N : ð2Þ

Using the above expression for the fixation probability and the Eq 1, we obtain the average

steady-state fitness for the complete graph with uniform mutant fitness distribution,

h f i∗C ¼
Z

df fP∗Cðf Þ ¼
N

N þ 1

f Nþ1
max � f Nþ1

min

f Nmax � f Nmin

: ð3Þ

Amplifiers of selection attain a higher steady-state average fitness than the well-mixed pop-

ulation. On the other hand, suppressors of selection attain lower steady-state fitness than the

well-mixed population, see Ref. [16] for a formal proof. However, a suppressor of fixation, a

structure that has lower fixation probabilities than the complete graph regardless of the mutant

fitness values, can attain higher average fitness in the mutation-selection balance than the com-

plete graph. This happens because of its ability to reject mutants more efficiently than the com-

plete graph, compensating for its poor ability to fix beneficial mutants. These structures can

also attain higher fitness than amplifiers of selection in the steady-state. Therefore, amplifiers
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of selection are not the only structures that adapt better than well-mixed populations in the

long-term evolutionary dynamics.

3.2 Beyond the low mutation rate regime

It has been suggested that the thresholds for mutation rates, beyond which amplifiers of selec-

tion deviate from the low mutation approximation are lower compared to the threshold at

which the complete graph deviates from the same approximation [8, 31]. This happens because

amplification of selection in graphs comes at the cost of higher fixation times of mutants [32,

33]. Thus, amplifiers are more likely to violate the low mutation rate criterion where a mutant

appearing in the population should either reach fixation or go extinct before the next mutation

appears [8]. However with high fixation times, a new mutant can appear while the previous

mutation is still under way towards fixation or extinction, and thus leading to effects like clonal

interference [34, 35].

Inside the low mutation rate regime, the steady-state average fitness of the population is

independent of the mutation rate. However, the average steady-state fitnesses of various struc-

tures are expected to decrease as the mutation rate is increased beyond the low mutation rate

regime. Outside the weak mutation rate regime, it is not clear how amplifiers of selection, sup-

pressors of selection, suppressors of fixation, and the well-mixed population are ordered in

terms of their average steady-state fitness. To analyse this, we simulate the Moran Birth-death

update with mutation for the self-looped star graph (weighted), the complete graph, the cycle

graph, the star graph, and the directed line with self-loops. These graphs are shown in Fig 2A.

Notice that without self-loops, nodes of the directed graphs that have no incoming links are

frozen during the mutation-selection dynamics and their states remain the same throughout

the dynamics. To avoid this situation we focus instead on a structure where self-loops are

added to all the nodes of the directed line to facilitate their participation in the evolutionary

dynamics. The weight matrix of the self-looped star graph is given in Eq 23 with λ being the

weight of the links directed from leaves to the center and δ/(N − 1) is the weight of the link

directed from the center to leaves.

The self-looped star graph is a piecewise amplifier of selection (higher fixation probability

for mutations up to a finite fitness advantage) [13] for finite population size. Only in the limit

N!1, it is a true amplifier of selection. The complete graph, and the cycle graph are isother-

mal graphs [1]. Under temperature initialisation, for finite N, the star graph is suppressor of

fixation [13, 16]. The directed line with self-loops is a suppressor of selection [10]. From Fig

2B, we find that in the low mutation rate regime, the steady-state average fitness is highest for

the self-looped star graph and the star graph, slightly lower for the complete and the cycle

graph, and much lower for the self-looped directed line.

In Ref. [31], it has been shown that the temperature initialised star graph has a lower effec-

tive rate of evolution compared to the complete graph. However from Fig 2B, we see that the

star graph attains higher steady-state average fitness than the complete graph. Therefore, a

structure that speeds up evolution does not necessarily lead to higher fitness in the long-term

evolutionary dynamics. Similarly, a structure that slows down evolution does not necessarily

lead to lower fitness in the long-term evolutionary dynamics. Although at low mutation rates,

the self-looped star graph outperforms all other graphs by attaining the highest steady state fit-

ness, outside the low mutation rate regime, it performs poorly. On increasing the mutation

rates, the star with self-loops not only attains lower steady-state fitness than the complete

graph, but also lower than the directed line with self-loops, a suppressor of selection. The main

reason for this poor adaptation of the self-looped star graph outside the low mutation rate

regime are self-loops. We explore this in detail in the following section.
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We conclude this section by providing an estimate for the threshold mutation rate μth
beyond which the dynamics is considered to be outside the low mutation rate regime. It is

given by

1

mth
� max

r

�

tT
1
ðrÞ; ~tT

1
ðrÞ
�

; ð4Þ

where tT
1
ðrÞ is the average fixation time and ~tT

1
ðrÞ is the average extinction time of a mutant

with fitness r relative to the wild-type. Mutants appear according to the temperature

Fig 2. Mutation rate threshold, μth. (A) We mostly work with these five graphs throughout the manuscript. (B) The steady-state average fitnesses obtained using the

Moran Birth-death mutation-selection dynamics simulations for the self-looped (weighted) star graph, an amplifier of selection, the star graph, a suppressor of fixation,

the self-looped directed line, a suppressor of selection, the cycle graph, an isothermal graph, and the complete graph are shown via circles as a function of mutation rates.

Solid horizontal lines represent steady-state average fitnesses for different graphs obtained under the low mutation rate approximation, Eq 1. The arrows mark the

mutation rates beyond which the low mutation rate approximation is violated for respective graphs. The graphs with higher average fixation time is expected to deviate

earlier, see Eq 4. (C) The average fixation time scaling with N at neutrality is shown for different graphs. Solid lines are the analytical results whereas circles represent

Moran Bd simulations. For larger N, it gets computationally expensive to work with microscopic Moran Bd simulations, in such cases we use a Gillespie algorithm,

shown via triangles. For details on the Gillespie algorithm, refer to App. 5.3.3. (D) The scaling of the average fixation time with population size N for the different graphs.

(Parameters: (B) population size, N = 10, uniform mutant fitness distribution, i.e., zðf 0; f Þ ¼ 1

fmax � fmin
, (B,C) with 2000 total number of independent realisations used for

averaging, fmin = 0.1 and fmax = 10).

https://doi.org/10.1371/journal.pcbi.1011387.g002
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initialisation. Eq 4 follows from the criterion for the dynamics to be in the low mutation rate

regime. Recall that the criterion for an evolutionary dynamics to be in the low mutation rate

regime is that the time between any two successive mutations should be larger than the time to

fixation or extinction (whichever is higher for a given pair of mutant and wild-type fitness) of

a mutant. The fixation time and the extinction time of a mutant take random values from spe-

cific distributions [36–39]. To arrive at Eq 4, we make an approximation to the criterion by

working at the level of average fixation and extinction times. By studying the average fixation

and extinction time of the five graphs shown in Fig 2A, except the self-looped directed line, we

found the average fixation time of a mutant to be consistently higher than the average extinc-

tion time of the mutant, see App. 5.3 for more details. Moreover, it is the average fixation time

near neutrality that determines the mutation rate threshold for these graphs. For the complete

graph, the phenomenon where the average fixation time peaks near neutrality was discussed in

Ref. [40]. For the case of self-looped directed line, we found that the average fixation time

decreases as the mutant relative fitness is increased, whereas, the average extinction time

increases with increasing mutant fitness, see App. 5.3.5 for more details. However, for a given

fitness domain, it is the average fixation time corresponding to the lowest possible mutant’s

relative fitness that determines the μth for the self-looped directed line graph. The star with

self-loops has the lowest mutation threshold, since it has the longest average fixation time. At

neutrality, for large N the average fixation time for the self-looped star graph scales as N5,

whereas for the star graph it scales as N3. The average fixation time scaling for the complete

graph is N2, and the average fixation time scaling for the cycle graph is N3/6. For the self-

looped directed line graph, the average fixation time scaling which determines μth is,

N2(1 + 1/r). The scalings for μth for the above-mentioned structures are simply the inverse of

the average fixation time scalings mentioned in Tab. D of the Fig 2. The scaling relations are

derived in App. 5.3.

