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Abstract

Once challenged by the SARS-CoV-2 virus, the human host immune system triggers a

dynamic process against infection. We constructed a mathematical model to describe host

innate and adaptive immune response to viral challenge. Based on the dynamic properties

of viral load and immune response, we classified the resulting dynamics into four modes,

reflecting increasing severity of COVID-19 disease. We found the numerical product of

immune system’s ability to clear the virus and to kill the infected cells, namely immune effi-

cacy, to be predictive of disease severity. We also investigated vaccine-induced protection

against SARS-CoV-2 infection. Results suggested that immune efficacy based on memory

T cells and neutralizing antibody titers could be used to predict population vaccine protection

rates. Finally, we analyzed infection dynamics of SARS-CoV-2 variants within the construct

of our mathematical model. Overall, our results provide a systematic framework for under-

standing the dynamics of host response upon challenge by SARS-CoV-2 infection, and this

framework can be used to predict vaccine protection and perform clinical diagnosis.

Author summary

Once challenged by the SARS-CoV-2 virus, the host immune system initiates a dynamic

process against infection. Countless experimental, clinical, and theoretical studies have

been carried out to understand the pathogenesis of SARS-CoV-2 infection, improve treat-

ments or optimize vaccine strategies. Most of the time, people have been focusing on one

arm of host immune system during SARS-CoV-2 infection and vaccine protection,

despite there are three. A systematic understanding towards the innate, cellular, and

humoral immunologic responses remains incomplete. Here, we report a mathematical

model that captures the virus-immunity dynamics in both primary infection and vaccine-
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rendered protection. Mathematical analysis reveals the overall host immune system func-

tions as an integrative dynamic metric combating SARS-CoV-2 infection. The metric

reveals the cooperative nature of the immune system, especially between cellular and

humoral immune responses. Numerical simulation and data analysis show this metric

serves as a strong correlate for disease severity and vaccine protection rates against the

original and variant SARS-CoV-2 strains. Our results put forth a systematic framework

for understanding the virus-immune interaction during SARS-CoV-2 infection, which

could be further deployed for treatment formulation and vaccine optimization.

Introduction

Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has spread globally

with untold damage to global health, economy, and society. SARS-CoV-2 and its variants of

concern (VOCs) have caused high morbidity and mortality among the unvaccinated, even

escaping the protective immunity of neutralizing antibodies provided by mRNA-based and

other vaccines. COVID-19 patients with weaker innate immunity, as manifested by lower

HLA-II expression level [1], are more likely to show severe symptoms (~20%), including lym-

phopenia and cytokine release syndrome [2], otherwise known as “cytokine storm”, accompa-

nied by elevation of the proinflammatory cytokine IL-6. COVID-19 patients exhibit a longer

incubation period (4~12 days) in comparison to SARS patients (2~7 days) [3], calling for the

establishment of different management and prevention protocols. In addition, upon symptom

onset, the viral load of SARS patients is significantly lower than that observed in COVID-19

patients [4]. The IFN-I response is significantly lower in COVID-19 patients compared to

patients with influenza. Collectively, this evidence suggests, in general, that SARS-CoV-2

induces both weak and delayed innate immune response in comparison to other viruses that

infect the respiratory system. Various clinical trials [3,5–8] have been implemented, aimed at

formulating vaccines and antiviral treatments for COVID-19 patients.

According to the COVID-19 vaccine tracker (https://covid19.trackvaccines.org/, last

updated 2022/12/02), only 50 out of 242 vaccine candidates has been approved globally. Recent

research has identified neutralizing antibody level as a correlate of protection [9–12] with the

rate of protection varying from 50% to 95% [13], as a predictor of the temporal efficacy of vac-

cines and, thus, a guide for the development of future vaccines [13]. Despite global efforts to

develop and popularize vaccines, SARS-CoV-2 is gradually mutating with the potential for

eroding, or even collapsing, herd immunity hard-won through global vaccination programs.

For example, the Alpha variant (B.1.1.7), which became dominant in the UK in late 2020, the

Delta variant (B.1.617.2), dominant in the summer of 2021, and the newly emerged and highly

infectious Omicron (B.1.1.529) all feature increased person-to-person transmissibility [14–16]

and the increasing ability to evade protective immunological surveillance [16–20].

Countless experimental and clinical investigations have been carried out so far with the aim

of understanding the pathogenesis of SARS-CoV-2 infection [1,21], treating the infected [22]

and protecting the susceptible [23]. Mathematical modeling could be a useful tool for studying

the development of viral infection. In the last decade of the twentieth century, mathematical

modeling has been used for quantitative interpretation of clinical data in HIV, HBV, and HCV

viral infection. As a result, our understanding of the dynamics of these viruses and the imple-

mentation of treatment strategies have significantly improved [24–28]. The modeling of influ-

enza infection further investigated the function of innate and adaptive immunity [29,30].

Mathematical model has also successfully established the bi-stable outcome of HCV and
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LCMV infections [31]. In the context of the global COVID-19 pandemic, mathematical mod-

els have also been deployed to analyze the timing and efficacy of antiviral therapies [4,32], cor-

relations between viral dynamics and both infectivity [33] and mortality [34], and the

circulation of white blood cells between immune compartments [35]. However, a systematic

approach toward understanding immunologic response in SARS-CoV-2 infection and vaccine

protection is yet to be accomplished.

SARS-CoV-2 infection leads to heterogeneous infection progress. To understand the

immune embedding of these variable disease outcomes, mathematical models have success-

fully associated innate immunity with disease onset and inflammation level [36–40], and T cell

response with infection clearance [37,38]. However, due to the complexity of the immune sys-

tem, it remains a challenge to conclude the existing evidence by a general principle that links

to different immune elements and accounts for the heterogeneous infection outcomes. More-

over, in vaccinated patients, antibodies [11] and immune memory cells [41] also actively par-

ticipate in combating the viral challenge. The construction of a model that includes the innate,

cellular, and humoral immunity and immune memories will allow us to 1) unveil the general

principle that dictates different disease outcomes, 2) investigate the relationship between vac-

cine immunogenicity and efficacy, and 3) sort out major immunological and epidemiological

differences in populations at risk for SARS-CoV-2 and its variants.

We herein offer such a systematic approach and report the development of a mathematical

model that captures virus-host immune dynamics in both infection and vaccine-protected

states. More specifically, we studied the within-host infection process in a heterogeneous pop-

ulation. We studied how cellular and humoral memory cooperate to protect against SARS--

CoV-2 infection, and we put forward a quantitative predictor of vaccine efficacy. Finally, we

discussed how the infection process and vaccination outcome are affected by newly emerged

SARS-CoV-2 VOCs.

Results

A virus-immunity network model provides a framework for understanding

the dynamic processes of SARS-CoV-2 infection

For our purposes, an effective mathematical model should account for key immune elements

that constitute human immune response against SARS-CoV-2 challenge. Its construction

should allow us to 1) understand the different outcomes of SARS-CoV-2 infection based on

individual immune response, 2) analyze the temporal dynamics of different immune elements

and how they are orchestrated to clear the infection and minimize the pathology, and 3) for-

mulate relevant treatment and vaccination strategies.

In Fig 1, we constructed a virus-immunity interaction network consisting of a viral infec-

tion module, innate, cellular, and humoral immunity modules, and an immunosuppression

module. In general, viral infection of target epithelial cells will be detected by innate immune

cells like antigen-presenting cells (APC), natural killer cells (NK) and neutrophils (Neut).

