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Abstract

serosim is an open-source R package designed to aid inference from serological studies, by

simulating data arising from user-specified vaccine and antibody kinetics processes using a

random effects model. Serological data are used to assess population immunity by directly

measuring individuals’ antibody titers. They uncover locations and/or populations which are

susceptible and provide evidence of past infection or vaccination to help inform public health

measures and surveillance. Both serological data and new analytical techniques used to

interpret them are increasingly widespread. This creates a need for tools to simulate sero-

logical studies and the processes underlying observed titer values, as this will enable

researchers to identify best practices for serological study design, and provide a standardized

framework to evaluate the performance of different inference methods. serosim allows users

to specify and adjust model inputs representing underlying processes responsible for gener-

ating the observed titer values like time-varying patterns of infection and vaccination, popula-

tion demography, immunity and antibody kinetics, and serological sampling design in order to

best represent the population and disease system(s) of interest. This package will be useful

for planning sampling design of future serological studies, understanding determinants of

observed serological data, and validating the accuracy and power of new statistical methods.

Author summary

Public health researchers use serological studies to obtain serum samples from individuals

and measure antibody levels against one or more pathogens. When paired with appropri-

ate analytical methods, this data can be used to determine whether individuals have been

previously infected with or vaccinated against those pathogens. However, there is
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currently a lack of tools to simulate realistic serological study data from the processes

determining these observed antibody levels. We developed serosim, an open source R

package which enables users to simulate serological study data matching their disease sys-

tem(s) of interest. This package allows users to specify and modify model inputs responsi-

ble for generating an individual’s antibody measurements at various levels, from the

within-host processes to the observation process. serosim will be useful for designing

more informative serological studies, better understanding the processes behind observed

serological data, and assessing new serological analytical methods.

1 Introduction

Serological studies, also known as serosurveys, measure individual biomarker quantities,

namely antibody titers, across populations to help uncover important hidden epidemiological

variables such as susceptibility and past epidemic and vaccination trends [1]. These hidden

variables are required to predict and prevent outbreaks at the population level, and while they

may be indirectly inferred via vaccination coverage and incidence data, this inference is subject

to inaccuracies since vaccination coverage does not directly translate to individuals immu-

nized and incidence data is often underreported and incomplete [2–8]. Properly designed and

analyzed serological studies mitigate these issues by providing direct measures of population

level immunity [9,10].

The optimal design and interpretation of serological studies depends on many factors,

including the antibody class or biomarker measured, the age at which individuals are sampled,

the frequency of sampling, the assay used for analysis, etc [1,6]. These features yield different

insights into processes associated with the immune landscape (e.g., who is and isn’t protected

from infection or disease by pre-existing immunity). Cross-sectional serosurveys provide a

snapshot of the seropositivity rates and therefore the proportion of individuals protected

against a pathogen (which might be used to target vaccination campaigns [1,10]), while longi-

tudinal serosurveys can also yield estimates of seroconversion events between sampling times,

and antibody waning rates [11]. Difficulties arise in serosurvey design and analysis as research-

ers strive to achieve a representative sample of the target population to make generalizations at

larger scales, or attain the right temporal sampling density to capture parameters of interest

like waning rates [6].

Serological data analysis is complicated by the various unobserved and complex immuno-

logical and epidemiological processes which generate an individual’s observed biomarker

quantity. Statistical and mathematical models designed to interpret observed antibody titers,

or biomarkers more generally, range from simple measures of seroconversion or seropositivity

(e.g., serocatalytic models [12,13]) to complex models of within- and between-host processes

(e.g., hierarchical models of antibody kinetics [14–16]). All of these approaches aim to make

useful inferences about exposures and immunity without exhaustively capturing all features of

the true data-generating process [8,12,17]. More realistic models describe the link between

observed biomarker measurements and latent infection and vaccination states (Fig 1) and can

be used to calculate the likelihood of an infection, and estimate antibody kinetics parameters

(see Supporting Text 1.2 of Hay et al., 2020 for a full description) [14–16]. These models typi-

cally describe key features of the multi-level data-generating process: the population-level pro-

cesses which govern rates of exposure; the within-host processes which determine immunity

and latent antibody kinetics; and the observation process which dictates the relationship

between observed and true biomarker quantities (Fig 1). Additionally, hierarchical Bayesian
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models can help account for the variability from multiple epidemiological processes which can

improve our understanding of heterogeneities driving disease dynamics [14,15].

Although new analytical techniques have been developed to aid in the interpretation of

serological studies [9,13,15,16,18], there is a need for common frameworks to simulate

observed serological data arising from complex hidden and unobserved epidemiological and

immunological processes within different pathogen systems. By simulating synthetic datasets

from different complex generative models where the true, full complexity of the data generat-

ing process is specified but not observable, such frameworks can be used to assess the perfor-

mance and trade-offs of new analytical techniques. The serosim package allows users to

simulate observed biomarker quantities arising from a user-specified set of population-level

and within-host processes. These simulations provide datasets to evaluate different statistical

Fig 1. Directed acyclic graph representation of the full serosim model. Each model level is shown within a box with stochastic

dependencies depicted by a solid arrow and deterministic dependencies by a dashed arrow. Parameters/latent states of interest are

depicted within the blue circles while the red square represents the observed state. The unobserved processes level (latent states) contains

the epidemiological model (exposure model and immunity model) and the antibody model while the observed processes level contains

the observation model. The probability of a successful exposure event x for individual i at time t (ϕi,t,x) is determined by the user-specified

exposure and immunity models (1,2,3) while Zi,t,x is the binary state indicating whether individual i was infected or vaccinated by

exposure event x at time t as determined by a Bernoulli trial (4). The antibody model (5) specifies how the true quantity of biomarker b
for individual i at time t (Ai,t,b) is generated. Lastly, the observation model (6) specifies how the observed quantity of biomarker b for

individual i at time t (Yi,t,b) is generated as a probabilistic function of the true, latent biomarker quantity A. Created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1011384.g001
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methods and study designs, allowing users to specify and adjust model inputs to best represent

the population and disease system(s) of interest.