3.3 Self-loops and high mutation rate regime

Under the Moran Bd update scheme, an offspring always replaces one of the parent’s neigh-

bours—unless the parent node is self-looped. For an individual occupying a self-looped node,

the offspring can replace the individual with a finite probability. Thus, self-loops effectively

decrease the fitness of the parent individual, as the parent cannot spread its offspring freely

into the population. The extent of this effect on the parent’s fitness depends on the weight of

the self-loops. This suggests that the fitness of a highly advantageous strain can be decreased by

placing it on a self-looped node with negligible outward flowing weight to the neighbouring

nodes [20]. Under Bd updating, the fixation probability of a mutant on a structured population

with the weight matrix, w, decreases as the diagonal weights of the matrix are increased [41].

For update schemes like bD and dB, and a given structure with the weight matrix w, it is

necessary to have self-loops (wii> 0) for all i, in order for the fixation probability of mutants

on that structure to be equivalent to the fixation probability of mutants under a birth death

process (of any type) on the self-looped complete graph [41]. Self-loops also fix some issues for

the bD and dB dynamics that seem to make them unattractive from a modelling perspective

[42]: One problem with the bD updating is that a mutant with fitness tending to zero can have

a finite fixation probability. On the other hand, for the dB updating, an infinitely fit mutant

can have a fixation probability smaller than one. Self-loops fix these issues.

In order for a structure to be a strong amplifier (a spatial structure where the fixation of a

beneficial mutant is guaranteed), self-loops have been proven to be necessary [20], both under

the uniform and the temperature initialisation. Though the concept of strong amplifiers is

defined for infinite N, the self-loops also play a quintessential role in generating amplifiers of
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finite N [20]. Intuitively, for a structure to be an amplifier of selection, it should have a suffi-

cient number of cold temperature nodes so that the mutants are less likely to get replaced by

wild-type individuals [33] and thus, a mutant type can persist in the population for longer

time and spread its offspring into the population. This is where self-loops come into play, they

help in creating more of these cold nodes, thereby amplifying selection. Consequently, self-

loops contribute substantially in attaining higher fitness in the mutation-selection balance

[16].

However as seen in Fig 2B, the steady-state average fitness of the self-looped star, an ampli-

fier of selection, decreases fitness as the mutation rate is increased beyond the mutation thresh-

old. Outside the low mutation rate regime, clonal interference starts to play an important role

in the evolutionary dynamics. Therefore, to systematically investigate the effects of self-loops

on evolutionary dynamics, we need to analyze the dynamics on structured populations for

higher mutation rates. While this can be studied by simulations, it is challenging to obtain ana-

lytical insights for arbitrary mutation rates μ. Thus, in addition to simulations we study

another—biologically not relevant—extreme of the high mutation rate limit, i.e., μ! 1. While

this seems to be an irrelevant limit, its analysis reveals some crucial properties of evolutionary

dynamics that are already relevant for much lower mutation rates.

3.4 Sampling fitness from the uniform distribution

In the limit μ! 1, every time a parent reproduces, the offspring is a mutant. We start with a

uniform mutant fitness distribution, zðf 0; f Þ ¼ 1

fmax� fmin
for fmin� f, f 0 � fmax.

3.4.1 Reference graph- complete graph with self-loops. When studying evolutionary

dynamics on structured populations, the results are always compared with the dynamics on a

reference graph. The standard choice in Evolutionary graph theory for the reference graph is

the complete graph (without self-loops). For example, for the case of fixation probabilities and

for the mutation-selection dynamics under mutation rates, the complete graph serves as the

reference graph. However, for high mutation rates, instead of the complete graph, we choose

the self-looped complete graph as a reference. This is because every node of the self-looped

complete graph has an equal chance of being replaced by a mutant offspring during every

birth event. This also implies that after a sufficiently long time, the states of the nodes would be

completely uncorrelated in space and time. The coarse-grained evolutionary dynamics satisfies

a master equation where each offspring’s fitness f0 is chosen randomly from the mutational

jump distribution zðf 0; f Þ ¼
1

fmax � fmin
with f being the parent’s fitness. The probability density

function corresponding to population’s state, PSC( f, t) changes as

dPSCðf ; tÞ
dt

¼

Z

df 0
�
YN� 1

i¼0

zðfi; f
0

i Þ

�

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Tf f 0

PSCðf
0
; tÞ �

Z

df 0
�
YN� 1

i¼0

zðf 0i ; fiÞ
�

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Tf 0 f

PSCðf ; tÞ;
ð5Þ

where the subscript SC stands for the self-looped complete graph, and, f = (f0, f2 � � �, fN−1) is the

fitness state of the population of size N. By assuming detailed balance [30], i.e.

P∗SCðf
0
Þ ¼

Tf 0 f

Tf f 0
P∗SCðf Þ; ð6Þ

and the normalisation condition
R
df 0 P∗SCðf

0
Þ ¼ 1, we find the steady-state for the high
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mutation rate dynamics on the self-looped complete graph

P∗SCðf Þ ¼
1

YN� 1

i¼0

Z

df 0i
zð f 0i ; fiÞ
zð fi; f 0i Þ

¼ p∗ðf0Þ � p
∗ðf2Þ � � � p

∗ðfN� 1Þ:
ð7Þ

Here, p∗ðfiÞ ¼
R
df 0i

zðf 0i ;fiÞ
zðfi ;f 0i Þ

� �� 1

is the marginal probability density function for the node i to

have fitness fi. The marginal probability density function also satisfies the normalisation condi-

tion
R

df p*(f) = 1. The average steady-state fitness of the self-looped complete graph in terms

of the individual node’s average steady-state fitness satisfies h f i∗SC ¼ h f i
∗
, i.e. the average fit-

ness of the population is the same as the average fitness of a node. This follows from the sym-

metry of the graph. Using the explicit form of the uniform mutational jump density function

in Eq 7, we obtain p∗ðf Þ ¼
1

fmax � fmin
, which is independent of f. At very high mutation rates,

the self-looped complete graph is totally blind to the fitness advantage/disadvantage of a

mutant. Therefore, for the self-looped complete graph the average steady-state fitness with

μ = 1, and the uniform mutational distribution is h f i∗SC ¼
fmax þ fmin

2
which is independent of

the population size. Also, the standard deviation of the steady-state fitness is
fmax � fminffiffiffiffiffiffiffiffiffi

12N
p , see

Fig 3. For derivation, see App. 5.2. With this, we are now ready to discuss the evolutionary

dynamics on various self-looped graphs.

Fig 3. Reference graph: Complete graph with self-loops. Here, the mutation-selection dynamics is studied for the

self-looped complete graph with μ! 1. We find a very good agreement for the steady-state statistics between the

analytics and the simulations. The thick line represents the analytical average fitness, while the shaded grey area

represents the standard deviation around the average. Symbols and error bars show simulations. In the steady-state, on

average the self-looped complete graph attains the midpoint of the fitness domain, as the fitness dynamics for each

individual node of the population becomes uncorrelated in the fitness space and time. The steady-state average fitness

is also independent of the population size. The fluctuations in the steady-state however depends on the population size

and decreases with the increase in population size as 1=
ffiffiffiffi
N
p

(Parameters: fmin = 0.1, fmax = 10, number of independent

realisations is equal to 2000, mutant fitness distribution, z(f 0, f) = 1/(fmax − fmin)).

https://doi.org/10.1371/journal.pcbi.1011387.g003
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3.4.2 Self-looped directed line beats the self-looped star. In this section, we study the

high mutation rate dynamics, μ! 1, on the self-looped directed line and the weighted self-

looped star graph. To recall, the self-looped directed line is a suppressor of selection [10, 16],

whereas, the (weighted) self-looped star graph is an amplifier of selection. In the low mutation

rate dynamics, the self-looped weighted star attains higher steady-state fitness than the self-

looped directed line. However, it is unclear what happens in the high mutation rate regime,

which is far from a fixation-like dynamics. Simulating the Moran Bd dynamics with μ = 1 for

these two graphs, we find that the weighted self-looped star attains lower steady-state fitness

not only than the self-looped complete graph, but also in comparison with the self-looped

directed line, see Fig 4.