Through secretion of inflammatory cytokines and, more importantly, antigen presentation by

APCs, innate immunity activates downstream adaptive immunity, including CD4+ and CD8

+ T cells and B cells. These activated lymphocytes expand and carry out effector functions,

working as helper T cells (Th), cytotoxic T cells (CTL) and plasma B cells (PB) secreting anti-

bodies (Abs) to clear the virus and kill infected cells. Moreover, after infection, regulatory T

cells (Treg) help downregulate the immune system, while some of these activated lymphocytes

enter memory phase with latent ability to respond more rapidly upon reintroduction of the

same pathogen. In particular, germinal center B cells (GC B) differentiate into PB, long-lived

plasma cells that secret antibodies continuously, and memory B cells that can quickly respond
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to antigen by initiating secondary germinal center reaction [42]. For memory T cells, activated

CD8+ T cells (CD8+TA) differentiate into effector memory T cells that exert cytotoxic func-

tions, or differentiate into central memory T cells that can rapidly proliferate and differentiate

into CD8+TA in response to a “recognized” antigen. In short, memory CD4+ T cells (CD4+TM)

can quickly differentiate into activated CD4+ T cells (CD4+TA) in response to antigen

stimulation.

Type I Interferon (IFN-I) restricts viral replication and orchestrates innate and cellular

immunity during viral infection [43]. SARS-CoV-2 have shown the remarkable ability to
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evade IFN-I [44,45]. The IFN-I level in COVID patients [1,46–49] is of an order of magnitude

lower than the working concentration of IFN-I to protect target cells from SARS-CoV-2 infec-

tion [50–52], and two orders of magnitude below that of influenza virus infection [47]. While

controversial studies have reported elevated [47,49] or reduced IFN-I levels [1] in severe infec-

tions, as these values are significantly below the working concentration, they should cause

minimal difference in the immune dynamics (Section 1.3 in S1 Text). Therefore, we did not

include the effects of IFN-I in our model.

For the sake of simplicity, our model was built according to the following blueprint. First,

we focus on host immune response in a local infected area, such as lung and nearby draining

lymph nodes. Second, multiple cytokines are correlated with inflammatory status [53], which

herein is represented by our choice of IL-6 as the primary indicator of inflammation [2].

Third, we do not distinguish between the subsets of memory lymphocytes in our model, i.e.,

BM represents both long-lived plasma cells and memory B cells; CD8+TM represents both

effector and central memory CD8+ T cells. Based on the network in Fig 1, we built a 32-vari-

able ordinary differential equation (ODE) model to depict the dynamic processes of immune

response against SARS-CoV-2 infection (Section 2 in S1 Text).

In the lung area, we define [nCoV] as the number density of free viral load, while [H] and

[If] denote, respectively, healthy pulmonary epithelial cells and infected cells. The number den-

sity of neutrophils, antigen-loaded and unloaded APCs, NK cells and CTLs is respectively

denoted as [Neut],[APCl], [APCu], [NK], and [CTL]. Similarly, [CD4+TM], [CD8+TM], and

[BM] represent the number density of CD4+ and CD8+ T memory cells and B memory cells,

respectively. [Ab] is neutralizing antibody titer. Viral load and lymphocytes are in units of 106/

mL, cytokines are in units of pg/mL, and antibodies are in units of μg/mL. More details about

immune cells, cytokine dynamics and the ODE model can be found in Section 2 of S1 Text.

Immune efficacy � quantifies immune protection against viral infection

The immune system rallies immune cells, cytokines, chemokines and antibodies upon viral

challenge. Immune response involves dozens of different types of immune cells and hundreds

of functioning molecules. It remains a challenge to quantify the overall strength of host

immune response and assess the relative importance of these elements. Here we show the deri-

vation of an indicator for immune response strength against viral infection in our model.

In the viral infection module, the following equations show how SARS-CoV-2 virus infects

lung epithelial cells:

d½nCoV�
dt

¼ N1dIf ½If � � dv
½nCoV�

Km þ ½nCoV�

� ff APC
AntVk

clear
1
½APCl� þ f APC

AntVk
clear
2
½APCu� þ kclear

3
½Neut� þ kclear

4
A½Ab�g½nCoV� ð1Þ

d½If �
dt
¼ kinfect½nCoV�½H� � dIf ½If �

� ff APC
AntVk

kill
1
½APCl� þ f APC

AntVk
kill
2
½APCu� þ f NK

eff kkill
3
½NK� þ kkill

4
½CTL� þ kkill

5
½CD8þ TM�g½If � ð2Þ

d½H�
dt
¼ rH � kinfect½nCoV�½H� � dH½H� ð3Þ

The dynamics of viral infection is described in Eq 1. Virions are produced from infected

cells at the rate of N1dIf[If], where N1 is the burst size of SARS-CoV-2 virus (average number

virions produced by a single infected cell), and dIf is the death rate of infected cells that release

new virions. Virus is cleared by APCs, neutrophils and antibodies, together, at a combined
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rate of ff APC
AntVk

clear
1
½APCl� þ f APC

AntVk
clear
2
½APCu� þ kclear

3
½Neut� þ kclear

4
A½Ab�g½nCoV� and by mucosal

immunity dv
½nCoV�

Kmþ½nCoV�
. In Eq 2, epithelial cells [H] are infected by free virions at rate kinfect[n-

CoV][H] and turned into infected cells. Infected cells are killed by APCs, NK cells, CTLs and

CD8+TM cells at rate

ff APC
AntVk

kill
1
½APCl� þ f APC

AntVk
kill
2
½APCu� þ f NK

eff kkill
3
½NK� þ kkill

4
½CTL� þ kkill

5
½CD8þ TM�g½If � and die at

rate dIf[If]. In Eq 3, healthy lung epithelial cells renew at rate rH and undergo normal death at

rate dH[H]. In the above, f APC
AntV and f NK

eff account for the augmentation of APC and NK effector

function by cytokines and inflammatory signals, including IFN-γ for APC and IL-2 for NK.

The affinity of antibodies to virions, named as A, increases in the presence of germinal center

B cells (GC B) and T follicular helper cells (Tfh) along the course of disease, and plateaus when

the infection is cleared and Tfh contracts (S4 Fig).

We define the infected cell killing rate as

�kðtÞ � dIf þ f APC
AntVk

kill
1
½APCl� þ f APC

AntVk
kill
2
½APCu� þ f NK

eff kkill
3
½NK� þ kkill

4
½CTL� þ kkill

5
½CD8þ TM�,

including virus- and immunity- mediated cell death, where the latter contributes to the major-

ity of infected cell death when evoked. Similarly, the virus clearance rate is defined as �c(t)
+�v(t), composing of mucosal immunity �v tð Þ ¼ dv

1

Kmþ½nCoV�
, and innate and humoral immune

response to clear the virus

�cðtÞ ¼ f APC
AntVk

clear
1
½APCl� þ f APC

AntVk
clear
2
½APCu� þ kclear

3
½Neut� þ kclear

4
A½Ab�. When viral load is com-

paratively large, as in [nCoV]�Km, �v goes to 0.

To obtain a concise dynamic equation of viral load, we set d[If]/dt = 0, and have
d½nCoV�

dt ¼ εc þ εvð Þ Rt � 1ð Þ½nCoV�. The viral reproduction number is defined as Rt ¼
g

ðεcþεvÞεk

½H�
½H�0

[4,27]. γ� N1dIfkinfect[H]0 stands for the maximum capability for the virus to replicate and

[H]0 stands for the steady-state healthy pulmonary epithelial cell density. Assumption on

pseudo steady state of viral load can also arrive at the same Rt (section 2.2 in S1 Text). Since we

mainly focus on how the host immune system clears virus and kills infected cells, and �v goes

to zero at high viral load, we define host immune efficacy as �(t)� �c(t) �k(t). Thus, the viral

reproductive number can be approximated as Rt ¼
g

�

½H�
½H�0

. The immune efficacy stands for the

immune system’s strength to combat viral infection. The viral load will increase when �<γ[H]/

[H]0 (Rt>1) and decrease when �>γ[H]/[H]0. In the limit case when � = 0, the viral load will

exhibit unbounded increase (S1 Fig).