We envisage three main use cases for serosim:

• Plan serological study sampling strategies by simulating various observation processes (vary-

ing sample sizes, sampling frequency and assay characteristics) and analyzing the inferences

that can be made given the quality of the generated data (e.g., power analyses).

• Uncover the underlying immunological and epidemiological mechanisms responsible for

observed biomarkers (e.g., antibody titers) by comparing simulations under different models

and parameter values to existing serological study results.

• Generate synthetic serological data from complex, user-specified generative models to assess

the performance and trade-offs of inference models.

Here, we explain the structure of the serosim package and its implementation. We then out-

line the components required for the main function, runserosim, explain their purpose and

structure, outline useful tools available within serosim to aid in their construction and provide

a simple example case study. Additionally, we direct users to four case study vignettes, available

in the package, structured in the same order as the following methods subsections to assist

users in constructing the required simulation inputs under different contexts. Lastly, we dem-

onstrate a simple use case for serosim; using simulation-recovery experiments to assess the sen-

sitivity and specificity of different biomarker thresholds of seropositivity.

2 Methods

Approach

Serosim allows users to define the data-generating process underpinning theoretical serological

data with maximum flexibility. To define the different stages of the simulation, we first con-

sider what a generic, full likelihood and prior function would look like to estimate antibody

kinetics and epidemiological parameters conditional on a set of observed biomarker quantities

in a Bayesian framework (Eq 1, also see [15,19,20]). Each probabilistic term in this equation

corresponds to a stochastic event in the simulation (though deterministic models may also be

implemented in the same framework). There are a number of indices which must first be

described (Table 1). Each individual is denoted i, t denotes the discrete time period during

which an exposure event or observation could take place and j denotes all time periods prior to

t. Each biomarker which we are concerned with, either as latent quantities or observations are

denoted b, and may be stimulated by one or more exposure events denoted x. Each individual

may be associated with a set of demographic information, Di including a group identifier g.

PðA; Z;YjYÞ /
Yn

i¼1

Y

t2ti

PðYi;t;bjAi;t;b;Y
�

Qjmax

j¼jmax

PðAi;j;bjZi;j�t;x;Yi;DiÞPðZi;j�t;xjFi;t;x;Zi;j<t;x;Yi;DiÞPðFi;t;xjlg;t;x;Yi;DiÞÞ PðlÞPðDÞPðYÞ ð1Þ

Serosim combines the unobserved and observed processes which together contain three dif-

ferent model levels (Fig 1, Table 2). The unobserved processes are composed of the epidemio-

logical model and antibody model. The epidemiological model contains the exposure model h
which will determine the probability that an individual i is exposed to an exposure event x and

the immunity model m which will determine whether that exposure event is successful at gen-

erating or boosting biomarker quantities given any relevant factors (e.g., vaccination schedule,
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titer threshold required for protection, etc.). For the purpose of serosim, exposure events x are

defined as any event which leads to biomarker b production, irrespective of any associated dis-

ease onset. This definition of exposure allows users to track vaccination, infection and re-infec-

tion events simultaneously but separately alongside the biomarkers produced as a result of

different exposure events. Biomarkers b can represent antibodies binding the entire virus or a

specific epitope depending on the user’s preference and assay characteristics. Users will define

the biomarker(s) affected by each exposure type within the exposure-to-biomarker map which

follows a many-to-many relationship and tells the antibody model f which biomarker(s) (e.g.,

which specific antibody titers) will get boosted and tracked after each exposure event x, allow-

ing for simulation of a diverse range of pathogen systems [10,18,21–24] (Fig 2).

We distinguish between exposure event x and biomarker b to allow both a single exposure

event to boost multiple biomarkers (e.g., antibody titers of multiple antigens following a multi-

valent vaccine of a single infection) and also to allow the same biomarker to be boosted by

multiple exposure events (e.g., both vaccination and natural infection boosting the same bio-

marker) (Fig 2). This distinction also allows the user to assign different biomarker kinetics

parameters (e.g., boosting and waning rates) to different exposure events. Biomarkers can also

represent different antibody classes (e.g. IgM and IgG) allowing users to assign different time

Table 1. Names and descriptions of the variables used in the serosim package.

Variable Name Description

Inputs

i Individual Unique individual identifier.

t Time Time point at which an individual may be exposed or have a biomarker quantity calculated.

x Exposure event Identifier for each exposure event which can generate an immunological response in the model (e.g., infection with a

SARS-CoV-2 variant or vaccination with a multivalent vaccine).

b Biomarker Identifier for the biomarker(s) boosted in response to a particular antigen present in the exposure event (e.g.,

pathogen-specific ELISA IgG titers, microneutralization titers etc.).

g Group Group identifier, allowing group-specific force of infection and vaccination parameters (e.g., spatial structure).

D Demography data Additional demographic data which may impact the infection generation process, the immunity model and/or

antibody kinetics (e.g., age-dependent antibody waning rates or vaccination schedule).

λ Force of exposure (FOE) Parameters for the exposure process model, ultimately used to generate a probability of infection or vaccination for a

given time period t.
θ Antibody, immunity and

observation model parameters

Parameters governing the within-host process models (e.g., how biomarker quantities change over time-since-infection

and how immunity depends on past exposure events).

Outputs

F Time varying probability of a

successful exposure event

Probability of exposure (determined by the exposure model) multiplied by the probability of a successful exposure

event defined as a measurable immunological response (determined by the immunity model).

Z Immune history array Array of latent binary states (i.e., 0 or 1) representing the time points and exposure events that an individual has been

infected or vaccinated at.

A True biomarker quantity True, latent biomarker quantity predicted by the antibody kinetics model prior to simulating the observation process.

Y Observed biomarker quantity Observed biomarker quantity assuming some observation process dictating the distribution of Y as a function of A.

https://doi.org/10.1371/journal.pcbi.1011384.t001

Table 2. serosim framework.

