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Abstract

We present the first complete stochastic model of vesicular stomatitis virus (VSV) intracellu-

lar replication. Previous models developed to capture VSV’s intracellular replication have

either been ODE-based or have not represented the complete replicative cycle, limiting our

ability to understand the impact of the stochastic nature of early cellular infections on virion

production between cells and how these dynamics change in response to mutations. Our

model accurately predicts changes in mean virion production in gene-shuffled VSV variants

and can capture the distribution of the number of viruses produced. This model has allowed

us to enhance our understanding of intercellular variability in virion production, which

appears to be influenced by the duration of the early phase of infection, and variation

between variants, arising from balancing the time the genome spends in the active state, the

speed of incorporating new genomes into virions, and the production of viral components.

Being a stochastic model, we can also assess other effects of mutations beyond just the

mean number of virions produced, including the probability of aborted infections and the

standard deviation of the number of virions produced. Our model provides a biologically

interpretable framework for studying the stochastic nature of VSV replication, shedding light

on the mechanisms underlying variation in virion production. In the future, this model could

enable the design of more complex viral phenotypes when attenuating VSV, moving beyond

solely considering the mean number of virions produced.

Author summary

This study presents the first complete stochastic model of vesicular stomatitis virus (VSV)

replication. Our model captures the dynamic process of VSV’s replication within host

cells, accounting for the stochastic nature of early cellular infections and how these

dynamics change in response to mutations. By accurately predicting changes in mean

virion production and the distribution of viruses in gene-shuffled VSV variants, our

model enhances our understanding of viral replication and the variation we see in virion

production. Importantly, our findings shed light on the mechanisms underlying the pro-

duction of VSV virions, revealing the influence of factors such as the duration of the early
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infection phase and the interplay between the genome’s ability to switch into an inactive

state and viral protein production. We go beyond assessing the mean number of virions

produced and examine other effects of mutations, including the probability of aborted

infections and the variability in virion production. This stochastic model provides a valu-

able framework for studying the complex nature of viral replication, contributing to our

understanding of single-cell viral dynamics and variability. Ultimately, this knowledge

could pave the way for designing more effective strategies to attenuate VSV.

Introduction

Vesicular stomatitis virus (VSV) is a non-segmented negative-strand RNA virus (NNSV) that

has been studied for years as an agricultural pest. It is a model for negative-sense RNA viruses

and a biomedical tool [1–3]. VSV’s extensive characterization makes it an ideal system for

model-based investigation of specific viral mechanisms of NNSVs and broader questions

about viral behaviors. Since 2000, several mechanistic models have been developed to dissect

different characteristics of VSV. Recently, a model of transcription in VSV and respiratory

syncytial virus (RSV) revealed a novel theory for why the transcription of genes along the

genome follows a predictable gradient dependent on position [4]. This model showed that the

long-held understanding of how NNSV transcription works, assuming a single promoter at

the 3’ end of the genome and a constant rate of attenuation between genes [1,5], could not pro-

duce the data that we see in the literature and led to the development of an entirely new model

consistent with these observations.

In this study, we seek to understand how the stochastic nature [6] of the reactions that

occur during intracellular replication contributes to the variation we see in the number of

viruses produced both between different cells and between different variants. Previous models

of the dynamics of intracellular replication in VSV have fallen short of capturing the stochastic

behavior of virion production while remaining biologically interpretable. The first model was

an ordinary differential equation (ODE)-based model made to identify methods to attenuate

VSV [7]. This model predicted how balancing transcription and genome synthesis rates might

affect viral growth and was later built upon by predicting how all 120 possible gene-shuffled

variants of VSV might behave [8]. The model, while thorough, is extremely complex, making

it difficult to interpret and work with. In addition, the model is deterministic and, therefore,

unable to capture cell-to-cell variation in virion production.

The next model of VSV intracellular replication sought to simulate the cell-to-cell variation

of virion production [9]. This model introduces a new hybrid simulation algorithm that

includes a new stochastic simulation algorithm called a delayed stochastic simulation algo-

rithm (DSSA). The model of the VSV life cycle has been limited to transcription, translation,

and replication reactions; it lacks reactions corresponding to the assembly of the viral particles.