The immune efficacy is the numerical product of the killing and clearing effects by multiple

innate and adaptive immune elements. As both immune arms actively participate in the killing

of infected cells and clearance of virus particles, we denote innate immunity killing as

�ik � f APC
AntVk

kill
1
½APCl� þ f APC

AntVk
kill
2
½APCu� þ f NK

eff kkill
3
½NK�, innate immunity clearance as

�ic � f APC
AntVk

clear
1
½APCl� þ f APC

AntVk
clear
2
½APCu� þ kclear

3
½Neut�, cellular immunity killing as �ak �

kkill
4
½CTL� þ kkill

5
½CD8þ TM� and humoral immunity clearance as �ac � kclear

4
A½Ab�. The immune

efficacy, by definition, is � ¼ ð�ik þ �
a
k þ dIf Þð�

i
c þ �

a
c Þ. Thus theoretically it can be dissected into

innate immunity �i ¼ ð�
i
k þ dIf Þ�

i
c, and adaptive immunity �a = �−�i = �aa+�ai, where �aa ¼

ð�ak þ dIf Þ�
a
c is the pure cooperation between T cell and antibody, and �ia ¼ �

i
k�

a
c þ �

i
c�

a
k is the

cooperation between adaptive immune elements with innate immunity (S8 Fig).

Classification of immune response against SARS-CoV-2

Human immune response during infection varies by individual and is variable according to

age, physical condition and gender [54,55]. This individual randomness, in addition to varia-

tion in initial inoculum and personal susceptibility, determines the progress and severity of

infection.
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To ensure our model generates reasonable results of immune response, we constrained the

levels of immune cells and cytokines in our model within physiological range (S1 and S3

Tables) based on the immune profiles of peripheral blood [56,57], bronchoalveolar lavage fluid

[58] and our clinical data (S24 Fig). We then used the Latin hypercube sampling method [59]

to generate suitable kinetic parameter sets that satisfy the above constrained condition

(Method 2). In our model, we set virulence of the wild-type SARS-CoV-2 strain as γ = 3.6

day−2 and initial viral load as 104/mL.

To understand the heterogeneous outcome of infection, we simulated immune response

over time from randomly sampled parameter sets, and classified the immune responses into

four modes to reflect increasing severity of infection. Our simulations recapitulate clinically

observed viral load dynamics and immune responses (S5 and S6 Figs). These modes are

defined by the final viral load and IL-6 peak, to reflect the prolonged recovery of infection

[60,61], and inflammatory status in patients. In particular, prolonged viral shedding [62,63]

and elevated IL-6 level [64,65] have been found to correlate with more severe cases. Mode 1, 2

and 3 are characterized by recovery from infection with virus having been cleared by the 50th

day after infection. Mode 4 is characterized by persistent infection with [nCoV]>106/mL at 50

days post-infection. Boundaries distinguishing the four modes based on IL-6 peaks are set as

following: Mode 1: [IL-6]max<1000 pg/mL, Mode 2: 1000 pg/mL<[IL-6]max<2000 pg/mL,

and Mode 3 and 4: [IL-6]max>2000 pg/mL. In our model, we ascribe Mode 1~3 with their

increasing IL-6 level to patients experiencing more extensive infection and more severe symp-

toms. Meanwhile, Mode 4 patients are severe or critical care patients with chronic infection

which most notably occurs in immunocompromised cases [66,67] and the elderly [60]. The

choice of the IL-6 boundary values aims to reflect the increasing inflammation status, and

change in the boundary values do not change the qualitative results we discuss below (S2 Fig).

Sample-averaged kinetics in Fig 2A and S4 Fig reveal several characteristics emerging from

each defined mode. For instance, the extent of tissue damage in Mode 1 and 2 is milder than

that in Mode 3 and 4, and adaptive immunity in Mode 4, especially Ab dynamics, is signifi-

cantly lower than that in other modes. Using this approach, our simulation results can predict

the different degrees of SARS-CoV-2 pathogenicity. That is, upon viral infection in mode 1

and 2 patients, antigen-presenting cells are quickly activated and limit infection by clearing the

virus and infected cells, recruiting circulating APCs, and presenting antigen to lymphocytes

(S4 and S9 Figs). T cell response and Ab response are subsequently activated, and they function

in the prescribed manner to clear virions and kill infected cells. Meanwhile, in Mode 3 and 4

patients, we see a less effective antigen presentation (S4B Fig), coupled with low proliferation

of antigen-specific CD8+ T cells, as well as T cell exhaustion, resulting in a weak and delayed

CTL response. Without sufficient and timely control by CTL cells, viral loads in Mode 3 and 4

patients continue to overwhelm the system. In the meantime, these severe cases exhibited

weak immunosuppression (S7 Fig). Together, these immune signatures result in greater level

of inflammation and tissue damage. Across Mode 1–4, the peak viral load increases, agreeing

with the observed positive correlation between viral loads and infection severity [62,63,68,69]

and mortality [70,71]. In Mode 3 patients, excessive damage-associated molecular patterns

(DAMPs) subsequently elicit cytokine and chemokine secretions by APCs. These inflamma-

tory signaling molecules further recruit and activate circulating innate cells, causing cytokine

storm. Despite the elevated inflammation, antibody response does ramp up in Mode 3 patients

and works together with innate and cellular immunity to clear the infection. However, in

Mode 4 patients, unsuccessful recruitment of circulating APCs leads to inadequate innate and

adaptive immune response, resulting in prolonged infection and potential risks for other com-

plications and comorbidities.
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Fig 2. Dynamic trajectories of host immune response against SARS–CoV–2 infection. (A) Schematic illustration (mean±std) of four typical modes of

immune response. The four immune response modes are defined by their maximum IL–6 level and viral dynamics, as defined in main text. The

concentrations of viral load, CD8+ T cells, and Abs are illustrated as the geometric mean±std of samples, and other variables are plotted as the algebraic

mean±std of samples. (B) Time course of immune efficacy ε of the four immune response modes, as shown in the geometric mean of all samples in the

mode. Inset figure illustrates the time course of viral reproduction number Rt, which is also calculated by the geometric mean of all samples in the mode.

The solid line is ε = γ = 3.6 and Rt = 1. During the first two weeks after viral challenge, Mode 3 and 4 have lower ε compared to Mode 1 and 2, resulting in

higher Rt. Thus, extensive viral infection leads to greater tissue damage and resultant cytokine storm. ε value of Mode 1~3 rises in the following weeks,

corresponding to full activation of the immune system. Meanwhile, poor response of adaptive immunity of Mode 4 patients leads to persistent infection.

(C) Dynamic trajectories of SARS–CoV–2 infection are projected onto the 2D plane of ε and IL–6. Background: individual trajectories from sampling.

Solid lines indicate trajectories of SARS–CoV–2 infection of Mode 1, 2, 3 and 4. Following the direction of the arrows, quicker immune response normally

alleviates inflammatory status. (D) The relationship between final viral load [nCoV]final and maximum of immune efficacy �max of all samples in Mode 1~4.