For the case of (weighted) self-looped star graph, from the Fig 4A, all the leaf nodes attain

the same steady-state fitness. This is expected due to symmetry reasons. The central node,

node 0, stands out, and has the highest fitness. This is because the fitness decreasing effect of

the self-loop is minimised by the vast number of outgoing (incoming) links from (to) the cen-

tral node.

A self-loop affects the node’s steady-state fitness depending on the node’s connections to

other nodes. As an example, the root node 0 of the directed line attains the lowest steady-state

fitness among all other nodes, Fig 4B. This is because the only incoming link to node 0 is the

self-loop. In a mutation-selection dynamics, a self-loop leads to the decrease in the long-term

fitness of a node. This can be understood by the following argument: If a given node is cur-

rently occupied by a highly fit individual, it is more likely that during the next Moran Bd

update this particular node is selected to reproduce. If this node is self-looped, assuming small

outgoing weight to other nodes for now, with high probability the mutated offspring replaces

Fig 4. Nodewise analysis of the star graph with self-loops and the directed line with self-loops. Here, the average fitness trajectories for each node of the self-looped

star graph (shown in panel A) and the self-looped directed line (shown in panel B) are shown. Thick lines represent average fitness trajectories at the population level,

whereas, thin lines represent average fitness trajectories for the nodes. The effect of self-loops on a node’s fitness depends on the incoming and outgoing weight flowing

out of that node. In panel A, self-loops have the least effect on the central node because of relatively higher incoming and outgoing weight. As a result, the central node

attains higher average steady-state fitness than the leaf nodes. In panel B, the root node of the directed line has the lowest steady-state average fitness because of the

absence of an incoming link to the root node. (Parameters: N = 10, μ = 1, fmin = 0.1, fmax = 10, number of independent realisations is equal to 2000, mutant fitness

distribution, zðf 0; f Þ ¼ 1

fmax � fmin
. For the directed line with self-loops, every outgoing link from a node (including the self-loop) has the same weight. For the self-looped

star graphs, the weights of the links follows Eq (23), such that λ = 1/(N − 1) and δ = 1/(N − 1)2).

https://doi.org/10.1371/journal.pcbi.1011387.g004
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its parent via the self-loop. If the mutated offspring is again very fit, this offspring will again be

more likely to be selected to reproduce, and thus, repeating the cycle. This process will repeat

until the node’s fitness decreases. Therefore, self-loops make it harder for highly fit individuals

to persist in the population.

On the other hand, incoming and outgoing links decrease the stated negative effect of self-

loops. When a highly fit individual occupying a self-looped node is selected to give birth, its

mutated offspring can be placed on a neighbouring node if the parent node has a substantial

outgoing weight to other nodes. This decreases the participation of the self-loops in the update

process and leads to diminished effects of the self-loops. The role of incoming links is more

subtle. Incoming links make a node’s fitness state more randomised in accordance with the

mutational jump distribution. In the long run, for the case of uniform distribution, the mean

of the fitness states attained by an individual node solely via the incoming links is the mid-

point of fitness domain. Thus, depending on the mutational fitness jump distribution, incom-

ing links can have beneficial or detrimental effects on a node’s fitness. For the case of uniform

distribution, compared to self-loops, incoming links have beneficial effect on the population’s

fitness as adding self-loops decreases the population’s fitness below the mid-point of the fitness

domain. These arguments explain, why the end node of the directed line has higher steady-

state fitness than the root node, but lower fitness than the bulk nodes (node 9 in Fig 4B). The

incoming link to the end node decreases the self-loops effect by making the node’s fitness

more randomised. However, the absence of an outgoing link from the end node makes the

negative impact of self-loop still substantial. The steady-state fitness for the node 1 is an inter-

esting case. As a bulk node, its steady-state fitness is lower than other bulk nodes fitnesses.

This is because the incoming link to node 1 does not reach its full potential in randomising the

fitness. This limitation occurs because the incoming link is activated solely when the root node

0 is selected for reproduction. However since the root node has the lowest fitness, it is less

likely to be selected during the update steps.

3.5 Sampling fitness from the Gaussian distribution

Until now, in the Moran Bd with mutation update scheme, the mutant’s fitness has been sam-

pled from a uniform distribution. However, a lack of correlation between offspring’s fitness

and parent’s fitness is an extreme assumption. Therefore, to examine the robustness of the neg-

ative effects of the self-loops observed previously, we study the evolutionary dynamics with the

fitness of a mutant offspring sampled from a truncated Gaussian distribution on the fitness

domain [fmin, fmax]. At a given point of the dynamics, the Gaussian distribution is centered

around the parent’s fitness with a standard deviation of σ.

From Fig 5A, we see that adding self-loops decreases the steady-state fitnesses for all the

graphs. The effect of adding self-loops is the smallest for the complete graph. This is what we

have also observed for the case of uniform mutation fitness distribution. To compare fitnesses,

in Fig 5 every self-looped graph has a non self-looped counterpart. For the self-looped directed

line, we have the molded directed line which is directed line with an additional link directed

from node 1 to the root node (node 0). On increasing the σ from 0.1 to 1, compared to other

graphs, the self-looped star undergoes a considerable decrease in the steady-state average fit-

ness, Fig 5B. For σ = 1, the self-looped star graph, an amplifier of selection, attains lower

steady-state fitness than the self-looped directed line, a suppressor of selection. For very large

σ, we recover the uniform distribution limit, as expected, see Fig 5C, where all the non-self

looped graphs attain the same mutation-selection balance. The average fitness in this case is

higher than that of the self-looped complete graph. All self-looped graphs have lower average
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fitness compared to the self-looped complete graph. Refer to App. 5.4 for more details on the

high mutation rate dynamics for the non self-looped graphs.

Overall, the average steady-state fitness for different graphs increases as σ is decreased. This

trend agrees with the intuition that low σ values provide directionality to the evolutionary

dynamics towards higher fitness values. However, not all the self-looped graphs are affected by

this directionality equally. The steady-state average fitness for the heterogeneous self-looped

graph like, the self-looped star, decreases substantially with increasing σ, compare Fig 5A and

5B. In contrast, regular self-looped structures like the self-looped complete graph and the self-

looped cycle graph, do not experience such a sharp fitness decrease, see again Fig 5A and 5B.

In nutshell, from Fig 5, we conclude that the negative effect of self-loops on the fitness is

not limited solely to the uniform mutant fitness distribution.

4 Discussion

Amplifiers of selection [1, 10] are fascinating spatial structures. For low mutation rates, these

structures can speed up evolution [8] by enhancing the fixation of beneficial mutants. A ran-

domly generated connected spatial structure, under Moran Bd updating with uniform initia-

lisation, is very likely to be an amplifier of selection [9]. Due to their ability to amplify

selection and ubiquity, amplifiers of selection have been in the focus of research recently [13,

20, 33, 43–47].

Not only at the fixation time scales but also for the long-term weak mutation rate mutation-

selection dynamics, amplifiers of selection perform better than the well-mixed population by

attaining higher average fitness [16]. Since mutations occur during reproduction, the fixation

probabilities entering the steady-state distribution (mutation-selection balance) for spatial

structures are temperature initialised. It has been shown that for structures to amplify selection

substantially under temperature initialisation, self-loops are important [20]. However, non

self-looped amplifiers of selection with temperature mutant initialisation do exist [48].