Unobserved processes Observed processes

Epidemiological model Antibody model Observation model

1. Exposure model (h):

will determine the probability that an

individual is exposed to an exposure

event which can be any event which

leads to biomarker production

2. Immunity model (m):

determines whether an exposure event is

successful conditional on what the actual

exposure is (vaccination, infection or re-

infection) and the relevant factors

3. Antibody model (f): tracks

antibody kinetics, or more broadly

biomarker kinetics for each biomarker

produced from successful exposure

events

4. Observation model (q): indicates how

observed biomarker quantity Y are

generated as a probabilistic function of

the true, latent biomarker quantity A

https://doi.org/10.1371/journal.pcbi.1011384.t002
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signatures to biomarkers tracked within the simulation. Users can also incorporate multi-dose

vaccines given at different ages by breaking up the vaccine exposure events into multiple expo-

sure events for each vaccine dose. This will allow users to set different age restrictions and anti-

body kinetics parameters for each dose. Although a majority of serosim use cases will track

antibodies as biomarkers, we use “biomarker” as a broader term to accommodate newer tech-

nologies emerging which don’t measure antibodies directly but rather measure a proportional

biomarker [25]. For the purposes of this paper and example vignettes in serosim, the term bio-

marker and antibody are used interchangeably.

The immunity model m then determines whether that exposure event x is successful condi-

tional on what the actual exposure is (vaccination, infection or re-infection) and any relevant

factors, discussed later. The antibody model f tracks antibody kinetics, or more broadly bio-

marker kinetics for each biomarker produced from successful exposure events through time.

The exposure, immunity and antibody models make up the complex, unobserved processes

responsible for generating an individual’s true biomarker quantity A (Fig 1, Table 2).

The second and final level contains the observation model q which specifies the serological

study observation process to indicate how observed biomarker quantity Y are generated as a

probabilistic function of the true, latent biomarker quantity A (Fig 1, Table 2). Users can also

specify the sampling design (time, frequency and sample size) for the serosurvey and any assay

characteristics (sensitivity, specificity and detection limits). Although the underlying, unob-

served model inputs can be varied, serosim ultimately produces the same output: observed bio-

marker quantities Y.

Fig 2. Exposure to biomarker mapping example scenarios. The biomarker map specifies the exposure events x and biomarkers b of

interest for the user’s simulation. Exposure events x are defined as any event which leads to biomarker production. Biomarkers b can

represent antibodies against the entire virus, a specific epitope or a specific antibody class depending on the user’s preference and assay

characteristic. Here, we provide various examples of biomarker maps to illustrate the flexibility over the data-generating process

provided to the user. Created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1011384.g002
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Implementation

The serosim package is written in the R programming language. All code is publicly available

on GitHub (https://github.com/seroanalytics/serosim) along with installation instructions and

dependencies. For the following sections describing the code, typewriter font refers to function

arguments while bold font refers to R functions.

The core of serosim is contained within the runserosim function, where users specify each of

the required model inputs (S1 Table). This function must take a number of default arguments

described in S1 Table, but additional optional arguments may also be provided for user-written

functions. This gives the user flexibility to tailor their own settings, models and parameters to

their population and disease system(s) of interest. For example, if the user wishes to model a

fully immunizing pathogen system like measles they can specify an immunity model which only

allows individuals with biomarker quantity (e.g. IgG antibody titer) below a specified threshold

to become infected and restrict re-infections. If the user wishes to model a pathogen system

with multiple infection events and cross-reactivity between different pathogen strains like influ-

enza then they would specify an immunity model where the probability of infection is condi-

tional on an individual’s biomarker quantity (e.g., antibody titer) from any cross-reacting

antibodies and allows for multiple infection events. These models would be specified within

their respective runserosim argument and any additional arguments needed will be passed at

the end of runserosim. Users are not constrained to data structures of particular dimensions or

types, and thus all of the model components can be extended to any desired level of complexity.

The serosim package includes tools to help the user generate the necessary inputs for the

runserosim function, discussed below in their respective sections. Additionally, there are

some ready-to-use model functions built into the serosim package (S4–S8 Tables). If any of

these model functions meet the needs of the user’s disease system and simulation model, the

user simply has to specify the desired function as its corresponding argument within the run-

serosim function. These ready-to-use functions also provide a helpful framework if users wish

to create their own function or make modifications to an existing function.

The following subsections 2.1–2.7 step through the process of building and specifying the

required inputs for a simulation presented in the same order as Fig 3. We have also integrated

the quickstart example available within the package within this description.

2.1 Simulation settings

Here, the user specifies the start and end time for the simulation. The model will simulate

from the initial time point to the final time point in increments of one unless specified other-

wise. Note that these are arbitrary time steps selected by the user which will need to be scaled

to the right time resolution to match any time-based parameters used in the model (e.g., anti-

body waning rates). In this example, we simulated a ten year period at the monthly timescale

by setting the start and end time points to 1 and 120.

2.2 Population demography

Users will specify the population size and have the option of specifying any population demo-

graphic elements of interest and relevance for the subsequent models like an individual’s socio-

economic status, nutritional status, sex, group, birth time, etc via the demography tibble

[26]. See S1.1 Text for information on how to use the generate_pop_demography function to

build your demography tibble.

For this example, we simulate a population with 100 individuals and we are not interested

in tracking any demographic information other than an individual’s birth time. We will use
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the generate_pop_demography function to simulate random birth times and create the

demography tibble needed for runserosim.

2.3 Exposure to biomarker mapping

Here, users specify the relationship between exposure event x and biomarker(s) b (Fig 2). This

example assumes one circulating pathogen responsible for a natural infection exposure event

(exposure_ID = ifxn) and one vaccine exposure event (exposure_ID = vacc) both of which will

boost the same biomarker (biomarker_ID = IgG) (S1 Fig). runserosim requires that exposure

and biomarker IDs are numeric so we will use the reformat_biomarker_map function to cre-

ate a new version of the biomarker map (S1.2 Text, S1 Fig). Users can go directly to the

numeric version if they wish (S1 Fig).

2.4 Exposure model

Here, users specify any known information on force of exposure for all exposure events x and

the first component of the epidemiological model, the exposure model h. We distinguish

between the probability of exposure (determined by the exposure model) and the probability

of an exposure event generating a successful immunological response (determined by the

immunity model). For example, an individual’s probability of exposure to exposure event x
specified at the population level might be different from their probability of becoming immu-

nized conditional on what the actual exposure event is (vaccination, infection or re-infection)

and any relevant factors (e.g. age, number of past vaccinations, current titer level, etc).