�max>γ serves as a necessary condition of viral clearance.

https://doi.org/10.1371/journal.pcbi.1011383.g002
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We can further summarize this SARS-CoV-2 pathogenesis via the description of host

immune efficacy, as illustrated in Fig 2B. During the early stage of infection in the first week,

Mode 1 and 2 patients have faster and stronger innate immune protection of lung tissue

against viral damage. In contrast, Mode 3 and 4 patients exhibit delayed and weaker immunity

that brings about more extensive damage with higher viral load. Starting from the 2nd week,

cellular immunity comes in and cooperates with innate immunity to clear the infection

(S8 Fig). The overall immunity of Mode 1 and 2 patients ramps up with peak immune efficacy

� averaged at �>5>γ and viral reproduction number Rt<1. Thus, the immune system handily

clears the virus and kills infected cells. However, in the first two weeks after infection, Mode 3

and 4 patients experience more severe infection that not only results in extensive tissue dam-

age, but also elicits over-activated inflammatory response by neutrophils and monocytes, lead-

ing to the onset of cytokine storm, as referenced above. During the 4th week of infection, Mode

1~3 patients with higher � recover from infection. Meanwhile, the immune responses of Mode

4 patients stay low with Rt�1, prolonging viral clearance, likely attributed to limited antibody

production and T cell supply. In general, �max>γ = 3.6 serves as a necessary condition for

recovery from viral infection (Fig 2D). Dissecting the immune efficacy into innate immunity

�i, cooperation between innate and adaptive immune elements �ia, and cooperation between T

cell and antibody �aa, we found the responsive speed and strength of innate immunity and cel-

lular immunity are negatively correlated with disease severity (S8 Fig), agreeing with previous

modelling works [37]. Meanwhile, in acute infection cases (Mode 1–3), adaptive immune

response strength, especially antibody titer, is positively correlated with disease severity, due to

prolonged antigen presentation (S4B Fig), corroborated by clinical observations [72,73].

Besides, by analyzing time series’ sensitivity, we found that the most sensitive parameters are

related to the growth rate of host immune efficacy and virulence (S15 Fig and section 6.2.1

in S1 Text), e.g., activated CD8+ T cell division time (tCD8) and SARS-CoV-2 infection rate

(kinfect). In section 6.2.2 in S1 Text, we showed that the shifts of the fixed parameters do not

change our main conclusions about immune dynamics and immune efficacy of Mode 1~4.

The dynamic interactions between viral infection and immune response revealed a general

treatment principle for COVID-19 patients, which we tested in silico. In particular, in mode 3

and 4, early-stage weak immunity, as indicated by lower �, leads to higher viral load and cyto-

kine release. Excessive inflammation can be alleviated by decreasing virulence and augmenting

innate immunity by antiviral agents like IFN-I (S13D Fig). In the late stage of mode 4, weak

immunity prolongs the course of disease and opens the window for the onset of other systemic

comorbidities. In this case, treatments with monoclonal antibodies could increase immune

efficacy and accelerate the recovery process (see S13 and S14 Figs and Section 5 in S1 Text).

Immune efficacy is a determinant of protection against SARS-CoV-2

infection and a predictor of vaccine efficacy

Vaccination plays a critical role in the global management of the COVID-19 pandemic to pro-

tect vaccinees from SARS-CoV-2 infection or from severe symptoms. Mechanistic insights

into such immune protection will not only allow us to understand the roles of cellular and

humoral immune memory [74,75], but also identify correlates of vaccine protection found in

the immune system, i.e., memory T cells (cellular) and memory B cells or neutralizing antibod-

ies (humoral). Identification of such correlates can link individual immune response to popu-

lation protection, thus enabling the prediction of vaccine efficacy against all infection [76] in

advance of large-scale phase 3 trials and assisting in future vaccine development [10,13].

In clinical practice, antibody titer is the customary metric for immune protection [10]. Both

plasma B cells (PB) and memory B cells (BM) produce antibodies, yet they have different
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lifespans. Antibody titer after vaccination should first decay exponentially owing to the rapid

decrease of PB and then converge to a lower steady-state provided by BM. This scenario is situ-

ated between two sets of constraining kinetics. First, if PB is the sole source of antibody pro-

duction and PB decays to zero after vaccination, then Ab will exponentially decay after

reaching its peak level (denoted as ‘exp’). On the other hand, if BM is the sole source of Ab,

then Ab will be maintained at a high steady-state by BM (denoted as ‘ss’) (Fig 3A). In addition

to antibody protection, recent studies have demonstrated the important protective role of T

cell immunity in vaccination [77–79]. Here, we discuss how memory T cells and antibodies

work together in protecting the host from infection in the cases noted above, ‘exp’ and ‘ss’.

We started with an analysis of one case from Mode 3 (one parameter set in S5 Table) and

then extended our results to all parameter sets in the four modes. In Fig 3B and 3C, we assumed

that a vaccinated individual in Mode 3 is infected at time t = t*. We then investigated the

dynamic processes of that individual’s immune response, while making the supposition that this

individual has different levels of memory T cells and antibody titer corresponding to different

levels of humoral and cellular immune memory induced by vaccination. In the simulation, we

took initial viral inoculum of 104/ml, fixed the initial CD4+TM and sampled CD8+TM and Ab

level uniformly and independently. In the ‘exp’ case, we set BM level as zero and initial antibody

titer as Ab(t*); in the ‘ss’ case, BM and Ab(t*) reach steady-state (Method 3). In Fig 3B, we plotted

the infection dynamics in the ‘ss’ case. When an individual has a higher initial adaptive immune

efficacy �a(t*), he/she will be protected from infection, and the virus will be cleared directly. We

defined fully protected or full protection as a monotonic drop in viral load (teal lines in Fig 3B).

The host with insufficient adaptive immunity is plotted as orange lines in Fig 3B, indicating that

the virus has successfully escaped host immune surveillance, that viral load is increasing, and

that full-blown viral infection is taking place. However, inflammatory responses are alleviated by

immune memory. The ‘exp’ case shows behavior similar to that shown in Fig 3B, indicating that

a sufficient initial �a(t*) can fully protect the individual from infection.

Based on the sampling results in Fig 3B, we found in Fig 3C a negatively sloped border sepa-

rating protected (full protection) from infected individuals in phase plane of initial Ab and ini-

tial CD8+TM (Ab(t*)−CD8+TM(t*) plane) in both ‘exp’ and ‘ss’ cases. In all parameter sets of

Mode 1~4, we obtained trends similar to those in Fig 3D. The averaged border lines indicate

the critical condition in which cellular and humoral immunity work to protect the host from

further infection. The fluctuations of borders arise from the variation of killing rate kkill and

clearance rate kclear in different parameter sets.

By analyzing reproduction number and immune efficacy, we found that the sufficient con-

dition for full protection is �k�c|t = t*>γ or �|t = t*>γ (Fig 3E, Method 4). As this multiplication

rule has been theoretically discussed [80], here we adopt the �>γ criterion to determine effi-

cacy of the vaccine. When infected after vaccination, a recipient with immune efficacy � that

satisfies the �>γ criterion will be protected. Further, if we have the distribution of immune effi-

cacy across a cohort of vaccinees, we can predict the protection rate of the vaccine. To accom-

plish this, we made the following assumptions and simplifications of the � = �k�c>γ criterion.

We assumed �c to be proportional to Ab and �k to be proportional to CD8+T cell, denoted as

T. The sufficient condition of full protection should be kv�T�Ab>γ, and it is plotted as the

black dashed line in Fig 3F, where kv represents cytotoxicity of T cells and antibody affinity.