In the low mutation rate regime, self-loops help structures perform better but outside the

low mutation rate regime, self-looped graphs do not attain higher average fitness than the

well-mixed population. In fact, outside the weak mutation rate regime, amplifiers of selection

Fig 5. Sampling mutant’s fitness from the Gaussian. (A) When mutant fitness is sampled from the (truncated) Gaussian distribution with σ = 0.1, we find that adding

self-loops decreases the population fitness in all the graphs. (B) Increasing the σ from 0.1 to 1, the average fitness in the steady-state goes down for many graphs. The

effect of increasing the σ is largest in the heterogeneous star graphs and smallest in the more homogeneous structure like the complete graph. (C) We recover the

uniform mutant fitness distribution case for very large σ, here σ = 10. In this case, all the non-self looped graphs attain the same steady-state. All self-looped graphs have

lower average steady-state fitness than a non-self looped graph and the self-looped complete graph (Parameters: N = 10, μ = 1, fmin = 0.1, fmax = 10, 2000 independent

realisations).

https://doi.org/10.1371/journal.pcbi.1011387.g005
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can even perform worse than suppressors of selection in terms of maximizing fitness. An

example is shown in the Fig 2, where the self-looped star graph, an amplifier of selection,

attains lower fitness in the mutation-selection balance than the complete and self-looped

directed line, a suppressor of selection. To further investigate the effect of self-loops, we have

worked in the extreme mutation probability regime, μ! 1. The idea was to remove other

effects from the evolutionary dynamics, and focus solely on the effect of self-loops on the adap-

tation of a spatially structured population. The insights we obtain working in the high muta-

tion regime can be useful for the intermediate mutation rate regime as well. While we worked

with extremely high mutation rates, high mutation rate studies are not uncommon. One of the

celebrated theories dealing with high mutation rate mutation-selection dynamics is quasispe-

cies theory [49, 50]. Quasispecies theory is a deterministic theory used to study mutation-selec-

tion dynamics in infinite well-mixed population. Its variants have also been used to study

finite well-mixed populations [51, 52]. However, the effect of spatial structure remains to be

analysed in the quasispecies theory.

While studying mutation-selection dynamics with high mutation rates, the self-looped

complete graph naturally serves as the reference graph instead of the complete graph. The fit-

ness dynamics for the self-looped complete graph is random in fitness space and time, i.e., at a

given time, the fitness state of a node is independent of its fitness states in the past and the cur-

rent fitness state of its neighbours. We found that self-loops have a strong fitness-decreasing

effect on a node having lower outgoing and incoming weight. In the limit μ! 1, we found

that the non-self-looped graphs attain higher steady-state fitness than their self-looped coun-

terparts. Maybe more surprisingly, all the non-self-looped graphs attain the same average fit-

ness in the mutation-selection balance. All self-looped graphs attain lower steady-state fitness

than the complete graph. We also observed the fitness-decreasing effects of the self-loops for

the case where the mutant’s fitness is sampled from a Gaussian distribution. Thus, the fitness-

decreasing effects of the self-loops are not an artefact of a uniform mutant fitness distribution.

We also provide a heuristic measure of the low mutation rate thresholds, μth, the mutation

rate beyond which the evolutionary dynamics is outside the low mutation rate regime. The

mutation rate threshold μth for a graph depends on the average fixation times and the extinc-

tion times of mutants on that graph [8]. As expected, structures with higher fixation times

have lower mutation rate thresholds. Therefore, compared to the complete graph and suppres-

sors of selection, amplifiers of selection show deviation from the low mutation rate approxima-

tion at lower mutation rates. For a majority of the spatial structures, these thresholds are

estimated using the structures’ near-neutrality average fixation time scaling with population

size. For the directed line with self-loops, the average fixation time grows monotonically with

the decrease in mutant’s fitness and therefore, μth is computed from the average fixation time

of a mutant with least possible relative fitness for a fitness domain. In this work, we have

derived the large N average fixation time scalings for the star graph, the self-looped star graph

and the cycle graph, which in return give the μth scalings. Knowing these thresholds one can

avoid running heavy simulations deep in the low mutation regime. Since in the low mutation

rate regime, the steady-state statistics is independent of the mutation rate, it is sufficient to

access the steady-state via simulations by going slightly below the computed mutation rate

thresholds but not deep into the low mutation rate regime. Due to higher sojourn times (see

Appendix), it is expected for a self-looped graph to have a higher average fixation time for a

mutant than its non self-looped counterpart. This however needs a further detailed

investigation.

Amplifiers of selection have been in the focus of EGT. However, their promising aspects to

optimise fixation of fit mutants are somewhat limited to short-term time scales, where they

come with the caveat that they tend to have long fixation times [8, 43]. In the long-term
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mutation-selection dynamics, it has been shown in Ref. [16] that suppressors of fixation have

the potential to perform better than the amplifiers of selection. This is because of the ability of

the suppressor of fixation to reject deleterious mutations more efficiently compensating for its

poor probability of fixation for beneficial mutations. Moreover, outside the low mutation rate

regime, we see that the temperature initialised star graph, a suppressor of fixation, takes over

the self-looped star graph, an amplifier of selection, and maintains higher average fitness in the

steady-state throughout the mutation rate regime. However, the reason for the star graph to

take over the self-looped star outside the weak mutation rate regime is not clear and requires

further investigation. In conclusion, we suggest to broaden the scope of evolutionary graph

theory to other structures and to gently move its focus away from amplifiers of selection.

5 Appendix

5.1 Kolmogorov’s Criterion

In the section 3.4.1, we have used the detailed balance condition. Here, we justify the use of

detailed balance by proving that the stochastic process at hand is indeed reversible. To do so

we make use of Kolmogorov’s criterion [53]. According to this criterion, a Markov chain on a

fitness space spanned by f is reversible if and only if:

Tð f
1
; f nÞ � � �Tð f 3

; f
2
ÞTð f

2
; f

1
Þ ¼ Tð f

1
; f

2
ÞTð f

2
; f

3
Þ � � �Tð f n; f 1

Þ; ð8Þ

for any finite set of ordered fitness states f1, f2, � � � fn.

The basic idea behind the Kolmogorov’s criterion relies on the fact that a reversible Markov

chain has zero probability current in the steady-state. In our case,

Tð f ; f 0Þ ¼
YN� 1

i¼0

zð fi; f
0

i Þ: ð9Þ

Since, zð fi; f 0i Þ ¼
1

fmax� fmin
, the transition probabilities are independent of fitness. Thus, Kolmo-

gorov’s criterion in Eq 8 is satisfied and the Markov chain for the self-looped complete graph

presented in the Sec. 3.4.1 is reversible.

5.2 Complete graph with self-loops: Fluctuations in the fitness

The standard deviation in the steady-state population fitness for self-looped complete graph is

given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð f Þ∗

p
where,

Varð f Þ∗ ¼ h f 2i
∗
SC � ðh f i

∗
SCÞ

2
: ð10Þ

Here we derive the expression of the second moment for the steady-state of the high mutation

rate dynamics of the self-looped complete graph.

hf 2i
∗
SC ¼

1

N2

*
XN� 1

i¼0

XN� 1

j¼0

fi fj

+∗

;

¼
1

N2

 
XN� 1

i¼0

XN� 1

j6¼i

hf i∗hf i∗ þ
XN� 1

i¼0

hf 2i
∗

!

;

¼
1

N2
NðN � 1Þ hf i∗2

þ N hf 2i
∗

� �
;

¼ 1 �
1

N

� �

hf i∗2
þ

1

N
hf 2i

∗
;

ð11Þ
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where h f i* is the average fitness, and hf 2i* is the second moment of fitness for a node in the

steady-state. In the second equality above, we have used that fitness states on a coarse-grained

time scale on different nodes of a self-looped complete graph are independently and identically

distributed. Therefore the variance in fitness for the population reduces to,

Varðf Þ∗ ¼
1

N
h f 2i

∗
� h f i∗2

� �

¼
1

N
varð f Þ∗;

ð12Þ

where var( f )* is the variance in fitness for a node. Using the probability density for fitness of a

node, p∗ð f Þ ¼ 1

fmax� fmin
, we get the standard deviation of the steady-state fitness to be

fmax � fminffiffiffiffiffiffiffiffiffi
12N
p .

5.3 Mutation rates threshold and fixation times

Here we derive the expressions for the average fixation times of a mutant, τ1 on various net-

work topologies like the self-looped star, star, complete, cycle and the self-looped directed line.

5.3.1 Star graphs. To compute the fixation time for the star graph and self-looped

weighted star graph, we use the method of solving recursions inspired from Ref. [54]. To pro-

ceed, we write down the recursion satisfied by t�i , the average fixation time starting with i
mutants in the leaves and a mutant in the center node. We denote this state by (•, i). Similarly,

t�i , is the average fixation time starting with the state (�, i), i.e., i mutants in the leaves and a

wild-type individual in the central node.