In addition, while the model does make a distinction between active and inactive RNA

genomes, which is biologically accurate, the active genome is assumed to be the one that is not

bound to any proteins. This is inaccurate as the nucleoprotein (N protein) is an essential par-

ticipant in the facilitation of polymerase activity and it is rare to find genomes that are not

encapsidated to some degree [10,11]. Furthermore, the model assumed that the transcription

rate of genes is a function of the number of genomes and L polymerase proteins, which was

later disproven [12]. As a result of these simplifications, the model validation is limited to a

qualitative comparison of the dynamics of the variables representing genome numbers with

the known dynamics of virus production.
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The third model was an ODE model that modeled the production of N protein encoding

mRNA molecules as a function of the number of genomes present in the cell. Here it was

shown that the number of mRNA molecules is purely a function of the number of genomes

and that the L polymerase does not need to be considered. This is consistent with the observa-

tion that VSV forms phase-separated compartments [13,14], and that it is normal for viruses

to form factories which may be uninhibited by fluctuations in the concentration of replicase

[15,16]. However, for our purposes, this model is too simplistic and does not consider stochas-

ticity. A fourth stochastic model was also developed that only sought to replicate extremely

early infection dynamics (less than 20 seconds into the infection) purely to compare parameter

estimation methods [17]. This model was too limited for our purposes and did not incorporate

the creation of new virions as well.

Here we present the first stochastic model of VSV that incorporates the entire replication

cycle. The model relies only on mass action reactions, meaning the only factors considered

when calculating the reaction rate are the reactant concentrations, and incorporates the syn-

thesis, degradation, and assembly reactions of VSV and can easily be simulated with the stan-

dard Gillespie stochastic simulation algorithms. The model also incorporates a transition of

the viral genomes from an active to an inactive state facilitated by the M protein [1,2,18]. The

model is the most accurate to date for predicting changes in mean virion production in gene

shuffled VSV variants [19] and can additionally capture the distribution of the number of

viruses produced by VSV. While we began working with a model that incorporated the indi-

vidual binding of every single protein that binds to VSV, we ultimately developed a stochastic

model that treats the amount of protein that binds to the virus as a single unit. This is consis-

tent with observations that the number of proteins incorporated into a virion varies, such that

having an exact number of proteins bind to the genome is not necessarily biologically accurate

[20]. We also know that some proteins that make up the virion, like the G protein, assemble

independently of the other components before being incorporated into the virion [21]. We

believe this to be the best approach to modeling the dynamics of VSV replication, as we cap-

ture the stochastic behavior of virion assembly in this model while producing the most accu-

rate predictions to date for the influence of mutations on virion production. This model

allowed us to improve our understanding of both intercellular variation and variation between

variants in virion production. Intercellular variability appears to be the result of how long it

takes for the virus to exit the early phase of infection. However, the differences between vari-

ants instead appear to arise from the complexity of balancing the time the (-) genome spends

in the active state and the speed of incorporating new (-) genomes into virions, which in turn

is balanced by the production of viral components.

Results

Model of VSV replication

The full model can be found in Folder 2 on Github under the name Full_Model.xml.

Molecular species

All species abbreviations are defined in Table 1. A single VSV particle consists of 1 negative-

sense strand of RNA genome (nsg), 1258 N, 466 P, 1826 M, 1,205 G, and 50 L [22]. When the

RNA genome is released into the cell, the M protein travels to the nucleus while the N, P, and

L proteins stay associated with the genome as an RNP complex. As such, we set the initial con-

ditions as a single nsg_N molecule with 466 P, 1,205 G, and 50 L available, the quantity of N to

zero since it is already bound to the genome, and M to zero as well since it is in the nucleus

and not available in the cytoplasm.
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Assembly

In this model, assembly occurs sequentially, starting with the binding of the N proteins to the

nsg, followed by subsequent binding of the P proteins, the L proteins, the M proteins, and

finally the G proteins (Fig 1). This was inspired by the three layers of the VSV virion with the

most internal layer consisting of a single molecule of nsg_NPL which is encased in an outer

layer of M proteins and wrapped in a membrane studded with G proteins [1,18]. The binding

of each of these factors is broken into several steps, with a single protein binding at each step

and each step having the same rate constant listed next to the overall reaction in the table. In

this model, psg only recruits the N protein. The literature-derived reaction rates were taken

from the binding rate of the N protein from a previous model [9] where the binding rate is

assumed to be 0.0461 s-1 for the binding of one molecule of N to the genome/antigenome.

Here, we make this our initial guess for the binding rate of all proteins.