We obtained Ab and T from the immunogenicity data of neutralizing antibody titers and IFN-

γ fold changes from vaccine trials (S6 Table). Therefore, based on these input data (Ab and T),

we can predict vaccine efficacy by the fraction of fully protected individuals who satisfy the

protection condition kv�T�Ab>γ (Method 5). When considering vaccine efficacy against muta-

tion strain S (noted as the subscript), we assumed that kv and γ are constants, making (γ/kv)S

the only parameter. As shown in Fig 3F, when (γ/kv)WT = 0.13 for SARS-CoV-2 wild-type
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Fig 3. Immune memory protection and vaccine efficacy prediction. (A) Schematic time courses of antibody (Ab)

titer after vaccination. For a given initial Ab level, Ab kinetics generally evolves as the ‘intermediate’ case where Ab

titer is decaying to the steady–state with some antibody–secreting BM cells. The ‘intermediate’ case lies between the two

constraining cases, i.e., in the absence of BM, Ab decays exponentially and approaches to zero (‘exp’) and a certain level

of BM cells can still produce Ab and maintain Ab titer at steady–state (‘ss’). (B) Infection dynamics in primary

infection without TM and BM (gray) and protected/infected cases after vaccination (teal & orange) for the ‘ss’ case. Teal

trajectories represent individuals who can be defined as fully protected from infection based on their strong adaptive

immunity and monotonic drop in viral load. Orange trajectories depict individuals who exhibit infection owing to

insufficient immune efficacy. All samples are selected from one Mode 3 parameter set with uniformly randomized

initial CD8+TM and Ab levels. �i and �a stand for immune efficacy of innate and adaptive immunity, � = �i+�a. See

details in main text. (C) Sampling results of Fig 3B in the space of initial CD8+TM and Ab (t = t*) for ‘exp’ cases (left)

or ‘ss’ cases (right). The solid or dashed lines respectively represent full protection borders for ‘exp’ or ‘ss’ cases such

that individuals with immune memory above the borders are protected from infection (teal lines in Fig 3B). (D) Full

protection borders (mean±std) in Mode 1~4 samples are confirmatory of the general cooperation between cellular and

humoral immunity. Solid line: ‘exp’ case; dashed line: ‘ss’ case. (E) By projecting all mean protection borders in Fig 3D

onto the plane of �c−�k, the –1 slope confirms our theory. Inset: an enlarged view of the protection borders; only minor

variance exists among different modes. (F) Immunogenicity distributions and estimation of protection rates of

CoronaVac (teal) and BNT162b2 (Pfizer, orange) vaccines. Protection border separates protected individuals (circles)

from susceptible individuals (crosses). A given vaccine induces a certain distribution of CD8+TM and Ab

immunogenicity in the recipient population, and protection rate corresponds to the fraction of recipients above the

protection border. Each point in CoronaVac data stands for one participant. Since IFN–γ and Ab data of BNT162b2

cannot be matched, they were shuffled and paired for visual display. Inset table: predicted efficacies vs. reported

efficacies from phase 3 trials. (G) Predictions of vaccine efficacy against wildtype (WT) SARS–CoV–2 based on

immunogenicity data shown in Figs 3F and S23. (H) Predictions of vaccine efficacy against Alpha (triangles), Delta

(diamonds) and Omicron (circles) variants. based on immunogenicity data shown in S23C Fig. (G–H) Vertical and

horizontal error bars represent the 95% confidence intervals of reported vaccine efficacy and our prediction,

respectively.

https://doi.org/10.1371/journal.pcbi.1011383.g003
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strain (WT), we have the best case prediction of vaccine efficacy for CoronaVac and Pfizer

(BNT162b2) with root mean square error (RMSE) of 3.5%. Similarly, for SARS-CoV-2 Alpha

variant (B.1.1.7), when (γ/kv)α = 0.66, we can fit vaccine efficacy (RMSE = 3.8%) of BNT162b2

vaccine (Pfizer–BioNTech) and ChAdOx1 nCoV-19 vaccine (AstraZeneca). For the Delta

(B.1.617.2) and Omicron variants, we have (γ/kv)δ = 0.93 with RMSE = 4.3% and (γ/kv)O =

2.11 with RMSE = 4.3%, respectively. Predictions for all variants are shown in Figs 3G, 3H and

S23. Moreover, in S21 Fig, we discussed the sampling-based protection rates and their contrib-

utory factors, such as CD4+T memory levels and initial viral loads.

We did not discuss the dynamic processes of vaccination in this work, but simulated the

production of antibodies and formation of immune memory following infection. Our results

confirm the clinical findings [72,73] that antibody levels in severe patients are higher than

patients with milder symptoms, which provides stronger protection against re-infection

(S20 Fig). This could be attributed to prolonged APC activation and antigen-presentation pro-

cess to B cells. However, mode 4 patients, who are normally immunocompromised and experi-

ence persistent infection, have significantly low antibody level to clear infection.

Dynamics of SARS-CoV-2 variants: Competition between viral virulence γ
and host immune efficacy ε
When people arm themselves with vaccines, the SARS-CoV-2 virus mutates simultaneously.

Alpha, Delta and Omicron variants rapidly took over their predecessors and became domi-

nant, and they increased their immune escape ability [17–20] and target cell affinity [81],

which in turn broke through vaccine protection [82] and obtained greater transmissibility

[14]. Delta variant caused increased viral load [83] and severe outcomes [84] in comparison to

Alpha and wild-type, and Alpha infeciton showed higher viral load than that of wild-type [85].

We further incorporated the interactions between variants and the immune system into our

computational framework and discussed how variants affect the individual- and population-

level characteristics of primary infection and vaccine protection.

Considering within-host infection, the variants showed an array of features different from

those of the WT strain, including (1) escape from current neutralizing antibodies via spike

protein mutations, (2) increased viral affinity to angiotensin-converting enzyme 2 (ACE2),

and (3) increased replication efficiency [86,87]. We depicted these characteristics in our model

as (1) decreased antibody affinity, (2) increased infectivity kinfect and target cell abundance

[H]0, and (3) larger burst size N1. These newly emerged characteristics contribute to increased

virulence γ. However, it is difficult to calculate γ� N1dIfkinfect�[H]0 directly. Thus, we inte-

grated the quantitative evidence of antibody affinity and protection rates of vaccines against

different variants, together with the protection condition kv�T�Ab>γ, to estimate the virulence

γ of variants (Method 5). Virulence of the Alpha variant is estimated to be γα = 6.1 day−2

(5.5~12.2 day−2) and that of Delta is estimated to be γδ = 10.4 day−2 (9.5~10.7 day−2), while

WT is γWT = 3.6 day−2 in our model. Detailed parameters can be found in S7 Table. In com-

parison to WT and other VOCs, the Omicron variant possesses faster proliferation in the

bronchi, but reduced replication in the lung [88]. The immune response in bronchi may differ

from that in lung. As our model mainly focuses on immune process in the lung area, we did

not discuss the infection and immune dynamics of Omicron.