�
�

i t
�
i ¼ T��i;iþ1

�
�

iþ1
t�iþ1
þ T��i;i �

�

i t
�
i þ ð1 � T��i;iþ1

� T��i;i Þ�
�

i t
�
i þ �

�

i ; 0 � i � n � 1;

�
�

i t
�
i ¼ T��i;i �

�

i t
�
i þ T��i;i� 1

�
�

i� 1
t�i� 1
þ ð1 � T��i;i � T��i;i� 1

Þ�
�

i t
�
i þ �

�

i ; 1 � i � n;
ð13Þ

where,

(i). �
�

i is the fixation probability with the initial state being (•, i),

(ii). �
�

i is the fixation probability with the initial state (�, i).

(iii). T��i;i�1
is the transition probability from the state (•, i) to the state (•, i ± 1),

(iv). T��i;i�1
is the transition probability from the state (�, i) to the state (�, i ± 1),

(v). T��i;i is the transition probability from the state (•, i) to the state (�, i).

(vi). T��i;i is the transition probability from the state (�, i) to the state (•, i).

The recursions in Eq 13 satisfy the boundary conditions: �
�

0
¼ 0 and t�n ¼ 0. These recur-

sions can be simplified further by dividing the recursion one by T��i;iþ1
þ T��i;i , and recursion two

by T��i;i þ T��i;i� 1
,

�
�

i t
�
i ¼

T��i;iþ1

T��i;iþ1
þ T��i;i

�
�

iþ1
t�iþ1
þ
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i þ
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i þ
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ð14Þ
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Introducing

p��i;iþ1
¼ 1 � p��i;i ¼ 1 �

T��i;i
T��i;iþ1

þ T��i;i
; 0 � i � n � 1 ð15Þ

and

p��i;i ¼ 1 � p��i;i� 1
¼ 1 �

T��i;i� 1

T��i;i þ T��i;i� 1

; 1 � i � n; ð16Þ

we finally have,
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Here,

(i). p��i;iþ1
is the conditional transition probability from the state (•, i) to the state (•, i + 1),

with the condition that the number of mutants changes.

(ii). p��i;i is the conditional transition probability from the state (�, i) to the state (•, i), given

that the number of mutants changes.

(iii). p��i;i is the conditional transition probability from the state (�, i) to the state (•, i), with the

condition that the number of mutants changes.

(iv). p��i;i� 1
is the conditional transition probability from the state (�, i) to the state (�, i − 1),

given that the number of mutants changes.

Solving the recursions 17 using boundary conditions �
�

0
¼ 0 and t�n ¼ 0 we get

t�
0
¼ t�

1
þ 1 ¼

Xn

l¼2

Aðl; nÞCðlÞ þ 1; ð18Þ

where,
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ð19Þ
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T��l� 1;l
: ð20Þ

The expressions for �
�

i and �
�

i are derived in Ref. [54],

�
�

i ¼
Að1; iÞ
Að1; nÞ

;

�
�

i ¼
Xi

j¼1

p��j;j�
�

j

Yi

k¼jþ1

p��k;k� 1
:

ð21Þ
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Now,

t�
1
¼ t�

1
þ

1

T��
1;0
þ T��

1;1

;

¼
Xn

l¼2

Aðl; nÞCðlÞ þ
1

T��
1;0
þ T��

1;1

:

ð22Þ

The self-looped (weighted) star graph is defined by the weighted adjacency matrix

w ¼

1 � d d

n
d

n � � � d

n
l 1 � l 0 � � � 0

..

. ..
. . .

. . .
. ..

.

l 0 � � � 1 � l 0

l 0 � � � 0 1 � l

0

B
B
B
B
@

1

C
C
C
C
A

ð23Þ

with 0< λ� 1 and 0< δ� 1. Here, wij is the weight of the link directed from node i to node j
with the center being node number 0. With this, the transition probabilities for a weighted

self-looped star graph for the transitions from state (•, i) are

T��i;iþ1
¼

r
r þ ir þ n � i

�
d

n
ðn � iÞ; and T��i;i ¼

n � i
r þ ir þ n � i

� l: ð24Þ

The related conditional transition probabilities are

p��i;iþ1
¼

rd
nlþ rd

and p��i;i ¼
nl

nlþ rd
: ð25Þ

Similarly, the transition probabilities for the transitions from state (�, i) are

T��i;i ¼
ir

1þ ir þ n � i
� l and T��i;i� 1

¼
1

1þ ir þ n � i
�
d

n
i: ð26Þ

The corresponding conditional transition probabilities are

p��i;i ¼
nlr

nlr þ d
and p��i;i� 1

¼
d

nlr þ d
: ð27Þ

We can use these probabilities along with Eq 22 to obtain the temperature initialised fixa-

tion probability and the average fixation time for the self-looped star graph, tT . In the follow-

ing, we define the temperature for the center and leaf nodes. The central node temperature is

T 0 ¼
XN

i¼0

wi 0 ¼ 1 � dþ nl ð28Þ

and the leaf node temperature is

T j6¼0 ¼
XN

i¼0

wij ¼
d

n
þ 1 � l: ð29Þ

The temperature initialised fixation probability for the self-looped star graph is

�
T
ðd; lÞ ¼

1 � dþ nl
nþ 1

�
�

0
þ
n d

nþ 1 � l
� �

nþ 1
�
�

1
: ð30Þ
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The temperature initialised average fixation time for the self-looped star graph is

tT ðd; lÞ ¼
1 � dþ nl

nþ 1
t�

0
þ
n d

nþ 1 � l
� �

nþ 1
t�

1
: ð31Þ

Substituting l ¼ 1

n and d ¼ 1

n2 in the above equation, we get the temperature initialised average

fixation time for the self-looped weighted star graph. Setting λ = δ = 1 yields the temperature

initialised average fixation time for the standard star graph.

To compute the average extinction time, we use symmetry arguments in Eqs 18, 19, 20, 21

and, 22. With this, we replace

T��i;iþ1
by T��n� i;n� i� 1

;

T��i;i by T��n� i;n� i;

T��i;i� 1
by T��n� i;n� iþ1

;

T��i;i by T��n� i;n� i;

�
�

i by ~��n� i; and;

�
�

i by ~��n� i:

ð32Þ

Doing so, we obtain

~��n� i ¼
~Að1; iÞ
~Að1; nÞ

; ð33Þ

where

~Aðl;mÞ ¼ 1þ
Xm� 1

j¼l

p��n� j;n� j

Yj

k¼l

p��n� k;n� kþ1

p��n� k;n� k� 1

: ð34Þ

~��i is the extinction probability of mutants starting with the state (�, i) node, and is equal to

1 � �
�

i . Similarly, the average extinction time starting with the state (�, n − i) obeys

~t�n� i ¼
Xn

l¼2

~Aðl; nÞ~CðlÞ �
1

~��n� i

Xi

l¼2

~Aðl; iÞ~CðlÞ; ð35Þ

where

~CðlÞ ¼
~��n� lþ1

T��n� lþ1;n� l
þ
p��n� lþ1;n� lþ1

p��n� lþ1;n� l

Xl� 1

j¼1

~��n� j

T��n� j;n� jþ1
þ T��n� j;n� j

Yl� 1

k¼jþ1

p��n� k;n� kþ1

 !

; ð36Þ

with ~��i being the extinction probability of mutants starting in state (•, i). It is given by

~��n� i ¼
Xi

j¼1

p��n� j;n� j
~��n� j

Yi

k¼jþ1

p��n� k;n� kþ1
: ð37Þ

The average extinction time starting in state (•, n − i) is

~t�n� i ¼
1

~��n� i

Xi

j¼1

p��n� j;n� j
~��n� j~t

�

n� j þ
~��n� j

T��n� j;n� j

 !
Yi

k¼jþ1

p��n� k;n� kþ1
: ð38Þ

Finally, using Eqs 38 and 35, the temperature initialised average extinction time of a mutant
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on the looping star graph is

~tT ðd; lÞ ¼
1 � dþ nl

nþ 1
~t�

0
þ
n d

nþ 1 � l
� �

nþ 1
~t�

1
: ð39Þ

From Fig 6, we see that the average fixation time of a mutant is higher than the average

extinction time of the mutant regardless of its relative fitness. Moreover, the fixation time

peaks near neutrality. Therefore, according to the Eq 4, the μth for the stars graphs is the

inverse of the average fixation times at neutrality. In the next section, we derive the scaling of

tT
1

at neutrality with respect to the population size N for the star graphs.