The force of the exposure event (foe_pars) argument is typically a three-dimensional

array indicating the force of exposure for each exposure event in each group (if groups are

specified within demography) in each time period, though this object can also be another

data type for more complex models. Since exposure events can also be vaccination events, we

use the term force of exposure (FOE) rather than force of infection. If there is only one group

specified then all individuals will be under the same force of exposure parameter and dimen-

sion 1 of foe_pars will contain just one row.

Although this package does not include a suite of complex transmission models (e.g., com-

plex Susceptible-Infected-Recovered models), users can incorporate the outputs of their own

preferred transmission model within runserosim provided the function takes the same argu-

ments and has the same output as any of the existing exposure models. In foe_pars, users

can input the force of infection generated from their transmission model into the exposure_
id dimension associated with natural infection events. Users can also use the optional

immune_histories_fixed argument in runserosim to include prespecified information

on an individual’s immune history (e.g., when they were infected or vaccinated) (S1 Fig). Wher-

ever an entry is provided in the immune_histories_fixed argument, runserosim

assumes that exposure time and type are known and fixed (e.g., specifying known vaccination

times or specifying known infections from a transmission model). If the entry is left as NA, then

runserosim simulates an exposure event for that entry using the specified models.

The force of exposure (foe_pars) array is used by the exposure model function which will

determine the probability that an individual is exposed at each time point. The exposure model,

Fig 3. Required inputs, models and subsequent outputs from the main serosim function, runserosim. In order to build a simulation with

serosim, users must follow the 7 steps outlined here and in the methods section to specify the required inputs and models for runserosim. Steps

1–3 specify initial simulation inputs while steps 4–7 specify the bulk of the unobserved and observed processes. For steps 4–7, we outline the user-

specified inputs in the left column which are used for the user-specified models as depicted by the sampling statements in the middle column.

Lastly, the generated outputs produced once the simulation is complete are depicted in the right column. Created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1011384.g003
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specified by the exposure_model argument within runserosim, allows the user to deter-

mine which factors are relevant for an individual’s probability of exposure. The exposure model

can vary in complexity with simpler versions calculating the probability of exposure by just tak-

ing the exposure event’s population level force of exposure into account and with more complex

versions providing a functional transformation of the population level force of exposure given

an individual’s demographic information specified within demography. For example, an indi-

vidual can be in a group (e.g., a location) where the force of exposure is 0.5 but their socio-eco-

nomic status is high which might reduce their probability of exposure given that the pathogen is

circulating less in that socio-economic class. See S4 Table for more information on the ready-

to-use exposure models included within the serosim package. The exposure model is given by:

PðEi;t;x ¼ 1Þ ¼ hðlg;t;x;DiÞ ð2Þ

where P(Ei,t,x = 1), the probability of an exposure event E for individual i at time t to exposure

type x, is a function h of parameters specified within the exposure model, namely λg,t,x which

represents the force of the exposure (FOE) at time t in group g from exposure type x. Di repre-

sents relevant demographic information of individual i, which may be used to modulate the

force of exposure term (e.g., if there are differences in FOE by age).

In this example, we assumed a constant force of exposure for exposure type one representing

natural infection at λ1,t,1 = 0.01 and for exposure type two representing vaccination at λ1,t,2 = 0.1

for all t. Since we did not specify different groups for our individuals within demography, all indi-

viduals will automatically be assigned group one within runserosim. Therefore, we only need one

row for dimension one in foe_pars. Dimension two of foe_pars represents the total simu-

lation time so there are 120 columns (where the first column is time step one, second column is

time step two, etc.) and dimension three is for each exposure type. Similarly, we specified a simple

exposure model which calculates the probability of exposure directly from the force of exposure

at that time step. In this selected model, the probability of exposure ð1 � e� lt;xÞ depends only on

the force of exposure (λt,x) at that time for that exposure type.

2.5 Immunity model

The immunity model m, specified by the immunity_model argument, will determine

whether an exposure event is successful in generating an immunological response given any

relevant factors specified by the user. The immunity model can vary in complexity with sim-

pler versions assuming all exposures are successful and with more complex versions taking

into account what the exposure event is (e.g., a vaccination event or natural exposure to a path-

ogen), an individual’s past exposure history, current biomarker quantity and any relevant

demography data. The immunity model is given by:

PðZi;t;x ¼ 1jEi;t;x ¼ 1Þ ¼ mðZi;j<t; yi;DiÞ ð3Þ

where P(Zi,t,x = 1|Ei,t,x = 1), the probability of successful infection or vaccination of exposure

event x given an exposure, is a function m of parameters specified within the immunity model.

Zi,j<t represents all successful infection/vaccination events at each timepoint j prior to time t
(i.e., the immune history), θi represents the immunity model parameters and Di represents any

relevant demographic data. Note that

PðZi;t;x ¼ 1jEi;t;x ¼ 0Þ ¼ 0 and PðZi;t;x ¼ 0jEi;t;x ¼ 0Þ ¼ 1:

�i;t;x ¼ PðZi;t;x ¼ 1jEi;t;x ¼ 1ÞPðEi;t;x ¼ 1Þ ð4Þ
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where ϕi,t,x is the probability of successful exposure by exposure type x for individual i at time t
given the probability of exposure P(Ei,t,x = 1) as determined by the exposure model h and the

probability of a successful exposure event P(Zi,t,x = 1|Ei,t,x = 1) as determined by the immunity

model m.

Zi;t;x � Bernoullið�i;t;xÞ ð5Þ

where Zi,t,x is the binary state indicating whether individual i was infected or vaccinated by

exposure type x at time t as determined by a Bernoulli trial.

Users can incorporate immunity from prior infection or vaccination and add limits to vac-

cine exposure events to prevent vaccinations after a completed series or before an individual is

eligible. See S5 Table for more information on the ready-to-use immunity models included

within the serosim package. Any immunity model parameters θ needed for the immunity

model can be specified within model_pars.

For this example, we selected a simple immunity model where the probability of a success-

ful exposure event is only conditional on the total number of previous exposure events. With

this model, the probability of successful vaccination exposure depends on the number of vac-

cines received prior to time t (j�t) and age at time t, while the probability of successful infec-

tion is dependent on the number of infections prior to time t (j�t). We set both the maximum

number of successful vaccination and natural infection events to one and age of vaccine eligi-

bility starting at nine months old.