The competition between viral virulence and the efficacy of host immune response deter-

mines the course and result of infection (Fig 4A). In Fig 4B and 4C, we simulated and illus-

trated different viral dynamics of WT, Alpha and Delta variants, considering the difference in

virulence-related parameters. A greater γ yields more rapid viral dynamics; this explains the

increased viral load in the Delta variant compared to WT during COVID testing.
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Furthermore, in Fig 4D, we examined how Alpha and Delta variants affect within-host

immune response and the percentage of four typical modes in the infected population. When

infected with a highly virulent variant, the proportion of Mode 1 patients decreased (WT: 20%,

Alpha: 3% and Delta: 0%, respectively), and the proportion of Mode 3 patients increased sig-

nificantly (WT: 24%, Alpha: 59% and Delta: 69%). Our results are consistent with clinical

report of increased severity and mortality rate in Alpha variant infections [89,90] and observed

increased severity, hospitalization and emergency care risks in Delta infections [91–93]. How-

ever, other studies also suggested no difference in infection severity between Delta period and

pre-Delta period [94] or even milder symptoms in Delta infections [95], which could be attrib-

uted to confounding factors, including vaccination and immediate treatments after infection.

We note the fractions of Mode 1–4 are subject to the sampling method and classification

boundary, thus their values cannot be directly compared with the actual severity distribution

of COVID patients observed clinically. In S21 Fig, we also examined how increased virulence,

decreased antibody affinity and higher initial viral inoculum affect immune protection and

lower both full protection and severe prevention rates (see definition in Section 7 of S1 Text).

In addition, with a few parameters modified (S8 Table), our model revealed infection dynam-

ics of SARS and Influenza A Virus in S19 Fig.

Clinical immune efficacy correlates with COVID-19 severity

Even as we demonstrated that immune efficacy can be a powerful framework in determining

the strength of immune response, it is typically difficult to make the same determination, as

directly and longitudinally measured, in clinical settings. Therefore, we herein propose a

method to infer immune efficacy by using patients’ clinical hemogram, followed by evaluating

the correlation between immune efficacy and disease severity.

We collected the longitudinal data of hemogram and cytokine profiles of 213 patients

infected with WT SARS-CoV-2 strain in Feb 2020 from Wuhan Union Hospital in China. All

patients were divided into mild/moderate, severe and critical groups based on their clinical

Fig 4. Viral virulence and host immunity dictate the viral dynamics of variants. (A) Host immune efficacy ε and viral virulence γ together determine Rt and thus the

course of infection. When a patient’s immune response is evoked, ε increases to help clear the virus and kill infected cells, followed by recovery. (B&C) Greater γ leads to

faster viral dynamics (B) and accounts for the ~100–fold difference in viral load (mean±std) of Delta variant upon COVID testing (C). (D) Percentages of four typical

modes during the infection of wild type (WT), Alpha or Delta variants, where Alpha and Delta variants will induce more severe symptoms in the infected population. The

sampling procedure on Alpha and Delta variants is same as that for WT in Fig 2.

https://doi.org/10.1371/journal.pcbi.1011383.g004
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symptoms, according to the Novel Coronavirus Pneumonia Diagnosis and Treatment Plan

(Trial version 7) [96].

As generally acknowledged, mild/moderate, severe and critical patients show different lev-

els of lymphopenia and IL-6 peak levels (Fig 5A). Immune efficacy � dictates the multiplicative

manner in which APC, NK, T cells work cooperatively with APC, Neut, and Ab. Ideally, to cal-

culate �, it would be necessary to measure the pulmonary level of these immune cells and anti-

body, as well as the killing and clearing rates of these effectors. However, such calculation is

difficult given the limited clinical data available. We therefore attempted to find a feasible solu-

tion to estimate immune efficacy (S26 Fig), and we propose an empirical indicator for clinical

immune efficacy as �* = (Mono%+Neut%)×(Mono%+Lymph%), which is defined by the pro-

portion (percentage) of neutrophils (Neut%), lymphocytes (Lymph%) and monocytes (Mono
%). Based on patients’ IL-6 level and clinical immune efficacy, we discussed the classification

of clinical patients in S27 Fig. Despite our coarse method, we still found �* proved to be effec-

tive as an empirical reflection of immune efficacy. In particular, mild/moderate, severe and

critical patients have average �* of 0.25, 0.21, and 0.10, respectively, and negatively correlates

with maximum IL-6 level (Fig 5B). Similarly, we have also observed the negative correlation

between IL-6 level and averaged immune efficacy in our simulation results (S10 Fig), in which

the immune efficacy could be used to classify the patients for its mapping with final viral load

(Fig 2D). �* proves to be a good biomarker since it incorporates the characteristics of lympho-

penia and high neutrophil counts in severe and critical patients, but excludes the inflation in

WBC counts owing to the large quantity of neutrophils (Section 8 in S1 Text). If Ab kinetics,

as well as the classification of lymphocytes, are further provided, this empirically defined indi-

cator could be further refined. Ideally, further feedback from a clinical perspective would help

in defining a more effective indicator for immune efficacy.

A B

Fig 5. Hemogram and cytokine data of 95 patients with COVID–19. (A) We analyzed and illustrated the averaged (by each day) kinetics of peripheral blood

immune cells and cytokine profile for all 95 patients (40 mild/moderate, 43 severe and 12 critical). Mild/moderate, severe and critical patients exhibit different

degrees of inflammation (IL–6 peak and neutrophil count) with different values of clinical immune efficacy �*, where �* = (Mono%+Neut%)×(Mono%+Lymph
%). Lower clinical efficacy �* in critical patients represents weak immune response. (B) Distribution of patients’ maximum IL–6 level and averaged �* over the

first 25 days. Distinct distribution of<�*> is observed. [IL−6]max is found to be negatively correlated with<�*> (Pearson Coefficient p = –0.21).

https://doi.org/10.1371/journal.pcbi.1011383.g005
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Inferring immune efficacy from viral shedding data

We exemplify another method for maximum estimate of immune efficacy based on a patient’s

viral dynamics. We collected and analyzed viral shedding data by nasopharyngeal swab and

sputum for a total of 171 individuals from three recent publications [34,97,98] and data points

for a single patient�3. We built a simplified SARS-CoV-2 infection model in Eqs 4~5 wherein

we ignored the mucosal immunity term �v.

d½nCoV�
dt

¼ N1dIf ½If � � �c½nCoV� ð4Þ

d½If �
dt
¼ kinfect½nCoV�½H�0 � �k½If � ð5Þ

For simplification, in the rising phase of viral kinetics before viral load peak, we set �c = 1,

and in the declining phase after viral load peak, we set �k = 3. Thus, by fitting �c or �k to the ris-

ing (24 individuals) or declining (171 individuals) data, we could calculate immune efficacy �

= �c�k (see the two examples in Fig 6A and S28 Fig). Since we lacked a disease severity classifi-

cation for most of the data, we alternatively used maximum viral load as the indicator for

patients’ status [34,98]. Among the 24 patients within the rising phase, we found that their

maximum viral loads were negatively correlated with immune efficacy (S29 Fig, Pearson p =

-0.42). This confirms our results that weak immunity in the early stage may exacerbate

patients’ conditions over the course of disease. Other factors, including patients’ susceptibility

(therefore γ) and viral inoculum, could also affect maximum viral load. Meanwhile, declining

stage immune efficacy determines the duration of viral shedding with a power law of -1.1

(Fig 6B). Thus, lower � may result in slower recovery, which could potentially contribute to

prolonged viral shedding, and subsequent severe lymphopenia, pulmonary damage, and bacte-

rial co-infection. Therefore, patients with compromised immune response are more likely to

fall into the critical category and require extra attention.