Transcription

The reactants in the transcription reactions are the nRNP species. This is based on the observa-

tion in the literature that the number of mN molecules produced is dependent on only the

number of genomes present [12]. In previous models, the transcription of VSV genes has been

modeled so that they are coupled to the transcription of any upstream genes in the viral

genome [7,9]. Here, we model the transcription reactions as independent from one another.

This decision was informed by the conclusions gained from the recently proposed novel

model for transcription in VSV and RSV which suggest that transcription of each gene does

not require the transcription of each upstream gene [4].

Table 1. List of abbreviations used for each molecular species in the model.

Molecular Species Abbreviation

Negative-Sense Genome (Free Genome) nsg

Positive-Sense Genome (Free Antigenome) psg

Nucleoprotein N

N bound genome nsg_N

N bound antigenome psg_N

Phospho-protein cofactor P

N and P bound genome nsg_NP

RNA-dependent RNA polymerase L

N, P and L bound genome nsg_NPL

Matrix protein M

N, P, L, and M bound genome nsg_NPLM

Glycoprotein G

N, P, L, M, and G bound genome nsg_NPLMG

Nucleoprotein mRNA mN

Phospho-protein cofactor mRNA mP

Matrix protein mRNA mM

Glycoprotein mRNA mG

RNA-dependent RNA polymerase mRNA mL

Assembled Viral Particle V

Either nsg, nsg_N, nsg_NP, nsg_NPL Active nRNP

Either nsg_NPLM, nsg_NPLMG, and V Inactive nRNP

Either psg or psg_N pRNP

https://doi.org/10.1371/journal.pcbi.1011373.t001
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To calculate the transcription rates, we started by calculating the rate of transcribing the N

gene. This was inspired from a previous stochastic model that split the transcription rate con-

stants into the rate of polymerase recruitment and a delay to release the reactants [9]. These

were combined into a single rate constant. We then calculated the rate constants of all down-

stream genes by reducing the rate constant of each gene by 30% for each gene-gene junction

upstream of the gene, except for the L polymerase which was reduced by 90% for the final

gene-gene junction. This is to create the ratio of 1:0.7:0.49:0.343:0.0343 (ratio of mN to mRNA

encoded in position 2 to mRNA encoded in position 3 to mRNA encoded in position 4 to mL)

that is observed in the literature [23,24].

Translation

Each translation reaction is carried out independently and uses the corresponding mRNA

to produce the protein. The rate constant of these reactions we use here assumes uniform

saturation of the transcripts by ribosomes and is derived from a previous model [9]. This

uniformity of translation is also done to maintain the 1:0.7:0.49:0.343:0.0343 ratio, as it is

also present at the protein level. While it is known that during the course of infection, ribo-

somes can become limiting and change the dynamics of the translation of transcripts [7],

we do not incorporate this because we assume that this would influence the translation of

each transcript equally.

Fig 1. Simplified Model of Vesicular Stomatitis Virus. Visual representation of the simplified model used in this paper. Every molecule depicted has a

degradation reaction associated with it that is not represented here.

https://doi.org/10.1371/journal.pcbi.1011373.g001
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Genome synthesis

The reactants in the genome synthesis reactions are the pRNP species along with the N pro-

tein. This was calculated in a similar fashion to the transcription of the N gene by combining

the estimated rate of polymerase recruitment with the delay to produce the antigenome [9].

The decision to include the N protein in the reaction was because the N protein is known to

play a pivotal role in facilitating and regulating genome/antigenome synthesis [10,11].

Antigenome synthesis

The reactants in the antigenome synthesis reactions are the nRNP species along with the N

protein. Since the amount of pRNP present in a cell is roughly 50 times higher than the

amount of nRNP, we multiplied the genome synthesis rate constant by 50 as was done in a pre-

vious model [9].

Degradation reactions

All molecular species except for V have a degradation reaction associated with them. All rates

are taken from ones used in a previous model [7].