2.6 Antibody model and model parameters

The antibody model f, specified by the antibody_model argument, is used to track anti-

body kinetics, or more broadly biomarker kinetics for each biomarker produced following suc-

cessful exposure events given the biomarker kinetics model parameters specified in model_
pars and any relevant demography data specified in demography. Here, users can specify

their preferred model to represent the antibody kinetics process. The antibody model can be

implemented as any R function which returns an individual’s expected value for a target bio-

marker at a given time point in the simulation.

The antibody model is formulated to capture the possibility of a probabilistic relationship

between immune history, demography and model parameters with true biomarker quantities.

However, in most cases the user will likely assume that biomarker quantity is a deterministic

function of immune history, demography and model parameters. In the deterministic case,

latent biomarker quantity A for individual i at time t for biomarker b given that individual’s

vector of latent infection/vaccination states Zi, antibody model parameters θi and relevant

demographic information Di can be generically described by:

Ai;t;b ¼ f ðZi;j�t;x; yi;DiÞ ð6Þ

where Ai,t,b, the true quantity of biomarker b for individual i at time t, is described by a func-

tion f conditional on parameters specified within the antibody model, including the infection/

vaccination history for individual i for all exposure events which occurred prior to time

t (Zi,j�t,x), the antibody model parameters (θi) and any relevant demography data Di.

The model parameters tibble, model_pars, specifies any parameters needed for the anti-

body model. Like the exposure and immunity models, the antibody model can vary in com-

plexity depending on the user’s preferences. For example, users could implement an explicit

model of antibody secreting B cells or a biphasic boosting-waning model [27–29]. Complex

antibody repertoires reflecting cross-reactivity and antigenically broad responses to multiple

antigens or pathogens can also be implemented through specifying antigenic relationships.
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For example, the cross-reactivity between pathogens could be modeled either as a function of

Euclidean distance between strains in antigenic space (e.g., as shown in the case study 3

vignette), through a pairwise matrix of cross-reaction parameters, or by considering strain-

specific antibody levels as the summation of antibodies targeting specific epitopes (e.g., exam-

ple 5 in Fig 2).

The last component of the antibody model layer is the draw_parameters function which

indicates how parameters θ for the antibody model are simulated from model_pars. Here,

users can either assume a fixed effects or random effects model. A fixed effects model would

assume all individuals are governed by the same set of parameters while the random effects

model assumes each individual has their own unique set of parameters θ drawn from model_
pars allowing for individual- and group-level differences in antibody kinetics. See S6 and S7

Tables for more information on the ready-to-use antibody models and draw_parameters

functions included within the serosim package. The antibody model, model parameters tibble

(model_pars) and draw_parameters function must be structured in agreement with each

other. The model parameters tibble must contain all of the necessary information needed for

the draw_parameters function to simulate all required variables in the antibody model.

For this example, we selected a monophasic boosting-waning antibody model where

parameters are drawn randomly from a distribution (e.g., see simple hierarchical boosting-

waning model with individual heterogeneity for Salmonella infection [30]). This antibody

model assumes that for each exposure there is a boost and waning parameter drawn randomly

from a distribution with mean and standard deviation specified within model_pars
(Table 3).

2.7 Observation model

The observation model q, specified by observation_model, along with observation_
times are the last required parts of the simulation which specifies the observation process

(Table 2). Here, users can indicate how observed biomarker quantities Y are generated as a

probabilistic function of the true, latent biomarker quantity A. The observation model is given

by:

Yi;t;b � qðAi;t;b; yÞ ð7Þ

where Yi,t,b, the observed quantity of biomarker b for individual i at time t, is a function q spec-

ified by the observation model which specifies which distribution to draw the observed quan-

tity where the true biomarker quantity Ai,t,b is the mean and the θ includes the standard

deviation as well as any parameters governing assay specificity and sensitivity.

2.7a Assay characteristics

To match their assay of choice, users can incorporate assay detection limits like lower bounds,

upper bounds, and assay output (discrete vs. continuous titers) within observation_
model (S8 Table). Users can also incorporate assay sensitivity, specificity and assay noise

Table 3. model_pars parameters needed for a monophasic boosting-waning antibody model with random effects.

exposure_ID biomarker_ID name mean sd distribution

ifxn IgG boost 4 2 log-normal

ifxn IgG wane 0.0033 .0005 log-normal

vacc IgG boost 2 1 log-normal

vacc IgG wane 0.0016 .0005 log-normal

https://doi.org/10.1371/journal.pcbi.1011384.t003
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within the observation_model. Noise can be easily added by sampling from a distribu-

tion with the true biomarker quantity, A, as the mean and the measurement error as the stan-

dard deviation such that Yi,t,b ~ N(Ai,t,b, θ) where θ is the standard deviation specified within

model_pars as the “obs_sd” parameter. See S8 Table for more information on the ready-to-

use observation models included within the serosim package. Any model parameters needed

for the observation model can be combined into the model_pars tibble for convenience.

For this example, we selected an observation model which observes the latent biomarker

quantity given a continuous assay with added noise (representing assay and sampling varia-

tion), no limits of detection and user specified assay sensitivity and specificity. In this example

we set the observation standard deviation to 0.25, the assay sensitivity to 85% and the assay

specificity to 90%. Therefore, 85% of true positive individuals will have their observed bio-

marker quantity sampled from a distribution with their true biomarker quantity as the mean

and 0.25 as the standard deviation while the other 15% will be classified as a false negative with

a reported biomarker quantity of 0. On the other hand, the model will accurately report 90%

of true negative individuals’ observed biomarker quantity as 0 with the remaining 10% becom-

ing false positives with an observed biomarker quantity sampled from the range of observable

biomarker quantities.

2.7b Sampling design

Lastly, users can set the sampling design for the serological study by indicating the timepoints,

individuals and biomarkers to sample from with the observation_times input.

observation_times is a tibble of observation times and biomarkers for each individual.

If observation_times is not specified within runserosim then the simulation will

observe quantities of all biomarkers for all individuals at all time steps. For this example, we

sample all individuals at the end of the simulation (t = 120) for biomarker one (IgG antibody

titer).