5.3.2 Scaling of the average fixation time with population size for the star graphs at neu-

trality. While the approach used above to compute the fixation and the extinction time on

star graph has many merits like extension to the frequency dependent selection case, it is not

straightforward to use this approach to derive the exact formula even at neutrality. Therefore,

to compute the scaling relation for the fixation time on star graphs, we use a method inspired

from Ref. [55]. To start, we recast the recursion Eq 14 into the form

�
�

i t
�

i ¼ p! �
�

iþ1
t�iþ1
þ p# �

�

i t
�

i þ �
�

i t
�

i ; 0 � i � n � 1; ð40Þ

�
�

i t
�

i ¼ p" �
�

i t
�

i þ p �
�

i� 1
t�i� 1
þ �

�

i t
�

i ; 1 � i � n; ð41Þ

Fig 6. Average extinction and fixation time for the self-looped star graph and the standard star graph. Here, we plot the average extinction and fixation time of a

mutant for the self-looped (weighted) star graph (panel A) and the star graph (panel B) as a function of mutant’s relative fitness. Solid lines corresponds to the analytic

results, Eqs 31 and 39. The circles represent Moran Bd simulations. Firstly, we observe that for both the graphs, the average fixation time of a mutant is higher than its

extinction time, regardless of the mutant’s relative fitness. Secondly, the average fixation time peaks near neutrality for both of the graphs. Therefore, according to Eq 4,

μth for the star graphs scales as the inverse average fixation time at neutrality. Because the fixation of a mutant takes longer on the self-looped star graph, the weak

mutation rate approximation is more restrictive for the self-looped star graph than the star graph. (Parameters: N = 10, wild-type fitness, f = 1, and the number of

independent realisations conditioned on mutant’s fixation or extinction are 2000).

https://doi.org/10.1371/journal.pcbi.1011387.g006
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Here, we have replaced,

p��i;iþ1
by p! ;

p��i;i by p# ;

p��i;i by p" ;

p��i;i� 1
by p ;

ð42Þ

because the conditional transition probabilities are independent of the number of mutants, see

Eq 25. The horizontal arrows in the subscript of π represent change in the number of mutants

in the leaf nodes, right arrow for the increase, and left arrow for the decrease in the number of

mutants. The vertical arrows in the subscript of π represent change in individual type at the

central node, upward arrow for the change from the wild-type to mutant type, and downward

arrow for the change from the mutant type to the wild-type. We also use the shorthand nota-

tions

t�i ¼
1

T��i;iþ1
þ T��i;i

;

t�i ¼
1

T��i;i þ T��i;i� 1

:

ð43Þ

Here, t�i is the average time spent in the state (•, i) (the sojourn time of state (•, i)) and t�i is the

sojourn time of state (�, i). Shifting the index i to i − 1 in recursion Eq 40, and solving for �
�

i t
�
i

gives,

�
�

i t
�
i ¼

1

p!
�
�

i� 1
t�i� 1
�
p#

p!
�
�

i� 1
t�i� 1
�

1

p!
�
�

i� 1
t�i� 1
: ð44Þ

Now we substitute this relation for �
�

i t
�
i in the recursion Eq 41, and obtain,

�
�

i t
�
i ¼

p"

p!
�
�

i� 1
t�i� 1
þ p �

p"p#

p!

� �

�
�

i� 1
t�i� 1
þ �

�

i t
�

i �
p"

p!
�
�

i� 1
t�i� 1
: ð45Þ

Recursion Eqs 44 and 45, can be written in a matrix representation as,

�
�

i t
�
i

�
�

i t
�
i

2

4

3

5

|fflfflfflffl{zfflfflfflffl}
Vi

¼

1

p!
�

p#

p!

p"

p!
p �

p"p#

p!

2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

"
�
�

i� 1
t�i� 1

�
�

i� 1
t�i� 1

#

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Vi� 1

þ

� 1

p!
�
�

i� 1
t�i� 1

�
�

i t
�
i �

p"

p!
�
�

i� 1
t�i� 1

2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ui� 1

:
ð46Þ

The matrix equation can be further simplified,

Vi ¼ AVi� 1 þ Ui� 1

¼ AiV0 þ
Xi� 1

j¼0

Ai� j� 1Uj:
ð47Þ

Remember that we want to compute the scaling for tT , and for that we need to solve the above

matrix equation for t�
0
, and t�

1
. The first thing that we need to calculate for Eq 47 is Ai. Using
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Eq 25 we substitute for the conditional probabilities in the definition of matrix A,

A ¼

nl
d
þ 1 � nl

d

nl
d

1 � nl
d

2

4

3

5 ¼
nl
d

1 � 1

1 � 1

� �

þ
1 0

0 1

� �

ð48Þ

In this way we find,

Ai ¼ i
nl
d

1 � 1

1 � 1

" #

þ
1 0

0 1

" #

ð49Þ

To evaluate t�
0
, we take the first row of the matrix Eq 47, and set i = n,

�
�

nt
�
n ¼

n2l

d
þ 1

� �

�
�

0
t�

0
þ
Xn� 1

j¼0

½An� j� 1Uj�0; ð50Þ

where
h
..
.i

0
is the 0th element of the column vector

h
..
.i

. Using the boundary condition, t�n ¼ 0

in Eq 50 we find

t�
0
¼ �

Xn� 1

j¼0

½An� j� 1Uj�0

ð n
2l

d
þ 1Þ�

�

0

:
ð51Þ

From Refs. [54, 56] we know that at neutrality

�
�

i ¼
dþ inl
dþ n2l

; and �
�

i ¼
inl

dþ n2l
: ð52Þ

These relations for the fixation probability also follow by substituting for the transition proba-

bilities in Eq 21. Using �
�

0
in Eq 51, we find

t�
0
¼ �

Xn� 1

j¼0

½An� j� 1Uj�0: ð53Þ

In order to simplify the r.h.s of the above equation, we need expressions for the waiting times

in the state i, namely, t�i , and t�i . We compute these expressions using Eqs 24, 26 and 43,

t�i ¼
nðnþ 1Þ

ðn � iÞðdþ nlÞ
and t�i ¼

nðnþ 1Þ

iðdþ nlÞ
: ð54Þ
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With all these expressions, we can now simplify the r.h.s of the Eq 53,

Xn� 1

j¼0

½An� j� 1Uj�0 ¼
Xn� 1

j¼0

"

ðn � j � 1Þ
nl
d
þ 1

� �

�
nlþ d
d

� �

�
�

j t
�

j

� �

ð55Þ

� ðn � j � 1Þ
nl
d

�
�

jþ1
t�jþ1
�
nl
d
�
�

j t
�

j

� �#

; ð56Þ

¼
nðnþ 1Þ

ðdþ nlÞðdþ n2lÞ

Xn� 1

j¼0

dþ n2l

j � n
� ðn � 1Þ

n2l
2

d

� �

; ð57Þ

¼ �
nðnþ 1Þ

ðdþ nlÞðdþ n2lÞ
ðdþ n2lÞHn þ ðn � 1Þ

n3l
2

d

� �

; ð58Þ

where Hn ¼
Pn

k¼1

1

k is the harmonic number. This gives us an expression for the conditional aver-

age fixation time at neutrality on the self-looped weighted star graph starting with the state (•,

0),

t�
0
¼

n4ðn2 � 1Þ

dðdþ nlÞðdþ n2lÞ
þ
nðnþ 1Þ

dþ nl
Hn: ð59Þ

Next, we show that t�
1

is related to t�
0
. To see this, let us take the second row of the matrix Eq

47, and set i = 1,

�
�

1
t�

1
¼
p"

p!
�
�

0
t�

0
þ p �

p"p#

p!