Model simplification

Initially we attempted to simulate the binding of every protein to the genome as a separate

reaction, but quickly realized that even when simulating the ODE model took an unreasonable

amount of time. We then performed a series of tests where we increased the number of reac-

tions and timed how the length of loading and simulating the ODE model changed as the

number of reactions increased (Python Notebook 1 on Github). We found that these times

increased exponentially as we increased the reaction number (S1 Fig). This informed our ulti-

mate decision that the best model to use is the simplest one. In this model, each molecule of

protein represents a unit of the protein that makes up a virion. The reaction rate associated

with these binding reactions represents the average amount of time it takes for the binding of

all the proteins of that type to occur. So, we adjusted the rate constant of any reactions that

involve the creation or consumption of proteins by dividing the rate constant by the number

of proteins that is in a virion. For example, if the binding rate of protein P to the nsg is 0.0461

then it would be adjusted to be 0.0461/466 because 466 P proteins are in a single virion. While

there may be some concern in how this might affect the variability of the aggregation rate of

the virus, it is known that the rate of the release of the first virus in single cell infections is

highly variable usually occurring within 2–6 hours of infection [33] suggesting that early viral

aggregation is highly variable.

A visual representation of the reactions that make up the final model, not including the deg-

radation reactions, can be seen in Fig 1. A table of all the reactions in the final model can also

be seen in Table 2. Each reaction is mass action, so the reaction rate for each is the rate con-

stant multiplied by the concentration of the reactants.

Model fitting

We then wanted to see if the parameters of the model could be adjusted to fit the mean number

of virions produced by VSV gene shuffled variants that have been previously recorded in litera-

ture [19]. We chose the data from BHK-cl.13 cells because it was the dataset where the mean

number of viruses produced by the wild-type was closest to the mean number of viruses

recorded when infecting single cells with wild-type VSV [25]. The mean number of virions

used for comparison was taken ~16 hours post infection (57,000 seconds). This time was
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chosen because there is not a consensus on how long VSV takes to kill a cell, but it is known

that virions start emerging around 2–6 hours after infection [26] and that VSV’s mechanism

for killing cells is tied to the cell cycle [27]. So, if we assume the average cell cycle time in the

cells we are modeling is about a day [28] and that the cells are asynchronous, then an average

time until death of 16 hours should be reasonable.

We started by manually adjusting the parameters to get the wild-type model to be close to

the mean number of virions produced by the wild-type VSV. We then used these parameters

to make the models for the gene shuffled variants by assigning the transcription rate constants

to each gene based on its position in the genome. This model, however, failed to reproduce the

mean number of virions produced by the gene-shuffled variants and resulted in a very large

MSE (Table 3). These models can be found in Folder 3 on Github. We then proceeded to fit

our model, but due to the computational burden of fitting the stochastic model we had to fit

our model using a combination of fitting the ODE model followed by fitting the stochastic

model. This final stochastic model was able predict changes in virion production in our gene

shuffled variant dataset (Table 3). The fit model as well as other intermediate models can be

Table 2. Model Reactions with Reactants and Products.

Reaction Name Reactants Products

nsg synthesis pRNP + N pRNP + nsg + N

psg synthesis Active nRNP + N Active nRNP + psg + N

nsg encapsidation nsg + N nsg_N

psg encapsidation psg + N psg_N

P binding nsg_N + P nsg_NP

L binding nsg_NP + L nsg_NPL

M binding nsg_NPL + M nsg_NPLM

G binding nsg_NPLM + G nsg_NPLMG

Virion budding nsg_NPLMG V

Transcription N Active nRNP Active nRNP + mN

Transcription P Active nRNP Active nRNP + mP

Transcription M nsg nsg + mM

Transcription G nsg nsg + mG

Transcription L nsg nsg + mL

Translation N mN mN + N

Translation P mP mP + P

Translation M mM mM + M

Translation G mG mG + G

Translation L mL mL + L

N degradation N

P degradation P

M degradation M

G degradation G

L degradation L

mN degradation mN

mP degradation mP

mM degradation mM

mG degradation mG

mL degradation mL

nsg degradation nRNP

psg degradation pRNP

https://doi.org/10.1371/journal.pcbi.1011373.t002
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found in Folder 5 on Github. This stochastic model allowed us to also visualize the distribution

in the number of virions produced by the wild-type model and see that it is consistent with

viral distributions observed in the literature (S2 Fig) [25,29,30].

Individual infections that exit the early phase of infection with more

mRNA produce more virions

The individual trajectories of simulations using this model (Fig 2A) reveal heterogeneity in

both the number of virions produced and the time at which the virions begin to be produced.

Early on in infection, the random chance a reaction may or may not occur can have long last-

ing effects on the ultimate outcome of that infection, so we wanted to see if we could identify

which early events contribute to the variation in the number of virions produced. We first set a

distinction between the early phase of infection and the rest of the infection cycle by identify-

ing when the first virion is produced. Here we define the time until the production of the first

Table 3. Model Predictions and Mean Square Error.