3 Results

Once all arguments have been defined (S1 Table), runserosim is ready to go and produce its 6

main outputs (S2 Table). Below we provide the necessary code to run the example simulation

outlined in the previous sections which is the quickstart example within the package. We first

specify the necessary inputs for runserosim which cannot be specified within the function:

times <- seq(1,120,by = 1)
demography <- generate_pop_demography(N = 100,times = times,

prob_removal = 0)
biomarker_map <- tibble(exposure_id = c(1,2),biomarker_id = c

(1,1))
foe_pars<-array(0,dim = c(1,max(times,n_distinct(biomarker_

map$exposure_id)))
foe_pars[,,1] <- 0.01
foe_pars[,,2] <- 0.1
model_pars_path <- system.file("extdata", "model_pars_README.

csv", package = "serosim")
model_pars_original <- read.csv(file = model_pars_path,

header = TRUE)
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Then we run the runserosim function with all inputs and models specified as their respec-

tive argument. This will store the 6 main outputs of the runserosim function (S2 Table).

res<-runserosim(simulation_settings = list("t_start" = 1,"t_
end" = max(times)), demography,observation_times = tibble(i =
1:max(demography$i),t = 120, b = 1),
foe_pars, biomarker_map, model_pars,
exposure_model = exposure_model_simple_FOE,
immunity_model = immunity_model_vacc_ifxn_simple,
antibody_model = antibody_model_monophasic,
observation_model = observation_model_continuous_noise,
draw_parameters = draw_parameters_random_fx,
max_events = c(1,1), vacc_exposures = 2, vacc_age = c(NA,9),

sensitivity = 0.85, specificity = 0.9)

Users who wish to use other models available (S4–S8 Tables) will specify their desired

model for the appropriate argument and will add any additional arguments for their model at

the end of the function. For example, if the user wanted to use an observation model with a dis-

crete assay then they would specify the model name for the observation_model argu-

ment in runserosim:

observation_model = observation_model_discrete_noise

We recommend that users refer to the help file for each model function they wish to use to

understand the required arguments:

?observation_model_discrete_noise

If there are any additional arguments needed which are not already specified, the user will

add them at the end of the runserosim call. In the example above, the selected models required

additional arguments which are specified after the draw_parameters argument (max_
events, vacc_exposures, vacc_age, sensitivity, specificity).

Lastly, users can use available functions to visualize the generated outputs (S3 Table). Here,

we have displayed 4 of the runserosim outputs for our example simulation (Figs 4 and 5). The

exposure plots in Fig 4 can be generated with the following code:

plot_exposure_prob(res$exposure_probabilities_long)
plot_immune_histories(res$immune_histories_long)

While the biomarker quantity plots in Fig 5 can be generated with

plot_biomarker_quantity(res$biomarker_states)
plot_obs_biomarkers_one_sample(res$observed_biomarker_

states)

3.1 Case studies

The serosim package contains four example case study vignettes to illustrate how to use sero-
sim, how to structure the required inputs for runserosim, and how to use a simulated
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serological data from serosim with existing inference tools. Each case study is briefly described

below and can be accessed within the package and the GitHub webpage (https://seroanalytics.

github.io/serosim/). S9 Table outlines the complexities included in each example case study.

Note that case study 4 is not included in this table as it combines a number of external infer-

ence packages while the README and case studies 1–3 provide example simulations. The

quickstart example outlined in the methods section is the same simulation as the README

example.

Case study 1 provides an example of a longitudinal singular biomarker serological data sim-

ulation structured around measles, a one-pathogen system with vaccination, but also applica-

ble to other vaccine preventable diseases. This example includes a simple exposure model

which determines the exposure probability directly from the parameter that governs this pro-

cess, λ and an immunity model which incorporates vaccination schedule, maximum number

of exposure events and biomarker mediated protection. Also included are a biphasic antibody

model with random effects on model parameters and biomarker-dependent boosting (also

referred to as titer-ceiling effects), and an observation model with assay bounds, noise, sensi-

tivity and specificity.

Case study 2 provides an example of a cross-sectional multi-biomarker serosurvey struc-

tured around diphtheria and pertussis, a two-pathogen system with bivalent vaccination, but

also applicable to multi-pathogen systems with multivalent vaccines. This example illustrates

how complex demographics can be incorporated into a simulation with an exposure model

which determines the exposure probability from λ and the individual’s age and nutritional

Fig 4. Individual exposure probabilities and individual immune history plots from a simulation with two

exposure types. The left hand plot displays the probability of successful (immunity-boosting) exposure for a

simulation with 120 time steps, two exposure events and 100 individuals. The right hand plot displays the immune

histories for the same simulation. Exposure event one (top row) represents an infection event and exposure event two

(bottom row) represents a vaccination event. NA indicates that an individual was not available to be exposed in that

time period, usually because they were not yet born or entered the study population.

https://doi.org/10.1371/journal.pcbi.1011384.g004
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status. This example also includes an immunity model which incorporates vaccination sched-

ule, maximum number of exposure events and biomarker-mediated protection. Also included

are a biphasic antibody model with random effects and biomarker-dependent boosting and an

observation model with assay bounds, noise, sensitivity and specificity.

Case study 3 provides an example of a cross-sectional serosurvey of a pathogen system with

multiple cross-reactive strains, modeled after A/H3N2 influenza. This example tracks 10 circu-

lating strains and strain-specific biomarkers boosted after each infection. The simulation

incorporates seasonality into the exposure model, and antigenic drift into the biomarker map.

Here, the immunity model incorporates biomarker-mediated protection where immunity is

calculated based on the individual’s immune history to all previously seen strains. This case

study uses a monophasic antibody kinetics model with random effects and an observation

Fig 5. True and observed biomarker quantity plots. The left hand plot displays the true antibody kinetics for a simulation with 120 time steps, one biomarker

and 100 individuals. This plot displays true biomarker quantities for all 100 individuals at all time steps. The right hand plot displays the observed biomarker

quantity at the observation time (t = 120) given the specified observation model, similar to a cross-sectional survey. In this example, all individuals alive during

the endpoint (t = 120) had their biomarker quantity, in this case antibody titer, measured with a continuous assay with user-specified noise, sensitivity and

specificity. The left hand plot represents the unobserved process level within serosim generated by the exposure, immunity and antibody models while the right

hand plot represents the observed data generated by the observation model (Fig 1). The true antibody kinetics for each individual (left hand plot) is not known

in real world settings where researchers only have cross-sectional antibody titers (right hand plot).

https://doi.org/10.1371/journal.pcbi.1011384.g005
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model with a discrete assay, added noise, and imperfect sensitivity and specificity, largely

based on the common haemagglutination inhibition assay.