� �

�
�

0
t�

0|{z}
¼0

þ �
�

1
t�
1
�
p"

p!
�
�

0
t�
0

ð60Þ

Upon substituting for various quantities, we find,

t�
1
¼ t�

0
þ

n2 � 1

dþ nl
: ð61Þ

Using the temperature initialised definition of the average fixation time for the star graph, see

Eq 31, we can evaluate the expressions for the temperature initialised fixation time tT for the

self-looped star graph and the star graph without self-loops. For the self-looped star graph, set-

ting, λ = 1/n and δ = 1/n2, we have

tT

l ¼ 1=n;
d ¼ 1=n2

¼
ðn � 1Þððnðn4 þ n � 2Þ þ 2Þ n3 � nþ 1Þ þ ðn6 þ n3ÞHn

ððn � 1Þnþ 1Þðn2 þ 1Þ
ð62Þ

�
N�1 n5 � Oðn3Þ: ð63Þ
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For the star graph (without self-loops), setting, λ = δ = 1, we have

tT
l ¼ 1;
d ¼ 1

¼
ðn � 1Þðn5 þ n4 þ n2 þ 1Þ

ðnþ 1Þðn2 þ 1Þ
þ nHn; ð64Þ

�
N�1 n3 � Oðn2Þ: ð65Þ

5.3.3 Gillespie algorithm. In the Moran process, the fixation/extinction dynamics goes

through many inactive steps where the configuration of the population does not change. This

happens when one type is replaced by an offspring of its own type. This causes the individual-

based simulation to be time-consuming, especially for large population sizes [57]. To tackle

this problem, we use the Gillespie algorithm [58, 59] for the Moran fixation dynamics. We

apply the Gillespie algorithm to calculate the fixation time in the star with and without self-

loops for large population sizes. Simulation steps are as follows:

1. Calculate the transition probability for each possible transition which changes the configu-

ration of the population. The possible transitions and their corresponding transition proba-

bilities for the star graphs are discussed in the Sec. 5.3.1.

2. Calculate the total transition probability, which is the sum of all the transition probabilities.

For example if the current state is (•, i), then the total transition probability is T��i;iþ1
þ T��i;i .

3. Generate two random numbers, one to determine the time of the next event and another to

determine which event occurs. The first random number determining the time to the next

event is drawn from an exponential distribution with the mean equal to the total propen-

sity. The second random number is drawn from a uniform distribution.

4. Update the system state according to the event chosen in the previous step.

5. Repeat steps 1-4 until the system reaches fixation.

5.3.4 Complete and cycle graph. Compared to the star graph family, the fixation time for

the complete graph (i.e. the well-mixed population) can be computed easily. From the Refs.

[60–62], we know that the time to fixation for a single mutant in a population of size N is given

by

t1 ¼
XN� 1

k¼1

Xk

l¼1

�l

Tlþ

Yk

m¼lþ1

gm; ð66Þ

where gm ¼
Tm�
Tmþ

, and ϕi is the fixation probability for mutant type to fix when started with i
individuals and Ti± is the probability to transition from the state with i mutants to the state

with with i ± 1 mutants. The fixation probability ϕi is given by

�i ¼

1þ
Xi� 1

k¼1

Yk

l¼1

gl

1þ
XN� 1

k¼1

Yk

l¼1

gl

: ð67Þ
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The average fixation time on the complete when started with i individuals is,

ti ¼ � t1

�1

�i

XN� 1

k¼i

Yk

m¼1

gm þ
XN� 1

k¼i

Xk

l¼1

�l

�i

1

Tlþ

Yk

m¼lþ1

gm: ð68Þ

Using symmetry arguments, similar to the ones used for the case of star graph in the previous

subsection, the formula for the extinction time of i mutants has been computed in Ref. [62],

~t i ¼ � ~tN� 1

~�N� 1

~� i

XN� 1

k¼N� i

Yk

m¼1

1

gN� m
þ
XN� 1

k¼N� i

Xk

l¼1

~�N� l

~� i

1

TðN� lÞ�

Yk

m¼lþ1

1

gN� m
; ð69Þ

where the extinction probability of i mutants is ~�i ¼ 1 � �i and

~tN� 1 ¼
XN� 1

k¼1

Xk

l¼1

~�N� l

TðN� lÞ�

Yk

m¼lþ1

1

gN� m
: ð70Þ

For the complete graph, the transition probabilities are,

Ti� ¼
N � i

ir þ N � i
�

i
N � 1

and Tiþ ¼
ir

ir þ N � i
�
N � i
N � 1

: ð71Þ

These transition probabilities are plugged into Eqs 66 and 69 to obtain τ1 and ~t1, respectively.

From Fig 7A, we find that the fixation time of a mutant is higher than its extinction time

regardless of its relative fitness. Moreover, the fixation time of a mutant peaks near neutrality,

therefore according to Eq 4, it is the fixation time at neutrality that decides the mutation rate

threshold μth for the complete graph. We now compute how the fixation time scales with N for

Fig 7. Average extinction and fixation time for the isothermal graphs. The average fixation (via solid lines) and average extinction (via dashed lines) times for the two

isothermal graphs, namely, the complete graph and the cycle graph. To plot the analytical results, we have used Eqs 66 and 69. Open circles represent microscopic Moran

Bd simulations. Although, the probability for a mutant to fix on any of these structures is the same due to isothermal theorem, the times it takes to reach fixation are

different. Fixation on the cycle graph is slower than on the complete graph. As a result, the cycle graph is more restrictive to the weak mutation approximation. The

parameters are same as in Fig 6.

https://doi.org/10.1371/journal.pcbi.1011387.g007
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the complete graph. At neutrality, r = 1,

Ti� ¼
N � i
N
�

i
N � 1

; and Tiþ ¼
i
N
�
N � i
N � 1

: ð72Þ

Therefore, γi = 1, for all i. The fixation probability simplifies as to

�i ¼

1þ
Xi� 1

k¼1

Yk

l¼1

1

1þ
XN� 1

k¼1

Yk

l¼1

1

¼
i
N
; ð73Þ

which is expected as every neutral mutant is equally likely to fix as any other individual of the

population. Using the Eq 66, the average fixation time for a neutral mutant on the complete

graph is,

t1 ¼
XN� 1

k¼1

Xk

l¼1

N � 1

N � l
¼ ðN � 1Þ

2
; ð74Þ

which scales as N2 for N� 1 [60, 63].

We now move to the cycle graph. To compute τ1 and ~t1 for the cycle graph, the following

transition probabilities are used in the Eqs 66 and 69,

Ti� ¼
2

ir þ N � i
�
1

2
and Tiþ ¼

2r
ir þ N � i

�
1

2
: ð75Þ

Similar to the case of complete graph, from the Fig 7B, we find that the fixation time of a

mutant is higher than the extinction time regardless of its relative fitness. Also, the fixation

time of a mutant peaks near neutrality, the fixation time at neutrality decides the mutation rate

threshold μth for the cycle graph.

Since γm for the cycle graph is identical to the complete graph [10], we find the same fixa-

tion probabilities for any fitness value and initial state. In particular, at neutrality, we have

�i ¼
i
N for the cycle graph. For the cycle graph, the average fixation time for a neutral mutant

is,

t1 ¼
XN� 1

k¼1

Xk

l¼1

l ¼
NðN2 � 1Þ

6
; ð76Þ

which scales as N3/6 for large N.

5.3.5 Directed line with self-loops. Here we compute the average fixation and extinction

time for the self-looped directed line. Let us first study the case of fixation time. A mutant can

fix on the self-looped directed line if and only if it appears at the root node. Assuming this to

be the case, we have

T�i� ¼ 0 and T�iþ ¼
r

ir þ N � i
�
1

2
; ð77Þ

where T�i� is the probability to transition from the state with i mutants to the state with i + 1

mutants given that the initial mutant appears at the root node. Similarly, T�iþ is the probability

to transition from the state with i + 1 mutants to the state with i mutants given that the initial

mutant appears at the root node. If the first mutant appears at the root node, the number of

mutants at any time in the population can only increase. Taking this into account, we have the
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average fixation time for a mutant on the directed self-looped line,

t1 ¼
XN� 1

k¼1

1

T�kþ
; ð78Þ

where 1=T�iþ is average waiting time in the state with i mutants, assuming that the initial

mutant appeared on the root node. This expression for the τ1 can also be derived from the Eq

66. On substituting the transition probabilities T�iþ in the r.h.s of the Eq 78, we find

t1 ¼
XN� 1

k¼1

2

r
ðkr þ N � kÞ ¼ NðN � 1Þ 1þ

1

r

� �

; ð79Þ

which scales as N2(1 + 1/r) for large N. Unlike other graphs, the fixation time for the self-

looped directed line does not peak near neutrality, see Fig 8. Time to fixation of a mutant

increases as its relative fitness decreases. Moreover, for the directed line we have tT
1
¼ t1. In

fact for any mutant initialisation scheme, the fixation time is given by the formula 79. This

independency of the fixation time from the initialisation scheme holds for all the single rooted

graphs.