VSV Variant Data From Literature Manually Adjusted Param. Stochastic Model

NMGPL 4.35 x 103 7.69 x 102 4.27 x 103 ± 46

NPMGL (WT) 2.09 x 103 1.89 x 103 1.87 x 103 ± 20

NMPGL 2.35 x 103 5.72 x 102 2.55 x 103 ± 26

NGPML 1.30 x 103 3.05 x 103 1.33 x 103 ± 10

NGMPL 3.96 x 103 1.90 x 103 3.93 x 103 ± 41

MSE 4.66 x 106 1.92 x 104

https://doi.org/10.1371/journal.pcbi.1011373.t003

Fig 2. VSV infections that exit the early phase of infection earlier with more mRNA present produce more virions. (A) 1000 stochastic simulations of wild-

type VSV showing the number of virions produced over time. (B-F) Left: Kernel density estimate (KDE) plots of the number of virions produced vs. the time

until the early phase ends. Right: KDE plots of the quantity of each mRNA species present when the early phase ends, along with the 99% CI line of best fit, for

variants (B) NMGPL, (C) NGMPL, (D) NMPGL, (E) NPMGL (wild-type), and (F) NGPML. All mRNA species show a weakly positive correlation (0.2< r<

.39) with the number of virions produced, except for mL which has a very weak correlation (0< r< .19) in all variants.

https://doi.org/10.1371/journal.pcbi.1011373.g002
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virion as the time it takes for the infection to leave the early phase. When we plot the time until

the early phase is left against the number of virions produced (Fig 2B–2F) we can see that there

is a visible trend that the longer it takes for the early phase to end, the fewer virions that are

ultimately produced.

This naturally then led us to investigate what early molecular species could also be partici-

pating in these observations. We then turned our attention to the quantity of mRNA present

when the infection leaves the early phase, as the transcription reactions are some of the earliest

reactions that occur upon infection. We plotted the number of mRNA present at the time

when the infection exits the early phase against the number of virions produced (Fig 2B–2F)

and revealed a clear positive correlation between every mRNA and the number of virions pro-

duced. These observations together suggest that the variation we see in the number of virions

produced within variants is likely due to variation in how long it takes for the infections to

stockpile resources and actively start producing viruses. The script used to perform these anal-

yses and generate the figures can be found in Python Notebook 2 on Github.

The positions of the N, P, and L genes are the most important for

maximizing virion production

We next turned our focus to identifying what is influencing the variation in the mean number

of virions produced between different variants. We started by generating all 120 possible gene-

shuffled VSV variants to observe the fitness landscape of these variants (Fig 3A). It appears

that most gene-shuffled variants are at least weakly viable (produce more than 1 virion per

infection), but few produce virions on the scale of the wild-type virus (>1000). Even more

intriguing, however, is that there are nine that are predicted to produce more virions than the

wild type (Table 4).

Fig 3. N and P gene position most strongly influence virion production in gene shuffled VSV variants. (A) The average number of virions produced over

time for all 120 variants. The trajectory of the wild-type variant is in red. (B-F) The average number of virions produced as a function of gene position (which

determines the transcription rate) for genes (B) N, (C) P, (D) M, (E) G, and (F) L. The error bars represent the standard error of the mean, and the orange

dots represent the individual variants.

https://doi.org/10.1371/journal.pcbi.1011373.g003
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To identify what features made these variants so successful, we then looked at the average

number of virions produced and the percent of infections aborted (infections producing < = 1

virion) by every variant as a function of each transcription rate to look for any patterns that

may explain this variation (Figs 3B–3F and 4). For vitality, this revealed a negative correlation

between the transcription rate of the N gene and the number of infections that were aborted.

Most notably, when the N gene is in position 1, 2, or 3 nearly all infections are fruitful, while in

position 5 nearly all infections are aborted. There appeared to be no obvious relation between

the rate of aborted infections with the other genes, however (Fig 4).

When looking at the number of virions produced, however, a much more complex behav-

ior emerged. We observed a positive relationship with the transcription rate of N with the

number of virions produced, but a negative correlation with the transcription rate of P. There

Table 4. Highest Virion Producing Gene Shuffled Vesicular Stomatitis Virus Variants with Associated Statistics.