Discussion

In this study, we constructed a mathematical model to describe innate and adaptive immune

responses, as well as immune memory, upon infection with SARS-CoV-2 and its variants. We

put forward a series of quantitative indicators to describe individual immune response, such as

immune efficacy �, the capability of immune system clearing the virus and killing infected cells

(�c and �k). We also defined virulence γ to depict the infectivity of different SARS-CoV-2 vari-

ants in the host. Our results showed that the contest between virus virulence γ and immune

A B

Fig 6. Fitting immune efficacy to viral shedding data. (A) Two examples to estimate immune efficacy in both rising and

declining phase by fitting Eqs (4~5). (B) In the declining phase, the value of ε determines patients’ recovery time.

https://doi.org/10.1371/journal.pcbi.1011383.g006
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efficacy � dictates infection and vaccine protection processes wherein lymphocytes and anti-

bodies, together, contribute to immune efficacy in a multiplication manner.

To analyze the heterogeneity of an infected population, we classified the dynamics of

immune responses into four modes to represent increasing severity of SARS-CoV-2 infection.

In our work, we based our classification on the maximum IL-6 level and final viral load. IL-6,

as an inflammatory cytokine has been found as one of the most prominent biomarkers for

severe symptoms [64]. Final viral load is used to identify cases of prolonged viral shedding

[60,66,67]. In other modelling works, different criteria are selected to define viral infection

severity, including infected cell fraction [38], accumulated tissue damage [31,37] and PAMP

and DAMP level [36]. How the difference in these indicators affect the final conclusion should

be further explored. In our results, we showed that individuals with faster-responding immune

efficacy will usually experience less severe symptoms, agreeing with another modelling study

reporting mild symptom patients have higher innate immune response and faster CD8 T cell

response [36,37].

Based on the mathematical formulation of immune efficacy, we proposed the numerical

product of CD8+ T cell and antibody can be used to predict the protection rates of vaccines.

Previous works have used antibody level or its dose response for vaccine efficacy [10,11], yet

the cellular immunity has been overlooked [74,75]. Evidences suggest CD8+T cells render pro-

tection to vaccinated population when the NAb response is waning or escaped [99,100]. In

macaques models, vaccine-induced CD8 immunity cooperates with antibodies to protect

against SARS-CoV-2 [101] and SHIV [102]. These evidences and our theoretical results

together stress the importance of cellular immunity in vaccine design.

Based on the vaccine efficacy results and our framework around γ-ε competition, we esti-

mated the virulence for alpha and delta variants, and examined the consequence of increasing

virulence in primary infection. However, this estimation is coarse, whose verification demands

for measurements of virion burst size, infection rate, etc. To our knowledge, such measure-

ments or estimates are usually difficult to obtain [103], where appropriate model could shed

light on [4]. We then applied the multiplication formulation of immune efficacy � in the clini-

cal diagnosis and treatment processes (Figs 5 and 6, Section 8 in S1 Text), and revealed that

lower immune efficacy is associated with more severe symptoms and longer recovery. When

different immune-based biomarkers have been proposed and applied clinically, including

WBC, lymphocyte, antibody level [104] and C reactive protein [105], we expect the immune

efficacy can work as a quantitative indicator representing immune response strength of the

host clinically. In future work, we hope to sharpen our theoretical framework in comparison

to clinical findings by integrating the effect of cytokine expression and antibody level.

Due to the prolonged duration and rapid spread of the SARS-CoV-2 pandemic, a swarm of

variants have arisen and are currently propagating simultaneously [106]. The diverse mixture

of the rampaging variants further complicates the situation for our model to predict the epide-

miological features of the newly infected. However, our model can still specifically estimate the

virulence of single variant and simulate the host immune responses against its infection. Fur-

thermore, incorporating more detailed information of the variant swarm, our framework

could potentially be extended to model immune response and predict the vaccine efficacy

against combinations of SARS-CoV-2 variants.

We acknowledge a few limitations in the present work. First, our model mainly focused on

immune response of SARS-CoV-2 infection in lung and nearby draining lymph nodes; we did

not consider systemic clinical symptoms like multiple organ failure, pathological damage of

other organs, or preexisting conditions and comorbidities [107]. In our recent work [35], we

also investigated bacterial infection in severe COVID-19 patients, together with the circulation

of lymphocytes and cytokines among blood, lung, primary and secondary lymphoid organs.
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Second, in this work, we utilized IL-6 level and viral load to represent infection severity and

classify immune responses. In the future, we will improve the classification criteria to depict

severity more comprehensively. Finally, we need more clinical and animal data to verify our

model, calibrate the kinetic parameters, and test our predictions.

In summary, our work provides a quantitative framework to investigate the dynamic mech-

anism of host immune response confronting SARS-CoV-2 virus infection. We hope to capture

the essential dynamic properties of the host immune response. Thus, we anticipate that our

approach can be adapted to other kinds of viral and bacterial infections and that it can be

applied to describe and predict the cytokine storm on CAR-T immune treatment [53,108].

Materials and methods

1. Ethics statement

From February 1 to February 29, 2020, 213 laboratory-confirmed COVID-19 admitted cases

with authenticated outcome, either discharged or deceased, were collected at Union Hospital.

The severity of disease (mild/moderate, severe and critical) was assessed according to the

Novel Coronavirus Pneumonia Diagnosis and Treatment Plan (Trial version 7) [96]. Clinical

information for all recruited patients was collected from the hospital electronic history system.

This study was conducted in accordance with the Declaration of Helsinki and was approved

by the Ethics Committee of Union Hospital, Tongji Medical College, and Huazhong Univer-

sity of Science and Technology (#2020/0004). Written informed consent was waived owing to

the emergence of this high-risk infectious disease.

2. Sampling method

To understand population heterogeneity in immune response and clinical conditions during

SARS-CoV-2 infection and any other infectious diseases, it is necessary to explore the parameter

space of the viral-immune interaction network and identify plausible immune response patterns.

To explore the parameter space for a system with 32 variables and 160 parameters, we reduce the

dimensionality and size of sampling to increase efficiency. We fix the dissociation constants (Hill

constants) for terms representing the system’s dynamics, including dying rate of immune cells,

production rate and decay rate of cytokines and virulence-related parameters (infection rate,

infected cell dying rate and burst size). Then we sample the kinetic rates of cellular interactions,

including CD4+ and CD8+ T cell pool size, using the Latin Hypercube Sampling [59] method in

the logarithmic space of log
10
ðPÞ 2 ½log

10
ðPiÞ � b; log

10
ðPiÞ þ b�. The range for each sampled

parameter and values for each fixed parameter can be found in S2 Table.

In the sampling process, the initial value (S3 Table) of each sample is fixed for ODE integra-

tion (Python scipy library [109], odeint function). The initial value for virus is set at 0.01×106/

mL; the initial value for infected cells is set at 0; initial values of naïve CD4+ and CD8+ T cells

are the sampling parameters, CD4+TN and CD8+TN; initial values of other variables are set at

their steady-state solutions.

To further constrain the parameter space, we first estimated the physiological range of

immune cells and cytokines in lung area (S1 Table). As we sampled through the parameter

space in the section entitled ‘Classification of immune response against SARS-CoV-2’, we

screened off the parameter sets, the ODE solutions of which were observed to lie outside the

physiological range. The remaining parameter sets and their ODE solutions (dynamic trajecto-

ries) were selected for following classification.

Owing to the complexity of patients’ status as a whole, clinical conditions (asymptomatic,

mild, moderate, severe and critical) are diagnosed based mainly on their symptoms. Here, we
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intend to focus on the dynamic processes of both viral infection and immune response. There-

fore, we classified the dynamic trajectories into four typical modes (main text, S4 Table) to

reflect patients’ inflammatory response. We assume Mode 1~4 patients will experience

increasing inflammatory response and that Mode 4 patients are representative of critical

patients and hence take longer to recover from COVID-19.