Now, we proceed to compute the extinction time of a mutant on the self-looped directed

line. However, computing the average extinction time is not as straightforward as the fixation

time. Extinction takes place when an initial mutant appears on any of the non-root node. Con-

trary to the case of fixation where the number of mutants can only increase, here the number

of mutants can increase as well as decrease. What makes things slightly complicated is that the

Fig 8. Average extinction and fixation time for the self-looped directed line. The average extinction time (dashed

line) and the average fixation time (solid line) are shown for the self-looped directed line. Circles represent the total

average time of the trajectories that lead to the fixation of mutants, whereas diamonds represent the average time

spanned by the trajectories where mutants get extinct. We see a good agreement between analytical results and the

corresponding simulations. The approximated formula for the average extinction time, Eq 82, works well in the regime

of high relative fitness, as the dashed line starts coinciding with the simulations. Note that the average extinction time

for a mutant can exceed the average fixation time. This is different from what we have observed in Figs 6 and 7. Also,

for a given fitness domain, the average extinction and fixation time peaks away from the neutrality. Therefore, to

decide the validity of the weak mutation rate approximation, fitness regions different from neutrality must be

considered.

https://doi.org/10.1371/journal.pcbi.1011387.g008
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number of mutants stops to increase once the terminal node is occupied with a mutant indi-

vidual. In that scenario, the transition probabilities are given as,

T�i� ¼
1

ir þ N � i
�
1

2
and T�iþ ¼ 0; ð80Þ

where T�i� is the transition probability from the state with i mutants to the state with i ± 1

mutants, given that the initial mutant appears at a non-root node and the terminal node (node

N − 1) of the directed line is occupied by a mutant type. We approximate the average extinc-

tion time by considering the trajectory where the number of mutants keep on increasing until

the terminal node get occupied by the mutant type, and then followed by the decrease in

mutants leading to extinction. An example case is shown in the Fig 9 (category third). This

approximation works well in the limit of f 0/f� 1. With this approximation, we have the

extinction time of a mutant when appeared on a non-root node α,

~ta ¼ N � 1 � aþ
XN� 1

k¼N� a

1

T�ðN� kÞ�
: ð81Þ

Here, 1=T�
ðN� iÞ� is the average waiting time in the state with N − i mutants, given that the initial

mutant appeared on a non-root node (node 0) and the terminal node is occupied by the

mutant type. The above equation can also be derived from the Eq 69. The temperature initia-

lised average extinction time of a mutant on the self-looped directed line is,

~tT
1
¼
XN� 1

a¼1

T a

XN� 1

b¼1

T b

~ta;
ð82Þ

Fig 9. Paths to extinction. Here, the possible mutant extinction routes are shown for the self-looped directed line

when the initial mutant appears on a non-root node. For purpose of illustrations, we have chosen N = 4. Broadly

speaking, there are three categories of extinction trajectories. (i) The case where the initial mutant goes extinct without

spreading in the population. This would be a one time step extinction process, shown by arrow leading from the boxed

initial state to the wild-type state, highlighted in grey. (ii) The second category corresponds to the case, where the

initial mutant spreads, but the mutant goes extinct before the terminal node is ever occupied by a mutant. This would

contain all the paths that go from the boxed state via two mutants to the grey highlighted state without going through

the states highlighted in red. (iii) The third category refers to the case, where the initial mutant spreads and reach the

state highlighted in red. After the terminal node is occupied by the mutant type, the number of mutants then starts to

decrease from the left (shown via the trajectory marked with blue arrows). This third category is especially relevant

when the mutant’s relative fitness is very high. We make use of this argument to approximate the extinction time for

the self-looped directed line by computing the time covered by the blue arrowed trajectory.

https://doi.org/10.1371/journal.pcbi.1011387.g009
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where T a is the temperature of node α. T a=
PN� 1

b¼1

T b is the probability that the initial mutant

appears at the node α, given that the mutant ultimately goes extinct, i.e., given that it appears

at a non-root node. From the Fig 8, we see that the average extinction time of a mutant

increases with relative fitness. However, for a given fitness domain, we find that the contribu-

tion to the mutation threshold μth comes from the average fixation time computed for the low-

est possible mutant’s relative fitness.

Fig 10. Universal steady-state fitness among non self-looped graphs. (A) In the steady-state, the complete graph, the cycle graph, and the star graph, attain the same

average fitness in the mutation-selection balance. The steady-state average fitness obtained by these graphs is higher than that of the self-looped complete graph,

indicating that the dynamics on these graphs—unlike the self-looped complete graph—is not entirely uncorrelated in the fitness space and time. One common thing in

these three graphs is that every node has at least one incoming link. (B) The molded directed line is constructed by adding a link directed from node 1 to node 0, the root

node, so that every node has non-zero incoming links. In the steady-state, not only the molded directed line attains the same average fitness as the complete graph (non

self-looped), but every single node becomes indistinguishable. (C) The same observation is made for the modified burst graph. (D) These observations remain valid for

different population sizes. The difference between the steady-state average fitness of the non self-looped and the self-looped complete graph decreases with increasing N,

indicating that the evolutionary dynamics becomes more random with increasing N (Parameters: same as Fig 3).

https://doi.org/10.1371/journal.pcbi.1011387.g010
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5.4 Non self-looped graphs and universality at equilibrium

Here, we study the evolutionary dynamics, considering both directed as well as undirected

graphs, but without self-loops.

In the absence of self-loops, the average steady-state fitness for all the graphs, whether

directed or not, is the same, see Fig 10A. We hypothesise that all the graphs where every node

has a finite temperature attain the same steady-steady fitness in the mutation-selection balance.

All the nodes for these graphs become indistinguishable in their fitness in the steady-state. The

steady-state fitness attained by these graphs in the mutation-selection balance is higher than the

self-looped complete graph. For these graphs, the fitnesses of nodes in the steady-state are not

completely uncorrelated in time as opposed to nodes of the self-looped complete graph where

the fitness states of nodes are entirely uncorrelated in time. To test our hypothesis, we analysed a

few variants of the directed line and burst graph in Fig 10B and 10C, where each node has a

finite temperature. To achieve this, we add a link from node 1 to the root node of the directed

line yielding a molded directed line. Similarly, the modified burst is constructed by adding a link

from the leaf node to the center in a burst graph. In both the cases, we find that the steady-state

fitness attained by these two variant graphs in the mutation-selection balance is the same as that

of the complete graph and hence, the other non-self looped graphs considered in Fig 10A. We

further check the validity of our hypothesis by varying the population size. In Fig 10D, we see

that all the non self-looped graph attain the same steady-state fitness for all population sizes.

Another interesting observation is that the steady-state fitness balance of the non self-

looped graphs decreases with increasing N. This is interesting, because with increasing N one

typically expects that the associated increase in the selection strength leads to an increase in

the fitness. However, the opposite is seen here. A possible explanation for this is that in the

Moran Birth-death update scheme, high fitness nodes are more likely to be selected for repro-

duction, but since there are no self-loops, highly fit individuals can persist in the population

for longer times than the low fitness nodes which eventually leads to an the increase in popula-

tion fitness. However, with the increase in the population size, the high fitness nodes tend to

get replaced relatively more often as they get less selected for birth. On increasing N, the

steady-state average fitness of the non self-looped graphs get closer to that of the average

steady-state fitness of the self-looped complete graph. In Sec. 3.4.1, we saw that at long times

the fitness of nodes for the self-looped complete graph becomes uncorrelated in time and

hence the dynamics becomes completely random. With the increase in N, the strength of ran-

domness increases over selection of high fitness valued individuals.
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