Variant Mean Virions Produced Standard Deviation Percent of Infections Aborted Mean/Standard Deviation

NMGLP 12365.23 11777.92 0.16 1.05

NGMLP 12355.23 11534.64 0.10 1.07

NMLGP 10742.46 9275.01 0.08 1.16

NLMGP 10673.82 9092.71 0.08 1.17

NGLMP 10629.27 8462.59 0.06 1.26

NLGMP 10481.59 8520.48 0.12 1.23

NMGPL 4294.93 2384.08 0.28 1.80

NGMPL 3914.32 2119.58 0.28 1.85

NMPGL 2516.32 1332.83 0.48 1.89

NPMGL (WT) 1863.50 995.86 0.52 1.87

https://doi.org/10.1371/journal.pcbi.1011373.t004

Fig 4. N gene position most strongly influences the percentage of infections that are aborted. The average percent of infections aborted as a function of the

gene position of genes (A) N, (B) P, (C) M, (D) G, and (E) L for all 120 variants. The gene position is directly related to transcription rate of each gene. The

error bars are the standard error of the mean and the orange dots represent the individual variants.

https://doi.org/10.1371/journal.pcbi.1011373.g004
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also appeared to be a nonlinear relationship between the number of virions produced and the

transcription rates of L, M, and G, all of which showed a small peak in the middle of the tran-

scription rates. These observations are consistent with the gene orientation of the predicted

most fruitful variant (NMGLP), as in this variant the N transcription rate is maximized, and

the P transcription rate minimized with the other three in the middle.

These plots also revealed a few rules for what positions these different genes need to be in to

produce a virus that yields more virions than the wild-type variant. The first is that the N gene

must be in the first position of the genome. The next is the L and P genes must be in the 3rd,

4th, or 5th positions, which is consistent with the idea that the transcription rate of P is nega-

tively associated with the number of virions produced. Finally, the G and M genes must be

either in the 2nd, 3rd, or 4th positions, given the peak we observe for these middle rates.

These results suggest that the transcription rates of P and N appear to be the most influen-

tial on the number of virions each variant produce. This is further supported by the fact that all

6 variants that have N in the 1st position and P in the 5th position are the top 6 virion produc-

ing variants. However, it also appears that the position of L seems to be also important, as

within these top 6 variants, if L is in the 4th gene position the average yield is ~12350 virions,

while if it is in any other position, we only see ~10000 virions produced (S1 Table). In short, it

looks like the best virion production occurs when the transcription of L and P are minimized

and N is maximized. The script used to perform these analyses and generate the figures can be

found in Python Notebook 3 on Github.

However, this only explains the variation in the most prolific phenotypes. It does not explain

the wide variation in virion production of the other 14 variants that produce more than 1000

virions. This is because we are still left with only a fraction of an image of what the relationships

between these transcription rates and the number of the virions produced are, because to alter

one transcription rate in these models, you must alter at least one more. This is because when

altering the position of a gene, the gene in the position that the first gene is moved into is

moved into the original position of the first gene, altering the transcription rate of both genes.

The balance of all transcription rates plays a role in determining virion

production

The next step was to see how altering individual transcription rates independently could alter

the number of virions produced. For this section we looked at the best variant and the wild-

type variant to see how altering each transcription rate by values between -25% and +25%

would affect virion production (Fig 5). The wild-type variant reveals that altering every tran-

scription rate has potential to alter the number of virions produced. Here, it appears that the

transcription rates of the genes encoding mN, mM, and mG have a positive association with

the while the rates for genes encoding mP and mL have a negative association. The most fruit-

ful variant (NMGLP), however, is only strongly altered by changing the transcription rate of

mN which also has a positive association, but interestingly, has a very slight positive associa-

tion with increasing the transcription rate of mP as well. The script used to perform these anal-

yses can be found in Python Notebook 3 on Github.