Case study 4 demonstrates how serological data simulated from a complex, realistic serosim
model can be used to assess the accuracy of various seroepidemiological inference methods.

We compared estimates for key statistics such as the force of infection, exposure histories and

within-host kinetics parameters to their known, true values from a simulated dataset. We com-

pared inferences generated using two existing R packages: the serofoi package which imple-

ments a serocatalytic model fitting framework using stan, and serosolver which uses a

multilevel model similar to Eq 1 to infer exposure histories and antibody kinetics from individ-

ual-level antibody titer data [15,31]. The aim of this case study is to illustrate how ignoring key

mechanisms and making oversimplifying assumptions when fitting a model can introduce

biases and errors by using simulated data, helping us to understand the limitations of our esti-

mates when fitting to real data.

Fig 6 provides run times for simulations of varying complexity by adjusting the number of

individuals for the README example and 3 case studies. We ran each simulation 100 times

with both pre-computation and parallelization turned on with 8 cores. Simulation run time

scaled linearly with increases in the number of individuals and time steps (S2 and S4 Figs).

Users can speed up more complex simulations by increasing the number of cores available

and/or substituting the standard R based antibody models for the available C++ antibody

models. serosim is not limited to either of these scenarios and we hope it will have applications

in other systems including wildlife pathogens [20,32].

3.2 Sensitivity and specificity for varying thresholds of seropositivity

Lastly, we briefly demonstrate how serosim can be used to explore the sensitivity and specificity

of various seropositivity thresholds within the context of case study one. The seropositivity

threshold is commonly used to separate seropositive and therefore immune individuals from

seronegative individuals who might be susceptible. This threshold is typically set by the assay

manufacturer but can also be adjusted by the user to conduct more specific and sensitive

analyses.

Since each individual’s exposure history is known in serosim, we can assess the sensitivity

and specificity tradeoffs between assigning different thresholds for seropositivity. We ran case

study one (based on measles) which simulates 100 individuals across 120 time steps 100 times

and examined the sensitivity and specificity of varying measles thresholds of seropositivity

ranging from 100 milli-international units per milliliter (mIU/mL) (the lower limit of detec-

tion of the ELISA assay with which case study one was structured around) to 350 mIU/mL

(Fig 7). Sensitivity remains at 99.56% while specificity increases from 83.68% at 100 mIU/mL

to 99.95% at 350 mIU/mL (Fig 7). In this scenario, sensitivity remains high because of the

large quantity of true positives and low number of false negatives as a result of the 99.6%

reported assay sensitivity, the fact that there isn’t much noise attributed to the antibody mea-

surement step and ultimately that biomarker boosts due to vaccination and natural infection is

high. In a system with more noise and lower assay sensitivity or exposure events with smaller

biomarker boosts or faster waning rates, we would expect more variation in the sensitivity of

different seropositivity thresholds. This example demonstrates how serosim can be used to

assess the accuracy of classification criteria based on limited observations when the true latent

state of the system is known and to explore the impact of epidemiological context and within-

host processes on diagnostic performance.
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Fig 6. runserosim run times for simulations of varying complexities. We ran the runserosim function 100 times and report the run times under various

simulation settings (number of individuals and time steps). Both parallelization and pre-computation within runserosim were turned on and 8 cores were

specified. All four of these example cases are included in serosim. Each case study varies in complexity (S9 Table). The increase in run time between case study 1

and case study 2 is due to a computationally complex exposure model which modifies each individual’s force of exposure based on their age and nutritional

status. Case study 2 was not run for 5000 individuals for 500 time steps due to the time required to run the simulations.

https://doi.org/10.1371/journal.pcbi.1011384.g006
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4 Discussion

The serosim package was designed to simulate serological data under different study designs

and underlying immunoepidemiological processes while also providing a systematic frame-

work for validating inference methods. Many epidemiological studies using serological data

rely on pre-defined definitions of seroconversion, seropositivity or antibody kinetics to draw

inferences about the underlying epidemiology of a pathogen [33]. However, such studies often

use real-world datasets without first considering the biases that may arise when the fitted

model differs substantially from the true data-generating process. Simulation studies are useful

for identifying the limitations, biases and accuracies arising from sample variability, misspeci-

fied models or neglected variables [16,34–36]. serosim is a generalized approach to this prob-

lem, allowing researchers to simulate serological data representing a disease system of interest

by explicitly specifying the within-host processes, patterns of infection and vaccination, popu-

lation demography and other factors which determine observed biomarker quantities. By gen-

erating simulations within a single framework, we anticipate better generalization and

comparison of methods between pathogen systems and serologic assays [1,14,37].

A key use case for serosim is for researchers and public health officials to improve serologi-

cal study design. We envision that serosim can be used to simulate datasets with different sam-

ple sizes, spatial distribution of samples, and sampling frequencies, providing a tool for power

calculations. There are a number of existing frameworks for evaluating study designs based on

seroprevalence estimates, taking into account both the contribution of imperfect sensitivity,

specificity and model variability to parameter estimation uncertainty [16,38]. However, few

Fig 7. Sensitivity and specificity for varying thresholds of seropositivity in simulation-recovery experiments. We

simulated case study one 100 times and stored individual exposure history and observed biomarker quantities. We

then calculated the number of true positives, true negatives, false positives and false negatives for identifying infections

using various titer thresholds for seropositivity ranging from 100 mIU/mL to 350 mIU/mL. Here, we plotted the

sensitivity and specificity achieved at each of those titer thresholds.

https://doi.org/10.1371/journal.pcbi.1011384.g007
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tools explicitly consider the full complexity of the underlying biology and epidemiology which

determine an observed sample of antibody titers [36]. By separating each step of this generative

process into distinct modules, serosim requires users to account for sources of measurement

error, variation and bias that cause deviation from the underlying parameters of interest. With

this generative model in place, inference models (e.g., estimating force of infection using a ser-

ocatalytic model [12] or estimating time-since-infection using antibody waning estimates

[30]) can be applied to simulated datasets of different sizes and sampling designs to assess their

power in recovering ground-truth parameters. These so-called “simulation-recovery” experi-

ments are especially useful as the model being fitted will be, by definition, a misspecified ver-

sion of the true generative model (with parallels to statistical model misspecification [39]).