3. Vaccine protection simulation

For the initial conditions in infection after vaccination, we sampled CD8+TM (0~5×105/mL)

and antibody titer Ab (0~1200μg/mL) uniformly and independently; we fixed the initial CD4

+ TM as 2×104/mL and antibody affinity as 1. In the ‘exp’ case, initial BM equals 0. In the ‘ss’

case,
d½Ab�
dt t∗ð Þ ¼ 0, and initial antibody titer reaches steady-state, as determined by memory B

cells. Thus, initial BM is calculated as

½BM� t
∗ð Þ ¼

cAb

pAb
2
ð1þ hAb

IL� 4

½IL� 4�ss
KIL� 4

3
þ½IL� 4�ss

Þ
½Ab� t∗ð Þ;

where [IL−4]ss is the steady-state of IL-4 concentration. The initial viral inoculum of 104/ml

and initial values of naïve CD4+ and CD8+ T cells are half of the sampling parameters,

CD4+TN/2 and CD8+TN/2. Initial values of other variables are set at their steady-state

solutions.

4. Condition for full protection by immune memory

We revisited and analyzed immune efficacy ε to understand the cooperative relationship

between cellular and humoral memory. Because full protection is defined as a monotonic drop

in viral load, this requires that the reproduction number remain Rt<1. As healthy target cells

[H]�[H]0 and immune efficacy increase at the beginning of infection, we have

Rt ¼
g

�kð�cþ�vÞ

½H�
½H�0

< g

�k�c
� g

�k�c
jt¼t∗ < 1. Thus, after vaccination, the sufficient condition for full

protection is �k�c|t = t*>γ or �|t = t*>γ. Simulations verified the multiplication rule of coopera-

tion between cellular (�k) and humoral (�c) immunity (necessary and sufficient condition) in

Fig 3E.

5. Vaccine data analysis, efficacy prediction and estimation of variant

virulence

We fitted the demographic distribution of cellular and humoral immune memory levels elic-

ited by different vaccines to independent lognormal distribution (data of CoronaVac [110],

ChAdOx1 nCoV-19 [17,111,112], and BNT162b2 [113,114]; details in S6 Table) and assumed

these data to be same as the immunogenicity data in the trials for vaccine efficacy estimation.

The immunogenicity data can then be interpreted as vaccine efficacy based on demographic

information embedded in the lognormal distribution.

Neutralizing antibody titer was normalized by the mean convalescent plasma antibody level

in the same study, further used in a log scale, and denoted as log10(Ab). SARS-CoV-2-specific

T memory cell data were divided into two groups: IFN-γ secreting cells detected by the Elispot

assay and SARS-CoV-2-specific CD8+T% detected by flow cytometry (S6 Table). For both

data sources, SARS-CoV-2-specific T memory cell was defined as

log
10
ðTÞ ¼ log

10
ð½T�=½T�

0
� 1Þ;

where [T] is the IFN-γ response or CD8+T% in SARS-CoV-2-related peptides stimulated

serum samples, and [T]0 is the baseline IFN-γ level or CD8+T% measured in the non-
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stimulated controls. For BNT162b2 IFN-γ response data, no baseline data were provided

[113]. Both ChAdOx1 and BNT162b2 studies share the same IFN-γ detection method. There-

fore, the [T]0 of ChAdOx1 was used to calculate log10(T) of BNT162b2. Inspired by the previ-

ous study [10], we fitted the vaccine data of log10(T) and log10(Ab) by the normal distribution

NðmT; s
2
TÞ and NðmA; s

2
AÞ, respectively. Here, we used the maximum likelihood estimation, and

the likelihood function was

LðXjm; s; lÞ ¼
Q

x2Xf ðxjm; sÞ
Sgnðx;lÞ
½
R x
� 1

f ðsjm; sÞds�1� Sgnðx;lÞ:

For each vaccine, X is the set of log10(Ab) or log10(TM) data, and f is the probability function

of a normal distribution with the mean μ and standard deviation σ. The function Sgn(x,l) = 1

when x> l (the limit of detection (LOD)), and Sgn(x,l) = 0 when x� l. The negative log likeli-

hood function was minimized to estimate the mean and the standard deviation. Thus, for one

vaccine (vax), we fitted the parameters (μT, σT, μAb and σAb) and described the populational

humoral and cellular response with the joint normal distribution,

fvax x; y; mT; sT; mAb; sAbð Þ ¼
1
ffiffiffiffiffiffi
2p
p

sT

e
�
ðy� mT Þ

2

2s2
T

1
ffiffiffiffiffiffi
2p
p

sAb

e
�
ðx� mAbÞ

2

2s2
Ab

where x is log10(Ab), and y is log10(T). Notably, the statistical parameters (μT, σT, μAb and σAb)
are different between vaccines.

In Method 4, we derived full protection condition kv�T�Ab>γ for individuals.

Then, for one specific virus strain (V), we can predict the vaccine efficacy (E) of vaccine

(vax) against V,

E vax;Vð Þ ¼

Zþ1

� 1

Zþ1

log10
g

kv

� �

V
� y

fvaxðx; yÞdxdy

We changed the value of (γ/kv)v, computed E(vax, V) for each vax, and calculated the root

mean square error (RMSE) based on the real vaccine efficacy reported in the clinical trials.

Then, we took the value of (γ/kv)v with lowest RMSE as the best one for the strain V.

It is noteworthy that the reported efficacy of ChAdOx1 against WT [112] (62.1%) is even

lower than that against Alpha [17] (74%) and Delta [17] (67%). Because of this confusion in

data, we chose not to fit vaccine efficacy against WT to the data of ChAdOx1.

Variant virulence is calculated by the reported antibody affinities and the (γ/kv) we esti-

mated. Fitting to vaccine efficacy data gives (γ/kv) of Alpha and Delta variants to be 5.08- and

7.15-fold that of WT.
gAlpha=kv;Alpha
gWT=kv;WT

¼
ðg=kvÞAlpha
ðg=kvÞWT

¼ 0:66

0:13
¼ 5:08 and

gDelta=kv;Delta
gWT=kv;WT

¼
ðg=kvÞDelta
ðg=kvÞWT

¼ 0:93

0:13
¼ 7:15.

Meanwhile, the antibody affinity of different variants is assumed to be proportional to kv in

the model and is reported [115,116] to decrease by 1.5- to 3.3-fold for Alpha (kv,WT/kv,

Alpha2(1.5,3.3)) and 2.4- to 2.7-fold for Delta (kv,WT/kv,Delta2(2.4,2.7)). Thus, with the virulence

of WT as 3.6 in the model, the ranges of variant virulence are 5.5~12.2 for Alpha and 9.5~10.7

for Delta. For example, we take kv,WT/kv,Delta = 2.4 and

gDelta ¼
gDelta=kv;Delta

gWT=kv;WT
� gWT �

kv;Delta

kv;WT
¼ 7:15� 3:6�

1

2:4
� 10:725:
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6. Clinical data analysis

From February 1 to February 29, 2020, 213 laboratory-confirmed COVID-19 admitted cases with

authenticated outcome, either discharged or deceased, were collected at Union Hospital. The

severity of disease (mild/moderate, severe and critical) was assessed according to the Novel Coro-
navirus Pneumonia Diagnosis and Treatment Plan (Trial version 7) [96]. As patients recovered

and were discharged, the decreasing data volume increased the uncertainty by individual random-

ness. Also, considering the potential for bacterial infection in the late stage of COVID-19 infec-

tion, we finally chose to analyze the longitudinal data of patients from day 0 to day 25, with at

least 2 time points (95 patients, 40 mild/moderate, 43 severe and 12 critical) in the main text.
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