These two observations together suggest that for each variant, there is an optimal balance of

these transcription rates that maximizes virion production that is not simply achieved by maxi-

mizing all transcription rates. It appears that there is a hierarchy where the best virion produc-

tion is achieved by maximizing N transcription but also by balancing the production of G, M,

L, and P transcription, and deviations from this balance can alter virion production. This sug-

gests that producing more virions is not achieved by merely maximizing transcription rates,

but also by considering the interplay between all species.
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Discussion

In this study we sought to understand how the stochastic nature of the reactions in early cellu-

lar infections influence the variation we observe in the number of VSV virions produced by

these cells. Previous models have attempted to investigate the cellular dynamics of VSV, but

these models are either ODE-based [7,12] or do not represent the full replication cycle due to

the computational burden required to investigate the model [9]. The model we present here is

the first stochastic mechanistic model that captures the full replicative cycle of VSV. The

model is also the most accurate one to date in predicting changes in virion production in

response to gene shuffling. However, we want to acknowledge that our model contains the

assumption that the kinetics of the reactions do not change during the course of the infection.

Some of these reactions likely do change, but without this explicitly included in our model we

are still able to achieve accurate predictions with the available data and we argue that this sug-

gests our model is capturing some of these dynamics. In the case that our predictions do not

hold up when new data emerges, it may be necessary to revisit our model and alter this

assumption.

This model provides valuable insight into the sources of variation in virion production,

both within a single variant as well as between variants. Within variants, the main determinant

of the number of virions produced appears to be how long it takes to leave the early phase of

infection (Fig 2B–2F). This is consistent with the observation that some of the variability in

virion production can be explained by what phase in the cell cycle the cell is infected in [25].

VSV’s mechanism for killing cells is tied to the cell cycle, and so the phase the cell is in could

influence the ultimate number of virions that can be produced by determining how long VSV

has to start replicating [27]. Here, the variation in the amplifying time of VSV is the result of

delays in entering the replicative cycle, which may allow us to capture some of the variation

that is due to infecting cells at different cell cycle stages. Nonetheless, this intrinsic feature we

identified is likely to play a role in intercellular variation. What is also exciting is that we can

capture these delays by implementing the traditional stochastic simulation algorithm without

the implementation of a DSSA.

As for the variation between VSV variants, our model seems to suggest that the most

important factor for determining the number of virions produced is the transcription rate of

Fig 5. Parameter scans reveal the influence of L, M, and G genes on virion production. These graphs show how adjusting the transcription rates of each

gene by a percentage of the value of the parameter in (A) WT and (B) the optimal variant (NMGLP) influences the number of virions produced. The black

dotted line shows the mean number of virions produced by those variants.

https://doi.org/10.1371/journal.pcbi.1011373.g005
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the N gene. This is evident as all variants that produce more than 2000 virions have the N gene

in the first position (Fig 3B). In addition, when we increased the transcription rate of each

gene independently, N led to the largest increase in the number of virions produced by both

the wild-type and most fruitful gene shuffled variant (NMGLP) (Fig 5). Furthermore, the tran-

scription rate of the N gene appears also to play a major role in how frequently infections are

aborted (Fig 4). These findings are consistent with observations in the literature that genome

and antigenome replication are both strongly dependent on and regulated by the N protein

[10,11]. As we increase the transcription rate of the N gene, we likely also increase the rate of

replication in the cell, producing more genomes and ultimately, exponentially more virions.

However, we also see that the other genes also actively participate in determining the virion

output, although to a lesser extent. There is clearly a complex balance of transcription rates

between M, G, L, and P that allows for the optimal growth rate, and deviations from this opti-

mal balance can alter virion production. This is likely due to the distinction between active vs.

inactive nsg in the model. Since L and P both bind to the active genome, excess L and P might

cause newly synthesized genomes to be converted into the inactive form too quickly. This may

explain the negative correlation between these transcription rates and virion production in the

wild-type. Indeed, there is evidence that the P protein may inhibit transcription [31]. M and G

then convert those inactive genomes into virions, and as such, they can influence virion pro-

duction by forming bottlenecks during virion assembly. L and P have the potential to do this

as well, and so it may be that maximizing virion production is a matter of balancing how long

nsgs stay in the active state with how quickly they are incorporated into virions.

The negative relationship of the transcription rate of the P and L genes and the positive rela-

tionship of the transcription rate of the N gene with regards to virion production are consistent

with the results of a previous model that also sought to predict how all 120 variants of VSV

may behave [8]. However, our predictions appear to put a heavier weight on the transcription

rate of P, while the previous model put more emphasis on L. As for the M and G genes, both

our and their results support the notion that maximum virion output is achieved when these

are in gene positions 2, 3, or 4, and that when M and G are in position 5, almost no virions are

produced. However, our results differ in that putting these genes in position 1 also is more det-

rimental than they predicted and is similar to putting them in position 5.