Designing studies using these simulated datasets also provides interim data with which

researchers can develop their inference methods as data collection progresses.

Although serosim is not an inference model itself, it provides a tool to guide the develop-

ment of inference models and can be paired with existing inference packages (See case study

4). Serological inference methods are often very complex and multileveled, requiring substan-

tial data and a deep understanding of the key mechanisms required to model the system

[14,19,20]. Simple methods based on the serocatalytic model are useful for understanding

broad patterns and simple force of infection trends using individual serostatus [9,12,40]. More

complex methods based on back-calculating time-since-infection from longitudinal measure-

ments to multiple biomarkers can allow for detailed inferences of antibody kinetics, infection

histories and immunological processes [13,15,21,41]. The inference algorithms for these more

complex approaches can be difficult to implement, often requiring custom Markov chain

Monte Carlo algorithms and data augmentation techniques. We have shown here that

although the models used for inference can vary in their complexity, all of these approaches

seek to draw inferences from data generated from comparable unobserved processes.

Although we have structured the serosim model and code in a flexible, generalized frame-

work, there are limitations to its ease of application to some systems. Some parts of the genera-

tive process are very poorly understood for some pathogens (e.g., correlates of protection for

the immunity model may be complex [42]; the relationship between time-since-infection and

multiple biomarker quantities may be highly variable [43]), and the relationships between

exposure and measurements of some modern multiplex serological assays are not yet precisely

characterized [25]. We have included a range of ready-to-use functions to encompass various

epidemiological and immunological contexts here (S4–S8 Tables), however, this is not an

exhaustive list as we encourage users to construct new model inputs to match their desired sys-

tem (e.g., constructing their own antibody kinetics model). There is also a trade-off between

framework flexibility and computational speed. Structuring serosim as distinct modules places

responsibility on the user to ensure that custom code is fast enough to not substantially bottle-

neck the simulation, particularly for systems with a large number of exposure types, biomark-

ers, or individuals. We have implemented some of the default antibody models using Rcpp as a

framework for implementing more complex models which might otherwise bottleneck the

simulation. However, given that serosim is not intended for integration in multi-iteration code

(e.g., nested within a Markov chain Monte Carlo algorithm), speed is unlikely to be an issue

for this use case. We recommend that users who wish to simulate populations with hundreds

of thousands of individuals run their simulation on a computer cluster and make use of the

included parallelization options.

Part of the motivation behind serosim is to support the rise in development of complex

models relying on quantitative antibody measurements as opposed to simple binary serostatus

data. These models explicitly describe the relationship between antibody titer and time-since-

infection, often estimated using longitudinal data, and then use this relationship to back-
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calculate seroincidence from cross-sectional data [13,14,30,41,44,45]. Although underpinned

by similar principles, such approaches are usually tailored to a particular pathogen system. By

encouraging researchers to be explicit about the generative process common to many settings,

we hope to facilitate the sharing and standardization of these more advanced sero-epidemio-

logic methods.

Supporting information

S1 Text. Helpful functions used to generate inputs for runserosim.

(DOCX)

S1 Fig. Example biomarker_map before and after reformatting. The runserosim func-

tion requires a numeric biomarker map input as seen on the right. In this example, we have

two exposure events (exposure_id = ifxn and vacc) and we are interested in tracking one bio-

marker (biomarker_id = IgG) produced by both exposure events. Created with BioRender.

com.

(TIF)

S2 Fig. Example immune_histories array. The immune_histories argument is a

3-dimensional array indicating the individual (dimension 1) at each time (dimension 2) for

each exposure event (dimension 3). Here, individual 1 never had a successful exposure while

individual 2 was exposed at time 3.

(TIF)

S3 Fig. runserosim run times for simulations of varying numbers of individuals. We ran

the runserosim function 100 times and report the mean run times under various simulation

settings (number of individuals and time steps). Both parallelization and pre-computation

within runserosim were turned on and 8 cores were specified. Each case study varies in com-

plexity (S9 Table). The blue line represents a simple linear regression (run time ~ number of

individuals) and the gray shaded region is the 95% confidence interval. Simulation run time

scaled linearly with increases in the number of individuals.

(TIF)

S4 Fig. runserosim run times for simulations of varying number of time steps. We ran the

runserosim function 100 times and report the mean run times under various simulation set-

tings (number of individuals and time steps). Both parallelization and pre-computation within

runserosim were turned on and 8 cores were specified. Each case study varies in complexity

(Table S9). The blue line represents a simple linear regression (run time ~ number of time

steps) and the gray shaded region is the 95% confidence interval. Simulation run time scaled

linearly with increases in the number of time steps.

(TIF)

S1 Table. Names and descriptions of the main arguments required in the runserosim func-

tion. Note: additional arguments may be needed depending on models selected within the

functions section.

(XLSX)

S2 Table. Description of runserosim outputs.

(XLSX)

S3 Table. Description of functions to plot runserosim outputs.

(XLSX)
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S4 Table. Names and descriptions of the ready-to-use exposure models included in serosim.

(XLSX)

S5 Table. Names and descriptions of the ready-to-use immunity models included in sero-
sim.

(XLSX)

S6 Table. Names and descriptions of the ready-to-use antibody models and model_pars
files included in serosim.

(XLSX)

S7 Table. Names and descriptions of the ready-to-use draw_parameters functions included

in serosim.

(XLSX)

S8 Table. Names and descriptions of the ready-to-use observation models included in sero-
sim.

(XLSX)

S9 Table. Chart of the complexities illustrated in each example case study available in sero-
sim.

(XLSX)
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