As for the overall fitness landscape of the variants, they also predicted that several variants

produce as many virions as the wild-type as well as a few that produce more than the wild-type

[8]. However, the different relationships between transcription rates we found alter which vari-

ants are in these positions. For example, their predicted best gene shuffled variants are the

NMPGL and NMGPL variants, while our predicted best variant is the NMGLP variant. Likely

these differences are due to differences in the datasets utilized for fitting the model, as we fit

the mean number of virions produced to the mean number of virions produced per cell in the

five VSV gene shuffled variants, while their model was fit to ranked variant data of six gene

shuffled VSV variants from a previous paper [32] and their own one-step growth curve of the

wild-type. Furthermore, the cell type of the ranked variant data was from BSC-1 cells, while

the data we utilized was from BHK-cl.13 cells. This is extremely important as the number of

virions produced and the ranking of variants is highly dependent on the cell line utilized to

grow the virus [19]. For example, in our dataset of the five gene-swapped variants, the wild-

type was the fourth highest producing variant, while in the dataset they used, the wild-type was

the third highest producing variant of six gene shuffled variants.

However, since our model is stochastic and the previous model is an ODE model, our

model has additional traits that we can observe in the variants that are not possible in the ODE

model. We can observe the distribution of the number of virions produced by different vari-

ants (S2 Fig) as well as predict how frequently infections may be aborted (Fig 4). We can also
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calculate additional statistics about the virion distribution, allowing us to select for more com-

plex phenotypes when designing specific viral behaviors. For example, if we wanted to maxi-

mize the mean number of virions produced while minimizing the standard deviation, we

could calculate the ratio of mean to standard deviation (Tables 4 and S1). Our model currently

predicts that the best variant for achieving such a phenotype would be variant NPMLG. These

attributes of our model allow for more in-depth analyses of the effects of different mutations

on the viral life cycle than any previous model beforehand.

Considering the limited size of the datasets used to estimate the model parameters, the

model is likely to be overfitted. Ongoing work in our lab aims at increasing the amount of data

available to refine this model. This will be achieved by producing a large library of VSV vari-

ants and testing them on different cell lines [33]. The library will include all the gene-shuffled

variants as well as codon-deoptimized versions [34] of the genes to control their translation

independently of their transcription. We will also broaden the scope of phenotypic data

beyond the number of virions at one time point by observing the dynamics of their replication

by time-lapse microscopy [35,36] and estimating the number of mRNA molecules present in

infected cells [37,38].

Methods

Model creation was formalized as previously described [39].

Model creation

The models were encoded in XML format. These files were generated by creating two Excel

spreadsheets, one containing the reactions and their parameters and the other containing the

initial number of molecular species. The models were then fed to the Python script provided

in Folder 1 which can be found on Github.

Model simulation

Models were simulated using COPASI’s Python implementation, COPASI Basico [40]. ODE

models were simulated using the LSODA Method, while stochastic simulations were per-

formed using the Gillespie Direct Method. Models were simulated for ~16 hours (57,000 sec-

onds). The dataset used to analyze the stochastic models consisted of 10,000 trajectories of

each variant.

Parameter optimization

Models were fit using the minimize function from SciPy [41]. The Nelder-mead method was

utilized. ODE and stochastic Models were fit by calculating the mean squared error (MSE) of

the number of virions present at the endpoint (57,000 s) and the average number of viruses

produced recorded in the literature. The scripts used to fit the model can be found in Folder 4

on Github.

Cloud computing

When performing large numbers of optimizations or stochastic simulations, we utilized Ama-

zon Web Service’s Elastic Cloud Computing service to create an instance that could handle the

computations. We utilized a single c5.18xlarge instance which is a computation optimized

instance with 72 virtual CPUs and 144 Gigabytes of memory.
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Supporting information

S1 Fig. Simulation and Loading time of ODE Models Increases as the Number of Reactions

in the Model Increase. These two graphs show how the time to load each model (B) and simu-

late the model (A) increase drastically as the number of reactions in the model increases.

(PDF)

S2 Fig. Distribution of the number of virions produced by each gene shuffled Vesicular

Stomatitis Virus variant used to fit the model. These graphs show the distribution for the

final number of virions produced for 10,000 simulations of each gene-shuffled variant in the

training set.

(PDF)

S1 Table. Gene Shuffled Vesicular Stomatitis Virus Variants with Associated Statistics.

(PDF)
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